
Distrib Parallel Databases (2017) 35:335–362
DOI 10.1007/s10619-017-7200-6

Scalable parallel graph algorithms with matrix–vector
multiplication evaluated with queries

Wellington Cabrera1 · Carlos Ordonez1

Published online: 29 August 2017
© Springer Science+Business Media, LLC 2017

Abstract Graph problems are significantly harder to solve with large graphs residing
on disk compared to main memory only. In this work, we study how to solve four
important graph problems: reachability from a source vertex, single source shortest
path, weakly connected components, and PageRank. It is well known that the afore-
mentioned algorithms can be expressed as an iteration ofmatrix–vectormultiplications
under different semi-rings. Based on this mathematical foundation, we show how to
express the computation with standard relational queries and then we study how to
efficiently evaluate them in parallel in a shared-nothing architecture. We identify a
common algorithmic pattern that unifies the four graph algorithms, considering a
common mathematical foundation based on sparse matrix–vector multiplication. The
net gain is that our SQL-based approach enables solving “big data” graph problems
on parallel database systems, debunking common wisdom that they are cumbersome
and slow. Using large social networks and hyper-link real data sets, we present perfor-
mance comparisons between a columnar DBMS, an open-source array DBMS, and
Spark’s GraphX.

Keywords Graph · Parallel computation · Data distribution · Columnar DBMS ·
Array DBMS

B Wellington Cabrera
wcabrera@cs.uh.edu

Carlos Ordonez
ordonez@cs.uh.edu

1 University of Houston, Houston, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10619-017-7200-6&domain=pdf

336 Distrib Parallel Databases (2017) 35:335–362

1 Introduction

Graph analytics is a field which is increasing its importance every day. Furthermore,
as the world has become more interconnected than before, graph data sets are larger
and more complex. In graph analytics, the goal is to obtain insight and understanding
of complex relationships that are present in telecommunication, transportation and
social networks. In general, real-life graphs are sparse. While there are more than
one billion user accounts in Facebook, a typical user may be connected just to a
few hundred contacts. Other examples are roads connecting cities and flights linking
airports. In this work, we concentrate on algorithms for sparse graphs stored in parallel
DBMSs.

Relational database systems remain the most common technology to store transac-
tions and analytical data, due to optimized I/O, robustness and security control. Even
though, the common understanding is that RDBMSs cannot handle demanding graph
problems, because relational queries are not sufficient to express important graphs
algorithms, and a poor performance of database engines in the context of graph analyt-
ics. Consequently, several graph databases and graphs analytics systems have emerged,
targeting large data sets, especially under the Hadoop/MapReduce platform. In recent
years, Pregel and its open-source successorGiraph have supported the “vertex-centric”
approach. This approach is based on performing computations at the vertex scope and
sending/receiving messages to/from its neighbors. On the other hand, the “algebraic
approach” solves graph algorithms via a generalized matrix multiplication, generally
with optimized programs running in clusters with large main memory.

1.1 Why in-database graph analytics

DBMSs are between the most widespread systems in the industry. It is hard to imagine
how to run an organization without using DBMSs, in any industrial field. Moreover,
most of the internet relies on DBMSs for social networking, dynamic content or
electronic commerce. Therefore, a lot of data is stored in these systems.We believe that
efficient graph algorithms for relational databases are a contribution that will support
in-database graphs analytics in large data sets, avoiding wasting time exporting the
data or setting up external systems.

1.2 Summary of contributions

In this work we show how to compute several graph algorithms in a parallel
DBMS, by executing iteratively one elegant (yet efficient) relational query. In con-
trast to popular graph analytics systems, our algorithms are able to process data
sets larger than the main memory, since they are conceived as external algo-
rithms. We present a unified algorithm based on regular relational queries with
join-aggregation to solve classic graph problems, such as Reachability from a
source vertex, Single Source Shortest Paths, Connected Components, and PageR-
ank. We explain a graph partitioning strategy which reduces the execution time
of the parallel queries of our unified algorithm, by improving data locality and

123

Distrib Parallel Databases (2017) 35:335–362 337

avoiding redundant data. While a general optimization of graph queries is out
the scope of this work, we show experimentally that by using optimized join-
aggregation queries, parallel DBMSs can compute a family of fundamental
graph algorithms with promising performance. Furthermore, we show that columnar
and array DBMSs are competitive to a state-of-the art system, namely Spark-
GraphX.

2 Related work

In the last years the problem of solving graph algorithms in parallel DBMS with
relational queries has received limited attention. Recently, the authors of [14] studied
Vertica as a platform for graph analytics, focusing in the conversion of vertex-centric
programs to relational queries, and in the implementation of shared-memory graph
processing via UDFs, in one node. Rudolf et al. [26] describes the enhancements to
SAP HANA to support graph analytics, in a columnar in-memory database. In [31],
the authors show that their SQL implementation of shortest path algorithm has bet-
ter performance than Neo4j. Note that the later work runs in one node with a large
RAM (1 TB). Running on top of Hadoop, Pegasus [16] is a graph system based
on matrix multiplications; the authors propose grouping the cells of the matrix in
blocks, to increase performance in a large-RAM cluster. Pregelix [3] is another graph
system, built on top of the Hyracks parallel dataflow engine; the authors report bet-
ter performance than GraphX, claiming that this system brings “data-parallel query
evaluation techniques from the database world”. Our work is different from the pre-
viously described in several ways: 1) we present a unified framework for compute
graph algorithms with relational queries; 2) we present optimizations for columnar
and array DBMSs based on a careful data distribution; 3) the out-of-core graph com-
putation allows us to analyze graphs with hundreds millions edges with minimum
RAM requirements.

A sub-problem of sparse-matrix vector multiplication is analyzed in [25]. Specif-
ically, the authors propose an array-relation dot-product join database operator,
motivated by the computation of Stochastic Gradient Descent (SGD). Regarding the
matrix–vector multiplication with relational operators, the authors argue about its
applicability to SGD. In contrast, our work is focused on the optimization of graph
algorithms. The algorithms of our concern do not require incremental updates; instead,
the matrix vector multiplication updates completely the results. While our algorithms
do not require gradient methods, it would be interesting to study if the dot product
operator could be applicable to graph problems.

In our initial work [21], we proposed optimized recursive queries to solve two
important graph problems using SQL: Transitive closure and All Pairs Shortest Path.
Our recent work [22] shows that columnar DBMS technology performs much better
than array or row DBMSs. More recently, we turned our attention to graph algo-
rithms based on matrix–vector multiplication with relational queries in [4], where we
explored a unified algorithm to solve several graph problems, based on relational oper-
ators. However, DBMS storage details, parallelism, and query optimizations were not
studied.

123

338 Distrib Parallel Databases (2017) 35:335–362

3 Definitions and background

3.1 Graph dataset

Let G = (V, E) be a directed graph, where V is a set of vertices and E is a set of
edges, considered as an ordered pairs of vertices. Let n = |V | vertices and m = |E |
edges. The adjacency matrix of G is a n × n matrix such that the cell i, j holds a 1
when exists an edge from vertex i to vertex j . In order to simplify notation, we denote
as E the adjacency matrix of G. The outdegree of a vertex v is the number of outgoing
edges of v and the indegree of v is the number of incoming edges of v. The algorithms
in this work use a vector S to store the output and intermediate results. The i th entry
of S is a value corresponding to vertex i , and it is denoted as S[i].

3.1.1 Graph storage

In sparse graphs processing, it is reasonable to represent the adjacency matrix of G
in a sparse form, which saves storage and computing resources. There exist several
mechanisms to represent sparse matrices, and the interested reader may check [2]. In
our work, sparse matrices are represented as a set of tuples (i, j, v) such that v �= 0,
where i and j represent row/column, and v represents the value of entry Ei j . Since
cells where v = 0 are not stored, the space complexity ism = |E |. In sparse matrices,
we assume m = O(n).

3.2 Parallel systems overview

The algorithms in this work are conceived for parallel DBMSs under a shared-nothing
architecture. While our optimized algorithms can work in any DBMS, in our previous
work [22], we showed experimentally that columnar and array DBMSs present per-
formance substantially better than row DBMSs for graphs analysis. For this reason we
concentrate the study in columnar and array DBMSs. These systems are architected
for fast query processing, rather than transaction processing. In this work, we consider
parallel DBMSs running in a cluster with N nodes, where each node has separate
RAM and disk.

3.2.1 Row DBMS

The pioneer parallel database management systems stored data by rows. This systems
were aimed to exploit the I/O bandwidth of multiple disks [7], improving in this way
reading and writing performance, and allowing the storage of data too big to fit in only
one machine. Large tables are to be partitioned through the parallel system. Three
common methods of partitioning are: (1) splitting the tables to the nodes by ranges
with respect to an attribute’s value; (2) distributing records to the nodes in a round-
robin assignment; (3) using a hash function to assign records to the nodes. Currently,
the last method is the most commonly used.

123

Distrib Parallel Databases (2017) 35:335–362 339

3.2.2 Columnar DBMSs

Columnar DBMSs emerged in the previous decade presenting outstanding perfor-
mance for OLAP. C-Store [29] and Monet-DB [12] are among the first systems
that have exploited the columnar storage. Columnar DBMSs can evaluate queries
faster than traditional row-oriented DBMSs, specially queries with join or aggre-
gation operations. While row DBMSs generally store data in blocks containing a
set of records, columnar DBMSs store columns in separate files, as large blocks
of contiguous data. Storing data by column benefit the use of compression. Due
to the low entropy of the data in a column, low-overhead data compression
has been exploited for further performance improvements. This data compression
does not hinder parallelism. Columnar DBMS indexing is significantly different
than traditional row stores. For instance, in Vertica there is no row-level index
defined by the DBA. Instead, additional projections can be defined to improve
query execution. An in-depth study of columnar DBMS architectures is given in
[1].

3.2.3 Array DBMSs

Array store is a technology aimed to provide efficient storage for array-shaped
data. Most of the array DBMSs support vectors, bi-dimensional arrays and even
multidimensional arrays. Array stores organize array data by data blocks called
chunks [27,28,30], distributed across the cluster. In bi-dimensional arrays, chunks
are square or rectangular blocks. The chunk map is a main memory data struc-
ture which keeps the disk addresses of every chunk. Each cell of the array has a
predefined position in the chunk, just as regular arrays are stored in main mem-
ory. An important difference between array and relations is that user-defined
indexes are unnecessary: The subscripts of the array are used to locate the corre-
sponding chunk on disk, and to find the specific position in the chunk. Parallel
array DBMSs distribute data through the cluster’s disk storage on a chunk basis
using diverse strategies. A detailed review of array DBMS architectures is found
in [27].

3.2.4 Spark

Spark [32] is a system for interactive data analytics built on top of HDFS.
The main abstraction of Spark is the Resilient Distributed Dataset (RDD), an
immutable collection of objects which can be distributed by partitions across the
cluster. This objects may improve the computation of iterative algorithms, by
caching them in main memory. RDDs can be reconstructed from data in reliable
storage when a partition is lost. When there is not enough memory in the clus-
ter to cache all the partitions of an RDD, Spark can recompute it as soon as
needed. However, this re-computation impacts negatively on the system perfor-
mance.

123

340 Distrib Parallel Databases (2017) 35:335–362

3.3 Background on graph algorithms

In this section we provide background on four well-known graph algorithms. We
describe the standard implementation, as well as the algebraic approach based on
matrix operations. Based on this background, in Sect. 4 we will identify a common
algorithmic pattern, based on certain computational similarities.

3.3.1 Reachability from a source vertex

Reachability from a source vertex s is the problem aimed to find the set of vertices S
such that v ∈ S iff exists a path from s to v. It is well known that this problem can
be solved with a Depth-first search (DFS) from s, a Breadth-first search (BFS) from
s, or via matrix multiplications. In [17], the authors explain that a BFS starting from
s can be done using a sparse vector Sn (initialized as S[s] = 1, and 0 otherwise), and
multiplying iteratively ET by S, as in Eq. 1

Sk = (ET)k · S0 = ET · · · · · (ET · (ET · S0)) (k vector–matrix products) (1)

where · is the regular matrix multiplication and S0 is a vector such that:

S0[i] = 1 when i = s, and 0 otherwise (2)

3.3.2 Bellman–Ford: a single source shortest path algorithm

Bellman–Ford is a classical algorithm to solve the Single Source Shortest Path problem
(SSSP). In contrast to Dijkstra’s algorithm, Bellman–Ford can deal with negative-
weighted edges. The algorithm iterates on every vertex, and execute a relaxation step
for each edge of the current vertex [6]. A way to express Bellman–Ford with matrix–
vector multiplication under the min-plus semi-ring is explained in [9]. The shortest
path of length k from a source vertex s to every reachable v ∈ E can be computed as:

Sk = (ET)k · S0 = ET · ... · (ET · (ET · S0)) (k vector-matrix products) (3)

where · is the min-plus matrix multiplication and S0 is a vector such that:

S0[i] = 1 when i = s, and ∞ otherwise (4)

Notice that the expression to compute SSSP looks similar to the computation of reach-
ability, but the initialization and the multiplication (min,+), are different.

3.3.3 Weakly connected components (WCC)

A weakly connected component of a directed graph G is a subgraph G ′ such that for
any vertices u, v ∈ G ′, exists an un-directed path between them. A recent, but well
known algorithm is HCC, proposed in [16]. The algorithm is expressed as an iteration
of a special form of matrix multiplication between the adjacency matrix E and a
vector (called S to unify notation) initialized with the vertex-id numbers. The sum()

123

Distrib Parallel Databases (2017) 35:335–362 341

operator of the matrix multiplication is changed to the min() aggregation. Each entry
of the resulting vector is updated to the minimum value between the result of matrix
computation and the current value of the vector. Intuitively, vertex v receives the ids of
all its neighbors as a message. The attribute of the vertex is set to the minimum among
its current value, and the minimum value of the incoming messages. The iterative
process stops when S remains unchanged after two successive iterations.

3.3.4 PageRank

PageRank [23] is an algorithm created to rank the web pages in the world wide web.
The output of PageRank is a vector where the value of the i th entry is the probability
of arriving to i , after a random walk. Since PageRank is conceived as a Markov
process, the computation can be performed as an iterative process that stops when the
Markov chain stabilizes. The algorithms previously described in this section base their
computation on E . Conversely, it is well known that PageRank can be computed as
powers of amodified transitionmatrix [15]. The transitionmatrix T is defined as Ti, j =
E j,i/outdeg(j) when E j,i = 1; otherwise Ti, j = 0. Notice that if outdeg(j) = 0,
then the j th column of T is a column of zeroes. Let T

′ = T + D , where D is a n × n
matrix such that Di, j = 1/n if the column j is a 0 column. To overcome the problem
of disconnected graphs, PageRank incorporates an artificial low-probability jump to
any vertex of the graph. This artificial jump is incorporated by including a matrix A.
Let A be a n × n matrix, whose cells contains always 1, and p the damping factor.
The power method can be applied on T

′′
defined as: T

′′ = (1 − p)T
′ + (p/n)A, as

presented in Eq. 5.
Sk = (T ′′)k · S0 (5)

Although Eq. 5 seems to be simple, computing it with large matrices would be
unfeasible. While T might be sparse, T

′
is not guaranteed to be sparse. Moreover,

since A is dense by definition, T ′′ is dense, too. Equation 5 can be expressed in terms
of the sparse matrix T as follows:

Sd = (1 − p)T · Sd−1 + (1 − p)D · Sd−1 + (p/n)A · Sd−1 (6)

This full equation of PageRank computes exact probabilities at each iteration. Because
(1 − p)D · Sd−1 is a term that adds a constant value to every vertex, it is generally
ignored. After simplification, the expression for PageRank becomes:

Sd = (1 − p)T · Sd−1 + P (7)

where every entry of the vector P is equal to p/n. It is recommended to set p = 0.15
[23].

4 Solving graph problems with relational queries: a unified algorithm

In the previous section we introduced four graph algorithms and we showed how to
express them as an iteration of matrix–vector multiplications. This way to compute

123

342 Distrib Parallel Databases (2017) 35:335–362

graph algorithms is important for thiswork because: (1) provides a common framework
for several graph problems; (2) the challenges of parallel matrix–vector multiplication
are already known; (3) matrix–vector multiplication can be expressed with relational
operators in a simple way. See Table 1 for a comparison of the four algorithms.

4.1 Semirings and matrix multiplication

Semirings are algebraic structures defined as a tuple (R,⊕,⊗, 0, 1) consisting of a
set R, an additive operator ⊕ with identity element 0, a product operator ⊗ with
identity element 1, and commutative, associative and distributive properties holding
for the two operators in the usual manner. The regular matrix multiplication is defined
under (R,+,×, 0, 1). A general definition of matrix multiplication expands it to any
semiring. For example, on the min-plus semiring , min is the additive operator ⊕,
and + is the product operator ⊗. The min-plus semiring is used to solve shortest
path problems, as in [6]. Table 2 shows examples of relational queries to compute
matrix–vector multiplication under different semirings.

Table 1 Comparison of four graphs algorithms

Table 2 Matrix–vector
multiplication with relational
queries under common
semirings

123

Distrib Parallel Databases (2017) 35:335–362 343

4.2 Unified algorithm

Solving large graphs with iterative matrix–vector multiplication may look counterin-
tuitive: a large graph with one million vertices would lead to a huge adjacency matrix
with one trillion cells; the multiplication of such a large matrix times a large vector is
clearly unfeasible. Though, since real world graphs are sparse, the adjacency matrix
would need in general O(n) space. Moreover, when the input matrix and vectors are
stored sorted, the computation of the multiplication can be done with a merge join in
O(n) time, and a group-by, whose time complexity can be done in O(n) time when a
grouping by hashing is possible.

Algorithm 1: Graph Algorithms Evaluated with Relational Queries
Data: Table E , Table S0, ε, optional: source vertex s
Result: Sd
d ← 0; Δ ← ∞;
while Δ > ε do

d ← d + 1 ;
Sd ← πi :⊕(E .v⊗S.v)(E 	
 j=i Sd−1) ;
Δ = f (Sd , Sd−1) ;

end
return Sd ;

Algorithm 1 is a pattern to solve several graph problems with an iteration of rela-
tional queries. We base Algorithm 1 in our previous work [4], where we expressed
some graph algorithms with relational algebra. This algorithmic pattern can be applied
in relational databases and array databases. Furthermore, we keep the query as simple
as possible, as follows:

1. The query joins two tables
2. The query performs an aggregation, grouping by one column
3. The output of the query is inserted into an empty table. We do not do updates. The

size of Sd ≤ n

In a relational DBMS, the actual operation to compute the matrix multiplication is
a regular query with a join between E and S, and a subsequent aggregation. In array
databases, the operation can be implemented either via join-aggregation or calling the
built in matrix multiplication operator but we demonstrate later that the first option
presents better performance.

We use matrix–vector multiplication: (1) as an abstraction, for a better understand-
ing of the algorithms; (2) because it has been extensively proved that some graph
algorithms are equivalent to matrix vector multiplication.

The entries of E might be weighted or not, depending on the problem: unweighted
entries for PageRank andWCC, and weights representing distances for shortest paths.
Prior to the first iteration, the vector S has to be set to an initial state accordingly to
the problem: infinite distances for Bellman–Ford, isolated components in WCC, or a
default initial ranking on PageRank. In the pth iteration, the vector Sp is computed
as E · Sp−1. A function f (Sd , Sd−1) returns a real number to check convergence. The
algorithm iterates when Δ (the value returned by f) is less than some small value ε,
or when it reaches the max number of iterations.

123

344 Distrib Parallel Databases (2017) 35:335–362

5 Graph data storage and partitioning for the unified algorithm

5.1 Physical storage

The graph storage in the two parallel systems (Columnar DBMS/Array DBMS) has
important differences.

In the columnar DBMS, graphs are stored in a relational table containing the edge
information: source vertex, destination vertex, and edge’s attributes. An optional table
may include vertex attributes. The computation of the algorithms relays on a projection
of the edges table, table E(i, j, v), with primary key (i, j) and a numeric edge attribute
v. Note that table E stores the adjacency matrix of G in sparse representation.

In the array DBMS, the graph can be stored as a n × n disk array. The graph may
have one or several numeric attributes. In contrast to the columnar DBMS, i and j
are not stored, because these values are implicit, as it occurs in main memory arrays.
SciDB—an open source arrayDBMS—does not assign physical space for empty cells,
only cells with a value different than zero are stored.

As explained in Sect. 3, our algorithms require a vector which is recomputed at
each iteration. In the case of the columnar DBMS, this vector is stored in table S(i, v),
and in the case of the array DBMS, it is stored as a uni-dimensional array.

5.2 Graph data partitioning for the unified algorithm

Parallel graph processing systems devise several partitioning strategies to minimize
the communication between nodes and to keep the processing balanced in the parallel
system.An ideally balanced processingwould have an even data distributionwithm/N
edges per node (recall that N is the number of computing nodes). It is challenging to
reach this objective, due to the skewed degree distribution of real graphs: vertices have
high probability of a low degree, but very low probability of a high degree. Researchers
[8,20] have observed that degree distribution in real-world complex networks follows
the power law: the number of vertices of degree k is approximately proportional to
k−β for some β > 0. Graphs following the power law are challenging because of their
strong skewness.

State-of-the-art graph systems propose two main approaches of graph partitioning:

– edge-cut: vertices are distributed evenly across the cluster; the number of edges
crossing machines needs to be minimized.

– vertex-cut: edges are not broken, they do not span across machines. In this case,
vertices might need to be replicated.

Gonzalez et al. [10] showed weaknesses of the edge-cut model, especially for graphs
following the power law, as is the case of natural graphs. Spark-GraphX and Power-
Graph apply vertex-cut partition.

In this section, we present a graph partition strategy to improve data locality
in the processing of parallel join which computes matrix–vector multiplication, and
to balance the data in the cluster. Note this strategy is not intended to accelerate
arbitrary queries on graphs or the entire spectrum of graph algorithms, but to reduce
the execution time of the algorithms of our concern: a group of graph algorithms based

123

Distrib Parallel Databases (2017) 35:335–362 345

Table 3 Data partitioning and
physical ordering in columnar
DBMS

Algorithm Join Partition Order

SSSP E 	
i=i S hash(E .i);hash(S.i) E .i, S.i

WCC E 	
i=i S hash(E .i);hash(S.i) E .i, S.i

PageRank T 	
 j=i S hash(T . j);hash(S.i) T . j, S.i

Reachability E 	
i=i S hash(E .i);hash(S.i) E .i, S.i

on iterative matrix–vector multiplication. In Sect. 7 we will present an experimental
evaluation of our strategy.

In the case of the family of algorithms studied in this work, keeping a low data
transfer between nodes is critical to achieve good performance. The core computation
of our algorithms is the query that computes the matrix–vector multiplication, com-
prised of a join and an aggregation. Moreover, because of the iterative nature of these
algorithms, this query is computed many times. We focus on optimizing the parallel
join, the most demanding operation. The parallel join runs efficiently when excessive
data transfer between nodes is avoided. By a careful data partition, we ensure that
rows in S matching rows in E are found in the same worker node. The joining column
in E can be either i or j , depending on the algorithm (see Table 3).

5.2.1 Partitioning in a columnar DBMS

The illustration in Fig. 1 shows a graph G, with 11 vertices. In the same figure, we
show the representation of the graph as a list of edges, stored in a database table E .
The graph should be partitioned in such a way that uneven data distribution and costly
data movement across the network is avoided. The latter is possible when the parallel
join occurs locally on each worker node. To ensure join data locality, we partition
table E and S by the join key. Depending on the algorithm, the join key for table E is
either i (source vertex) or j (destination vertex). Table S is clearly partitioned by its
primary key, the vertex id.

Specifically, if the join condition is Ei = Si (Fig. 2a), the edges having the same
source vertex are stored in only one computing node, along with the corresponding
vertices in S. When the join condition is E j = Si (Fig. 2b), the edges having the
same destination vertex are stored in only one computing node, along with the cor-
responding vertices in S. The benefit of this partition is that any vertex in E has the
corresponding matching vertex in S in the same computing node, avoiding costly data
movement. Note for the actual data distribution to the cluster we incorporate a built-in
hash function, which is useful to avoid unbalanced data.

On the other hand, skewness may cause unbalanced processing. To achieve bal-
anced data distribution we take advantage of hash function partitioning, a functionality
available in some parallel DBMSs. Specifically, the partitioning E is done by a hash
function on the join column (either i or j).

123

346 Distrib Parallel Databases (2017) 35:335–362

2
1

311

5

4

6

79

8

10

i j v

2 1 1
2 3 1
3 5 1
4 5 1
5 6 1
5 7 1
5 8 1
6 4 1
7 6 1
9 5 1

10 9 1
11 2 1

G table E

1 1
1
1

1 1 1
1

1

1
1

1

array E

Fig. 1 A sample graph G is stored a table E in the columnar DBMS or as a bi-dimensional array E in the
array DBMS

(a)

(b)

Fig. 2 Partitioning of table E in four nodes

5.2.2 Partitioning in an array DBMS

In general, big-data graphs are characterized by a sparse adjacency matrix. The adja-
cency matrix of E is stored as a bi-dimensional array, and S as a unidimensional
array. Arrays are blocked by chunks of homogeneous size. SciDB assigns chunks

123

Distrib Parallel Databases (2017) 35:335–362 347

in a rigid way: considering an array whose chunks are numbered as 1, 2, . . . and
stored in N worker nodes, chunks are assigned to the workers just by the formula
(chunknumber mod N) + 1. The strategy is the same as columnar DBMS: the par-
allel join E 	
 S finds matching data in the same node. To obtain this objective, we
divide S in K chunks and E in K × K chunks. K is determined based on N ; con-
sidering that SciDB distributes chunks to nodes in a round robin manner, local join is
possible when K is a multiple of N .

5.2.3 Partitioning in Spark-GraphX

GraphX includes a set of built-in partitioning functions for the edges collection. Fol-
lowing the vertex-cut approach, edges are never cut. Edges are partitioned by several
strategies.

– Random vertex cut: The graph is partitioned by assigning edges to the computing
nodes in random way

– Edge Partition 1D: the adjacency matrix is partitioned by horizontal cuts.
– Edge Partition 2D: the adjacency matrix is partitioned in a grid manner, both
horizontal and vertical cuts.

6 Algorithms expressed with queries

Columnar DBMS We programmed simple but efficient SPJA queries that perform
matrix multiplication. In the parallel columnar DBMS, three factors are important for
a good performance per iteration:

1. Local join key matching: Rows that satisfy the join condition are always in the
same computing node. This is crucial to avoid data transfer between nodes.

2. Presorted data: The join between E and S can achieve a linear time complexity
when the tables are presorted by the columns participating in the join condition.
The algorithm is MERGE join. This is critical for very large graphs.

3. Data Compression: Columnar data storage is favorable for efficient data compres-
sion [1]; in this way the I/O cost is reduced.

ArrayDBMSWepropose to compute thematrix–vectormultiplicationwith a combina-
tion of join and aggregation operations, and we compare our approach to the standard
way: call the built-in spgemm() SciDB matrix multiplication operator; this operator
internally calls the high performance linear algebra library SCALAPACK [5]. In the
array DBMS, a carefully data partition let us to compute the join minimizing data
transfer: cells satisfying the join condition are always in the same node. The (sparse)
array-like data organization makes possible a merge join, since data is stored in order.
On the other hand, data partitioning needs to consider skewed data distribution. It is
natural to assign the edge (i, j) to the position (i, j) in the disk array. But due to the
power low, this naive procedure may lead to uneven data partitioning. To alleviate this
problem, we allocate the data in an alternative manner, as we elaborate on Sect. 7.
Like the columnar DBMS, queries in the array DBMS can be optimized to exploit:

123

348 Distrib Parallel Databases (2017) 35:335–362

(1) Local join key matching for parallel joins; (2) Presorted data, which is inherent of
the array-based data organization.

Spark-GraphX stores graphs using twomain data structures, namely EdgeRDD and
VertexRDD, that are extensions of the Spark RDD data structure. The fundamental
operation to solve graph problems in GraphX is aggregateMessages, which receives
as parameters a sendmsg (or map) function, and an aggregate (or reduce) function.
As output, aggregateMessages returns an RDDwhich associates every vertex with the
computed value. In [11], Gonzalez et al. state “We identified a simple pattern of join-
map-groupby dataflow operators that forms the basis of graph-parallel computation.
Inspired by this observation, we proposed the GraphX abstraction” .

6.1 Computing PageRank

PageRank is simple, but it is necessary to consider carefully the relational query to
avoid mistakes. Recalling Eq. 7, the main computation in PageRank is the multiplica-
tion T · S, that is solved in parallel DBMSs as a join. As a collateral effect of using
sparse data, the join between T and S does not return rows for those vertices having
in-degree equal to zero (no in-coming edges). When the in-degree of a vertex v is zero,
it does not exist any row in E such that E · j = v. Thus a row T · i = v does not exist,
either. Therefore, in the next iteration the pageRank value of v is lost.Moreover, vertex
v will be neglected in further iterations. One solution to this problem is to compute the
PageRank vector with two queries: The SPJA query for matrix vector multiplication,
and a second query to avoid missing vertices, inserting the constant value p/n for
such vertices having in-degree equal to zero, previously stored in a temporary table
VertexZeroIndegree. Recall that the parameter p was defined in Sect. 3.3.4

INSERT INTO S1 /∗ query 1 ∗/
SELECT T. i , p/n + (1−p)∗sum(T.v∗S0.v)
FROMT JOIN S0 ON S0. i=T. j
GROUPBY T. i ;

INSERT INTO S1 /∗ query 2 ∗/
SELECT S0. i , p/n
FROM S0
WHERE S0. i in

(SELECT v FROM VertexZeroIndeg)

To keep the algorithm elegant and efficient, we avoid using two queries. To avoid
“query 2”, we insert an artificial zero to the diagonal of the Transition Matrix as part
of the initialization. This is equivalent to the two-queries solution, and it does not alter
the numerical result.

Initialization Our first step is to compute the transition matrix T , which requires
the computation of the out-degree per vertex. T is carefully partitioned, to enforce join
locality. The vector S0 is initialized with a uniform probability distribution. Therefore,
S[i] = 1/n.

123

Distrib Parallel Databases (2017) 35:335–362 349

/∗ Ini t ial izat ion : Computing the transition matrix ∗/
INSERT INTO T

SELECT E. j AS i , E. i AS j , 1/C. cnt AS v
FROM E,

(SELECT i , COUNT(∗) cnt
FROME
GROUPBY i) C

WHERE E. i = C. i ;

Algorithm 2: PageRank
Data: Table E ,
Result: Table Sd
S0[i] =← 1/n; T [i, j] ← E[j, i]/outdeg(i); T [i, i] = 0 ;
/* Iterations */
d = 0; Δ = 1;
while Δ > ε do

d = d + 1 ;
Sd ← πi :sum(T .v∗S.v)(T 	
 j=i Sd−1) ;
Δ ← max(Sd [i] − Sd−1[i])

end
return Sd ;

Iterations Algorithm 2 shows that in every iteration a new table is created. Since
we just need the current S and the previous one, we actually use only table S0 and
table S1, swapping them at each iteration. PageRank algorithm keeps iterating until
convergence, meaning that for every entry of the output vector, the difference with
respect to the same entry of the vector of the previous iteration is less than a small
value ε. The relational query is defined as follows:
/∗ SQL query for a PageRank iteration ∗/
INSERT INTO S1
SELECT T. i , p/n + (1−p)∗sum(T.v∗S0.v) v
FROMT JOIN S0 on S0. i=T. j
GROUPBY T. i ;

Like in the columnar DBMS, the base of the computation in the array DBMS is
iterative matrix vector multiplication. The input is the matrix E stored as a “flat”
array, a uni-dimensional array where i, j, v are attributes. This flat array is used to
compute the Transition matrix as a sparse bi-dimensional array, and it is partitioned
to avoid unbalances due to skewed distributions. The query in the array DBMS uses
the built-in operator cross_join() and group by. Note that the first pair of
parameters in cross_join are the two tables, and the second pair of parameter are the
joining attributes.
/∗ AQL query for a PageRank iteration in array DBMS ∗/
INSERT INTO S1
SELECT T. i , p/n + (1−p)∗sum(T.v∗S0.v) v,
FROM cross_join (T,S0,S0. i ,T. j)
GROUPBY T. i ;

123

350 Distrib Parallel Databases (2017) 35:335–362

Computation in Spark-GraphX We explain the algorithm included as part of the
GraphX library. PageRank is solved iteratively; aggregateMessage is the main
operation at each iteration. This operation is conceptualized as a map function applied
tomessages sent FROMneighbor nodes, and a reduce function that performs an aggre-
gation. Specifically, the map function is a scalar multiplication, and the aggregation
is a summation. The output of aggregateMessage is a VertexRDD. Though a
different data structure, the content of the VertexRDD is similar to the output of the
join-aggregation in columnar DBMS.

6.2 Connected components

Our Connected Components algorithm is an improvement of HCC, an iterative algo-
rithm proposed in [16]. The algorithm in [16] can be explained as follows: Let S a
vector where each entry represents a graph vertex. Initialize each value of S with the
corresponding vertex ids. In the iteration d, the connected components vector Sd is
updated as:

Sd = assign(E · Sd−1) (8)

where assign is an operation that updates Sd [i] only if Sd [i] > Sd−1[i] and the
dot represents the min,* matrix multiplication. This algorithm has been applied in
Map-Reduce and Giraph. Recently, the authors of [13] applied HCC in a RDBMS.
As showed in [13] the authors implemented the algorithm joining three tables: edges,
vertex, and v_update.

We propose to compute the new vector just with the SPJA query for matrix vector
multiplication (join between two tables plus aggregation). In contrast with HCC [16],
we avoid the second join, necessary to find the minimum value for each entry of the
new and the previous vector. We avoid the three-table join proposed by [13], too. We
propose inserting an artificial self loop in every vertex; by setting E(i, i) = 1, for
every i .

Initialization As explained, we have to insert 1s in the diagonal of E , to simplify
the query. Each entry of the table Sd is initialized with the vertex-id.

Algorithm 3: Connected Components
Data: Table E ,
Result: Table Sd
S0[i] =← i ; E[i, i] ← 1;
/* Iterations */
d = 0; Δ = 1;
while Δ > 0 do

d = d + 1 ;
Sd ← π j :min(E .v∗S.v)(E 	
i=i Sd−1) ;
Δ ← ∑

Sd − ∑
Sd−1

end
return Sd ;

123

Distrib Parallel Databases (2017) 35:335–362 351

Iterations The algorithm stops when the current vector is equal to the second.
Since Sd [i] <= Sd−1[i], then Sd = Sd−1 if

∑
Sd − ∑

Sd−1. The relational query is
presented below. The array DBMS query has small syntactical differences.

INSERT INTO S1
SELECT E. i , min(S0.v∗1) v
FROME JOIN S0 ON S0. i = E. j

GROUPBY E. i ;

6.2.1 Spark-GraphX

Graphx includes in its library an implementation of Connected Components similar
to HCC, propagating minimum vertex-ids through the graph. The implementation
follows Pregel’s message-passing abstraction.

6.3 Bellman ford (SSSP)

RecallingSect 3.3.2, SSSP is computed by an iteration ofmatrix–vectormultiplication:
the transposed of the adjacencymatrixmultiplied by a vectorwhich holds the “current”
minimumvalue. From a relational point of view, the vector Sd is stored Sd in a database
table with schema Sd(j, v), where j is a destination vertex, and v is the minimum
distance known at the current iteration (relaxed distance). Both the standard and the
linear algebra algorithms require to initialize as∞ every vertex, but the source. Instead,
in a relational database we only include vertices in Sd when an actual path from s has
been found. When the algorithm starts, Sd is sparse; only one non-zero value. The
matrix multiplication under the min-plus semi-ring reproduces the relaxation step: In
the dth iteration, the minimum distance is computed considering the relaxed value
from the iteration, stored in Sd−1, as well as the value of new edges discovered in the
current iteration.

Initialization The table S0 representing the initial vector is initialized inserting a
row with values (s,0), where s is the source vertex. Also, an artificial self-loop with
value zero (no distance) is inserted to E , which has the effect to keep the shortest
path found in previous iterations in the current S. While initializing S, Bellman–Ford
requires that entries of the vector different than s be set to ∞. In the database systems,
those values are not stored.

Iterations Following our algorithmic pattern, the iterative process stops when Δ is
equal or less a value ε. The value Δ is assigned to zero only when the current vector
Sd is equal to the previous, Sd−1. The relational query that computes the min-plus
matrix vector multiplication with relational queries is presented below.

INSERT INTO S1
SELECT E. j , min(S0.v+E.v) v
FROME JOIN S0 ON S0. i = E. i

GROUPBY E. j ;

123

352 Distrib Parallel Databases (2017) 35:335–362

Algorithm 4: Single Source Shortest Path
Data: Table E , source s
Result: Table Sd
S0[s] ← 0; E[s, s] ← 0;
/* Iterations */
d = 0; Δ = 1;
while Δ > ε do

d = d + 1 ;
Sd ← π j :min(E .v∗S.v)(E 	
i=i Sd−1) ;
Δ ←case Sd == Sd−1 then 0 else 1;

end
return Sd ;

Computation in arrayDBMS The computation of the vector Sp can be done either by
matrix–vector multiplication using SPGEMM() or by a join-aggregation. As demon-
strated in the Experimental section, a cross join operation presents better performance,
taking advantage of data locality.

INSERT INTO S1
SELECT E. j , min(S0.v+E.v) v
FROM cross_join (E,S, E. i ,S. i)
GROUPBY E. j

Computation in Spark-GraphX The SSSP routine in the Spark-GraphX library is a
standard implementation based on message-passing and aggregation. The full code is
available in the Spark-GraphX source code repository.

6.4 Reachability from a source vertex

Initialization Like Bellman–Ford, reachability from a source vertex starts the iterative
process with a sparse vector S0, initialized as S0[s] = 1. In the same way, E[s, s] is
set to 1.

Algorithm 5: Reachability from a Source Vertex
Data: Table E , source s
Result: Table Sd
S0[s] ← 1 ; E[s, s] ← 1;
/* Iterations */
d = 0; Δ = 1;
while Δ > ε do

d = d + 1 ;
Sd ← π j :sum(E .v∗S.v)(E 	
i=i Sd−1) ;
Δ ← ∑

Sd − ∑
Sd−1

end
return Sd ;

123

Distrib Parallel Databases (2017) 35:335–362 353

Iterations Like Connected Components, this algorithm stops when Sd = Sd−1
Since Sd [i] >= Sd−1[i], then Sd = Sd−1 if

∑
Sd − ∑

Sd−1. The relational query to
compute the matrix product is presented below. Since the query in array DBMS has
small syntactical differences, it is omitted.

INSERT INTO S1
SELECT E. j , sum(S0.v∗E.v) v
FROME JOIN S0 ON S0. i = E. i

GROUPBY E. j ;

Computation in Spark-GraphX Reachability from a Source has not be implemented
in Spark-GraphX. Even though, it is possible to use the SSSP routine as an alternative.

7 Experimental evaluation

Our experiments have two main objectives: First, we want to evaluate our proposed
optimizations in columnar and array DBMS, comparing them with some techniques
for performance improvement already available in these systems. Second, we conduct
experiments to compare performance and results of three graph algorithms, under
three different systems: An industrial columnar database (Vertica), an open source
array database (SciDb) and the well known system for Hadoop, Spark/GraphX. Con-
sidering our previous research [22], we expect that columnar and array DBMS will
largely surpass the performance of row DBMS in graph problems. Moreover, supe-
rior performance of parallel columnar DBMS in analytical workloads was previously
demonstrated in [24]. For this reason, we focus our experiments in columnar and array
DBMSs. Vertica, SciDB and Spark-GraphX were installed in the same hardware: a
four node cluster, each node with 4GB RAM and a Quad core Intel CPU 2.6 GHz.
The cluster has in total 16 GB RAM and 4TB of disk storage, running Linux Ubuntu.

7.1 Data sets

In graph analysis, social networks and hyperlink networks are considered challenging,
not only because their size, but also because the skewed distribution of the degree of the
vertices of these graphs. In the case ofweb graphs, a popular page can be referenced for
many thousands pages. Likewise, a social network user can be followed for thousands
of users, too. We study our algorithms with three data sets from the SNAP repository
[19], one dataset fromWikipedia, and a very large web graph data set fromWeb Data
Commons with m = 620 M [18]. All the data sets are well known, and statistics are
publicly available, as maximum degree, average degree, number of triangles, and size
of the largest weakly connected component (Table 4).

7.2 Evaluation of query optimizations

As explained in Sects. 4 and 5, we introduced several optimizations: (1) exploit data
locality of the join E 	
 S; (2) presorted data to compute the join with merge-join

123

354 Distrib Parallel Databases (2017) 35:335–362

Table 4 Datasets

Data set Description n m = |E | Avg degree Max degree Max WCC

web-Google Hyperlink graph 1M 5M 12 6,353 855,802

soc-pokec Social network 2M 30M 38 20,518 1,632,803

LiveJournal Social network 5 M 69M 28 22,887 4,843,953

wikipedia-en Hyperlink graph 13M 378M 62 963,032 11,191,454

Web Data Commons Hyperlink graph 43M 623M 29 4M 39M

algorithm; (3) In each iteration S is computed strictly with one matrix multiplication
evaluated with relational queries, always joining only two tables. Our experimental
validation includes both columnar and array DBMSs.

7.2.1 Evaluating optimizations in a columnar DBMS

We compare the benefits of: (A) Our proposed partitioning strategy i.e., partitioning
by the join key applying a built-in hash function versus (B) A classical parallel join
optimization, the replication of the smaller table of the join to every node in the parallel
cluster,which ensures that data of this small table is local to anynode.Replication of the
smaller table in a parallel join is a well known and very efficient optimization, but we
show that it is not the winner in our case. To make the aforementioned comparison, we
run experiments with the LiveJournal social network data set [19], andwith augmented
versions of this data set, increasing its size by a factor of two and three. The graph data
set is partitioned in the sameway both inA and inB. In caseA, the table S is partitioned
by its primary key. In case B, the table S (smaller than E) is replicated through the
cluster. Note in both A and B we have defined the same ordered projections, for the
best possible performance.

Figure 3 compares the execution time of the two strategies for an iterative computa-
tion of PageRank in various data set sizes. Our proposed strategy (labeled in the figure
as “a”) is superior than the one which replicates the smaller table to every node in the
cluster (labeled as “B”). How can our optimization be better than a data replication
through the cluster? Recall that the algorithms in this work require several iterations,
and that the vector S is recomputed at each iteration. Therefore, keeping a local copy
has the disadvantage that the result table needs to be replicated to the complete cluster
in every iteration. On the other hand, we run a second set of experiments to understand
time complexity of algorithms, using the sameLiveJournal data set. In this experiment,
we increased the data set up to four times. We measured the average time to run one
iteration of PageRank in the columnar database. Figure 4 shows our measurements.
Every iteration runs with a time complexity close to linear.

7.2.2 Evaluating optimizations in an array DBMS

In the array DBMS we apply the same strategy as in the columnar DBMS: to increase
the join data locality by partitioning the data properly, as explained in Sect. 5.2.2. The

123

Distrib Parallel Databases (2017) 35:335–362 355

Fig. 3 Comparing execution times in columnar DBMS: (A) proposed partition strategy. (B) Classical
parallel join optimization by replication of the smaller table

Fig. 4 Execution time of the join-aggregation query for PageRank in columnar DBMS. Optimizations
bring a performance close to linear

default way to load the array data may be sensible to skewness, as it is shown on the
right side of Fig. 5. As a result, a few blocks of the matrix concentrates a large amount
of data. To alleviate the problem of skewed data distribution, we load the array data in
an alternative way : redefining array subscripts of the adjacency matrix. Considering
that E is divided in uniform squared-shaped chunks of size h× h, the array subscripts
are redefined as follows:

i ′ → h ∗ (i mod N) + i/N ; (9)

j ′ → h ∗ (j mod N) + j/N ; (10)

Figure 5 shows a plot of the density of the adjacency matrix using original array
subscripts and redefined array subscripts. Furthermore, Fig. 6 shows the data distribu-
tion among the workers. Clearly, the redefinition of array subscripts helps to alleviate
the problem of uneven partitions. To understand if the proposed strategy has a signif-
icant cost, keep in mind that in SciDB an array is loaded in two steps: Firstly, data

123

356 Distrib Parallel Databases (2017) 35:335–362

Fig. 5 Array DBMS: Living Journal data set. The left heat map shows the density of the adjacency matrix
with the original array subscripts. The right heat map shows the density of the adjacency matrix with the
redefined array subscripts. The number on the axes are coordinates identifying chunks in the disk array
storage. Chunk (0,0) on the left presents the maximum density

Fig. 6 Array DBMS: Living Journal data set. Another perspective of the data density. Data distribution
in cluster with original (left) and redefined (right) array subscripts. Vertical axis shows edges per worker.
Horizontal axis identifies workers

is loaded to a unidimensional array, whose subscript is artificial. Second, the data is
partitioned by chunk based on the actual subscripts, an operation known in SciDB as
redimensioning. The proposed alternative is to perform the second step (redimension-
ing) based on redefined indexes instead of the original subscripts. The overhead of
this alternative, compared to the default redimensioning, is just the cost of computing
a projection on the original subscripts.

We want to understand experimentally the efficiency of our query-based matrix
multiplication, and we contrast it to the execution time of matrix multiplication with

123

Distrib Parallel Databases (2017) 35:335–362 357

Fig. 7 A comparison of Matrix Multiplication in SciDB. Slowest computation with the SciDB’s built-in
operator SpGemm. Faster computation with join and aggregation plus repartitioning

ScaLAPACK, available as a built-int SciDB operator. We partition the LiveJournal
data set according to our proposed strategy (Sect. 5.2.2), and then we compute one
iteration of PageRank, in three different ways:

1. Default: SciDB’s built-in matrixmultiplication operator SpGemm, calling ScaLA-
PACK;

2. Optimized: Our proposed join-aggregation query exploiting join locality.
3. Optimized+: Our join-aggregation query, plus redefinition of array subscripts to

ensure even distribution of the data across the cluster.

In Fig. 7 we present the average execution time per iteration of a PageRank query,
comparing (1), (2) and (3) Even though the data is partitioned to ensure join data local-
ity, ScaLAPACK (right bar) takes the longest time to evaluate the query. Instead, our
join-and-aggregation query performs better, taking advantage of a local join. Further
performance improvements are presented by the left bar, where the execution time is
improved by redefining the array subscripts when the data is loaded, which balances
the computation through the cluster nodes.

7.3 Comparing performance in columnar DBMS, array DBMS and
Spark-GraphX

Results of our experiments are presented inTable 5, aswell as inFig. 8. Thevertical axis
represents the execution time. The time measurement for the three systems (columnar
DBMS, array DBMS and Spark-GraphX) includes the iterative step and the time to
partition the data set. We allow a maximum execution time of 120 minutes; after that
time, the execution is stopped. The experiment with the largest data set (Web Data
Commons, 620millions of edges)was successfully completed by the columnarDBMS,
but could not be finished neither for the array database (stopped after 120 minutes) nor
for Spark-GraphX (program crashes). The Spark program works well for those data
sets that fit in RAM, but crashes when the data set is larger than RAM, after struggling
to solve the join on data distributed through the cluster. Our experimental results

123

358 Distrib Parallel Databases (2017) 35:335–362

Table 5 Comparing columnar DBMS versus array DBMS versus Spark-GraphX

Algorithm Data set m = |E | Columnar Array GraphX

Reachability web-Google 5M 19 141 34

soc-pokec 30M 25 164 59

LiveJournal 69M 60 386 166

wikipedia-en 378M 364 4311 crash

Web Data Commons 623 2139 stop crash

SSSP web-Google 5M 13 145 34

soc-pokec 30M 25 172 59

LiveJournal 69M 58 405 166

wikipedia-en 378M 487 4574 crash

Web Data Commons 623M 2763 stop crash

WCC web-Google 5M 24 175 32

soc-pokec 30M 53 345 83

LiveJournal 69M 125 919 451

wikipedia-en 378M 443 5091 crash

Web Data Commons 623M 3643 stop crash

PageRank web-Google 5M 18 143 58

soc-pokec 30M 72 380 153

LiveJournal 69M 99 1073 477

wikipedia-en 378M 507 stop crash

Web Data Commons 623M 2764 stop crash

show that in general, the algorithms presented in this work have superior performance
in the columnar DBMS than the array DBMS. Besides, in the columnar DBMS our
algorithms present equal results and better performance than standard implementations
in GraphX, specially when the data sets are large. Even when the data set fits in the
cluster RAM, our algorithms running on top of a columnar DBMS run at least as fast
as in Spark-GraphX. Our experiments show also that columnar and array DBMS can
handle larger data sets than Spark-Graphx, under our experimental setup (Fig. 9).

7.4 Effect of partitioning by join key to common graph queries

While partitioning the graph data set by the join key improves the performance of
the algorithms of our concern, the reader may wonder about its effect to common
graph queries. We present experiments with interesting queries for graph exploration:
(1) in-degree i.e., the counting of incoming edges; (2) out-degree i.e., the counting
of outcoming edges; (3) getting the edges greater than/lesser than a constant; (4)
sink vertices (5) neighbors of a vertex v. We run every query both under the default
partitioning (by primary key) and under join key partitioning. Execution times are
presented in Table 6, where times less than one tenth of second are represented by a

123

Distrib Parallel Databases (2017) 35:335–362 359

Fig. 8 Performance comparisons: columnar DBMS, array DBMS and Spark-GraphX

Fig. 9 Parallel speedup for SSSP, connected components and PageRank for three data sets (4 Nodes)

small circle.Weobserve that our proposedpartitioningdoes not hinder the performance
of common exploratory queries.

7.5 Parallel speedup experimental evaluation

We present a parallel speedup evaluation comparing the execution time of the colum-
nar parallel DBMS in a four-node cluster versus the parallel DBMS running in one
node. We show the experimental results in Table 7. By definition, the parallel speedup

123

360 Distrib Parallel Databases (2017) 35:335–362

Table 6 Comparison of execution time for exploratory queries under two different data partitioning meth-
ods: by primary key (default) and by joining key (proposed)

Data set m Indegree Outdegree E · v > c Sinks Neighbors of v

PK JK PK JK PK JK PK JK PK JK

web-Google 5M ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
LiveJournal 69M ◦ ◦ ◦ ◦ 0.2 ◦ ◦ ◦ ◦ ◦
wikipedia-en 378M ◦ ◦ ◦ ◦ 3.6 ◦ ◦ ◦ 0.2 ◦
Time in seconds. Times less than one tenth of second are represented by ◦

Table 7 Serial versus parallel execution performance for three algorithms in columnar DBMS

Data set m SSSP WCC PageRank

1 Node 4 Node 1 Node 4 Node 1 Node 4 Node

web-Google 5M 14 13 49 24 34 18

LiveJournal 69M 156 58 452 125 272 99

wikipedia-en 378M 1243 487 1725 443 1195 366

is S = t1/tN . Our experiments shows that larger graph data sets benefit from parallel
processing, obtaining a speedup from 2.50 up to 3.8 . In contrast, the experiments with
the small data set (5 million edges) present a lower speedup. Recall that the concept
behind of our algorithms is an iterativematrixmultiplication of amatrix E and a vector
S, which are stored in a DBMS as relational tables. The superior parallel performance
of weakly connected components and PageRank can be explained considering the two
tables that are read in the relational query at every iteration. In WCC and PageRank
algorithms the vector S starts as dense, and remains dense in the whole computation.
With a dense S, the processing happens in an even way, promoting parallelism. In
contrast, in the case of SSSP and Reachability the initial vector S is very sparse (only
one entry), though the density of the vector gradually increases at every iteration.

8 Conclusions

We demonstrated that relational queries are suitable to compute several graph algo-
rithms, namely reachability from a source vertex, single source shortest path, weakly
connected components, and PageRank. Moreover, we show a common algorithmic
pattern to solve this important family of graph problems based on an iteration of
matrix–vector multiplications, evaluated equivalently with an iteration of relational
queries. The unified computation can solve different problems by computing the
matrix–vector multiplication under different semirings. Based on this framework we
studied query optimization on columnar and array database systems, paying close
attention to their storage and query plans. Furthermore, we propose a graph parti-
tioning approach that promotes join locality as well as even data partitioning through
the parallel cluster. We remark that our algorithms are based on regular queries only,

123

Distrib Parallel Databases (2017) 35:335–362 361

avoiding UDFs or internal modifications to the database. Therefore, our optimizations
are easily portable to other systems. Due to our data partitioning strategy, matching
join keys are found in the sameworker node, reducing data communication through the
cluster.Moreover, by presorting the two joining tables, the join is solvedwith themerge
algorithm. In the experimental section we used real graph data sets to demonstrate that
the join, the most challenging operation in parallel, runs with a performance close to
linear. Our experiments show a promising parallel speedup, specially when the vector
S is dense. By comparing a columnar DBMS, an array DBMS and Spark-GraphX, we
observed that the columnar DBMS shows superior performance and scalability, being
able to handle the largest graphs. The performance of the columnar DBMS is better
than Spark-GraphX even when the data set fits in the cluster’s main memory. Although
the array DBMS shows two/three times longer execution times than Spark-GraphX,
it is more reliable when the graph data set is larger than the cluster RAM. The array
DBMS built-in method to store sparse arrays—as a list of non-null values—seems to
hinder performance.

Our work sheds light on a family of algorithms that can be optimized as a single
one, which opens many opportunities for future work. We want to understand if there
exist other graph algorithms which can be also unified with similar ideas. We plan
to study further optimizations that may take advantage not only of the sparsity of
the matrix, but also of the sparsity of the vector, even considering different degrees
of sparsity. Moreover, we will look for opportunities to improve algorithms beyond
graph analytics, exploiting our optimized sparse matrix–vector multiplication with
relational queries.

References

1. Abadi, D., Boncz, P., Harizopoulos, S., Idreos, S., Madden, S., et al.: The design and implementation
of modern column-oriented database systems. Found. Trends® Databases 5(3), 197–280 (2013)

2. Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., van der Vorst, H.: Templates for the Solution of Algebraic
Eigenvalue Problems: A Practical Guide, vol. 11. Siam, Philadelphia (2000)

3. Bu, Y., Borkar, V., Jia, J., Carey, M.J., Condie, T.: Pregelix: big(ger) graph analytics on a dataflow
engine. Proc. VLDB Endow. 8(2), 161–172 (2014)

4. Cabrera, W., Ordonez, C.: Unified algorithm to solve several graph problems with relational queries.
In: Proceedings of the 10th Alberto Mendelzon International Workshop on Foundations of Data Man-
agement, Panama City, Panama, 8–10 May 2016 (2016)

5. Choi, J., Demmel, J., Dhillon, I., Dongarra, J., Ostrouchov, S., Petitet, A., Stanley, K., Walker, D.,
Whaley, R.: Scalapack: a portable linear algebra library for distributed memory computers-design
issues and performance. Comput. Phys. Commun. 97(1–2), 1–15 (1996)

6. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. The MIT
Press, Cambridge (2009)

7. DeWitt, D., Gray, J.: Parallel database systems: the future of high performance database systems.
Commun. ACM 35(6), 85–98 (1992)

8. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the internet topology. In:
ACM SIGCOMM computer communication review, vol. 29, pp. 251–262. ACM (1999)

9. Fineman, J.T., Robinson, E.: Fundamental Graph Algorithms, chapter 5, pp. 45–58
10. Gonzalez, J.E., Low, Y., Gu, H., Bickson, D., Guestrin, C.: Powergraph: Distributed graph-parallel

computation on natural graphs. In: Proceedings of the 10thUSENIXConference onOperating Systems
Design and Implementation, OSDI’12, pp. 17–30, Berkeley, CA, USA, USENIX Association (2012)

123

362 Distrib Parallel Databases (2017) 35:335–362

11. Gonzalez, J.E.,Xin,R.S.,Dave,A., Crankshaw,D., Franklin,M.J., Stoica, I.: Graphx:Graph processing
in a distributed dataflow framework. In: 11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 14)

12. Idreos, S., Groffen, F., Nes, N., Manegold, S., Mullender, K., Kersten, M.: MonetDB: two decades of
research in column-oriented database architectures. IEEE Data Eng. Bull. 35(1), 40–45 (2012)

13. Jindal, A., Madden, S., Castellanos, M., Hsu, M.: Graph analytics using vertica relational database. In:
2015 IEEE International Conference on Big Data (Big Data), pp. 1191–1200. IEEE (2015)

14. Jindal, A., Rawlani, P., Wu, E., Madden, S., Deshpande, A., Stonebraker, M.: Vertexica: your relational
friend for graph analytics!. Proc. VLDB Endow. 7(13), 1669–1672 (2014)

15. Kamvar, S.D., Haveliwala, T.H., Manning, C.D., Golub, G.H.: Extrapolation methods for accelerating
pagerank computations. In: Proceedings of the 12th Int. Conf. onWorldWideWeb, pp. 261–270. ACM
(2003)

16. Kang, U., Tsourakakis, C.E., Faloutsos, C.: Pegasus: a peta-scale graphmining system implementation
and observations. In: Proceedings of the 2009 Ninth IEEE International Conference on Data Mining

17. Kepner, J., Gilbert, J.: Graph algorithms in the language of linear algebra (2011)
18. Lehmberg, O., Meusel, R., Bizer, C.: Graph structure in the web: Aggregated by pay-level domain.

In: Proceedings of the 2014 ACM Conference on Web Science, WebSci ’14, pp. 119–128, New York,
NY, USA, ACM (2014)

19. Leskovec, J., Krevl, A.: SNAP Datasets: stanford large network dataset collection (2014). http://snap.
stanford.edu/data

20. Mahanti, A., Carlsson, N., Mahanti, A., Arlitt, M., Williamson, C.: A tale of the tails: power-laws in
internet measurements. IEEE Netw. 27(1), 59–64 (2013)

21. Ordonez, C.: Optimization of linear recursive queries in SQL. IEEE Trans. Knowl. Data Eng. (TKDE)
22(2), 264–277 (2010)

22. Ordonez,C.,Cabrera,W.,Gurram,A.:Comparing columnar, rowand arrayDBMSs to process recursive
queries on graphs. Inf. Syst. 63, 66–79 (2016)

23. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: bringing order to the
web (1999)

24. Pavlo, A., Paulson, E., Rasin, A., Abadi, D., DeWitt, D., Madden, S., Stonebraker, M.: A comparison
of approaches to large-scale data analysis. In: Proc. ACM SIGMOD Conference, pp. 165–178 (2009)

25. Qin, C., Rusu, F.: Dot-product join: an array-relation join operator for big model analytics. CoRR
(2016). arXiv:1602.08845

26. Rudolf, M., Paradies, M., Bornhövd, C., Lehner, W.: Synopsys: large graph analytics in the SAP
HANA database through summarization. In: First InternationalWorkshop on Graph DataManagement
Experiences and Systems, p. 16. ACM (2013)

27. Rusu, F., Cheng, Y.: A survey on array storage, query languages, and systems. CoRR (2013).
arXiv:1302.0103

28. Soroush, E., Balazinska, M., Wang, D.: ArrayStore: a storage manager for complex parallel array
processing. In: Proc. ACM SIGMOD Conference, pp. 253–264 (2011)

29. Stonebraker,M.,Abadi,D., Batkin,A., Chen,X., Cherniack,M., Ferreira,M., Lau, E., Lin,A.,Madden,
S., O’Neil, E., O’Neil, P., Rasin, A., Tran, N., Zdonik, S.: C-Store: a column-oriented DBMS. In: Proc.
VLDB Conference, pp. 553–564 (2005)

30. Stonebraker, M., Brown, P., Poliakov, A., Raman, S.: The architecture of SciDB. In: Proceedings of
SSDBM, SSDBM’11, pp. 1–16. Springer (2011)

31. Welc, A., Raman, R., Wu, Z., Hong, S., Chafi, H., Banerjee, J.: Graph analysis: do we have to reinvent
the wheel? In: First International Workshop on Graph Data Management Experiences and Systems,
p. 7. ACM (2013)

32. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster computing with
working sets. HotCloud 10(10–10), 95 (2010)

123

http://snap.stanford.edu/data
http://snap.stanford.edu/data
http://arxiv.org/abs/1602.08845
http://arxiv.org/abs/1302.0103

	Scalable parallel graph algorithms with matrix–vector multiplication evaluated with queries
	Abstract
	1 Introduction
	1.1 Why in-database graph analytics
	1.2 Summary of contributions

	2 Related work
	3 Definitions and background
	3.1 Graph dataset
	3.1.1 Graph storage

	3.2 Parallel systems overview
	3.2.1 Row DBMS
	3.2.2 Columnar DBMSs
	3.2.3 Array DBMSs
	3.2.4 Spark

	3.3 Background on graph algorithms
	3.3.1 Reachability from a source vertex
	3.3.2 Bellman–Ford: a single source shortest path algorithm
	3.3.3 Weakly connected components (WCC)
	3.3.4 PageRank

	4 Solving graph problems with relational queries: a unified algorithm
	4.1 Semirings and matrix multiplication
	4.2 Unified algorithm

	5 Graph data storage and partitioning for the unified algorithm
	5.1 Physical storage
	5.2 Graph data partitioning for the unified algorithm
	5.2.1 Partitioning in a columnar DBMS
	5.2.2 Partitioning in an array DBMS
	5.2.3 Partitioning in Spark-GraphX

	6 Algorithms expressed with queries
	6.1 Computing PageRank
	6.2 Connected components
	6.2.1 Spark-GraphX

	6.3 Bellman ford (SSSP)
	6.4 Reachability from a source vertex

	7 Experimental evaluation
	7.1 Data sets
	7.2 Evaluation of query optimizations
	7.2.1 Evaluating optimizations in a columnar DBMS
	7.2.2 Evaluating optimizations in an array DBMS

	7.3 Comparing performance in columnar DBMS, array DBMS and Spark-GraphX
	7.4 Effect of partitioning by join key to common graph queries
	7.5 Parallel speedup experimental evaluation

	8 Conclusions
	References

