Distrib Parallel Databases (2017) 35:55-81 @ CrossMark
DOI 10.1007/s10619-017-7194-0

M-Grid: a distributed framework for multidimensional
indexing and querying of location based data

Shashank Kumar! . Sanjay Madria' -
Mark Linderman?

Published online: 13 March 2017
© Springer Science+Business Media New York 2017

Abstract The widespread use of mobile devices and the real time availability of
user-location information is facilitating the development of new personalized, location-
based applications and services (LBSs). Such applications require multi-attribute
query processing, scalability for supporting millions of users, real-time querying capa-
bility and analyzing large volumes of data. Cloud computing aided a new generation
of distributed databases commonly known as key-value stores. Key-value stores were
designed to extract values from very large volumes of data while being highly available,
fault-tolerant and scalable, hence providing much needed infrastructure to support
LBSs. However, complex queries over multidimensional data cannot be processed
efficiently as they do not provide means to access multiple attributes. In this paper,
we present M-Grid, a unifying indexing and a data distribution framework which
enables key-value stores to support multidimensional queries. We organize a set of
nodes in a modified P-Grid overlay network which provides efficient data distribution,
fault-tolerance and query processing over multidimensional data. To index, we use
Hilbert Space Filling Curve based linearization technique which preserves the data
locality to efficiently manage multidimensional data in a key-value store. We propose
algorithms to dynamically process range and k nearest neighbor (kNN) queries on
linearized values. This removes the overhead of maintaining a separate index table.

< Sanjay Madria
madrias @mst.edu

Shashank Kumar
sk2z6 @mst.edu

Mark Linderman
mark.linderman @us.af.mil

Department of Computer Science, Missouri University of Science and Technology, Rolla, USA

2 Information Division, Air Force Research Lab, Rome, NY, USA

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10619-017-7194-0&domain=pdf

56 Distrib Parallel Databases (2017) 35:55-81

Our approach is completely independent from the underlying storage layer and can
be implemented on any cloud infrastructure. Our experiments on Amazon EC2 show
that M-Grid achieves a performance improvement of three orders of magnitude in
comparison to MapReduce and four times to that of MD-HBase scheme.

Keywords Location based services - Multidimensional indexing - Peer-to-peer
system

1 Introduction

According to the latest report published by International Telecommunication Union
[1], the number of mobile subscribers is equal to the world’s population at the end of
the year 2015 [2]. The increasing need for mobility accompanied with recent advances
in wireless and mobile technology have created one of the most promising value added
services which are known as location based services (LBSs). LBSs utilizes the ability
of mobile devices to provide a user’s current geographical location through a mobile
network. They allow mobile users to search their environment and give them instant
access to personalized and localized content. Currently, a wide variety of LBSs are
available to mobile users which include route mapping applications, interactive city
guides, location-aware marketing, object tracking and monitoring, and finding objects
based upon proximity [3]. LBSs imposes a broad range of requirements on the underly-
ing supporting platform which includes modeling and representing multidimensional
data, handling high velocity updates of millions of users and providing real-time anal-
ysis on large volumes of data. Apart from these core requirements, LBSs should also
provide capability to efficiently process various types of queries to support wide range
of applications.

Legacy relational database management systems (RDBMS) can provide efficient
and fast complex query processing on multidimensional data by leveraging the built-in
indexing features and a rich query processing language. These indexing features are
provided by creating an additional index layer on top of a relational store. Examples
of such specialized spatial databases include, Oracle Spatial [4] which supports R-tree
[5] and Quad-tree[6] based indexing and IBM DB2 spatial extender [7] which provides
a three-tiered spatial grid index. However, these centralized systems create a single
point of failure, are costly to implement and suffer from scalability bottleneck as the
volume of data and the number of users grow.

Cloud-based distributed key-value stores emerged as a new paradigm to provide
elastic data management services which can scale according to the demand of different
applications. Current key-value stores such as BigTable [8], HBase [9] and Cassandra
[10] are designed to be highly available, fault-tolerant and can support millions of
users by sustaining high update throughput. However, these key-value stores can only
process efficient exact match queries on a single attribute as they lack built-in indexing
mechanism to access multiple attributes. For querying over multiple attributes, two
design choices are available. The first choice is to create separate indexes, pertaining to
each attribute. However, creating multiple index tables will incur huge additional load
on the system in terms of managing large volumes of data. Moreover, processing results

@ Springer

Distrib Parallel Databases (2017) 35:55-81 57

from multiple tables will require moving the data from other nodes and performing in-
memory aggregation to find the intersection. The second choice is to use MapReduce
[11] style parallel processing to scan the entire dataset. However, LBSs require real-
time query processing and thus, parallel scanning of the entire dataset is not useful
especially for queries with smaller selectivity.

In this paper, we propose M-Grid, a novel data distribution and multidimensional
indexing framework to support LBSs on cloud platforms. Because of the characteristics
of key-value stores which includes availability, horizontal scalability and a distributed
architecture, it became a natural choice to use them as M-Grid’s storage back-end.
However, the key challenges in developing such an index framework on top of a key-
value store are, efficient modeling of multidimensional data and providing it with
the ability to process complex multidimensional queries efficiently. M-Grid solves
the former by using Hilbert Curve [12] based linearization technique and later by
integrating it with a modified P-Grid [13] overlay network. The modification makes the
M-Grid a static network by precomputing and assigning the subspaces to the nodes in
the network. Hilbert Curve maps multidimensional attributes onto single dimensional
while preserving its data locality. On the other hand, P-Grid arranges the nodes in a
virtual binary and partitions the multidimensional search space into subspaces. The
trie structure acts as the static routing index layer on top of the underlying key-value
store and serves as the entry point for multidimensional search. Thus, one of our main
contributions is also building this P-Grid overlay network such that data distribution
and access path is no more random unlike original P-Grid. M-Grid then processes
complex queries by distributing them across the cluster according to P-Grid’s prefix-
based routing mechanism. One of the practical examples where M-Grid can be used
effectively is in Earthquake Disaster Management. In such a scenario, M-Grid can
provide scalable knowledge management services to help and locate missing/trapped
people by integrating various sensor data and their location coordinates for situational
awareness in real-time.

In summary, this paper makes the following novel contributions:

(i) We propose a new data distribution and multidimensional indexing framework,
M-Grid, which can efficiently index and process point, range and kNN queries.
M-Grid integrates P-Grid overlay network for data distribution and a range par-
titioned key-value store.

(i) We leverage Hilbert Space Filling Curve based linearization technique to convert
multidimensional data to a single dimension while preserving its data locality
better than some others.

(iii)) We propose algorithms which can dynamically process point, range and k-nearest
neighbor (kNN) queries on linearized values using a modified P-Grid’s prefix-
based routing mechanism. This removes the overhead of creating and maintaining
a separate index table.

(iv) We have performed experiments to measure insert throughput (update follows
the same insert algorithm considering it as an append), along with point, range
and (kKNN) experimental evaluations on Amazon EC2 to show the effectiveness
of our framework over MD-Hbase, a state of the art scheme [14].

@ Springer

58 Distrib Parallel Databases (2017) 35:55-81

The rest of the paper is organized as follows: Section 2 presents the state of the art
currently in the area of multidimensional data management while Sect. 3 introduces
the key background concepts in the area of Hilbert’s space-filling curves. Section 4
presents an overview of M-Grid indexing framework. Section 5 describes the design
and implementation of M-Grid’s storage layer. Section 6 presents the proposed point,
range and kNN querying algorithms. Section 7 shows the performance evaluation and
we finally conclude the paper in Sect. 8.

2 Related work

Query processing on large data volume has been the center of research since the evo-
lution of cloud computing. This field is predominantly dominated by two classes of
scalable data processing systems. The first class uses an underlying key-value store
to manage structured data, for example, Google’s Bigtable [8], Apache HBase [9],
Apache Cassandra [10], Amazon’s Dynamo [15] and Yahoo’s PNUTS [16]. These sys-
tems while being fault-tolerant, highly scalable and available, can efficiently process
simple keyword based queries. However, these systems do not provide multi-attribute
access as they lack additional secondary indexing capabilities. The second class uses
a distributed storage system such as Google’s GFS [17] and Apache’s HDFS [18] to
manage unstructured data. Both of these systems depend on scanning the entire dataset
using parallel processing approaches (for e.g. MapReduce [11]) in order to process
complex queries such as range and kNN on multidimensional data which incurs high
query latency.

To efficiently process multidimensional data, the authors in [19] present a general
indexing framework for cloud systems. In their indexing framework, processing nodes
are arranged in a BATON overlay network and each node builds a local B*-tree or
hash index on its data. To speed up query processing and data access, a portion of local
index is selected and published in the overlay network which forms its global index.
Based upon the similar two level index architecture, three more indexing schemes
are proposed. The authors in [20] propose RTCAN, which builds a global index by
publishing selective local R-tree indexes on C? overlay network. EMINC [21] is an
indexing framework in which individual slave nodes build a KD-tree [22] on its local
data and a global R-tree index is build on a master node. QT-Chord [23] is an indexing
framework which builds IMX-CIF Quad-tree over local data and distributes the hashed
codes to the Chord overlay network. Apart from these indexing schemes, the work
in [24] proposes an in-memory indexing framework PASTIS which uses compressed
bitmaps to construct partial temporal indexes. Lastly, the authors in [25] propose VBI
indexing framework for P2P systems in which peers are organized in a balanced tree
structure to support multidimensional point and range queries. All the aforementioned
schemes provide efficient algorithms to process queries. However, such solutions either
lack stability in terms of handling data size as the local and global indexes have to be
stored in main memory, or are expensive to implement.

The above drawbacks were addressed in [14], wherein the authors proposed the
MD-HBase indexing scheme. MD-HBase is a highly scalable data store which first
converts a multidimensional point to a single dimension binary key by using Z-Order

@ Springer

Distrib Parallel Databases (2017) 35:55-81 59

curve based linearization technique. Then, to partition the linearized space, keys are
grouped together according to their longest common Z-value prefix to simulate a KD-
trie or Quad-trie. For efficient subspace pruning a single primary index layer is built
over a range partitioned key-value store which stores the boundary information of
each subspace. Experimental evaluation on a dataset containing four hundred million
points demonstrates the scalability and efficiency of their index structure. However,
the proposed scheme has two fundamental drawbacks. First, Z-Order curve loosely
preserves the locality of data points which increases the range and kNN query latency.
Secondly, their scheme’s throughput performance is also capped by maintaining a
separate index table which needs to be updated with each data point insert.

In M-Grid, we combine the best of both the systems by arranging the nodes in an
overlay network and using a range partitioned key-value store to manage data without
the overhead of maintaining a separate index table. This allows it to scale linearly as
the data size grows while sustaining high insert and update rates. Furthermore, M-
Grid can also efficiently process point, range and kNN queries on secondary attributes
which is a key requirement for LBSs.

3 Background
3.1 Linearization using space-filling curve

Linearization is a dimensional reduction method which maps multidimensional
attributes onto single dimensional space. Space-filling curve is a linearization tech-
nique in which a continuous curve is constructed visiting every point in a n-dimensional
hypercube without overlapping itself. The benefits of using them is that, after map-
ping, neighboring points in n-dimensional space remains close in one dimensional
space also. Therefore, space-filling curves are widely used in applications like image
processing [26], scientific computing [27] and geographic information systems [28]
which require sequential access to datasets. In M-Grid, we use Hilbert space-filling
curve [12] to index multidimensional points in the underlying uni-dimensional key-
value store to provide query efficiency.

The Hilbert Curve is a continuous space-filling curve which induces a sequential
ordering on multidimensional data points. Formally, Hilbert Curve is a one-to-one
function:

H: [0,2™ — 1] — [0,2™ — 1]n

where n is the number of dimensions in a 2™x2™ space and n>2, m>1. This function
determines the Hilbert value (H-value) of each point in the original coordinate space
where H-value € [0, 2™"-1]. Figure 1 illustrates the coordinates in a 2-dimensional
space and its equivalent Hilbert Curve of first order. A curve of order i>1 is constructed
in a recursive manner where each vertex of the first order curve is replaced by the
curve of order i-1, after rotating and/or reflecting it to fit the new curve [29]. This
recursive construction process can also be expressed as a tree structure (Fig. 3) to
show the correspondence between the coordinate points (n-points) and their H-values

@ Springer

60 Distrib Parallel Databases (2017) 35:55-81

Fig. 1 A 2-d space and its
equivalent first order Hilbert
curve

o i 10

Tree Level 1 (root) 00 | 01 | 10 | 11 |¢——— H-values (subspace numbers)

00 | 01 [11 | 10 |[«—— n-points (coordinate values)

Tree Level / / \.\‘

00 | 01 10 [1 00 | 01 10| 11 00 | 01 10 | 1 00 | 01 10| 11

00 | 10 | 11 | O1 00 | 01 [11 | 10 00 | O1 | 11 | 10 11 (01| 00 | 10

Fig. 2 A tree representation of the second order Hilbert curve in 2 dimension

(subspace numbers) in binary notation [30]. The depth of the tree is equal to the order
of the curve and the root node corresponds to the first order curve of Fig. 1. Also, a
collection of nodes at any tree level, i, describes a curve of order i. We demonstrate
the calculation of H-value using the tree structure shown in Fig. 2 with the example of
point (10, 11). In the first step, we concatenate the top bits of the coordinates of point
(10, 11) to form the n-point 11. At root node, this n-point corresponds to the subspace
10. In the next step, we descend down one level of the tree to level 2, following the
subspace 10 at root. We concatenate the next two bits of the coordinate of the point to
form the n-point O1. At tree level 2, the n-points corresponds to the subspace 01. As
there are no more levels to descend, the calculation of H-value ends. The final H-value
of the point (10, 11) is then formed by concatenating the values of the subspace which
we found in each step starting from root node, i.e. 1001. Generating H-value of a point
using a tree structure requires the cardinality of each attribute to be equal. However, in
LBSs, the cardinality of the attributes can be unequal. Hence, in M-Grid, we compute
the H-value using the algorithm presented in [31] which uses logical operations to
efficiently compute direct and inverse mapping of a point having unequal attributes
on the Hilbert Curve. Currently, this algorithm uses total number of bits (sum of bits
in each dimension) less than or equal to 64 bits. If we want to index also attributes
timestamp and user id, precision (number of bits) on longitude and latitude can be
decreased to accommodate for these other values or possibly increase the total size of
bits used or compress the key values.

Beside Hilbert Curve, several space-filling curves such as Z-Order Curve [32] and
Gray Order Curve [33] are proposed. Figure 3 shows the illustration of second order
Hilbert, Z-Order and Gray Curves for 2 dimensional space. We chose Hilbert Curve
to index multidimensional points in M-Grid as it has superior clustering and strong
locality preserving properties as compared to other space-filling curves [34-36]. These

@ Springer

Distrib Parallel Databases (2017) 35:55-81 61

0111 ; 0100 1011 ; 1000
t-0101 § 0110 ; 1001 | 1010 0101 { 0111 § 1101 i 1111
1 1 nl oy g T
H-value of a 010 To11 010
point (binary) 10 10 10
0111 i 1000 0110 \ 1100\{ 1110 0110 | 0101|i[1010 | 1001
0010 i 1101 0001 0011:\ 1001 lon 0001 § 0010|1101 i 1110
. 01 01 01
n-points 0011 1100
(binary)
00 00 00
0000 | 0001 i 1110 i 1111 0000 | 0010 i 1000 i 1010 0000 i 0011 i 1100 i 1111
00 01 10 11 00 01 10 11 00 01 10 11

Fig. 3 [Illustration of second order Hilbert, Z-order and Grey-order curve for 2 dimensions

properties help M-Grid to achieve efficient clustering of the location points in the
database resulting in low query latency.

3.2 Overlay networks

Peer-to-Peer (P2P) overlay networks offer a new paradigm for providing scalability,
fault-tolerance and robustness to distributed systems. In P2P networks, all nodes are
considered as equal and have symmetrical roles. Each node can either act as a client
or a server. The nodes can join or leave the network independently and they share their
resources with other participating nodes. P2P networks are suitable for large scale dis-
tributed applications due to their cooperative nature and flexible network architecture.

Based upon the search mechanisms used to identify indexed data, P2P networks can
be classified as either unstructured and structured. Unstructured P2P networks such as
Freenet [37] distribute the data randomly on nodes and uses either a centralized index
server or flooding mechanisms for searching. Such searching mechanisms incurs high
query latency and therefore, are not suited for large scale data oriented applications
such as LBSs. Structured P2P networks such as CHORD [38], BATON [39], CAN
[40], PASTRY [41], P-Grid [13] and P-ring [42] use a distributed and scalable access
structure to efficiently distribute and search data items. Chord and Pastry only support
exact match queries. CAN supports multidimensional queries but it has a high routing
cost for low dimensional data. BATON, P-Grid and P-ring supports one dimensional
range queries. However, except P-Grid, none of the other P2P networks have a truly
decentralized architecture. Also, P-Grid supports prefix-based routing which is integral
to our querying algorithms.

3.3 Prefix-Grid (P-Grid) overlay network

P-Grid is a scalable, self-organized structured P2P overlay network based on a dis-
tributed hash table (DHT). Its access structure is based upon a virtual distributed
binary-trie. The canonical-trie structure is used to implement prefix-based routing
strategy for exact match and range queries. P-Grid assigns each node n a binary bit
string which represents its position in the overall trie and is called path(n) of the node.
This path contains the sequence from leaf to the root. An illustration of P-Grid trie
can be seen in Fig. 4. To store a data item, P-Grid uses a locality preserving hash
function to convert the data item’s identifier to a binary key «, where « € [0, 1[. The

@ Springer

62 Distrib Parallel Databases (2017) 35:55-81

Virtual Binary
Search Trie

00* 11%
(Eomnny (Ennnmy (omnnmy (Ennnmy
1:3 1:4 0:1 0:2
01:2 00:1 11:4 10:3
Stores Stores Stores Stores
data with data with data with data with
prefix prefix prefix prefix
00 01 10 11

Routing Table : route keys with prefix P to peer X

Fig.4 An example P-Grid trie

data item is then routed to the node whose path has the longest common prefix with
k. For example, the path of node 2 in Fig. 4 is 10, therefore it stores all the data items
whose keys begin with 10.

P-Grid employs a completely decentralized and parallel construction algorithm
which can build the overlay network with short latency. The construction process is
strictly based on local peer interactions which is done by initiating random walks on
pre-existing unstructured overlay network. Each node in P-Grid maintains a routing
table which stores the information about the paths of other nodes in the network.
Specifically, for each bit position, it maintains the address of at least one node that has
a path with the opposite bit at that position. This information is stored in the routing
table in the form of [path(n), FQDN (n)] where FQDN((n) is the fully qualified domain
name of the node. Details of the construction algorithm can be found in [43].

3.3.1 Searching in P-Grid

P-Grid utilizes a simple but efficient strategy to process exact match and range queries
[44]. For executing an exact match query, the query is mapped to a key and routed to
the responsible node whose path is in a prefix relationship with the key. For example,
in Fig. 4, a query for 1111 is issued to node 2 which is responsible for storing the keys
starting with O1. As node 2 cannot satisfy the query request, it searches its routing
table and forwards the query to node 4, which has the longest common prefix of 1 with
the query. Node 4, upon getting the request, searches its local storage to find the data
item associated with the key 1111. If the key exists, node 4 sends an acknowledgement
message to node 6 which can then request the data. The complexity of the exact match
process is O (logIT), where I is the number of messages exchanged and is independent
of how the P-Grid is structured.

@ Springer

Distrib Parallel Databases (2017) 35:55-81 63

P-Grid processes a range query in a parallel and concurrent manner. The intuition
behind the query processing strategy is to divide the P-Grid trie in subtries and selec-
tively forward the query to only those nodes of the subtries whose paths intersects
with the query. For example, in Fig. 4, node 1 issues a range query, having 1000 as the
lower bound and 1101 as the upper bound. Node 1 splits the P-Grid trie in 2 subtries
i.e. 01 and 1. Node 1 forwards the query for subtrie 1 to node 3. The subtrie 01 of node
2 does not intersect with the query and therefore is ignored. Node 3, after getting the
request, repeats the same process and forwards the query to node 4. The search cost of
the range query process is independent of the size of range of the query but depends
on the number of data items in the result set.

4 M-Grid data distribution and indexing framework

The M-Grid indexing framework constitutes a federation of shared-nothing cluster of
nodes leased from the cloud. Our primary goal in designing M-Grid is to support LBSs
by having a truly decentralized P2P architecture which can be scaled accordingly. M-
Grid achieves this by adopting a simple two tiered architecture. The upper tier is based
on the P-Grid’s overlay network which is responsible for routing queries and assigning
sub-spaces to the computing nodes, whereas, the lower tier utilizes the underlying key-
value store (HBase) to maintain data, depending on the type of data model being used
(Sect. 5.2). A node in M-Grid serves two purposes. It is a node in P-Grid because it
maintains subspace information about all other nodes in its routing table. The same
node is a part of HBase cluster which store the actual data. A HBase cluster comprises
of HBase Master and several Region Servers/Data Nodes.

Our architecture splits the query processing in two phases. In the first phase, the
node responsible for storing the subspace is identified by searching the routing table.
The routing table holds the references of all the other nodes which are at an exponential
distance from its own position in the search space. This is achieved by arranging the
node in a virtual binary-trie structure. In the second phase, the query is forwarded to
the responsible nodes which processes it locally. Although P-Grid efficiently divides
the search space in a self-organizing manner, the cost associated with its maintenance
protocol is very high. P-Grid dynamically assigns new subspaces to the nodes by
extending their paths for distributing load in the network. This operation is very costly
for LBSs as they manage large volumes of data, and, dynamically changing the assign-
ment will lead to moving of data from one node to another. Furthermore, P-Grid is
a probabilistic data structure which uses best-effort strategy for processing queries.
Thus, after issuing a query, it is not possible for a node to calculate the exact number
for response messages it has to expect for getting the complete result. However, M-
Grid processes kNN queries by iteratively performing range searches and with each
iteration, the system has to wait until it receives all the results for further processing
which is not viable in P-Grid. M-Grid solves these problems by making the following
changes in the original architecture of P-Grid:

(i) It creates a balanced network by associating only one node with each leaf of the
virtual trie. This assigns each node to a unique subspace.

@ Springer

64 Distrib Parallel Databases (2017) 35:55-81

0* 1*

Query Request
(== _—

Application
Client Query Response

01:2
10:3
11:4

Routing Table
of node 1

Data Insert

L .

Local Data Local Data Local Data Local Data

Fig. 5 M-Grid’s system architecture

(ii) It provides the ability to start a P-Grid network from a predefined prefix to handle
data skewness.

(iii) It modifies the maintenance protocol so that, after network stabilization, nodes
do not extend their paths.

(iv) For efficient query processing, each node stores the information about all the
other nodes in the network. Consequently, the cost of routing queries in terms of
messages is reduced from O (logIT) to 3 in the worst case scenario.

The resultant high-level overview of our architecture is shown in Fig. 5. We con-
struct M-Grid using the bottom-up approach in which, nodes are first arranged in an
HBase cluster and then join the overlay network. The construction is done in an off-
line procedure and has a small one time set-up cost. Data insertion can be done at any
node. To insert the data, we first calculate the H-value of the multidimensional point
and insert it according to the data models presented in Sect. 5.2.

5 Data storage layer

M-Grid is a storage platform independent framework which allows us to use any key-
value store as per the need of the application. We use Apache HBase [9] to store
the H-value of a multidimensional point which we use as the unique rowkey. In this
section, we describe the overview of HBase and the two data models, Table per Node
and Table Share, which we used to store data in M-Grid.

5.1 Apache HBase

Apache HBase is a distributed, non-relational key-value datastore modeled after
Google’s BigTable [8] and built on top of HDFS [18]. It is designed to provide

@ Springer

Distrib Parallel Databases (2017) 35:55-81 65

high scalability, partition tolerance and row-level consistency which makes it suitable
for big data applications such as LBSs. A table in HBase is composed of multi-
ple rows and columns. Each row is identified by a unique primary rowkey. The
columns are grouped into column families where each column family is identified
by a pair of user defined prefix:qualifier. The column prefix is static and needs to
be defined while creating the table whereas the qualifiers can be added dynami-
cally while inserting the data. Thus, we need to specify at least two attributes in
order to get a value from a table which are the rowkey and the column family identi-
fier.

The physical architecture of HBase consists of a master server and a collec-
tion of slaves called region servers. Each region server contains multiple regions
and each region stores a sorted continuous range of rowkeys which belong to a
table. HBase provides autosharding, which means that when the size of a region
exceeds a predefined threshold, it dynamically splits the region into two sub regions.
This allows HBase to achieve horizontal scalability as the volume of data grows.
Despite having a Master/Slave architecture, the role of a Master server is limited
to handle administrative operations like monitoring the cluster, assigning regions
to regional servers and creating, modifying or deleting a table. The read and write
operations are provided directly from the region servers even if the Master server
fails.

5.2 Storage models
5.2.1 Table per node (TPN) model

In this model, each node is responsible for maintaining their own separate table.
When a node joins M-Grid, it creates a table in HBase by the name of its own Fully
Qualified Domain Name (FQDN). The nodes stores the rowkeys locally according to
the subspace they are responsible for. For example, in Fig. 4, node 3 which has a path
"10” will store all the rowkeys which has a *10” prefix. This model efficiently maps the
key space to the responsible node allowing parallel and independent query operations.
As the rowkeys are stored locally, this model provides low access latency. However,
the insert operation is expensive since the prefix of a rowkey needs to be checked for
finding the responsible node before its insertion.

5.2.2 Table share (TS) model

In this model, all the nodes share a single table to manage data rowkeys. This model
allows us to efficiently insert keys directly in the table without checking their pre-
fixes. Thus, this model can sustain high insert throughput. However, as each table is
distributed across the server, this model has high access latency. An important obser-
vation to note here is that when we employ TPN, the overlay layer is used for both
data partitioning and routing the queries where as in the case of TS model, the overlay
layer is used just for the purpose of routing queries.

@ Springer

66 Distrib Parallel Databases (2017) 35:55-81

6 Query processing
6.1 Data insert and point query

Data insert and point query can be executed by using the P-Grid’s search mechanism
to forward the insert or query request to the responsible node but it involves additional
routing cost. Our algorithm (Algorithms 1 and 2) efficiently inserts the data and process
the point query respectively, by leveraging the key-value store’s ability to provide direct
data access. We modify the data insert and point query algorithm with respect to two
storage model described in section (V-B). In Algorithm 1, to insert a point, we first
compute the binary H-value(rowkey) of the point (line 1). Next, for Table per Node
model, insert operation is split into two phases. In the first phase, we search the routing
table p, to find the name (FQDN) of the node whose path has the longest common
prefix with the rowkey (line 2). This model stores the data in a table whose name
is set to the name of the node, hence this step is sufficient to find the name of the
table responsible for storing the point. In the second phase, we insert rowkey by the
standard insert operation on that table (line 3). For Table Share model, we can easily
insert rowkey in the predefined shared table (line 5). The steps for inserting a point p
are shown below:

Algorithm 1 Data Insert (point p, value v)

1: rowkey < computeH-value(p)
// Table per Node //
2: n.Table = PrefixMatchingBinarySearch(p, rowkey)
: n.Table.insert(rowkey, value v)
4: return true
// Table Share //
5: sharedT able.insert(rowkey, value v)
6: return true

(98]

Given a d-dimensional point p = (pjq, ..., p4), our point query strategy tries to
identify the value v associated with p. To process the query, we first compute the H-
value of the point to calculate the rowkey (line 1). Next, similar to our insert algorithm,
for Table per Node model, the query processing is split into two phases. In the first
phase, we search the routing table p, to find the name (FQDN) of the node whose
path has the longest common prefix with the rowkey (line 2). In the second phase, we
retrieve v by the key-lookup operation on that table. For Table Share model, we can
easily retrieve v by simple key-lookup operation on shared table.

6.2 Range query processing

A range query is a type of query that retrieves all records where some attribute is
between an upper and lower boundary. Formally, a range query is a hyper-rectangular
region formed by lower and upper bound coordinates, (/1, I, .., [,) and (u1, uz, .., uy)
with min; < l; < u; < max;. Another common query in LBSs is “Get all values

@ Springer

Distrib Parallel Databases (2017) 35:55-81 67

Algorithm 2 Point Query Processing(p)
Input query point p
Output value v associated with p
1: rowkey < compute H-value(p)
// Table per Node //
2: n.Table = PrefixMatchingBinarySearch(p, rowkey)
3: return (v < lookup(rowkey, n.Table))
/I Table Share //
4: return (v < lookup(rowkey, sharedT able))

around (x longitude, y latitude) within z radius. This type of query can also be easily
translated to a range query after calculating the enclosing square as the bounding box.
P-Grid’s trie-based partitioning divides the linearized space into equal size subspaces
and assigns subspaces to the nodes according to their paths. The range query region
intersects with one or more subspaces. A naive range query strategy will try to retrieve
all the points contained in the query region by searching between the subspaces which
the query lower and upper bound intersects. This querying strategy works with other
space-filling curves such as Z-order which loosely preserves the data locality but not
in Hilbert Curve as in each curve, the orientation of subspaces is different (Fig. 3). For
example, consider the range query Q1 as shown in Fig. 6. Its lower bound and upper
bound coordinates are A (01,01) and F (11,10). The equivalent H-value range of this
query is (0010, 1011). A level two binary-trie partitions the space into equal size four
quadrants namely 00, 01, 10 and 11. The first subspace to be searched is determined
by the H-value of the lower bound which is 00. All the subsequent subspaces which lie
between the lower and upper subspaces needs to be searched in order to get the points
which are contained in the range query. In this example, the naive querying strategy
will search the 00, 01 and 10 subspaces. The subspace 11 though intersects with the
query will be skipped.

The authors in [45] present “best effort query processing techniques” using Z-
curve and CAN protocol which are not suitable for LBSs. Our range query algorithm
(Algorithm 3) is based upon the method described in [46,47]. The intuition behind
the algorithm is to find the boundaries of only those subspaces which the query region
intersects. Thus, the original query range is divided into many smaller sub-ranges. Our
algorithm divides the range query processing in two phases as described below:

(i) In the first phase, we divide the original range query into smaller sub-queries, one
for each subspace which the query region intersects (line 5). We perform this by
calculating the lowest H-value of the point in each subspace lying within the query
region. We call that point as the next-match and the function which calculates it
as the calculate-next-match().

(i1) In the second phase, we process each sub-query according to P-Grid’s search
mechanism which forwards the sub-query to all the nodes whose path intersects
with the upper and the lower bound of the sub-query.

Subspaces can be viewed as logically ordered by the lowest H-value of a point
in a subspace and we call it as the subspace-key. For example, the subspace-key of
subspace 11 in Fig. 6 is 1100. In general terms, a subspace-key is also the point
where the Hilbert Curve enters in a subspace. Subspaces which intersect with the

@ Springer

68 Distrib Parallel Databases (2017) 35:55-81

Fig. 6 Example of a range

. B E
query on points mapped to the n
second order Hilbert curve in 2 01*/| Q2 | 10*
: : query upper
dimensions 10 e D Fl—"om
O3
\Va}
01 A G
§ query lower
00* 11% point
00
00 01 10 11

query region are iteratively identified in ascending subspace-key order by calculate-
next-match() function. In the first iteration, the calculate-next-match() tries to identify
the lowest H-value of any point lying within the query region. The first subspace
in which the next-match lies is identified by giving the value of 0 as the input. In
the second iteration, the calculate-next-match() tries to find the lowest H-value of a
point which is equal or minimally greater than the subspace-key of the successor to
the subspace searched in the previous iteration. The process is effected by a variable
current-subspace-key which stores the current value of subspace-key in each iteration.
For finding the intersecting subspaces, calculate-next-match() iteratively performs a
binary search on the node which will be explained later. To illustrate the operation
of calculating sub-ranges using calculate-next-match() function, consider an example
range query Q2 as shown in Fig. 6.

(i) The range query Q2, is defined by providing the lower and upper bound coordi-
nates C (01,10) and E (10,11) respectively. The H-value equivalent of this range
query is (0111, 1001).

(ii) The current-subspace-key is initially set to the subspace-key of subspace 00, i.e.
to 0000.

(>iii) The calculate-next-match() function is called and it determines that the H-value
of point C is the first next-match to the query, i.e. O111.

(iv) The current-subspace-key is set to the subspace-key of the successor subspace,
i.e., subspace 10. Its subspace-key is the H-value of point D, i.e. 1000.

(v) The calculate-next-match() is called and it determines that the next-match to the
current-subspace-key to be the H-value of point D, i.e. the current-subspace-key
is its own next-match.

(vi) The current-subspace-key is set to the subspace-key of the successor subspace,
i.e., subspace 11. Its subspace-key is the H-value of point G, i.e. 1100.

(vii) The calculate-next-match() is called and it determines that there is no higher
next-match to the current-subspace-key. The query process therefore terminates.

To find the next-match, we determine the lowest subspace which intersects with the
current query region by using the binary search algorithm. This algorithm iteratively
determines the lowest subspace which intersects with the current query region at
any node of the tree (where a node of a tree represents a collection of sub-spaces
ordered by their H-values). In each iteration, we will discard half of the subspaces and
descends down the correct branch of the tree until we find the next-match at the leaf
level. Also, this descent is an iterative process where with each iteration, we restrict

@ Springer

Distrib Parallel Databases (2017) 35:55-81 69

the user defined search space with the bounds of the subspace being searched. The
new bounds are collectively called at current-query-region which is initially set as
the original query region. We start with computing the lower and upper n-points by
concatenating the bits at position k (k is the level of tree) of the lower and upper bounds
of the current query region. Once we have these n-points, we determine whether the
query regions intersects with the lower half or (and) upper half of the subspaces. To do
so we use a function, h_to_c(). Solving this function using the H-values of a subspace
will give us its n-points. If the H-values of a sub-set of subspaces are in the following
range:

[lowest, ..., max-lower, min-higher, ..., highest]

then all subspaces whose H-values are in the lower sub-range [lowest,...,max-lower]
have same value (either O or 1), for their coordinates in one specific dimension, i.
Whereas subspaces having their H-values in the higher sub-range have the opposite
value in the same dimension, i. To find the value of i, we compute a n-point variable
called partitioning dimension (pd) by performing the xor (&) operation:

pd : h_to_c(max-lower) @ h_to_c(min-higher)

In order to find the exact value of this dimension i (0 or 1), we calculate a variable j
as:

j : pd A h_to_c(max-lower)

If j evaluates to "00’, it indicates that the value at the ith dimension is 0, otherwise
1. We then compare the value of j with that of the previously obtained lower n-point
and upper n-point of the current-query-region. If the values (0 or 1) at dimension i, of
lower and/or upper n-points is the same as that of the value at the ith dimension of j,
then the current query region intersects with the nodes.

We extend our previous example to show how two next-matches, i.e. 0111 and
1100, are calculated for the query region Q2 with the help of the tree representation
of the Hilbert Curve as shown in Fig. 2 in the following steps:

Step 1: Tree Level 1 (root): The current-subspace-key is initialized as the subspace-
key of subspace 00, i.e. to 0000. Since we are at root level, the lower and upper bounds
of current-query-region are same as original query region, i.e. (01,10) and (10,11).
The n-points enclosing the current-query-region at this level are formed from the top
bits taken from its coordinates. Thus, the lower n-point is 01 and the upper n-point is
11. In order to find the lowest subspace intersecting with the current-query-region at
root, the binary search proceeds as follows:

Step 1.1: The first iteration of binary search determines whether the query region
intersects with the lower subspaces (00 and 0O1) in the following manner. First, pd
is calculated as h_to_c(01) & h_to_c(10) which evaluates to 01 & 11, i.e 10. This
implies that lower subspaces 00 and 01 have the same coordinate value at x dimension
and higher subspaces 10 and 11 have the opposite coordinate value at the same x

@ Springer

70 Distrib Parallel Databases (2017) 35:55-81

dimension. Secondly, j is calculated as h_to_c(01) A pd which evaluates to 01 A 10,
i.e. 0. This implies that lower subspaces have the value of O for their coordinate in the x
dimension and higher subspaces have the value of 1 for their coordinate at x dimension.
This is also confirmed by Fig. 2. Since the lower n-point also has the value of O for its
x coordinate, the current-query-region must intersect with the lower subspaces. We
also note that, since the upper n-point has the value of 1 for its x coordinate, the higher
subspaces 10 and 11 also intersect with the current-query-region and if the next-match
is not found in lower subspaces, it will be found in one of higher subspaces.

Step 1.2: The second iteration of binary search now determines the lowest subspace,
among 00 and 01 subspaces, intersecting with current-query-region. First, pd is cal-
culated as h_to_c(00) & h_to_c(01) which evaluates to 00 & 01, i.e 01. Secondly, j
is calculated as h_to_c(01) A 00, i.e. 0. This implies that subspace 00 has a value of
0 and subspace 01 has a value of 1 for their y coordinate. Since the lower and upper
n-point have a value of 1 for its y coordinate, subspace 01 is the lowest among the
lower subspaces (00 and 01) which intersects with the current-query-region. Binary
search at root node shows that subspace 01 is the lowest subspace which intersect with
the current-query-region. The next-match is modified to O1.

Step 2: Tree Level 2: The search for next-match now descends one level down to level
2 following the subspace 01 in the root node. The current-query-region is restricted to
subspace 01 which has the lower and upper bound coordinates of (00,00) and (01,01).
The current-query-region is then calculated as the intersection of original query bounds
with the 01 subspace bounds ((01,10) N (00,10) and (10,11) N (01,11)). Query lower
bound coordinates which are less than the restricted search space equivalents are
increased and upper bound coordinates which are greater than the restricted search
space equivalents are decreased. The current-query-region is then bounded by the
points (01,10) and (01,11). Similar to the previous steps, the first iteration of binary
search finds that the current-query-region intersects only with the higher subspaces.
The second iteration of binary search finds that the subspace 10 is the lowest subspace
intersecting with the current-query-region. The next-match is modified to 0110. Since
there are no more levels to descend, calculate-next-match() terminates and the search
for the next-match is now complete.

Step 3: Tree Level 1: In the next step, current-subspace-key is set to the subspace-
key of the subspace following the one just searched, i.e. 1000. A binary search of root
node finds that subspace 10 is the lowest subspace intersecting with the current-query-
region, i.e. (01,10) and (10,11). The next-match is modified to 10.

Step 4: Tree Level 2: The search for next-match now descends one level down to level 2
following the subspace 10 in the root node. The current-query-region is then restricted
to bounds (10,10) and (10,11). The binary search determines that 00 is the lowest
subspace intersecting with the query region. The next-match to the current-subspace-
key is determined to be the H-value of point D (10,10), i.e. 1000, current-subspace-key
is its own match. As we are at the leaf level, the search for next-match is now complete.
After getting the required next-matches, we calculate the sub-ranges in the following
manner. The lower bound of a sub-query is set as the next-match. The upper bound is
set as the subspace-key of the successor subspace minus one, if its not the last logical

@ Springer

Distrib Parallel Databases (2017) 35:55-81 71

subspace. If the subspace is the last logical subspace, then the upper bound is set as
the H-value of the last point on the curve. Thus, for the previous example, we get the
sub-ranges as (0110,0111) and (1000,1011). After calculating the required sub-ranges,
we use P-Grid’s search mechanism to forward the sub-queries to the responsible node
(line 7). For example, in Fig. 5, the sub-query (0110,0111) will be forwarded to node
1 and sub-query (1000,1011) will be forwarded to node 2. Upon getting the request,
each node will search their local storage and return only those points which intersect
with the sub-query to the node which has issued the query.

The complexity of the range query algorithm depends on two factors, the order
of the curve which determined by the number of bits in the coordinate value of each
dimension and the number of dimensions. Also, of the operations performed during
each iteration, none has a complexity which exceeds O(n) where n is the number of
bits in coordinate value of each dimension. Thus, the overall complexity of the range
querying algorithm is as O(kn) where k is the number of iterations and where n is the
number of bits in coordinate value of each dimension.

Algorithm 3 Range Query Processing (g7, 1)
Input: query lower point ¢;, query higher point gy,
Output: result set Ry

Ry <~ ¢

S <— ¢

: H; < computeH-value(qp)

1 Hy, < computeH-value(qy,)

: Sy < calculateSubRanges(H;, Hy)

: for each s € S, do

Rg < PGrid.Search(s)

: end for each

: return Ry

6.3 kNN query processing

Given a set of points N in a d-dimensional space S and a query point g € S, our query
processing algorithm returns a set of k € N points which are closer to g according to
some distance function. It is challenging to execute kNN query efficiently in overlay
networks as we do not have any prior knowledge of data distribution among the nodes.
Recent solutions proposed in [48—50] uses different distributed data structures built
on decentralized P2P systems but such solutions are not scalable. [51,52] proposed
solutions based on MapReduce framework to process k nearest neighbor query on
large volumes of data. However, such methods incur high query latency.

To alleviate these problems, we present a simple query processing strategy. Our kNN
query processing algorithm iteratively performs range search with an incrementally
enlarged search region until k points are retrieved. Algorithm 3 illustrates the steps of
our algorithm. In line 2, we first construct a range r, centered at the query point g and
with initial radius 6 = Dy /k, where Dy is the estimated distance between the query
point ¢ and its k" nearest neighbor. Dy can be estimated by using the equation [53]:

@ Springer

72 Distrib Parallel Databases (2017) 35:55-81

2JrG +1
Dy~ ——— |1 -

N

ey

where '(x +1) =xI'(x), (1) = 1 and F(%) = % d is the dimensionality and N is
the cardinality.

After getting the required lower (g;) and upper (g,,) bounds of the range query in
line 5 and 6, we perform a parallel range search in line 7 to get desired k points in the
result set. If k points are not retrieved for the first time, we increase the range (line 11)
and repeat the process from line 5 to 12. The complexity of our algorithm depends on
the two factors, the data distribution among the nodes and the value of k.

Algorithm 4 k Nearest Neighbors (g, k)

Input: query point ¢, number of nearest neighbors k
Output: k nearest neighbors

L Qresulr < ¢

2: § < estimateRadius (k)

3ir<«3$§

4: while true do

50 q <«<q-—r

6: qgp<q+r

7: Oresulr < RangeSearch(qy, qp)
8 if |Qresutl = k then

9: return top k results of Qesuir
10: else

11: r<r+9§

12: endif

13: end while

7 Experimental evaluation

We implemented M-Grid on Amazon EC2 with a cluster size of 4, 8, and 16 nodes.
Each of these nodes is a medium instance of EC2 consisting of 4 virtual cores, 15.7
GB memory, 1.6 TB HDD configured as a RAID-0 array and Centos 6.4 OS. The
nodes are connected via a I GB network link. The data storage layer was implemented
using Hadoop 1.2.1 and HBase 0.94.10. Experiments for point, range and kNN queries
were carried out on a synthetic dataset containing 400 million points. This dataset was
generated using a network based generator of moving objects [54] which simulated
the movement of 40,000 objects on the road map of San Francisco bay area. Each
object moved 10,000 steps and reported its location (longitude, latitude) at successive
timestamps. The dataset follows a skewed distribution since the generator uses a real
world road network. We ran a simple MapReduce (MR) job to compute the minimum
and maximum values of points (bounds of the regions) in the dataset and set the path of
the nodes according to the common prefix of the H-value of those points. This helped us
to efficiently distribute the dataset among the nodes using the rowkeys by matching the
predefined subspace. Note that even if the data distribution changes and target moves,

@ Springer

Distrib Parallel Databases (2017) 35:55-81 73

4 Nodes 8 Nodes 16 Nodes

—e—Ts

—m TN

—— MDHBase TPB/KD

~——4— MDHBase TS/KD
MDHBase RPB/KD

Throughput (inserts/sec) x 10°

20 40 60 80 0 20 40 60 80

Number of Workload Generators

Fig. 7 Effect of varying the number of workload generators

rowkeys will be inserted into the correct node using the matching predefined subspace.
We also kept the precision on longitude and latitude values as 1 meter by 1 meter.

We performed extensive experimentations on 2-d and 3-d datasets to show the
effectiveness of M-Grid’s TPN and TS data models. Index layer using Hilbert Curve
(H-order) without the overlay layer was implemented as the baseline. We also evaluated
M-Grid’s performance against MD-HBase [14] indexing scheme’s Table per Bucket
(MDH-TPB) and Table Share (MDH-TS) data model.! Furthermore, we compared
the performance of range queries with MapReduce.

7.1 Performance of insert

The growing trend in LBSs are characterized by their need for scalability. We evaluated
M-Grid’s scalability using YCSB [55] benchmarking tool. Figure 7 depicts the perfor-
mance of insert throughput as a function of load on the system on a cluster having 4, 8
and 16 nodes. We varied the number of workload generators from 2 to 96 where each
workload generated 10,000 inserts per second based on Zipfian distribution. We ran
the workload generator simultaneously on different nodes and aggregated the results.
For TS model, the insert throughput scales almost linearly as the number of workload
generators increases in accordance to the horizontal scalability provided by HBase.
However, TPN model’s insert throughput first increases and then decreases as a result
of the insertion trend; for a small number of workload generator, TPN model effi-
ciently uses a systems’s resources to insert the data simultaneously in different tables.
For a location update interval of 60 seconds, the TS model achieved a peak throughput
of approximately 840K inserts per second and can handle around 48-52 (840 x 60)
million users. Whereas, the TPN model achieved a peak throughput of approximately
660K inserts per second and can handle around 38-42 (660 x 60) million users. More-
over, the performance of both designs exceeds MD-HBase by over 4 times and the gap
becomes larger as the number of nodes increases. The reason behind MD-HBase’s
low scalability is the cost associated with splitting the index layer which blocks other
operations until its completion. In M-Grid, there is no splitting cost associated with
insert operation as the TPB design stores all the data on the responsible node and the
TS design allow us to pre-split the table before insertion.

' We could not evaluate the performance of MD-HBase for all the experiments as the authors have only
published results for 3-d dataset on a 4 nodes cluster size except for insert throughput experiment.

@ Springer

T4 Distrib Parallel Databases (2017) 35:55-81

Fig. 8 Performance of point 7 wen N o1s
query (D=3) 100

H-order

80

60

40

20

Average Response Time(msec)

N

4 8 16
Number of Nodes

7.2 Performance of point and range queries

Multidimensional point and range queries are the most frequent queries in LBSs.
M-Grid processes the point query by directly querying the HBase table. On the other
hand, range queries are processed by first dividing it into multiple sub-queries and then
simultaneously forwarding each sub-query to the responsible node by using the overlay
layer. Figure 8 shows the effect of varying the number of nodes on the performance of
3-d point queries for TPN, TS and H-order models. When we increase the number of
nodes, the average response times increases for all the models except for TPN model.
The TS and H-order models have the same response time as they both use the same
querying strategy. However, the response time of the TPN model is longer than the
other models because of the cost associated with searching the routing table to find the
relevant node. We also found that the response time for processing 2-d point queries
is approximately equal to the processing of 3-d point queries.

Figures 9 and 10 shows the performance of 2-d range queries for TPN, TS, H-
order, and MR models with different selectivity and node size respectively. The query
response time of TPN, TS and H-order models increases almost linearly as we increase
the number of nodes (Fig. 9). On the contrary, the response time of MR remains
constant as it performs a full scan of the dataset to execute the query and thus, its
response time is independent of the selectivity. The performance of TS and TPN model
exceeds that of other models, especially for queries with larger selectivity. Since range
queries with larger search area will intersect with more subspaces resulting in several
sub-queries. However, the increase is not exponential since sub-queries are executed in
parallel. The results are corroborated from Fig. 10, which depicts the effect on average
range query response time by increasing the number of nodes and keeping selectivity
as 10%. The average query response time decreases as we increase the number of
nodes since an increase in the number of nodes results in efficient distribution of data.
Furthermore, the performance of TPN model is superior than that of TS model because
TPN model stores all the data locally on the nodes whereas TS model distributes the
data across the clusters. In Figs. 11 and 12 we perform the set of experiments done for
2-d dataset on a 3-d dataset. Figure 10 shows the performance of 3-d range query as a

@ Springer

Distrib Parallel Databases (2017) 35:55-81 75

Fig. 9 Performance of range TPN TS H-order MR
query (nodes =4, D =2)
3
n 2
< 10 B
= \
=]
g 1 J
c 10 - N
2 753
a :
0 |
o
g 100
o
g
< A
10"
.01 A 1 10
Selectivity (%)
Fig. 10 Performance of range 7
/4 TPN T H-ord MR
query (selectivity = 10%, D = 2) s orer
o
(0]
5
[}
=
'_
@ 2
2 10
o
Q.
0
[0
o
(0]
[*)]
g N
[} 1
> 10
<
4 8 16

Number of Nodes

function of selectivity on a 4 node cluster. When we increase the selectivity, the average
query response time of our models increases. In this experiment, we also compared
the results of our models with MD-HBase’s TPB and TS data model in addition to
H-order and MR models. The results of our models shows better performance even
for larger selectivity. This is because, in MD-HBase uses additional index layer for
pruning result sets whereas in our schemes there is no such overhead. Also, both of
our designs show three order of magnitude improvement over MapReduce model. The
results obtained from 2-d datasets are much better than that of 3-d dataset, since the
complexity of our range processing algorithm depends on the number of dimensions
and on the order of the curve, i.e. the number of bits in each dimension.

@ Springer

76 Distrib Parallel Databases (2017) 35:55-81

TPN TS H-order é MDH-TPB @ MDH-TS MR

o
S o2
\g 10 J
= 7
[0
2 a
s 10
Q
7
o)
o
S 0
g 10
4
<
01 1 1 10
Selectivity (%)
Fig. 11 Performance of range query (nodes =4, D = 3)
Fig. 12 Performance of range N N Ts || Heorder
query (selectivity = 10%, D = 3)
o
B 103
@ 10
E
'—
@
2
s 102
a
0
9]
o
o)
& 10’
E) N
<
4 8 16

Number of Nodes

7.3 Performance of kNN query

M-Grid processes the k nearest neighbor (kNN) query iteratively. We first estimate
the distance between the query point and its k’" nearest neighbor using (1), which
becomes the initial search radius. Then, we perform a range search to retrieve k results.
If the k results are not returned, we increase the search space and perform the range
search again. Thus, the performance of kNN computation is directly correlated to the
performance of our range search. Figure 13 shows the performance of kNN queries
for TPN, TS and H-order models on a 2-d dataset by varying the value of k from 1 to
10K on a 4 node cluster. The average response time of kNN query increases for all the
models when the value of k increases, since the query space increases as we increase
k. However, this increase in average response time is not exponential because range

@ Springer

Distrib Parallel Databases (2017) 35:55-81 77

Fig. 13 Performance of kANN R ENES H-Order
query (nodes =4, D =2) 10

)

a

> 8

£

'_

& 6

c

S

o

3 4

[an

o)

o)

g 2

9

2 S

1 10 100 1K 10K
Number of Neighbors

Fig. 14 Performance of kANN 7 ten TS

H-order
query (k = 10K, D =2) 10
)
a
T 8
£
=
3 6
c
o
@
2 4
o
g
§ 2
R/ I B~
4 8 16

Number of Nodes

queries with larger search space are processed using more nodes. Our obtained results
are validated in Fig. 14, where we set the value of k to 10K but increase the number
of nodes from 4 to 16. The results of this experiment shows that the average query
response time decreases as the number of nodes in the cluster increase because larger
range queries will intersect more subspaces and thus more nodes will be involved.
However, the decrease is again not exponential because after issuing a range query,
the system waits until it receives results from all of the nodes involved. In both the
experiments, the TPN and T'S models show a performance improvement of 4 to 5 times
as compared to H-order design. In Figs. 15 and 16 we performed the set of experiments
of 2-d dataset on a 3-d dataset. We show the effect of varying the parameter k on a
4 node cluster and compare the results with MD-HBase and H-order designs in Fig.
15. The average response time of our models increase with the increase in value of
parameter k, which validates the results depicted in Fig. 13. However, 3-d kNN queries
take more time to process as compared to 2-d since the complexity of performing range
queries increases with number of dimensions. For k = 1, the TPN and TS models gives
superior performance with an average response time of approximately 500ms and

@ Springer

78 Distrib Parallel Databases (2017) 35:55-81

Q TPN @ TS H-order E MDH-TPB MDH-TS
10

Average Response Time(sec)

1 10 100 1K
Number of Neighbors

Fig. 15 Performance of kNN query (nodes =4, D = 3)

Fig. 16 Performance of kANN 7 en B o1s
query (k = 10K, D =3) 10

H-order

Average Response Time(sec)

4 8 16
Number of Nodes

700ms respectively, in contrast to H-order, MD-HBase TPB and TS models being
approximately 800, 2000 and 3000 ms, respectively. In our experiments, we also
observed that for k<100, the search space does not expand large enough to intersect
more than two subspaces. For k>100, the kNN query processing results in range
searches with larger radius which intersects with more than two subspaces. Thus, the
performance of H-order model degrades for k>100 while that of TPN and TS models
continue to show better performance. In Fig. 16, we compare the effect of varying the
number of nodes on the performance of 3-d kNN queries by setting the value of k
as 10K. The results for this experiment are consistent with those of the experiments
performed for 2-d dataset (Fig. 14). We expect the performance of our designs for
kNN processing to be better on uniform dataset as the Eq. 1 provides more accurate
estimation of initial search range for uniform dataset. Thus, the kNN processing will
require less number of range search iterations to retrieve k results.

@ Springer

Distrib Parallel Databases (2017) 35:55-81 79

8 Conclusion and future work

In this paper, we presented and evaluated M-Grid, a multidimensional data distribu-
tion and indexing framework for location aware services on cloud platform. M-Grid
is a scalable, completely decentralized and platform independent indexing framework
which can efficiently process point, range and nearest neighbor queries. M-Grid first
arranges the nodes leased from cloud in a modified P-Grid overlay network which vir-
tually partitions the whole space in a binary-trie structure. Next, for efficient storage
and retrieval of multidimensional data, we exploited Hilbert Space Filling Curve based
linearization technique to convert multidimensional data into one dimensional binary
keys. This technique allowed us to map the keys to the peers according to their paths
while preserving data locality. We designed and developed algorithms to dynamically
process range and nearest neighbor queries which allowed us to remove the limitation
of creating and maintaining a separate index table. We conducted extensive experi-
ments using a cluster size of 4, 8 and 16 modest nodes on Amazon EC2. Our results
shows that M-Grid achieves almost four times better performance than its previous
counterpart MD-Hbase. In future, we wish to extend our framework by providing it
the ability to handle data skewness in a dynamic way and to support wider variety of
multidimensional queries including skyline and spatial-joins. We also want to develop
efficient subspace splitting algorithms for load balancing and efficient data replication
algorithms for making M-Grid more fault-tolerant. We also want to evaluate P-Ring
p2p network [42] to check if it can address all the requirements of our model, or
possible modify and how it compares with P-Grid in performance.

Acknowledgements This project is supported partially from an AFRL grant, and NSF Grants IIP-1238321
and CNS-1461914.

References

1. http://www.itu.int/
2. Union, L.T.: The world in 2015: Ict facts and figures. [Online]. Available: https://www.itu.int/en/ITU-D/
Statistics/Documents/facts/ICTFactsFigures2015.pdf (2015)
3. McMahon, M., Steketee, C.: Investigation of proposed applications for lbs enabled mobile handsets.
In:ICMB ’06. International Conference on Mobile Business, 2006, pp. 26-26 (2006)
4. [Online]. Available: http://www.oracle.com/technetwork/database/options/spatialandgraph/overview/
index.htm
5. Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: Proceedings of the 1984 ACM
SIGMOD International Conference on Management of Data, ser. SIGMOD ’84, pp. 47-57 (1984)
6. Finkel, R., Bentley, J.: Quad trees a data structure for retrieval on composite keys. Acta Informatica 4,
1-9 (1974)
7. http://www.ibm.com/software/products/en/db2spaext
8. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chandra, T., Fikes, A.,
Gruber, R.E.: Bigtable: a distributed storage system for structured data. In: Proceedings of the 7th
USENIX Symposium on Operating Systems Design and Implementation, vol. 7, ser. OSDI "06, pp.
15-15 (2006)
9. http://hbase.apache.org/
10. http://cassandra.apache.org/
11. Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters. Commun. ACM
51(1), 107-113 (2008)

@ Springer

http://www.itu.int/
https://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2015.pdf
https://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2015.pdf
http://www.oracle.com/technetwork/database/options/spatialandgraph/overview/index.htm
http://www.oracle.com/technetwork/database/options/spatialandgraph/overview/index.htm
http://www.ibm.com/software/products/en/db2spaext
http://hbase.apache.org/
http://cassandra.apache.org/

80

Distrib Parallel Databases (2017) 35:55-81

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Hilbert, D.: Ueber stetige abbildung einer linie auf ein flashenstuck. Mathematishe annalen 32, 459-460
(1893)

Aberer, K., Cudré-Mauroux, P., Datta, A., Despotovic, Z., Hauswirth, M., Punceva, M., Schmidt, R.:
P-grid: a self-organizing structured p2p system. SIGMOD Rec. 32, 29-33 (2003)

Nishimura, S., Das, S., Agrawal, D., Abbadi, A.E.: Md-hbase: design and implementation of elastic
infrastructure for cloud-scale location services. Distrib. Parallel Databases 31, 289-319 (2014)
DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A., Sivasubramanian,
S., Vosshall, P., Vogels, W.: Dynamo: Amazon’s highly available key-value store. SIGOPS Oper. Syst.
Rev. 41, 205-220 (2007)

Cooper, B.F., Ramakrishnan, R., Srivastava, U., Silberstein, A., Bohannon, P., Jacobsen, H.-A., Puz,
N., Weaver, D., Yerneni, R.: Pnuts: Yahoo!’s hosted data serving platform. Proc. VLDB Endow. 2(1),
1277-1288 (2008)

Ghemawat, S., Gobioff, H., Leung, S.-T.: The google file system. In: Proceedings of the Nineteenth
ACM Symposium on Operating Systems Principles, ser. SOSP ’03, pp. 29-43 (2003)
http://hadoop.apache.org/

Wu, S., Wu, K.-L.: An indexing framework for efficient retrieval on the cloud. IEEE Data Eng. Bull.
32(1), 75-82 (2009)

Wang, J., Wu, S., Gao, H., Li, J., Ooi, B.C.: Indexing multi-dimensional data in a cloud system.
In: Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data, ser.
SIGMOD 10, pp. 591-602 (2010)

Zhang, X., Ai, J., Wang, Z., Lu, J., Meng, X.: An efficient multi-dimensional index for cloud data
management. In: Proceedings of the First International Workshop on Cloud Data Management, ser.
CloudDB 09, pp. 17-24 (2009)

Bentley, J.L.: Multidimensional binary search trees used for associative searching. Commun. ACM
18(9), 509-517 (1975)

Ding, L., Qiao, B., Wang, G., Chen, C.: An efficient quad-tree based index structure for cloud data
management. In: Web-Age Information Management. Lecture Notes in Computer Science, vol. 6897,
pp- 238-250 (2011)

Suprio Ray, R.B., Goel, A.K.: Supporting location-based services in a main-memory database. In:
Proceedings of the IEEE International Conference on Mobile Data Management (MDM), (2014)
Jagadish, H., Ooi, B.-C., Vu, Q.H., Zhang, R., Zhou, A.: Vbi-tree: A peer-to-peer framework for
supporting multi-dimensional indexing schemes. In: Data Engineering, 2006. in: ICDE *06 Proceedings
of the 22nd International Conference on, pp. 34-34 (2006)

Li, F, Chen, R., Zhou, C., Zhang, M.: A novel geo-spatial image storage method based on hilbert space
filling curves. In: 2010 18th International Conference on Geoinformatics, pp. 1-4 (2010)
Pavanakumar, M., Kaushik, K.: Revisiting the space-filling curves for storage, reordering and par-
titioning mesh based data in scientific computing. In: 2013 20th International Conference on High
Performance Computing (HiPC), pp. 362-367 (2013)

Hu, C., Zhao, Y., Wei, X., Du, B., Huang, Y., Ma, D., Li, X.: Actgis: A web-based collaborative tiled
geospatial image map system. In: 2010 IEEE Symposium on Computers and Communications (ISCC),
pp. 521-528 (2010)

Butz, A.R.: Alternative algorithm for hilbert’s space-filling curve. IEEE Trans. Comput. 20, 424-426
(1971)

Bially, T.: Space-filling curves: their generation and their application to bandwidth reduction. IEEE
Trans. Inf. Theory 15(6), 658-664 (1969)

Hamilton, C., Rau-Chaplin, A.: Compact hilbert indices for multi-dimensional data. In: First Inter-
national Conference on Complex, Intelligent and Software Intensive Systems, 2007. CISIS 2007, pp.
139-146 (2007)

Morton, G.: A computer oriented geodetic data base and a new technique in file sequencing.
International Business Machines Company, [Online]. Available: http://books.google.com/books?
id=9FFdHAAACAALJ (1966)

Gray, F.: Pulse code communication. (1953)

Moon, B., Jagadish, H., Faloutsos, C., Saltz, J.: Analysis of the clustering properties of the hilbert
space-filling curve. Knowl. Data Eng. IEEE Trans. 13, 124-141 (2001)

Abel, D.J., Mark, D.M.: A comparative analysis of some two-dimensional orderings. Int. J. Geogr. Inf.
Syst. 4, 21-31 (1990)

@ Springer

http://hadoop.apache.org/
http://books.google.com/books?id=9FFdHAAACAAJ
http://books.google.com/books?id=9FFdHAAACAAJ

Distrib Parallel Databases (2017) 35:55-81 81

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.
48.

49.

50.

51.

52.

53.

54.

55.

Mokbel, M.E., Aref, W.G., Kamel, I.: Performance of multi-dimensional space-filling curves. In: Pro-
ceedings of the 10th ACM International Symposium on Advances in Geographic Information Systems,
ser. GIS 02, pp. 149-154 (2002)

Clarke, I., Sandberg, O., Wiley, B., Hong, T.W.: Freenet: A distributed anonymous information stor-
age and retrieval system. In: International Workshop on Designing Privacy Enhancing Technologies:
Design Issues in Anonymity and Unobservability, pp. 46—-66 (2001)

Stoica, 1., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A scalable peer-to-peer
lookup service for internet applications. In: Proceedings of the 2001 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communications, ser. SIGCOMM ’01, pp.
149-160 (2001)

Jagadish, H.V., Ooi, B.C., Vu, Q.H.: Baton: A balanced tree structure for peer-to-peer networks. In:
Proceedings of the 31st International Conference on Very Large Data Bases, ser. VLDB 05, pp.
661-672 (2005)

Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-addressable network.
SIGCOMM Comput. Commun. Rev. 31, 161-172 (2001)

Rowstron, A.LT., Druschel, P.: Pastry: Scalable, decentralized object location, and routing for large-
scale peer-to-peer systems. In: Proceedings of the IFIP/ACM International Conference on Distributed
Systems Platforms Heidelberg, ser. Middleware "01, pp. 329-350 (2001)

Crainiceanu, A., Linga, P., Machanavajjhala, A., Gehrke, J., Shanmugasundaram, J.: P-ring: An effi-
cient and robust p2p range index structure. In: Proceedings of the 2007 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD 07, pp. 223-234 (2007)

Aberer, K., Datta, A., Hauswirth, M., Schmidt, R.: Indexing data-oriented overlay networks. In: Pro-
ceedings of the 31st International Conference on Very Large Data Bases, ser. VLDB 05, pp. 685-696
(2005)

Datta, A., Hauswirth, M., John, R., Schmidt, R., Aberer, K.: Range queries in trie-structured overlays.
In: Proceedings of the Fifth IEEE International Conference on Peer-to-Peer Computing, ser. P2P *05,
pp. 57-66 (2005)

Rosch, P, Sattler, K., von der Weth, C., Buchmann, E.: Best effort query processing in dht-based p2p
systems. In: 21st International Conference on Data Engineering Workshops, 2005, pp. 1186-1186
(2005)

Lawder, J.K.: Querying multi-dimensional data indexed using the hilbert space-filling curve. SIGMOD
Rec. 30,2001 (2001)

https://code.google.com/p/uzaygezen/

Tang, Y., Xu, J., Zhou, S., Lee, W.-C., Deng, D., Wang, Y.: A lightweight multidimensional index for
complex queries over dhts. IEEE Trans. Parallel Distrib. Syst. 22, 2046-2054 (2011)

Tanin, E., Nayar, D., Samet, H.: An efficient nearest neighbor algorithm for p2p settings. In: Proceedings
of the 2005 National Conference on Digital Government Research, ser. dg.o "05, pp. 21-28 (2005)
Gao, J.: Efficient support for similarity searches in dht-based peer-to-peer systems. In: In IEEE Inter-
national Conference on Communications (ICC07 (2007)

Lu, W., Shen, Y., Chen, S., Ooi, B.C.: Efficient processing of k nearest neighbor joins using mapreduce.
Proc. VLDB Endow. 5, 1016-1027 (2012)

Stupar, A., Michel, S., Schenkel, R.: Rankreduce - processing k-nearest neighbor queries on top of
mapreduce. In: In LSDS-IR, (2010)

Tao, Y., Zhang, J., Papadias, D., Mamoulis, N.: An efficient cost model for optimization of nearest
neighbor search in low and medium dimensional spaces. IEEE Trans. Knowl. Data Eng. 16, 1169-1184
(2004)

Brinkhoff, T.: A framework for generating network-based moving objects. Geoinformatica 6, 153-180
(2002)

Cooper, B. E, Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking cloud serving
systems with ycsb. In: Proceedings of the 1st ACM Symposium on Cloud Computing, ser. SoCC *10,
pp. 143-154 (2010)

@ Springer

https://code.google.com/p/uzaygezen/

	M-Grid: a distributed framework for multidimensional indexing and querying of location based data
	Abstract
	1 Introduction
	2 Related work
	3 Background
	3.1 Linearization using space-filling curve
	3.2 Overlay networks
	3.3 Prefix-Grid (P-Grid) overlay network
	3.3.1 Searching in P-Grid

	4 M-Grid data distribution and indexing framework
	5 Data storage layer
	5.1 Apache HBase
	5.2 Storage models
	5.2.1 Table per node (TPN) model
	5.2.2 Table share (TS) model

	6 Query processing
	6.1 Data insert and point query
	6.2 Range query processing
	6.3 kNN query processing

	7 Experimental evaluation
	7.1 Performance of insert
	7.2 Performance of point and range queries
	7.3 Performance of kNN query

	8 Conclusion and future work
	Acknowledgements
	References

