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Abstract Collaborative databases such as genome databases, often involve extensive
curation activities where collaborators need to interact to be able to converge and agree
on the content of data. In a typical scenario, a member of the collaboration makes
some updates and these become visible to all collaborators for possible comments and
modifications. At the same time, these updates are usually pending the approval or
rejection from the data custodian based on the related discussion and the content of
the data. Unfortunately, the approval and authorization of updates in current databases
is based solely on the identity of the user, e.g., via the SQL GRANT and REVOKE
commands. In this paper, we present a scalable cloud-based collaborative database
system to support collaboration and data curation scenarios. Our system is based on
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an Update Pending Approval model. In a nutshell, when a collaborator updates a
given data item, it is marked as pending approval until the data custodian approves or
rejects the update. Until then, any other collaborator can view and comment on the
data, pending its approval. We fully realized our system inside HBase, a cloud-based
platform. We also conducted extensive experiments showing that the system scales
well under different workloads.

Keywords Collaborative databases - Cloud computing - Data dependency -
Multiversion data - Update authorization - Big data

1 Introduction

In collaborative environments, e.g., in scientific databases, large volumes of data are
shared among multiple collaborators that cooperate to develop and curate datasets
coming from experiments and analytical processes. A collaborative gene annotation
database (CGADB), which is created for almost every organism whose genome (DNA)
sequence is determined, provides a typical scenario. When the genome of an organ-
ism is determined, the sequence of millions of short DNA fragments (sequence reads)
are determined, and combined, by overlapping, into longer sequences called assem-
blies or contigs (contiguous sequences). Such sequence assemblies are the primary
data from which much of the information in a CGADB is derived. Derived data, col-
lectively referred to as annotations, include information such as the location of genes
(beginning and ending positions, in bases, within the assembly), the locations of exons
(subparts of genes), the protein sequence inferred from the gene sequence, and curated
text descriptions describing the function of the gene (initially inferred from sequence
comparison programs such as Blast [1]). Much of this derived data is initially deter-
mined by computational analysis of the assembly sequence. Eventually, information
from further computations or from lab experiments may confirm or contradict the
initial, computationally derived data requiring updates to the derived information.
Because these temporal updates may be ambiguous, or even in conflict, they must
be evaluated by an expert, typically a data curator, data custodian, or the project PIs
(principal investigators). For simplicity, we will refer to the person responsible for
making curatorial decisions as the PI.

Over time, as more sequence reads are determined, or as improved assembly soft-
ware is deployed, the sequence of the assemblies are updated and improved. Software
used in computational annotation may also be updated. In consequence, primary or
derived values in the database may change, in principle, invalidating other derived
data that depend on these values. In practice, it is difficult to manage the updates of
such a database because of the dependency between the primary and derived data,
and because of multiple conflicting updates proposed by members of the collaborative
group. Ultimately, expert decisions must be made by the PI; however, for efficient
collaboration, the conflicting proposed updates must be available to the collabora-
tive group for discussion and resolution. In addition to the collaborative aspect of the
database, CGADBEs also present a public face in which only the information that has
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Fig. 1 An example of using conventional update processing

been curated and approved by the PI is visible. This is intended to avoid rapid flux of
the database content, and to prevent confusion on the part of the users.

Current database technologies fall short in supporting the above scenarios. SQL
supports GRANT/REVOKE access models that allow users to have data access rights
based solely on the identity of the user [2,3]. In this case, when an update takes place,
it is not reflected into the database until the update-issuer commits the update, e.g.,
towards the end of the update transaction. Once committed, the update is visible to the
collaborators. However, if this update needs to be approved by the PI beforehand, the
PI action becomes part of the update transaction, where the updated value cannot be
committed until approved by the PI. Hence the updated value cannot be shared with
the other collaborators for commenting. Note that we will be using the terms user and
collaborator interchangeably throughout the paper.

To better motivate our approach, we first show how conventional update approval
falls short in supporting collaborative scenarios such as in CGADB. We then present
our proposal to remedy these shortcomings. Assume that Users Alice and Bob col-
laborate with the PI in some task (Fig. 1). At Time I, User Alice updates Object A
and changes its value from 1 to 2. At Time (/2), the PI is notified of the update. Both
Alice and PI can see the update but Bob can only see the old value. The PI becomes
a bottleneck as she is part of every update transaction, resulting in needless delays.
Moreover, Bob does not have a chance to comment or discuss the update before the
new value of A is committed, which hampers the collaboration. Another drawback is
that if Bob’s experiments depend on the value of A, knowing the updated value of A
ahead of time will allow Bob to setup and prepare for the experiment that needs to be
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Fig. 2 The proposed Update Pending Approval (UPA) model

re-performed in case A’s update gets approved. Alternatively, if Bob is aware of A’s
new value, she may redo her experiments even before the approval takes place and
provide feedback to the PI on the potential outcome of her experiment in case A gets
approved. From the figure, at Time (/3), the PI examines the update and decides to
approve or reject it. At Time (14), if the PI approves the update, then Bob can now see
the new value of A after a prolonged time delay (/1 + I» + I3). However, if PI rejects
the update, then Bob will continue to see the old value of A, and does not learn from
this experience. This process is also wasteful as Bob may submit a similar change
to A, unaware that Alice has already made the same update and was rejected. Also,
Bob’s seeing and commenting on the update beforehand may have affected the PI's
decision on A’s update, but Bob is unaware of this update attempt.

To remedy to the aforementioned shortcomings, we propose an Update Pending
Approval (UPA) model (Fig. 2). When a collaborator, Alice, updates a given data
item, it is marked as pending approval until the PI approves or rejects the update. Until
the approval or rejection of the update takes place, any other collaborator, say Bob,
can view and comment on the data, pending its approval. More explicitly, at Time
I, User Alice updates Object A from 1 to 2. At Time (/>), the PI is notified of the
update. At the same time, Bob can see A’s new value. However, in order to distinguish
between the old and new values of A, the new value for A, i.e., Value 2, is marked
as “pending” approval. As a result, Bob is aware of the possible modification from
time I>. The PI is no longer a bottleneck as the pending updates are accessible by
all collaborators for inspection and commenting. The PI can view the feedback from
all other collaborators, e.g., from Bob, before approving or rejecting the update. At
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Time (I3), PI examines the update and approves or rejects it. Next, at Time (/y), if PI
approves the update, then Bob can now see the new value of A, and the status of the
version of A with Value 2 is changed to being “approved” as Fig. 2 illustrates. On the
other hand, if PI rejects the update of Alice, the Value 2 of Data Object A is marked
as “rejected”. Compared to the standard update model in Fig. 1, the time delay for
Bob to view the update is improved from /1 + I» + I3 to 0. Data modification actions,
i.e., update, approve, or reject, are recorded so that each collaborator can track the
status of an object and the history of an update with each value in the history, whether
approved or rejected. In the rest of this paper, we term this proposed update scheme
as the Update-Pending-Approval model (or UPA, for short).

In addition to the CGADB scenario described above, our proposed model is also
applicable for other applications. For example, assume that members of a scientific
team are collaborating to collect vast amounts of data from a field experiment. Other
scientists, who might be at distant locations, are conducting their own experiments
and producing and saving results based on this collected data. These results, being
saved to the database along with their associated experimental metadata, must be
checked for validity by the PI before they can be approved and made public. Another
example is a content management system that allows users to collaboratively edit
shared content. UPA can be used for accurate and efficient monitoring, approval, and
history archival. Wikis provide a third example, where UPA is applicable. While web
users may continuously update their own pages in a Wiki, these updated pages may be
publicly available while marked as pending approval until these updates are approved
by the Wiki administrator(s). All of these scenarios, where data is published and is
marked as pending approval so that collaborators can discuss and comment on the
disseminated data as early as possible, even before the data is verified and approved
or rejected by the PI, are potential use cases for UPA.

In this paper, we present an enhanced system that realizes UPA inside a cloud-based
platform, namely HBase [4]. HBase is a distributed and scalable cluster-based database
that is suitable for storing big data on the cloud [4]. While HBase supports version
and history tracking of updates, it does not support the different features needed in
the UPA model, namely update approval/rejection, version metadata, and dependency
between different versions that are derived from each other. Hence, we extend HBase
with the following functionalities:

Maintain the history of all the updates for a given data item or cell along with the

associated meta-data.

— Mark each update as either Approved, Rejected, or Pending Approval.

Extend HBase to allow querying (1) the history of all updates, (2) the approved

data only, or (3) the most recent values only (approved or pending).

— Introduce three modes of operation for a data cell depending on which values are
mostly queried, i.e., (1) last inserted values, (2) last approved values, or (3) both
the last inserted and the last approved values. For each mode, we cache frequently
queried values where for efficient retrieval. In addition, we dynamically switch
between modes to adapt to the current query workload.

— Introduce dependency between different versions of a data item and describe the

dependency rules for different operations of the system.
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This paper extends an earlier version of this work [5] along several directions. In [5],
we presented a general overview of how to extend HBase for handling the history and
allowing PIs to approve or reject certain versions of a data item. This paper include
the following major enhancements: (i) a detailed description of the system operations,
(i1) a new dependency model including scenarios in which a newly inserted version
depends on an existing version, how the dependency model can be expressed using
a dependency tree, and the necessary changes to the History table to enable version
dependency. (iii) a detailed treatment of the dependency rules, and (iv) experimental
evaluation performed on the entire system with dependency handling and on a much
larger dataset. We call our proposed system Approving and Tracking Updates with
Dependencies in Collaborative Databases (AUDIT).

The rest of the paper proceeds as follows. We discuss related work in Sect. 2.
Section 3 introduces HBase and the UPA functionality. Section 4 describes the vari-
ous design alternatives, the data organization and procedures for supporting AUDIT,
history tracking, and querying. Section 5 presents dependencies between different ver-
sions and the rules to support them. Section 6 describes the new HBase operations of
AUDIT. Section 7 presents the experiments. Section 8 illustrates the system usability.
Finally, Sect. 9 concludes the paper.

2 Related work

Work related to our proposed AUDIT includes long-running transactions, active
databases, multiversion databases, checkout and check-in systems, data provenance
management, and collaborative databases.

A long-running database transaction [6,7] is one that usually interferes with exter-
nal users’ activities e.g., waiting for a manager’s authorization to update a record. Such
a transaction might have long periods of inactivity, often due to waiting for external
messages to arrive or external actions to take place. It guarantees consistency and dura-
bility, but not atomicity or isolation. Upon abortion, a compensation action is triggered
for rolling back the activity of the transaction. However, a long-running transaction
system does not provide query and notification mechanisms for data inconsistency.
Hence, long-running transaction systems cannot support AUDIT.

Active databases [8,9] can respond to events that take place either inside or outside
the database system. Conceptually, by using rules and triggers, active databases can
be used to monitor data that is pending approval and mark it as potentially invalid.
However, this would be inefficient and may not scale because a new rule would need
to be added explicitly for each update in the database that is pending approval.

Multi-version or temporal database systems [10—12] keep track of the histories of
updated data. They are efficient as they maintain the history of the updates at the
disk-page level. However, it is hard to extend these systems to support the semantics
for pending-approval updates as well as the rejection of the unapproved updates. This
is also true for versioning support in cloud database systems, e.g., as in [4], as we
illustrate further in Sect. 3.

Checkout and check-in systems, e.g., [13, 14], maintain current and historical ver-
sions of the data. The main drawback of adopting a similar approach is that the

@ Springer



Distrib Parallel Databases (2018) 36:81-119 87

data must reside outside the database system. In addition, updating at the attribute
or cell level is a finer granularity than what SVN systems offer. Hence, more extensive
filtering and further processing are needed to extract and isolate the updated data,
whether it is pending approval or is already approved, or for retrieving the entire
update history. Extracting the data versions from a Checkout-Check-in-like system,
thus, introduce long delays and unacceptable response times. In contrast, the proposed
AUDIT mechanism allows the data to reside inside the database system, where the
history is maintained at a useful granularity. Hence, our proposed system results in
efficient performance when querying Approved, Rejected, or Pending Approval data,
and long response time delays can be avoided.

Recently, infrastructures that are designed specifically for scientific data applica-
tions are becoming more popular. These include CKAN (ckan.org), Domo (domo.org),
Enterprise Data Hub (cloudera.com/enterprise), Domino (dominoup.com), Amazon
Zocalo and Dat Data (dat-data.com). More recently, DataHub [15] extends the idea of
checkout and checkin system to support version control over complete datasets. The
system in [15] provides collaborators with the ability to load, store, query, analyze,
visualize, interface with external applications, and share datasets. The three main com-
ponents of DataHub are the version manager, which allows users to store and retrieve
different versions of a dataset; the data-processing manager, which allows for building
SQL queries by direct manipulation of tables and also for transforming unstructured
data into a tabular form; and external-application manager, which supports exchanging
datasets with external tools for various analysis.

OrpheusDB [16] extends DataHub by exploiting the capabilities of relational
database systems. The system in [16] proposes and analyzes three models for rep-
resenting dataset versions. The first model, Combined Table, enables versioning by
means of a special array attribute that contains the set of versions of each record. In the
second model, Split-by-vlist, a separate table is used to store the versioning informa-
tion. This table maintains the mapping between versions and row IDs (rids) by using
an array-type attribute that contains the versions of each rid. The third model, Split-
by-rlist, is similar to the second model, but maps rids to versions by storing an array
of rids for each version. The two main operations in OrpheusDB are checkout, which
creates a new materialized version of a table from one or more previous versions, and
commit, which adds a checkout version to the collaborative versioned dataset (CVD).
Similar to our system, OrpheusDB maintains version dependency by means of a Ver-
sion Graph, whose concept is very similar to the dependency tree in AUDIT. In order
to enhance the performance of OrpheusDB, the authors present LYRESPLIT, a parti-
tioning algorithm that optimizes the trade-off between storage and checkout latency,
by breaking up the Version Graph into smaller subgraphs in a way that reduces the
accessing of irrelevant records.

There are many differences between our proposed system and the DataHub
and OrpheusDB mechanisms. First, while DataHub and OrpheusDB are specifi-
cally designed for dataset versioning, AUDIT targets versioning at the data item
or data cell level. Hence, we maintain version history and dependency tree for
each data item separately, as we will explain in the next sections. The applica-
tions supported by DataHub and OrpheusDB require the checkout and commit
commands as operations on the whole dataset. On the other hand, the applica-
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tions targeted by AUDIT, mainly large-scale collaborative environments such as
Genomics and Wikis, require support for unstructured data and versioning per data
item. For example, consider a scientific database in which the genomic features
of different organisms are stored. When a new organism is added to the database,
different scientists will work on different features and will need to continuously
update specific data cells rather than creating a new version of the whole dataset.
In addition, the size of the tables in these applications is much larger than those tar-
geted in DataHub and OrpheusDB. Hence, it becomes inefficient to create a new
version of the whole table which differs only in a single value from a previous
version.

The second main difference is that DataHub and OrpheusDB still suffer from the
commit limitation, which we explained in the Introduction. This limitation prevents
collaborators from examining others’ inserted versions until they are committed. As
stated before, this feature is very important in collaboration environments and still
missing in current systems such as DataHub and OrpheusDB. The third main differ-
ence is that while systems as DataHub and OrpheusDB can use relational database
models, our approach relies on NoSQL Big Data stores for two reasons: (1) to sup-
port unstructured data, and (2) to maintain efficiency when operating on very large
databases. As we will show in Sect. 7.4, systems like OrpheusDB that use relational
database for versioning, will suffer from degraded performance as the size of data
increases.

Data provenance management, e.g., as [17-19], or provenance support inside sci-
entific workflow systems, e.g., as in [20,21], retain the derivation history of a data item
from its original sources. Data provenance can help a scientist understand the life cycle
of a data item over time, enabling the identification and correction of errors. How-
ever, provenance-based systems do not maintain the consistency of the data items, and
rolling back and rejecting cascaded updates are not supported. Our system supports
transaction consistency in the sense that updates that depend on rejected updates are
tracked and also rejected. Also, our system is implemented inside a database system,
i.e., at the engine level rather than at the application level. Therefore, the proposed
system can coexist with a provenance system to achieve stronger data tracking and
provenance functionalities.

Wikis have been widely used for collaborative editing of web content. They often
offer version control and some history tracking features. For example, the list of all
revisions of a Wikipedia page, including various metadata, can be accessed using
the “View history” tab. The user can compare between any two versions, and revert
to any previous version [22]. Another example is XWiki [23] which offers similar
features. The main difference between AUDIT and Wiki environments is the con-
cept of pending, approved, or rejected versions. In Wikis, an update to a page is
saved directly as a new approved version. Later, if the update was found to be par-
tially or totally wrong, a rollback is performed. In contrast, in AUDIT an update
is not directly saved as a new approved version. Rather, it is marked as pending,
meaning that the update has not been checked for correctness yet. In the future,
when the update is checked by the PI(s), it is either approved or rejected. Another
important feature that distinguishes AUDIT from Wikis is the concept of version
dependency. Some Wikis, such as XWiki, allow the user to define which version of

@ Springer



Distrib Parallel Databases (2018) 36:81-119 89

the page was used to create a new version, which is the same as the concept of the
depended-on version in our system. However, there is no Wiki system with rules for
approving/rejecting a page version when it depends on other versions. In Sect. 5,
we define the various dependency rules in AUDIT, which describe what should hap-
pen to child versions when their depended-on versions (i.e., parents) are approved or
rejected. This feature is unique in AUDIT and distinguishes it from other collaborative
systems.

In this paper, we leverage some of our previous work on data dependency in scien-
tific databases [24,25]. In contrast to the centralized architecture we adopted earlier,
we investigate the design and the performance issues related to providing the AUDIT
model in a cloud environment. Unique challenges include the impact of data parti-
tioning within the cluster (historical vs. approved, pending approval vs. current, and
the effect of different partitioning policies on performance). In addition, AUDIT is the
first system to define a dependency model for different versions of the same data item,
and to define the rules of approval and rejection of dependent versions.

3 System overview

In this section, we provide an overview of the HBase architecture along with its data
access and manipulation operations. Then, we illustrate how we extend HBase to
support the AUDIT model.

3.1 An overview of HBase

HBase is a column-oriented data store running on top of HDFS [26,27]. Instead of
complete rows, data is stored as fragments of columns in the form of <key, value>
pairs. Fig. 3 gives the architecture of HBase. HBase contains two main components:
(1) an HMaster, and (2) a set of Region Servers. The HMaster is responsible for
administrative operations, e.g., creating and dropping tables, assigning regions, and
load balancing. Region Servers manage the actual data stores. A Region Server is
responsible for region splitting and merging, and for data manipulation operations [4].
An HBase table may have one or more regions, where each region contains HBase
Store Files that are the basic data storage units. In addition, each region contains
a temporary Memory Store and a Write-Ahead-Log file for fault tolerance. HBase
operates alongside Zookeeper [28] that manages configuration and naming tasks.

When a client executes an HBase operation, it contacts Zookeeper to obtain the
operation address of the Region Server that hosts the data on which the client will
operate. Next, the client executes the required operation by accessing the region on
which the desired data is stored. Although HMaster does not have a role in data manip-
ulation operations, it operates in the background to manage and monitor administrative
tasks related to tables and regions.

HBase contains four basic operations: Put, Delete, Get, and Scan. Put inserts the
value of a data item or cell into an HBase table. Each data item or cell is identified
by four fields that constitute its key, namely, Row, Column Family, Qualifier, and
Timestamp. Row is the main identifier in an HBase table, similar to a primary key
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or a tuple identifier in a relational database, Column Family groups related qualifiers
together, and Timestamp is usually the time at which the value has been inserted. Put
can either insert values into a newly created qualifier, or update the value of an existing
qualifier. In the latter case, the previous value is not removed, but is saved as an older
version of the data. Hence, HBase uses the concept of versioning in which a set of
previous versions of a data cell are saved as specified by the table specifications. This
feature of HBase is very useful for the history tracking required by many scientific
database applications. Delete places a marker, termed a fombstone, on the data values
in the memory store. When data is flushed into disk, e.g., during an Hbase major
compaction operation, the data is actually deleted. Finally, Get retrieves data that is
within a single Row. In contrast, Scan retrieves data from an entire table.

For fault tolerance, HBase implements multiversion concurrency control (MVCC)
[29]. First, the new data is written into a Write-Ahead-Log (WAL) file. Then, it is
written into the HBase’s Memory Store. When the Memory Store reaches a certain
size, data is flushed to the Store Files.

A coprocessor allows computational logic to be pushed into the HBase cluster, close
to where data is stored [30]. Coprocessors extend HBase with custom functionalities by
extending the operations of base classes. Coprocessors are divided into two main types:
Observers and Endpoints. An Observer resembles a trigger in a relational database
and executes a certain code before or after executing a client command, e.g., before
executing a Put command or after executing a Scan command. An Endpoint runs on
a specified set of Region Servers. It can be invoked at any time by the client and the
results of its execution are returned to the client. In this paper, the proposed AUDIT
model uses Endpoints for executing various operations on Region Servers.
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3.2 Supporting AUDIT
3.2.1 History tracking

Data history tracking refers to the process of monitoring (i) how the data has changed
since the time it has been first created, (ii) who changed the data, at what times, and
possibly (iii) the reasons, if any, behind the changes. Tracking the history of data is
an important operation in collaborative environments as well as in data auditing in
database systems. The validity of future results depends on the correctness of existing
data and how it has been derived.

History tracking is beneficial to many application scenarios. It helps answer a variety
of questions including: Which users mostly insert correct data? Which inserted data
is found to be faulty and hence should be rejected? How many values were rejected
during the lifetime of a cell, i.e., what is the rejection percentage for the cell? What is
the most common reason for rejecting values of a given cell? Has a given value been
assigned before for a given cell? and if so, why has it been refuted or changed? and
finally, how is the evolution history of values of a given cell?

Existing DBMSs do not provide means for answering these questions related to
history tracking. For instance, HBase saves the new value of an existing cell as a new
version of the cell. The user can query the value of the cell and the time at which it
is inserted. Other important provenance information, e.g., the user who inserted the
data, and the parameters of the environment in which the data was generated (which
is useful for scientific experimentation), are not saved. Hence, the process for data
history tracking misses important features and needs to be augmented to satisfy the
requirements of researchers and collaborators.

AUDIT enables history tracking features by saving, with each operation on a data
cell, the metadata related to the operation, e.g., the timestamp, the user ID, the type
and reason for the operation, the status of the data value (see Sect. 4.2), and any other
metadata related to the environment in which the data is generated, e.g., the machine
ID. The proposed history tracking mechanism supports operations on saved data, e.g.,
reverting a data cell to a previous stable state, and building a timeline of the lifecycle
of data cells.

3.2.2 Approving/rejecting updates

The process of approving or rejecting new updates is performed by privileged users,
e.g., principal investigators, lab leaders, or data administrators, who monitor and
approve or reject the data values inserted or updated by the various collaborators.
For simplicity, we refer to a user with approval and rejection authorities as the PI.
We differentiate between three types of inserted data values: (i) pending: a data value
that is yet to be approved or rejected by a PI, (ii) approved: a data value that has been
approved by a PI, or (iii) rejected: a data value that has been rejected by a PI. A PI can
approve or reject data items either individually or as groups of data items through bulk
approve and reject operations. In the latter case, the approve/reject interface provides
the PI with a set of data items that are pending. The PI selects the data items to be
approved, and the system adds them to an approve list, while the remaining items are
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implicitly added to a reject list. The system performs a single operation that approves
the items in the approve list and rejects those in the reject list.

Storing the data and the history of the updates over time along with the other
related metadata would adversely affect the overall performance of the system. Users
not interested in querying or accessing historical data should not be penalized by the
potential overhead. To address this issue, we store the history of a data cell in a separate
storage entity, termed the History table. We support the following three alternatives
when relating history data to the original table data.

1. Store the most recently inserted value of a cell into the data table and mark it as
pending approval until approved by the PI. All the other older values, whether
approved or not, are stored in the history table.

2. Store the most recently approved value of a cell, i.e., the value that is guaranteed
to be ready for consumption, into the data table. All the more recent updates to the
same data cell that are still pending approval, and all older values of the cell, are
stored in the history table.

3. Store both the most recently inserted and the most recently approved values of the
cell in the data table and store all other older values, or the less recent values that
are pending approval, in the history table. Using this alternative enables queries
that use the most recent value of a cell or the most recently approved value to obtain
the results directly from the original table efficiently without having to access the
history table. Under this option, users explicitly interested in History Tracking
must query data saved in the History table.

We refer to these three alternatives as modes for approval of updates, and explain them
further below.

An important difference between our proposed AUDIT model and the update model
in traditional database management systems is how the database engine treats stored
data. In a traditional DBMS, the creator of the data cell is its owner and has full control
over updates and deletion. The changes made to the cell will directly, or eventually,
appear to all users querying the cell. In AUDIT, we treat any operation on a cell as
temporary until it is approved. For example, if a user (with delete privileges) deletes
the cell, we temporarily mark the cell in the original table as deleted; however, the
delete operation is conditional pending the approval of the PI. Only when the delete
is approved, will the actual deletion of the cell in both the original and the History
table take place. If the deletion is rejected, the previous value is restored to the cell in
the original table and the status of the delete record is set to “rejected” in the History
table.

4 System design
4.1 History tracking

In this section, we present the proposed format of the History table and how it complies
with HBase standards.
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Original Table

History Table
2 insert user1 T approved
3 update user2 T2 pending
delete user3 i3 pending

Fig. 4 Formats of records in the original and history tables

4.1.1 Record structure

To illustrate the format of a history record, we present an example in Fig. 4. Suppose
that Userl inserts the cell <Table:ROW1:F1:Q1> at Time T1. The value of 2 is
inserted into the original table and the first history record of the cell, with status equal
to “pending”, is inserted into the History table. Suppose that the PI approves the history
record at Time T2, setting the status of the history record to “approved”. Suppose that
at Time T3, User2 inserts the value 5 into the cell. The cell value in the Original table
is set to 5, a new history record is added to the History table with a value equal to 5,
and status is set to “pending”. Now, suppose that at Time T3, User3 deletes the cell in
the Original table. In this case, the cell in the Original table is marked as deleted, and
anew history record, with operation equal to “delete” and status equal to “pending” is
added to the History table. The last two history records are both conditional, pending
approval or rejection by the PI.

4.1.2 Table structure

In HBase, each cell is identified by its <Table, Row, Family, Qualifier> tuple, while
each version of the cell is defined by its timestamp. Hence, different values that are
inserted into the same cell are stored as different versions of the cell. The creator of
an HBase table defines the maximum number of versions per cell, say n, that can be
kept; if n is exceeded, only the newest n versions of the cell are kept and the older
versions are automatically deleted.

In our system, versions are managed through the History table. Thus, data tables will
all have a default value for n set to 1. In such tables, which we refer to as the original
tables, we save either the last inserted value or the last approved value (see below). In

@ Springer



94 Distrib Parallel Databases (2018) 36:81-119

Fig. 5 The EndPoint
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AUDIT Mode 3, as stated in Sect. 3.2.2, we need to save both the last inserted and the
last approved values of the cell. In such a case, we save these values as two different
cells, each pointing to the original cell. For example, if we want to save these two
values for a cell <Table, rowl, family1, qualifier] >, then the last inserted value of the
cell is saved in a qualifier termed ‘qualifierl:current’ and the last approved value of
the cell is saved in a qualifier termed ‘qualifier1:approved’. Using this approach, we
keep the original tables as compact as possible, leading to efficient queries.

Furthermore, the maximum number of versions in the History table is set to the
maximum expected number of versions per cell. Since each newly inserted value of the
cell creates a new record in the History table, and we want to keep all history records
as different versions of the cell, as long as the cell is not deleted; hence, the value of n
for the History table is set to the maximum expected number of versions per cell for
all cells of the original table. n will be specified by the creator of the original table at
creation time. For example, suppose that the maximum expected number of versions
of any cell in the original table will be much less than 10,000, then n can be set by the
table creator to 10,000. When a cell is deleted and the delete is approved by the PI,
the history records of the cell are moved from the History table to an Archive table.
In this way, an archive of deleted cells is kept, enabling the restoration of a deleted
cell whenever necessary. The management of the History table and the original table
is handled by EndPoint Coprocessors. Figure 5 illustrates the scenario for processing
data locally through a coprocessor in an HRegion in the region server.

4.2 Approval of updates
4.2.1 The approval process

A history record includes, in addition to the cell value and the timestamp at which
the value was inserted, the operation (i.e., insert, update, delete, or approve), the user
ID, the record status (i.e., pending, approved, or rejected), and comments, e.g., the ID
of the machine used to generate the values and/or experimental parameters. History
records of the same cell are automatically sorted according to their timestamps (i.e.,
the insertion time). Hence, it is efficient to jump to the next or to the previous records.
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Notice that an HBase data cell denotes an item that is identified by its <Table, Row,
Family, Qualifier>.

A PI can approve or reject pending values using two methods (see ScHistory,
Sect. 6). In the first method, the PI specifies, in addition to the ID of the cell (i.e.,
Table, Row,Family, and Qualifier), a list of timestamps of records to be approved (or
rejected). The ScHistory operation sequentially approves (or rejects) these records.
In the second method, the PI specifies a range using two timestamps, the ScHistory
operation searches the History table for all records of the cell whose timestamps fall
between the specified timestamps, and then approves (or reject) these records.

Note that an inserted value should always be approved by one of the PIs; i.e.,
the system doesn’t automatically approve or reject any value (unless in special cases
explained in Sect. 5). If at any time a PI takes the role of an ordinary user and exe-
cutes some insert, delete, or update operations, the updates remain pending until the
PI switches to the PI role and performs the approval/rejection, or another PI does
that.

4.2.2 AUDIT modes

Two important values of a cell need to be distinguished, namely, the last inserted value
and the last approved value. These two values are typically distinct and will remain
different until the PI approves (or rejects) all existing pending values of the cell. We
propose three separate query modes as follows: (i) If users primarily query the most
recently inserted value of the cell, the cell operates in AUDIT Mode 1. In this mode,
only the most recently inserted value of the cell is saved in the original table. Each
newly inserted value overwrites the previous value in the original table. (ii) If users
primarily query the most recently approved value, this value is saved in the original
table. Each newly approved value overwrites the previous approved value of the cell
in the original table. In this case, the cell is operating in AUDIT Mode 2. (iii) If users
heavily query both the most recently inserted and the most recently approved values,
then both values are saved in the original table, and the cell operates in AUDIT Mode
3. Note that regardless of the current AUDIT mode of the cell, each time an operation
is conducted on the cell, a history record that contains all necessary metadata is always
written to the History table.

The system dynamically changes the operation of a cell from one AUDIT mode to
another as follows: For each cell, the system maintains and updates three parameters:
a mode-identifier, the cost-rate for searching for the most recently inserted value,
and the cost-rate for searching for the most recently approved value. The cost-rate is
calculated as the total cost based on the number of searches that occurred within a
period of time divided by the length of that period in seconds. In order to calculate
the total cost within a time period for searching for the most recently inserted or most
recently approved values, the system periodically calculates, from the user queries,
the average delay for a query that searches for a value in the original table (Sp) and
the average delay for a query that searches for a value in the History table (Sg).
Depending on the current AUDIT mode of the cell, the system estimates the total cost
by multiplying Sp or Sy by the total number of search queries. For example, suppose
a cell is currently operating in AUDIT Mode 1 (i.e., its mode-identifier = 1). Then,
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the system calculates the total cost for searching for the most recently inserted value
as the number of queries that search for this value within the observed period of time
(t;) multiplied by So, and the total cost for searching for the most recently approved
value by multiplying the number of queries that search for the most recently approved
value within #; by Sg.

When the cost for searching the most recently inserted value is much higher than
that for searching the most recently approved value, the system changes the cell to
operate in AUDIT Mode 1 by setting mode to 1. If the cost for searching the most
recently approved value is much higher than that for searching for the most recently
inserted value, mode is set to 2. If both costs have close values, mode is set to 3.
The system operations (Sect. 6) read the mode variable to know the current AUDIT
Mode of the cell before performing the operation’s tasks. For example, when the ScGet
operation searches for the last inserted value, it examines mode. If mode is equal to 1
or 3, it searches the original HBase table of the cell. If mode is 2, it searches in the
History table.

5 Version dependency

In the kind of environments we are considering, it is often the case that changes to a
data item depends on previous versions of that same data item. In AUDIT, we consider
the case where each collaborator examines the existing approved and pending versions
of a cell, and performs his calculation or creates his observations based on a certain
version of the cell, for example, the last inserted version, the last approved version,
the first approved version ... Thus, it is important, for a user who inserts a new value
or observation to the database, to specify which version it was derived from or based
on (the depended-on version).

The process of identifying the depended-on version, from which each new version
was derived, is important for the history of the cell. For collaborators, it helps under-
stand the way others observe and deduce derived information. For PIs, it helps decide
whether to approve or reject a new version.

Whenever an operation is performed on a certain cell, it is important to generate a
dependency tree that shows the various dependencies between the different versions of
the cell. The dependency tree will help both collaborators and PIs. For collaborators,
visualizing the complete dependencies between existing versions helps them decide
on a start point for their experiments or calculations. For PlIs, it is important to view
the complete set of pending branches between the oldest pending value and the last
inserted pending values to decide which branch should be approved.

5.1 Dependency model

To implement data dependency between versions, we add three fields to each record in
the History table: ‘Version ID’, ‘Depended-on Version ID’, and ‘Dependency Function
Name’. The first version of a cell has “Version ID’ equal to 1, and has no values for
the ‘Depended-on Version ID’ and ‘Dependency Function Name’. Each new inserted
version of the cell will have ‘Version ID’ equal to the number of existing versions of
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Fig. 6 [Illustration example of a
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the cell plus 1. In addition, the user inserting a new version must specify the ‘Version

> of the version from which it derives, and the name of the derivation function.
These two parameters are saved in the ‘Depended-on Version ID’ and ‘Dependency
Function Name’ fields of the new version. A list of dependency functions is stored in a
separate table, which contains, for each dependency function, its ‘Name’ (unique iden-
tifier), ‘“Type’ (for example, “computation”, “experiment”, “correction”, etc.), ‘Code’
(if applicable), ‘Inputs’, ‘Outputs’, ‘Estimated Cost’, ‘TAA’ (abbreviation of Is Auto-
matically Approved), and ‘AR’ (abbreviation of Is Automatically Rejected). The fields
‘TAA’ and ‘TAR’ can have a value of either 0 or 1. More details about these two fields
will be presented later.

Figure 6 illustrates an example of a cell in which versions are derived from each
other, and how collaborators insert new versions. In the figure, collaborator C creates
cell ¢ and inserts into it the value V| attime 77. After a short while, the PI approves V.
After that, collaborator C5 reads the value Vi, uses it in his experiment to generate the
value V5 and then updates the cell at time 73. Next, collaborator C3 reads the value V»
and starts generating a new value. During that, collaborator C4 reads V2 and also starts

CLINTS
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generating a new value. Now, collaborator C3 updates the cell with the value V3 at time
T;. After that, collaborator Cs reads the value V3 and starts generating a new value,
while collaborator C¢ reads the value V; and starts generating a new value. At time Ty,
collaborator C4 updates the cell with the value V4, and after a while, collaborator Cg
updates the cell with the value Vs at time 7. Finally, collaborator Cs updates the cell
with the value Vg at time Tg. Figure 6a illustrates the History table of the described
cell while Fig. 6b shows its dependency tree.

5.2 Dependency rules

We describe now the rules that govern the insertion of new versions and the
approval/rejection of versions.

5.2.1 Insertion rules

When inserting a new version, the system must check whether the depended-on version
entered by the user is valid. For example, if the depended-on version doesn’t exist, or if
the depended-on version exists but its status is “rejected”, the system produces an error
message, and does not insert the new version. The system must also check that the
dependency function name entered by the user is a valid ‘Name’ in the ‘Dependency
Functions’ table.

AUDIT Rule 1 One of the most important rules in AUDIT is that each cell must
have a single last approved state at any point of time, and not a set of last approved
values. In other words, we cannot approve two versions that are derived from the same
version. For example, in Fig. 7b, we cannot approve both V; and V5. Rather, if the PI
approves Va, Vs is automatically rejected by the system and vice versa.

A corollary of this rule must be applied when inserting new versions. Consider the
example in Fig. 7a. Suppose the PI approves V,, and Vs is automatically rejected by
the system. Now, suppose that before the PI approves V>, a collaborator examines the
cell and decides to do an experiment based on V. After the experiment is completed,
the collaborator wants to insert a new value, V7, under Vj. The system should not
allow this insertion because, if V7 is inserted and approved under V1, there would be
two last approved values (V> and V7), which violates AUDIT Rule 1.

AUDIT Rule 2 If a new version is inserted under an old approved version V* (other
than the last approved version), then a new branch that contains two nodes must be
created under the last approved version (Fig. 7b). For the example presented above, in
order for the collaborator to insert his new value (V7) and specify that it was derived
from Vi, A new branch containing V; and V7 must be created under V,. The first node
in this branch is a copy of the depended-on version (V) of the new version (V7), and
the second node is new version that is to be inserted (V7).

By applying this solution, we avoid the necessity of rolling back to a previous
state of the cell. Rather, we consider the possibility of continuing with a value, while
operating under the current state. If the PI approves V7, then the last approved value
of the cell is V7, and V, becomes an old approved value (Fig. 7b). Note that V; in cell
version 7 is distinguished from other versions by the ‘Operation’ field in its record in
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Fig.7 Inserting a new version under an old approved version: a not allowed method, and b correct solution,
and inserting another version that is derived from the same old approved version ¢ before approving a new
version, and d after approving a new version

the History table which labels it as a new_branch, indicating that it is not a new version,
but a previously approved version that was re-added to avoid multiple last approved
values. Also, this version (cell version 7) will not have a value for the ‘Dependency
Function Name’ field.

Cell version 7 will be the parent of all new versions that depend on V. For example,
if a new value, Vg, which is dependent on V| is added, V5 is inserted under cell version
7,1n cell version 9 (Fig. 7¢). This remains true as long as V» remains the last approved
version. If before inserting Vg, a child of V5, for example, cell version 7 is approved (in
this case cell version 8 will be automatically approved by the system, as we will explain
in the next section), the branch replication procedure is repeated for Vg (Fig. 7d).
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5.2.2 Approval rules

AUDIT Rule 3 A non-root version cannot be approved unless its depended-on version
is approved. Hence, the system examines the status of the depended-on version of V,
before any approval operation on V. If the status is not equal to “approved”, the approve
operation is rejected. For example, in Fig. 7b, Vi cannot be approved before V3. This
insures that, when approving a certain version, all of its antecedent versions (i.e., all
previous versions in its branch) are approved.

AUDIT Rule 4 Based on AUDIT Rule 1, which states a cell can have only one last
approved version, the system automatically rejects all siblings of a version V when V
is approved. For example, in Fig. 7b, if V3 is approved, both Version 4 and Version 7
are automatically rejected by the system.

AUDIT Rule 5 The single child C of a version V, is automatically approved when
Vis approved, if the ‘TAA’ field of the dependency function between V and C is equal
to 1, or if there is no dependency function between V and C . More precisely, this rule
states that when a version V is approved, the system checks the number of children of
V. If V has only one child C, the system automatically approves C in two cases: first,
the system retrieves the ‘Dependency Function Name’ field from the history record
of C, and then examines the ‘IAA’ attribute of this function from the ‘Dependency
Functions’ table. If ‘TAA’ is equal to 1, the system automatically approves C. For
example, if C was derived from V using a mathematical function, then the system can
approve C automatically with V, since computationally derived values can be directly
approved when their derived-from values are approved. The choice of automatically
approving a derived value depends on the derivation function. This choice is specified
by the user by setting the ‘IAA’ field of the dependency function to O or 1.

The second case of automatic approval arises when there is no ‘Dependency Func-
tion Name’ field in the history record of C. This can occur in only one case—when V
is an old approved value that was re-added as a new version to avoid having multiple
last approved values. In this case, C is automatically approved as long as C is the only
child of V. For example, in Fig. 7b, when the PI approves V3, Vg is automatically
approved if the ‘TAA’ of the dependency function between V3 and Vg is equal to 1.
Alternatively, if the PI approves version 7, version 8 is automatically approved. On
the other hand, if the PI approves version 7 in Fig. 7c, no version is automatically
approved, since version 7 has two children.

5.2.3 Rejection rules

Unlike approval, in which a version cannot be approved until its depended-on version
is approved, rejection doesn’t require any such condition. Hence, a certain version can
be rejected at any time, regardless of whether its depended-on version is approved or
pending.

AUDIT Rule 6 When a version V is rejected, the system examines each child C
of V, and retrieves the ‘AR’ field of the dependency function between V and C. If
‘TIAR’ is equal to 1, the system automatically rejects C. Then if Cis rejected, the system
recursively rejects all children of C, in which the ‘IAR’ is equal to 1, and their children,
etc. However, in some cases, the user might specify that the ‘IAR’ of a function is equal
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Fig. 8 Check New Branch Algorithm: (Check New Branch).

Algorithm: determines whether Inputs: D = depended-on Version ID, dy = dependency function name, v =
the new version should be value of new version.

inserted directly under its

depended-on version or a new (1) Begin

branch should be created under (2)  For each version V* of the cell

the last approved version (3) Get the ‘Depended-on Version ID’ of V* (D*)
(4) If D* is equal to D
(5) Get the status of V*
(6) If status is equal to “approved”
(7) Set flag to true
(8) Break from for loop
(9) If flag was set to true
(10) Get the value of the depended-on version (vg).
(11) Get the version-ID of the last approved version (V).
(12) Get the number of versions of the cells (N,)
(13) Call Insert New Branch function, passing to it: D, df, v, vq,
(14) Vie, and N,
(15) If flag was not set to false
(16) Get the number of versions of the cells (N,)
(17) Call Insert New Version function, passing to it: D, dj, v,
(18) and N,
(19) End

to 0, such as when the derived value is a correction of the derived-from value. In this
case the system doesn’t automatically reject the derived value when its derived-from
value is rejected. Rather, the system moves such value from its current place in the
tree to under the last approved value, as explained in AUDIT Rule 2, to avoid having
multiple last approved values. In other words, all values that are not automatically
rejected when their root is rejected, are moved from their places to new branch(es)
under the last approved value.

5.3 Dependency algorithms

In this section, we present the algorithms for the AUDIT operations to implement
version dependency. The first algorithm Check New Branch (Fig. 8) is part of the
ScPut operation, and determines whether the new version should be inserted as a
single version under its depended-on version, or whether a new branch should be
created under the last approved version to avoid having multiple last approved versions.
This algorithm determines whether any of the children of the depended-on version are
approved. If a child of the depended-on version is approved, then the depended-on
version is an old approved version and hence a new branch must be created under the
last approved version.

The second AUDIT algorithm is the ‘Approved and Rejected Versions’ algorithm
(Fig. 9). It is used by the ScHistory operation when approving a version and it takes
as inputs the ‘Version ID’ and the ‘Depended-on Version ID’ of the version to be
approved. The algorithm consists of two parts. The first part determines the versions
(or nodes) that are within the dependency subtree rooted at the version to be approved,
and saves these versions in a PotentiallyApproved list. Nodes that are within a set of
subtrees, S, where each subtree in S is rooted at a sibling of the version to be approved,
are saved in a Rejected list. PotentiallyApproved is used by the second part of ‘Approved
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Fig. 9 Approved and Rejected Algorithm: (Approved and Rejected Versions).

Versions Algorithm: determines Inputs: V = Version ID, D = depended-on Version ID.

all version that should be

automatically approved and all (1) Begin

versions that should be (2) //Part1

automatically rejected, when (3) Define two lists: PotentiallyApproved and Rejected
approving a version (4) Add Vto PotentiallyApproved

(5) Add D to Rejected
(6) For each version V* of the cell, starting from D, and excluding V

(7) andD

(8) Get the ‘Depended-on Version ID’ (D*) of V*
(9) If PotentiallyApproved contains D*

(10) Add V* to PotentiallyApproved
(11) Else if Rejected contains D*

(12) Add V*to Rejected

(13) Remove D from Rejected

(14) //Part2

(15) Define list Approved and add V to it
(16) Define version nextVersion = V

(17) Define flag stopCheck = false

(18) While (!stopCheck)

(19) Define Count =0

(20) Define version temp = null

(21) For each version V’ in PotentiallyApproved

(22) If ‘Depended-on Version ID’ of V’is equal to nextVersion
(23) If Count is equal to 0

(24) temp=V’

(25) Increment Count by 1;

(26) If (Count is equal to 0) OR (Count > 1)

(27) stopCheck = true

(28) If (Count is equal to 1)

(29) nextVersion = temp

(30) If nextVersion has no ‘Dependency Function Name’ field
(31) Add nextVersion to Approved

(32) Else get ‘Dependency Function Name’ (Df) of nextVersion
(33) Get ‘IAA’ of Dy

(34) If ‘IAA’ is equal to 1

(35) Add nextVersion to Approved

(36) Else stopCheck = true

(37)End

and Rejected Versions’ to determine which nodes should be automatically approved
according to AUDIT Rule 5. Each version V in PotentiallyApproved is examined
to determine whether it should be automatically approved. If yes, it is added to an
Approvedlist. ScHistory then approves each version in Approved by setting the ‘Status’
of each version in Approved to “approved”. On the other hand, the Rejected listis passed
to another algorithm which determines for each version in Rejected whether it should
be automatically rejected or not, depending on the ‘IAR’ field in its dependency
function. Figure 10 illustrates an example of the execution of the ‘Approved and
Rejected Versions’ algorithm.

The algorithms used when rejecting versions are similar to those in the ‘Approved
and Rejected Versions’ algorithm, with the exception that only a Rejected list is gener-
ated when rejecting a specific versions, i.e., the system only automatically rejects the
versions within the subtree rooted at the version to be rejected, according to AUDIT
Rule 6.
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Algorithm: (Approved and Rejected Versions).
Inputs: V=2, D=1.

// Part 1
Define PotentiallyApproved and Rejected
Add 2 to PotentiallyApproved and 1 to Rejected
For each version V*, starting from 1, and excluding 2 and 1
1 excluded
2 excluded
3 derived from 2 and PotentiallyApproved contains 2
=> add 3 to PotentiallyApproved
4 derived from 3 and PotentiallyApproved contains 3
=> add 4 to PotentiallyApproved
5 derived from 1, PotentiallyApproved doesn’t contain 1
Rejected contains 1 =>add 5 to Rejected
6 derived from 3 and PotentiallyApproved contains 3
=> add 6 to PotentiallyApproved
7 derived from 5, PotentiallyApproved doesn’t contain 5
Rejected contains 5 => add 7 to Rejected
8 derived from 1, PotentiallyApproved doesn’t contain 1
Rejected contains 1 => add 8 to Rejected
Remove 1 from Rejected
Finally: PotentiallyApproved => {2, 3, 4, 6}, Rejected => {5, 7, 8}

// Part 2

PotentiallyApproved => {2, 3, 4, 6}

Define Approved

Add 2 to Approved

Define nextVersion = 2

Define Count =0

For each cell in PotentiallyApproved:
2 not derived from 2 => Count remains 0
3 derived from 2 => count = 1; temp = 3
4 not derived from 2 => count remains 1
6 not derived from 2 => count remains 1
At the end: Count = 1 => check dependency between 3 and 2
Suppose dependency ‘IAA’ = 1 => add 3 to Approved

nextVersion = 3;

For each cell in PotentiallyApproved:
2 not derived from 3 => Count remains 0
3 not derived from 3 => Count remains 0
4 derived from 3 =>count = 1; temp =4
6 derived from 3 =>count = 2
At the end: count = 2 => stopCheck = true

Finally: Approved = {2, 3}
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6 AUDIT operations

The AUDIT update approval and history tracking system, implemented using HBase,
is composed of five main operations: ScPut, ScDelete, ScHistory, ScGet, and ScGetH-
istory. Each of these operations is divided into two basic components; a client API
that runs at the client-side, obtains the operation inputs from the client, and formats
these inputs into a Remote Procedure Call (RPC) message that is sent to the second
component. Note that HBase uses Protobuf [31] to send rpc messages to the Region
Servers. The second component of each operation is an HBase Endpoint that runs
at the regions that contain the data on which the operation will execute. The correct
Endpoint is invoked by an HBase call from the client API. For example, the ScPut
client API invokes the ScPutEndpoint at the corresponding Region Servers. In case
of ScGet and ScGetHistory, the results of querying the original and History tables are
returned from the regions to the client API, where they are displayed. In this section,
we describe the tasks performed by each of the five operations.

6.1 ScPut

ScPut inserts new data or updates existing data. It takes as input the table name and
the row in which data is to be inserted, and a list of cells. Each cell is specified by
its family, qualifier, and value, and optionally by its depended-on Version ID, and
dependency function name. For each cell in the list, ScPut checks whether the cell
exists in the table (by checking whether a mode is assigned to the cell). If the cell does
not exist, ScPut inserts the value into the original table and inserts an initial history
record in the History table (each cell starts, by default, in AUDIT Mode 1). If the cell
exists, ScPut checks the History table to see if the most recent history record of the
cell has ‘Operation’ equal to “delete” and ‘Status’ equal to “pending”. If yes, the cell
has been deleted and no updates to the cell are allowed until the delete is approved
or rejected. Hence, the update to the cell is rejected. If the cell has not been deleted,
ScPut executes the ‘Check New Branch’ algorithm (Sect. 5.3). Based on the results,
ScPut either inserts a single new history record into the History table, or inserts two
history records which constitute a new branch as explained in Sect. 5.3. ScPut then
checks the mode of the cell. If mode is 1 or 3, ScPut updates the cell in the original
table with the new value.

6.2 ScDelete

ScDelete marks the data as deleted, pending PI approval. Similar to ScPut, ScDelete
takes as input a table name, a row name, and a list of cells (family and qualifier). The
initial tasks performed by ScDelete are similar to those of ScPut: It checks whether
the cell exists. If the cell does not exist, ScDelete continues to the next cell. If the cell
exists, then if the cell has already been deleted, ScDelete continues to the next cell. If
the cell has not been deleted, ScDelete inserts a new history record into the History
table and checks the mode of the cell. If mode is 1 or 3, ScDelete marks the value of
the cell in the original table as “deleted”.
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6.3 ScHistory

ScHistory is used by PIs to approve or reject pending updates. The inputs to ScHistory
are the operation (“approve” or “reject”), a list of input cells (Table, Row, Family,
Qualifier), and a list of timestamps (which represent the versions that are to be approved
or rejected). For each cell, ScHistory obtains the timestamp of the first history record
of the cell (#,,;,) from the History table , and the mode of the cell from the original
table. If the operation is “approve”, then, for each timestamp, ¢, in the input cell list,
ScHistory attempts to approve the record of ¢ according to the following rule: if 7 is
equal to t,,;, (i.e., t is the first record), ScHistory writes “approved” to the record of
t in the History table, and updates the value of the cell in the original table if mode
is 2 or 3. ScHistory then executes the ‘Approved and Rejected Versions’ algorithm
to determine the records that should be automatically approved, and approves these
records. If ¢ is greater than t,,;,,, ScHistory checks that the ‘Status’ of the ‘Depended-on
Version ID’ of ¢ is “approved”. Then ScHistory checks if the operation in #’s record is
“delete”. If yes, ScHistory moves the cell history records to an Archive table, deletes
all cell related qualifiers in the original table, and deletes the cell search most recently
inserted and search most recently approved rates and its mode variable. If the operation
is not “delete”, ScHistory executes the ‘Approved and Rejected Versions’ algorithm.
After obtaining the result, ScHistory approves the records that should be automatically
approved and calls the Rejection algorithm in order to reject the records that should be
automatically rejected. Next, ScHistory writes the last approved value to the original
table if mode is equal to 2 or 3. If the input operation is “reject”, ScHistory rejects the
history record in a similar way to that of an “approve”.

6.4 ScGet

ScGet retrieves either the most recently inserted, the most recently approved, or both
values of one or more cells. ScGer takes as input a table name, a list of cells, and a
search type (most recently inserted, most recently approved, or both). ScGet obtains
the mode of each cell in the list. Then, according to the search type, ScGet obtains the
most recently inserted, the most recently approved, or both values of the cell from the
original and/or the History table, according to the mode of the cell.

6.5 ScGetHistory

ScGetHistory looks up the history of one or more cells in the History table and returns
the values of the history records. If the user specifies a list of cells, ScGetHistory
defines a scan on the History table and adds the list of cells to the scan. Otherwise,
ScGetHistory scans the History table over the complete list of cells from the original
table. ScGetHistory uses one of three HBase custom-built filters for the scan, accord-
ing to whether the user requires only approved values, only pending values, or both
approved and pending values.
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7 Experimental study
7.1 Dataset and testing environment

We realize and test our system within a virtual HBase Cluster that consists of twenty
five virtual machines (VMs) that are divided into two sub-clusters: the first sub-cluster
contains fifteen VMs that store the HBase database on which the AUDIT operations
are tested, while the other sub-cluster consists of ten VMs, each of which hosts a client
who executes the AUDIT operations on the database. The testing procedures is divided
into two main parts. In the first part, we test each of the six AUDIT operations (which
are Insert, Delete, Approve, Reject, Search-last-inserted and Search-last-approved)
alone. In this part, each of the ten clients executes a workload of 10,000 queries of
the tested AUDIT operation. In the second part, each of the ten clients runs a mixed
workload of the six AUDIT operations. Details about how AUDIT operations are
distributed within the mixed workload will be presented shortly.

Among the fifteen VM sub-cluster that holds the database, one is used as the Hadoop
master node and the HBase master, while the other VMs act as Hadoop slaves. The
data used to create the database and to test the AUDIT operations was extracted from
dumps provided by Wikipedia [32], which gives the history of updates performed by
Wikipedia users on Wikipedia pages. We consider each Webpage as a data cell and
each update on the page as a new version of the data cell that is written as a new
record to the History table. The Wikipedia data is formatted in XML files. We used
the SAX XML parser to extract, for each webpage revision, the pieces of data that are
inserted in the HBase database, e.g., Revision ID, size, mdS5, user ID, timestamp, and
comment. into a csv file. The data in the csv files are read by the clients and inserted
in the HBase database. In our experiments, we tested four database sizes: 10, 100,
500 GB and 1 TB. For each of these four size, we create an HBase database of the
corresponding size, then we test all six AUDIT operations separately as well as using
a mixed workload as previously explained.

When running a mixed workload scenario, the 10,000 queries will be a mixture of
the six AUDIT operations. The percentage of Delete queries to Insert queries is set
using a parameter pp, while the percentage of (Insert + Delete) queries with respect
to (Search-last-inserted + Search-last-approved) queries is set using a parameter p».
The number of (Approve + Reject) queries is set to be equal to that of (Insert + Delete)
queries (since each Insert and Delete operation will be either approved or rejected).
Also, the number of Search-last-inserted queries is selected to be equal to that of
Search-last-approved queries. We calculated from the Wikipedia dataset the values of
p1 and p;, which were found to be equal to approximately 0.01 and 0.07% respectively.
The four database sizes were tested in all three AUDIT modes, i.e., we tested on each
database size, a separate scenario for each of the three AUDIT modes. We also tested,
for each database size, a dynamic-mode scenario in which the workload parameters
were varied over time, such that data cells will change their AUDIT modes while the
scenario is running. This allows us to evaluate the effectiveness of dynamic mode
adaptation.

In the dynamic mode, we divide the time into three equal parts: In the first part,
the ten clients target 90% of their search queries to the most recently inserted values,

@ Springer



Distrib Parallel Databases (2018) 36:81-119 107

and the other 10% to the most recently approved values. In this case, the best AUDIT
mode to use is AUDIT Mode 1. In the second part, the ten clients target 90% of their
queries to the most recently approved values, and the other 10% to the most recently
inserted values. The best AUDIT mode for this case is AUDIT Mode 2. In the third
part, the search queries target both the most recently inserted values and the most
recently approved values equally. Hence, the best AUDIT mode for the third part is
AUDIT Mode 3. A continuously running ScMode thread calculates the search-last-
inserted and search-last-approved cost rates for each cell, and dynamically changes
the AUDIT mode of the cell to the most suitable one, according to the values of the
two rates.

The results of the experiments are presented in the next sections. First, we illustrate
the results that were obtained from executing workloads that contain a single operation
each, then we present the results of mixed AUDIT operations workloads. Finally, we
compare AUDIT results with those of OrpheusDB.

7.2 Results of standalone AUDIT operations

Figures 11, 12 and 13 show the total query delay for each of the six AUDIT operations:
Insert, Delete, Approve, Reject, Search-most-recently-inserted, and Search-most-
recently-approved. Each point in the graphs of these three figures is the average of
running the standalone AUDIT operation workload on the ten clients, where the num-
ber of queries per client workload was set to 10,000. Note that the Wikipedia dataset
does not include any dependency information between Webpages. Hence, dependen-
cies between different versions of each Webpage were generated randomly as follows:
when inserting a new version, the system reads the Version IDs of all existing versions
of the cell, then it selects a random version as the depended-on version.

Figure 11a shows that AUDIT Mode 2 has the least insertion delay, which is
expected because it inserts data to the original table only when approved, while AUDIT
Mode 1 inserts data to the original table when data is inserted, and also when a history
record is rejected. In contrast, AUDIT Mode 3 inserts data to the original table at inser-
tion, approval, and rejection and hence yields the highest delay. For all three modes,
the delay decreases as the input data size increases. This behavior is also observed
for the Delete, Approve, and Reject operations (Figs. 11b, 12a, b), indicating that
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AUDIT performance, for these operations, improves as the database size increases.
Since HBase is designed for massive data sets, it generally performs better with large
data sizes than with small sizes.

Figure 11b shows that the Delete operation has a similar behavior to the Insert delay.
Generally, the Delete algorithm has only minor differences in the three AUDIT modes.
As for Approve, AUDIT Mode 1 has significantly lower Approve delay, because it
approves the cell only in the History table, while AUDIT Mode 2 and AUDIT Mode 3
require writing to the original table when approving. With respect to Reject, Fig. 12b
illustrates that AUDIT Mode 2 has significantly lower delay, because it does not need
to write to the original table since the last approved value already exists in the original
table. On the other hand, AUDIT Modes 1 and 3 require restoring the previous value
to the original table when the current value is rejected, causing an additional delay.
AUDIT Mode 3 shows higher delay than AUDIT Mode 1, because it requires restoring
both the most recently inserted and the most recently approved qualifiers of the cell
in the original table.

For searching, Fig. 13a, b illustrate the importance of saving the most needed
values in a separate table. AUDIT Mode 1 (Fig. 13a) has a significantly lower delay
than AUDIT Mode 2 when searching for the most recently inserted value, because it
saves the most recently inserted value in the original table, while in AUDIT Mode 2
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this value is retrieved from the History table. On the other hand, (Fig. 13b) illustrates
that AUDIT Modes 2 and 3 have significantly lower delay than AUDIT Mode 1 when
searching for the most recently approved value for the same reason. The delays in
Figs. 13a, b increase as the size of data increases, because the number of regions
increases, and the regions are distributed on different VMs. In this situation, there is a
higher probability that the region that contains the target data is on another VM. With
smaller amounts of data, data locality is better preserved.

From the results, we notice that each of the three AUDIT modes has its own advan-
tages and disadvantages. AUDIT Mode 3 performs best when searching for both
the most recently inserted and approved values. However, AUDIT Mode 3 has more
delays when inserting, approving, or rejecting. In contrast, AUDIT Mode 1 is best
when searching for the most recently inserted values, but has higher delays over
AUDIT Mode 2 when inserting or rejecting. AUDIT Mode 2 is best in searching for
most recently approved value, Insert, and Reject operations, but leads to higher delay
for the Approve operation. In order to exploit the advantages of each AUDIT mode,
we proposed the dynamic mode in which the AUDIT mode is dynamically changed
according to the AUDIT operations that are dominating the workload of a data cell.
In the next section, we present the results of workload scenarios that contain mixture
of AUDIT operations, and we illustrate how varying the AUDIT modes based on the
AUDIT operations in the workload will improve the general performance.

7.3 Results of mixed workloads

The results of the previous section reflect the behavior of each of the operations of the
system alone. In this section, we test the performance of the system while running a
workload that contains a mix of the six operations. The experiment in this section was
repeated for each of the three AUDIT modes. In addition, we add a fourth dynamic
mode scenario in which the AUDIT mode is changed dynamically according to the
AUDIT operations in the workload (as explained in Sect. 4.2.2).

Figures 14, 15 and 16 show the results for the six operations analyzed in the previ-
ous section when these operations are running together in the same workload. If we
compare the results of these three figures with those of Figs. 11, 12 and 13, we notice
that the delays of the six operations increases slightly when running in a workload that
contains other operations as compared to when the operation is running alone. This
increase is noticed in the delay of all six operations. However, this increase is limited
and reaches a maximum of 11 ms for the Approve operation in AUDIT Mode 2. In
general, the behavior of the six AUDIT operations is similar when running alone or
within a mixed workload.

From Fig. 14a, we notice that the data insertion delay of the dynamic mode scenario
is close to that of AUDIT Mode 1 when the data size is small, and almost equal to that
of AUDIT Mode 1 when data size is large. This reflects that the Insert delay of the
dynamic-mode becomes near to that of the best delay When the data size increases.
For all data sizes, the Insert delay of the dynamic mode is less than that of AUDIT
Modes 2 or 3. Also, the Delete delay of the dynamic mode is similar to that of the
lowest Delete delay (AUDIT Mode 2) for all data sizes, as Fig. 14b illustrates. For
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Approve, Fig. 15a shows that the Approve delay of the dynamic mode is somehow in
the middle between the delays of the three modes, and is less than the delay of AUDIT
Mode 2 (highest delay) for all data sizes. Similar to Approve, the Reject delay of the
dynamic mode scenario is less than the delays of AUDIT Modes 1 and 3 for all data
sizes, also approximately equal to that of the lowest delay of AUDIT Mode 2 when the
data size is large. As for searching, the Search-last-inserted and Search-last-approved
delays of the dynamic mode scenario (Fig. 16a, b) are close to the best possible search
delay, and less than the highest search delay for both operations.
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In general, the results in this section show that, for all the six operations, the dynamic
mode scenario exhibits a delay which is equal or slightly larger than the best delay, but
much less than the worst delay. Hence, the dynamic mode scenario is the best scenario
that guarantees good performance for all operations. This makes the dynamic mode
suitable for both database users and PIs. On the other hand, non-dynamic mode scenar-
ios can have good performance for some operations but weak performance for others.

7.4 Comparing with OrpheusDB

To the best of our knowledge, AUDIT is the first system that maintains version his-
tory and version dependency per data cell, and allows collaborators to view pending
versions and update them, in addition to maintaining dependency rules for Insert,
Approve, and Reject operations. Other systems in the literature (discussed in Sect.
2) contain similar functionalities to AUDIT, but on the whole dataset scale. In this
section, we experimentally compare between one of these systems, OrpheusDB, and
AUDIT. First, we note that OrpheusDB operations (Checkout and Commit) are per-
formed on the whole dataset, while AUDIT operations are performed on a single data
cell (i.e., single value). In order to be able to compare the two systems, we classify their
similar operations. Checkout in OrpheusDB is similar to Insert in AUDIT, since both
operations create a new version in the database. The difference between OrpheusDB
checkout and AUDIT Insert is that the version created by checkout is available only
to its owner, while the version created by Insert is available to all users as a pend-
ing version. Also, Commit in OrpheusDB is similar to approve in AUDIT, as both
declare a certain version as approved by the DB administrator; with the difference
that OrpheusDB Commit makes the version available to all users, while AUDIT Insert
changes the version status to “approved”, and also approves all dependent versions
that should be automatically approved.

The simulation environment for this section is as follows: we use the same Wikipedia
data from [32]. We create one table in the database, called Wiki, which contains six
attributes that represent the Webpage {Revision ID, size, md5, user ID, timestamp,
and comment}. Only one CVD is considered, which is the Wiki table. Each revision
in the Wikipedia file will be executed as a checkout operation in OrpheusDB, where
the -t argument of checkout is chosen randomly as one of the previous revisions of
the same webpage. In each scenario, we keep reading webpage revisions from the
Wikipedia file and executing each revision as a checkout until we reach a certain total
dataset size. Similar to the previous section, we test four dataset sizes: 10, 100, 500 GB
and 1 TB. Periodically, an algorithm is run that selects a random number of checkout
versions and commits them. The average time between two consecutive commits
was set to 10 s. We implemented the Split-by-rlist model of OrpheusDB, which was
supported by the LyreSplit partitioning algorithm to enhance its performance. The
8 input parameter to LyreSplit was set to 0.5 (middle trade-off between storage and
latency). We compare the results of Checkout and Commit with those of Insert and
Approve that were obtained by running the dynamic Mode of AUDIT under the same
simulation environment. The results are shown in Fig. 17.
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Fig. 17 Comparing AUDIT
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From Fig. 17, we notice that OrpheusDB performs well for a small size dataset, but
the latency of its operations increases rapidly for large datasets. In fact, OrpheusDB
performs better than AUDIT when the dataset is less than 30 GB. However, the delays
of Checkout and Commit become much higher than those of Insert and Approve
for large datasets (more than 100 GB). The reason for this degraded performance of
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OrpheusDB is that as the dataset increases to a very large size, the number of versions
per row id will also increase. In our simulations, as the number of revisions of the
same webpage increases to tens or hundreds of thousands, the number of rows per
version in the versioning table also increases causing the checkout and commit to
search within a huge number of rows. This problem is eliminated in AUDIT since
the search is within the data cell only, and not within the whole table, since versions
are per data cell. For this reason, systems like DataHub and OrpheusDB will perform
well as long as the average number of versions per row is less than a certain limit.
In scientific applications, the number of versions per row can increase to a very high
value, especially when a new organism or feature is being experimented by thousands
of scientists, each of which will generate new results and update the data cell with
new values very frequently. In such scenarios AUDIT will give better performance,
as it will allow collaborators to access the version history of the specific cell that they
want in an efficient manner.

This supremacy in AUDIT performance from the latency perspective comes at the
expense of storage. From Fig. 17¢c, we notice that OrpheusDB requires an overhead
between 29 and 48% of the dataset size, while AUDIT results in a storage overhead
between 115 and 134%. This large storage overhead in AUDIT is due to the fact that
each new version that is added to the original table will result in six new attributes
that are added to the History table, as we explain in Sect. 5. While in OrpheusDB the
versioning table will contain only a single attribute that combines information about
many versions in a single array. This approach reduces the storage overhead, but still
requires large delay for inserting and approving new versions, especially when the
dataset size is very large, as Fig. 17a, b illustrate. In big data applications, additional
storage overhead is not a big issue, since the cluster can be extended to support new
nodes. Hence, it is often the case that storage is sacrificed to obtain better response
time in this type of applications.

8 System usability

An important factor that helps in determining the overall strength of a system is
its usability. The latter is defined as “the degree to which a software can be used
by its consumers to achieve the required objectives with effectiveness, efficiency, and
satisfaction” [33]. No matter how much a system is important for a certain application,
its overall quality is diminished if users of the system find major difficulties in working
with the system, such as the inability to understand and use the system functionalities,
finding it hard to work with system interface, or not being able to deal with system
feedback. Such factors decrease the system usability and make its consumers less
willing to use it.

For these reasons, we tested the usability of the proposed AUDIT system by con-
ducting a user study that involved two experts in Bioengineering and Bioinformatics.
First, in order to enable the participants in the user study to interact with AUDIT,
we developed a user-friendly user interface that enables an ordinary user who has no
experience with databases to use the system. Next, we gave each of the two experts a
laptop that has AUDIT installed, and asked them to perform a testing experiment that
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includes creating a scientific database inside AUDIT, extracting data manually from
the GenBank online Database, and inserting this data into AUDIT database using our
developed user interface, then performing approve and reject operations on the data
also using AUDIT user interface. At the end, we conducted a brief survey in which the
two experts answered several questions regarding the system usability. In the next sec-
tions, we provide a brief description of the user interface of AUDIT, then we describe
the list of operations that were performed by the experts. Finally, we present the results
of the user study.

8.1 AUDIT graphical user interface

A user-friendly graphical interface was developed on top of AUDIT. The GUI displays
any cell in the database as a dependency tree and enables the user to perform various
operations on the cell by interacting directly with the tree. If the user wants to insert a
new cell, the interface displays a form in which the user inserts the new cell parameters,
which are the Table, Row (key), Family, Qualifier, and value of the first version of the
cell. When the user wants to perform other operations such as update the cell (i.e., insert
anew version) or approve/reject a version or set of versions, the interface displays the
cell dependency tree (Fig. 18). The user selects the operation from the “Operations”
menu, clicks on the version(s) in the dependency tree that he wants to include in the
operation, and enters the required values of the operation inputs in their corresponding
textboxes (if any). When the user executes the operation, the system updates the cell
versions in the database, then updates the dependency tree in the interface. Figure
18 illustrates how an AUDIT approve operation is performed on multiple versions
of a sample cell. Note that each node in the dependency tree contains three elements
separated by commas: The version ID, status (P for pending, A for approved, and R
for rejected), and value.

8.2 AUDIT user study

We selected two experts in the field of Bioinformatics and explained to them the
concept of UPA and the details of the AUDIT operations. We ran a sample sce-
nario similar to the one illustrated in the previous section to make them familiar with
the AUDIT user interface. Then we asked them to perform a test on real scientific
data that they should extract from the GenBank database. GenBank [34] is a col-
laborative genetic sequence database offering an annotated collection of all publicly
available nucleotide sequences and their protein translations. GenBank is maintained
by the National Center for Biotechnology Information (NCBI) as a part of the Inter-
national Nucleotide Sequence Database Collaboration (INSDC). GenBank data is
produced in laboratories around the world from more than 300,000 organisms. Gen-
Bank accepts only original sequences submissions, which are vetted for originality
by the GenBank staff (PI in our system). Each of the experts performed the test study
alone, in which he was required to extract the data of chromosome 21 sequence in
the human genome, and enter this data to AUDIT database to create a dependency
tree for chromosome 21 similar to the one shown in Fig. 19. All inserted values are
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Tree view of all versions of Wikit1:kwm:Article:views

(b)

Fig. 18 Example of approving multiple versions: a The user selects versions 2 and 3 and clicks on the
“Approve” button, b the system changes the status of the selected versions to approved. Also, version 5,
which is a sibling of 2, and all versions within the subtree of 5, are automatically rejected by the system,
and the same for versions 4 and 9, which are siblings of version 3 (the ‘TAA’ and ‘IAR’ fields were set to 1
in this example)
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Fig. 19 The dependency tree for chromosome 21 sequence versions from the GenBank database

first saved as pending versions. After that, the expert was required to test the vari-
ous operation of AUDIT by performing the following operations on the dependency
tree of Fig. 19 (note that the ‘TAA’ and ‘IAR’ fields were always set to 1 in this
example):

Approve version 1.

Approve version 2, make sure that versions 3 and 4 are automatically rejected.

Approve version 5.

Approve version 9, and make sure that the system automatically rejects version 6

and all versions within its subtree. And also make sure that versions 11 and 12 are

automatically accepted.

5. Insert versions 13 and 14 as children (depend on) version 9. The system should
automatically move them under the last approved version, which is version 12.

6. Insert versions 15 and 16 as children of version 13. Insert version 17 as child of
version 15.

7. Approve version 13, the system should automatically reject version 14.

el S

After performing these operation the expert should produce a dependency tree
same as that in Fig. 19. After finishing the experiment, each expert was asked to fill
an evaluation report, which we discuss in the next section.

8.3 User study results
The user study evaluation report that was filled by the experts at the end of the exper-

iment contained ten questions that were designed to test the experts’ satisfaction with
the AUDIT system. The questions are shown in the second column of Table 1, while
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Table 1 Experts’ answers for AUDIT usability user study questions

Questionno  Question Expert 1 Expert 2
answer answer
1 To what extent you consider the software important for 9 8

the scientific community?
2 Were you able to easily understand the key features and 9 7
functionalities of the system?

3 To what extent is a new user with no previous 7 7
experience with the software able to successfully
perform the system operations?

4 To what level do you consider the graphical interface 9 9
user-friendly?

5 How do you rate the system average response time for 10 8
various operations?

6 How do you rate the clarity of system outputs and 9 7
system feedback?

7 To what extent do you think the system features are 8 7
complete?

8 What is the level of help offered by the system to the 7 7
user?

9 How many errors did you encounter during the 0 1
experiment?

10 How many times were you stuck and needed help to 0 0
continue?

the third and fourth column of the table show the experts answers to the questions.
Questions 1-8 were answered on a scale of 10, while questions 9 and 10 required a
regular numeric answer. Among the ten questions, Question 1 was asked to test the
importance of the system, Questions 2 and 10 were asked to test the understandability
of the system, Questions 3 and 8 test the easiness of the system, Questions 4 exam-
ines the system user-friendliness, Question 5 was used to test the system efficiency,
Question 6 reflects the clarity of the system, Questions 7 is related to the system
completeness, and Question 9 demonstrates the effectiveness of the system.

Each expert was required to provide an answer between 1 and 10 to Questions 1 to
8, and to state the number of errors that he encountered and the number of times he
was stuck in Questions 9 and 10. In order to calculate an average score of the system
from the experts’ answers, we reverse the answers of question 9 and 10 on a scale of
10. In other words, an answer of 0 to these questions means a grade of 10, an answer
of 1 means a grade of 9, and so on. In Table 1, expert 1 stated he encountered zero
errors, which means a grade of 10 on this question, while expert 2 encountered one
error, which means a grade of 9. Hence, if we calculate the average grade for the ten
questions, the system score will be 8.8 from expert 1 answers and 7.9 from expert 2
answers, with a total average of 8.35/10.

In general, the user study reflects that both experts were able to carry out the
experiment and perform the AUDIT operations smoothly. The most important lesson
that we conclude from the user study is that the system didn’t produce any serious
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errors while both experts were performing the experiment. Both experts were able to
generate the exact dependency tree of Fig. 19 by successfully executing the steps in
Sect. 8.2. Both experts stated that the operations, outputs, and feedback were clear, the
response time was very fast, and the interface is user-friendly. The experts commented
that the system help should be slightly extended to contain more details about how
each operation work, which will help a new user understand the operations better and
assert the correctness of the outcomes of each operation.

9 Conclusion

In many existing applications, the correctness of inserted data is based not only on
the identities of the users who insert the data, but also on the values of the data itself.
It is crucial for these applications that the underlying DBMS enables the review and
approval of data, and permits users to view its status and history. In this paper, we
presented a mechanism for collaborative databases, implemented on a cloud platform,
to handle data dependency between different versions of a data item. In our system,
data is classified based on its status: approved, pending approval, or rejected. The
system identifies dependencies between different versions of data items and proposes
mechanisms for handling dependencies. Our results illustrate the advantages and dis-
advantages of each of the system modes. One of the important features of our design is
its ability to dynamically switch between different modes, thereby adapting to changes
in the workload in order to achieve the best performance.
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