
Distrib Parallel Databases (2016) 34:65–99
DOI 10.1007/s10619-014-7165-7

SODA: A framework for spatial observation data
analysis

Sebastián Villarroya · José R. R. Viqueira · Manuel A. Regueiro ·
José A. Taboada · José M. Cotos

Published online: 5 November 2014
© Springer Science+Business Media New York 2014

Abstract Very large amounts of geospatial data are daily generated by many obser-
vation processes in different application domains. The amount of produced data is
increasing due to the advances in the use of modern automatic sensing devices and
also in the facilities available to promote crowdsourcing data collection initiatives. Spa-
tial observation data includes both data of conventional entities and also samplings
over multi-dimensional spaces. Existing observation data management solutions lack
declarative specification of spatio-temporal analytics. On the other hand, current data
management technologies miss observation data semantics and fail to integrate the
management of entities and samplings in a single data modeling solution. The present
paper presents the design of a framework that enables spatio-temporal declarative
analysis over large warehouses of observation data. It integrates the management of
entities and samplings within a simple data model based on the well knownmathemat-
ical concept of function. Observation data semantics are incorporated into the model
with appropriate metadata structures.

S. Villarroya · J. R. R. Viqueira (B) · M. A. Regueiro · J. A. Taboada · J. M. Cotos
Computer Graphics and Data Engineering Group (COGRADE), Centro Singular de Investigación en
Tecnoloxías da Información (CITIUS), Universidade de Santiago de Compostela,
Santiago de Compostela, Spain
e-mail: jrr.viqueira@usc.es

S. Villarroya
e-mail: sebastian.villarroya@usc.es

M. A. Regueiro
e-mail: manuelantonio.regueiro@usc.es

J. A. Taboada
e-mail: joseangel.taboada@usc.es

J. M. Cotos
e-mail: manel.cotos@usc.es

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10619-014-7165-7&domain=pdf


66 Distrib Parallel Databases (2016) 34:65–99

Keywords Spatial data · Observation data · Sensor data · Data analysis ·
Data warehouse

1 Introduction

Nowadays, an increasing number of automatic data acquisition devices (sensors) are
observing every day more variables in every day more applications domains (home
automation, industrial process monitoring, health care, environmental monitoring,
etc.). In many cases, the location of each observation in some reference space is an
important piece of metadata that must be used during data analysis. This is always the
case in applications in the area of environmental data management. As an example, a
huge amount of data is generated on a daily basis by earth observation sensors on board
of different satellites. Together with social media text data, the above observation data
is one of themain data sources subject for current and future application of consolidated
and emerging Big Data technologies.

According to the Observations and Measurements (O&M) conceptual schema [1],
properties of Entities are either exact values assigned by some authority (name of a
river, geometry of a municipality, etc.) or estimated by some (Observation) Process
(temperature of sea surface, weight of a person, etc.). In order to adequately inter-
pret values of Observed Properties, relevant observation metadata has to be recorded.
Thus, it is usually mandatory to register characteristics of the specific Process used to
generate the value. It is also mandatory to know the time instant at which the observed
value starts to be valid for theEntity (phenomenonTime in [1]). Notice for example that
the analysis of water (Process) from a river (Entity) might be performed in a labora-
tory some days after the water was obtained (phenomenonTime). The above metadata
provides observation semantics to such property values. Observation Processes of
very different nature might be found in real application scenarios, including physical
devices (sensors), tasks performed by people and data processing algorithms. A clas-
sification of Processes is proposed in [2]. Two specific characteristics of a Process
determine the type of observation data that it produces.

– A Time-triggered Process is performed at some predefined time frequency and
therefore the observation data that it produces has the form of a regular sampling
in the temporal domain. An example of this is the sampling of air temperature
obtained by the temperature sensor of a meteorological station every ten minutes.
On the other hand, Event-triggered Processesmight start at any time instant, being
fired by some event. For example, temperature and viscosity of volcanic lavamight
be measured by a volcanologist at any moment.

– If we restrict to sensors (physical Processes according to [2]), in-situ sensors
observe Entities that are located in their same spatial position and they generate
a single observed value at each time instant. An example of an in-situ sensor is
a temperature sensor that might be installed in a meteorological station (static
platform) or in a radio-sounding device (mobile platform). On the other hand,
remote sensors observe Entities that are far away from its location and they use
to generate various observed values (one for each observed Entity) at each time
instant. An example of a remote sensor installed in a static platform is an Acoustic

123



Distrib Parallel Databases (2016) 34:65–99 67

Sampling
points

Spatial
Resolution

MODIS
Aqua

Sampling
points

 Mobile Platform(b) Static Platform(a)

Spatial
Resolution

ADCP Device

Fig. 1 Illustration of 1D and 2D spatial samplings

Doppler Current Profiler (ADCP), that produces at each time instant a 1D sampling
of water current velocities along consecutive discrete locations of a straight line
profile, either horizontal or vertical. Figure 1a illustrates a vertical section of a
body of water in whose bottom a ADCP sensor is installed . An example of a
remote sensor installed in a mobile platform is the Moderate-resolution Imaging
Spectroradiometer (MODIS) sensor installed in Terra and Aqua NASA satellites
(see Fig. 1b for an illustration). The produced data includes a 2D regular sampling
of sea surface temperatures (with a spatial resolution of 4km) every 8 days. 2D
regular samplings are called Rasters in the area of geographic data management.

As a consequence of the above, to effectively manage observation data, a system
must provide the following general functionalities.

1. Support for the management of conventional Entity/Relationship (ER) data related
to non-observed properties of Entities.

2. Support for observation data semantics provided by relevant observation metadata
of Observed Properties of Entities. Thus, Entity Types together with their relevant
conventional and Observed Properties and Process Types of any type should be
declared to the systemwith the help of some declarative observation data definition
language. Observation metadata of a given observed value should be provided
during data insertion, including the instance of the Process Type (for example a
specific sensing device) used to get the value and its phenomenonTime.

3. Support for the management of sampled data over temporal, spatial (1D and 2D)
and spatio-temporal domains.

To the best of these authors knowledge, none of the available technologies and
approaches found in data management literature provide support for all the above
functionalities. In particular, observation data semantics are only explicitly supported
by standards of the Open Geospatial Consortium (OGC), Sensor Web Enablement

123



68 Distrib Parallel Databases (2016) 34:65–99

(SWE) initiative [1–3] and by specific observation data models and ontologies [4–
6]. However, the support of declarative analysis over observation data is out of the
scope of all those models and standards. Currently available Geographic Information
System (GIS) tools [7] provide support for the recording and processing of conven-
tional and spatial data, including Rasters, however, they lack support for declarative
data analysis. Various systems have been developed for the declarative management
of data streams of sensor data [8,9], however, sampled data is not supported in these
systems. Many research approaches have been proposed in the area of spatial data-
bases [10,11] and relevant functionality has been added to ISO SQL standard [12],
which is implemented by well knownDBMSs [13]. Currently, these tools provide sup-
port for declarative querying of spatial data, including limited support for 2D Rasters.
Spatial extensions have also been implemented in NoSQL [14] and high performance
Data Warehouse [15] tools. However, sampled data is not supported in these systems.
Declarative analysis over very large collections of sampled data is supported by array
data managers [16,17]. However, declarative analysis of relational data is not user
friendly with array data structures. Finally, the integrated management of relational
and array data is attempted in [18]. To achieve this, the user has to deal with both
relational and array semantics, which in these authors opinion is not user friendly.

Based on all the above limitations of currently available systems and approaches,
the objective of the present work is the design of Spatial Observation Data Analysis
(SODA), a framework for declarative spatio-temporal analysis in very large ware-
houses of spatial observation data. The framework seamlessly integrates entity based
and sampling data in a simple data model based on the well known mathematical
concept of function. The model incorporates also observation data semantics. A main
handicap is that it is not based on relational or object oriented paradigms, however the
data model is very simple and the language combines logical and functional construc-
tors already present in other well known languages like XQuery. The contributions of
this paper may be summarized as follows.

– Formalization of a data model for the integrated management of entity and sam-
pling data, using a new hybrid logical-functional paradigm.

– Definition of a spatio-temporal declarative data analysis language for the above
data model.

– Definition of a datawarehouse datamodelwith support for observation data seman-
tics. Application of the above language to the declarative definition of new obser-
vation Processes that are executed by the framework during observation data load.

– Brief discussion of physical level issues related to the column-oriented implemen-
tation of the framework that is currently being undertaken. The implementation
must exploit parallelization in current multi-core hardware architectures.

The remainder of this paper is organized as follows. Section 2 discusses and eval-
uates technologies and research approaches related to the present one. The formaliza-
tion of the data model for observation data warehouses is given in Sect. 3. Section 4
describes the spatio-temporal analysis language provided by the framework. Column-
oriented implementation issues are discussed in Sect. 5. Finally, Sect. 6 concludes the
paper and outlines pieces of further work.

123



Distrib Parallel Databases (2016) 34:65–99 69

2 Related work

Various related approaches and technologies are now described and compared with
respect to the following criteria, which is derived from the generic functionalities that
an observation management system must support.

1. Direct support of observation semantics: In order to perform effective analysis
and interpretation of values of Observed Properties of Entities, some important
metadata have to be recorded and linked to the observed values. In particular, at
least, it is important to record a reference to the specific Process used to generate
the observation and also the time at which the observed value applies to the Entity.
Process instances have to be classified into Process Types as Entities are also
classified into Entity Types in the classical E/R model. Besides, the system should
also support the recording of properties of Processes. Thus, for example, in a
meteorological observation domain, a Process Type “TemperatureSensor” could
have self described properties “DeviceId” and “InstallationDate”. Each value of
the Observed Property “AirTemperature” of each Meteorological Station Entity
should be linked to the specific instance of “TemperatureSensor” that was used to
measure it.

2. Support for the management of sampled data: Beyond the classical E/R data,
an observation data management approach must also provide data structures and
operations that enable the efficient processing of sampled data. As it was already
reported in the introduction, temporal samplings are generated by Time-triggered
Processes, whereas spatial samplings are usually produced by remote sensors. It
is noticed that the use of classical relational-based models for sampled data results
in either highly inefficient approaches or complex nested models as will be shown
below in this section.

3. Support for multi-resolution temporal and spatial data: The observation data gen-
erated by currently available sensors is produced with different temporal and spa-
tial resolutions. Thus for example, MODIS generates sea surface temperature data
with a temporal resolution of 8 days and with a spatial resolution of 4km. An
observation data management approach should provide a data type system that
simplifies the transformation between different temporal and spatial resolutions
during the evaluation of operations.

4. Simple data modeling approach: In the context of this evaluation, a simple data
model is the one that uses just one non-nested data structure. Thus, for example,
a relational model is considered simple, whereas an object-relational one is not,
as nested arrays and collections are supported. Besides, data models that use dif-
ferent data structures with different semantics for different types of data are also
considered non-simple. It is obvious that the efficient implementation of a nested
data model is far more complicated than the implementation of a non-nested one.
On the other hand, it is also clear that having to deal with various data structures
with different semantics leads to interfaces that are not user friendly.

5. Model based on a well known paradigm: The definition of data models that are
based on well known paradigms as the relational one allows to take advantage of
many years of user experience, improving their learning curve.

123



70 Distrib Parallel Databases (2016) 34:65–99

6. Stream Processing approach: If there are real-time requirements and the amount
of data to be recorded is not large then the approach must integrate the efficient
processing of input data streamswith small stored data structures to produce output
data streams. Stream processing approaches are commonly known as Complex
Event Processing (CEP) (Information Flow Processing Systems in [19]) and they
rely on the evaluation of Continuous Query Language (CQL) expressions [20,21].

7. On Line Transaction Processing (OLTP) approach: If real-time requirements are
present with simpler temporal patterns but large amounts of data have to be
recorded, then an OLTP processing approach is required. This approach is tra-
ditionally supported by conventional DBMSs for reasonably large data collections
and provided by both NoSQL [14,22] and NewSQL [23] solutions in the new era
of Big Data Management.

8. On Line Analytical Processing (OLAP) approach: Non-real time analytics over
very large data sets is supported by OLAP approaches provided by Business Intel-
ligence solutions over Data Warehouse technologies. High performance imple-
mentations include Hewlett-Packard Vertica [24], which is an evolution of CStore
[25] and the open source Monetdb database [15]. The efficient implementations
of these Big Data solutions are based on recent research on column-oriented tech-
nologies. The key feature of these approaches is that relational data is recorded
by columns, instead of the classical row storage. This enables on the one hand the
application of efficient compression techniques to the data and even to perform
some processing over compressed data and on the other hand avoids retrieving
from storage columns that are not involved in computations. The main drawback
is that insertions, updates and deletions of data are not efficient, that is why they
are suitable for data warehouses.

9. Support for declarative processing: In data management, the advantages of a
declarative language like SQL over a procedural approach are very well known.
This is a clear motivation for trying to apply data management technologies in
some application domains where procedural solutions are dominant. The man-
agement of sampled observation data in environmental applications is one such
domain.

10. Support for aggregation: Aggregation functionalities through statistical methods
are at the kernel ofOLAP andmust be supported to effectively perform observation
data analysis.

11. Support for iterative processing: Recursive queries are required in only few data
management applications. This is the reason why such functionalities were out of
the scope of first SQL implementations. Current ISO SQL standard and DBMSs
vendors support a kind of limited recursion. Regarding the analysis of observation
data in environmental applications, such functionalities are commonly required
to perform many simulations. Examples of these are forest fire propagation, oil
spills, flooding, etc. Thus, although it is not a kernel functionality, the support for
iterative processing is a desirable feature.

12. Data processing based on a well known language: As in the case of the data model,
the definition of query languages that are based on well known ones as SQL is a
clear advantage.

123



Distrib Parallel Databases (2016) 34:65–99 71

scitna
me

S .sb
O

ata
D delp

ma
S

no itulos er itlu
M

ledo
M e lp

mi
S

led o
M n

wo n
K lle

W

.co r
P 

maer t
S

PTL
O

P
AL

O

.co r
P evitar alce

D

n oi tag er gg
A

.cor
P evita retI

.gnaL n
won

K lle
W

elb ali avA.lp
mI

OGC SWE Stds

Obs. Data Models

GIS

Sensor Stream

Spat. and ST DBMSs

Spatial NoSQL

Spatial HP DW

Array Data Managers

SciQL

SODA

Y
Y

Y Y Y Y Y Y Y

YYYY
Y Y Y P P P Y

Y Y Y Y P P P P Y
Y Y Y

Y Y Y P P P Y
Y Y Y Y Y Y
Y P Y Y Y P Y

Y Y
YYY

Fig. 2 Comparison of related approaches and technologies

13. Availability of efficient implementation: A data management approach is really
useful if it can be efficiently implemented. A prototype implementation demon-
strates the viability of the approach and its use in real application domains shows
its matureness.

Based on the above evaluation criteria various research approaches and available
technologies are now classified and qualitatively compared, including also the present
SODA framework. An overview of such comparison is given in the table of Fig. 2,
where each approach is marked with “Y” or “P” if it, respectively, supports or partially
supports the relevant criterion. A more detailed discussion is given below.

2.1 OGC SWE standards

The Sensor Web Enablement (SWE) of the Open Geospatial Consortium (OGC) pro-
vides a series of standards for the interfaces of web services related to the management
of environmental observation data. In particular, the Observations and Measurements
(O&M) [1] and Sensor Model Language (SenorML) [2] where already mentioned in
the introduction. The Sensor Observation Service (SOS) [3] defines an web service
interface to query observation data collections, either stored or directly obtained from
the devices. Data is transfered between client and server in standard XML encodings
of O&M and SensorML models. Query capabilities of SOS are limited to just fil-
tering. Regarding data processing, OGC defines the Web Processing Service (WPS)

123



72 Distrib Parallel Databases (2016) 34:65–99

[26] interface that enables the invocation of data processing algorithms through the
web. Various implementations of the above standards exist already in the market, both
with commercial and open source licenses. In general it is obvious that O&M provide
appropriate support for the modeling of observation semantics and sampled data. Dif-
ferent spatial and temporal resolutions are supported but transformations are a user
matter. The underlying object oriented data modeling approach with XML encod-
ings is well known, however, to support sampled data nested structures are required.
Declarative data processing is not supported at all as WPS just provides means for
remote procedure calls.

2.2 Observation data models

Beyond the above O&M OGC standard, various data models and ontologies have
been proposed to support observation data semantics [4–6]. They are based on well
known paradigms and provide observation data semantics with simple data modeling
approaches. However, sampled data and multi-resolution is out of the scope of these
models as it is also any kind of data processing.

2.3 Geographic information systems (GIS)

Currently, a wide variety of GIS tools, both with commercial and open source licenses,
are available. A representative example of them is GRASS [7], which supports the
management of any kind of geographic data, including Rasters, recorded in many dif-
ferent well known models and formats. Raster data management is usually formalized
with relevant Raster algebras [27]. Observation semantics are not considered in GIS
and although the managed data may have many different spatial resolutions, transfor-
mations between them have to be explicitly done by the user to perform operations.
Spatial data processing is a strength of tools like GRASS, however, it is performed by
the execution of a very large amount of different commands, therefore, a declarative
language ismissing. Notice that the usermust knownwhich is the functionality of each
command and how to combine them, thus only real experts may take real advantage
of spatial data analysis with GIS tools.

2.4 Sensor stream processing approaches

Various Stream Processing approaches have been explicitly proposed for the manage-
ment of data generated by sensor networks [8,9]. Despite of being defined for sensor
data, observation data semantics are not explicitly incorporated by the system and are
delegated to user interpretation. Any kind of spatial data management is out of the
scope of these approaches. They support declarative real-time processing of streams
with aggregation functionality based on SQL like languages. Real-time requirements
of these approaches are clearly in conflict with the support of iterative processing.

123



Distrib Parallel Databases (2016) 34:65–99 73

2.5 Spatial and spatio-temporal DBMSs

Many temporal extensions have been proposed for the classical relational model [28,
29].Recently, somecharacteristics havebeen incorporated into ISOSQLstandard [30].
Various spatial [10,11,31] and spatio-temporal [32,33] extensions to classical models
have been proposed in the literature. Spatial functionality has already been added
to ISO SQL standard [12], which is currently implemented by most of the available
DBMSs (see [13] for an example). The direct support of observation semantics is
out of the scope of spatial DBMSs. They support the management of conventional
E/R data with a well known object-relational paradigm and SQL, where properties of
entities might have spatial data types (point, line, surface, etc.). Extensions for Raster
data are also supported by some approaches and systems [13], however, they require
nested structures and do not provide explicit support for multi-resolution. They can
be used both for OLTP and OLAP, but in the general case they were not designed
with Big Data requirements in mind. Regarding declarative data processing, it is only
efficiently supported for non-sampled data and it includes both aggregations and SQL
recursion for iterative queries. To manipulate raster data with SQL constructors it has
to be unnested from a complex value of a raster data type, which is a highly inefficient
task.

2.6 Spatial NoSQL approaches

Systems following a NoSQL approach and providing spatial data management capa-
bilities are still few. An example is the extension of MongoDB [14] with support for
the management of GeoJSON encoded data. Their functionality is very limited both
in data modeling and processing.

2.7 Spatial high performance data warehouse approaches

To the best of these authors knowledge, only theMonetdb DBMS [15] provides spatial
functionality on top of a high performance column-oriented implementation forOLAP.
Neither observation semantics nor sampled data are directly supported by the system.
Therefore, declarative processing is only partially supported. It lacks recursive queries,
therefore iterative processing is not supported.

2.8 Array data managers

The management of sampled data fits very well array data management approaches.
Currently, array algebras like the one in [34] are the basis for the development of
relevant array data managers [16,17]. These systems use a simple array data model
to provided high performance OLAP over very large arrays. They provide declarative
array query languages that include aggregation capabilities. Iterative processing is not
supported. Although the flavor of the languages is similar to that of SQL, both the
array semantics and complex array operators make them quite cumbersome for DBMS

123



74 Distrib Parallel Databases (2016) 34:65–99

users. Observation semantics are out of the scope of these systems andmulti-resolution
is not explicitly supported.

2.9 SciQL

A SQL-based query language for science applications SciQL is defined in [18]. The
language enables the integrated analysis of relational and array data, therefore both
Entities and sampled data are supported.Obviously, declarative querywith aggregation
is supported, however, current implementation with MonetDB [15] technologies does
not include recursion for iterative processing support. The incorporation of an array
data structure adds complexity to the relational model and the extension of SQL with
array semantics makes it less friendly to DBMS users. Observation semantics are
out of the scope of the approach and specific support for multi-resolution in the type
system is not provided.

2.10 SODA

The SODA framework described in the current paper is also added to the comparison
for qualitative evaluation purposes. As it is shown, SODA supports both observation
semantics and sampled data. It combines a multi-resolution type system with a simple
non-nested data structure based on the well known mathematical concept of function.
Declarative spatio-temporal analysis is supported and aggregation functionality is also
incorporated. Support for iterative processing functionality and the efficient implemen-
tation of SODA are part of future work. Both the data model and query language of
SODA are not based on the well known relational paradigm, which is somehow a
setback for current DBMS users. However, the formalism is simple and it is based on
the well knownmathematical concept of function. The declarative language combines
logical and functional constructors very similar to those already present in languages
like XQuery. These characteristics will be described throughout the paper.

3 Observation data warehouse

This section describes the observation data warehouse that supports observation data
recording. The general functionalities of an observation data management system
briefly described in the introduction give rise to the following requirements for an
observation data warehouse.

1. The model must support the representation of classical E/R data integrated with
temporal, spatial and spatio-temporal sampled data.

2. The model must provide direct support for observation semantics, through the
representation of appropriate required metadata, including Processes and phe-
nomenonTime.

3. The type system of the model must provide support for the representation of tem-
poral and spatial data at different resolutions. Besides, the transformation between

123



Distrib Parallel Databases (2016) 34:65–99 75

those resolutions must also be simplified with relevant implicit and explicit type
castings.

Based on the above requirements, an underlying spatio-temporal data model is first
defined and on top of it structures for observation metadata are added to achieve the
final data model for the observation data warehouse.

3.1 Underlying spatio-temporal data model

As it was already shown in the previous section, supporting sampled data with a
relational formalism leads to highly inefficient approaches. On the other hand, the use
of functional models for the management of E/R data has already been tried in the area
of FunctionalDatabases [35]. The proposed spatio-temporal datamodel is based on the
well known mathematical concept of function. It consists of conventional, temporal
and spatial data types, functions tomanipulate data values called IntensionalMappings
and functions to record data values called Extensional Mappings. The recording of
data singletons, called Constants is also supported by the model.

3.1.1 Data types

Conventional data types consist of Boolean, CString (variable size character strings),
Integer and two floating point numeric types, Float and Double. Parametric type
FixedPrecision(P, S) enables the user to specify precision (P, maximum number of
decimal digits used) and Scale (S, number of digits in the fractional part) in a fixed
point numeric representation. Default and alsomaximumvalues for P and S are defined
by the system. We shall denote those values as DP (default P), MP (maximum P), DS
(default S) and MS (maximum S). Any value N of type FixedPrecision(P, S) can be
written in the form n ∗ 10−S , where n is an integer in the range (−10P , 10P ). All the
above data types include a special Undefined value denoted by ⊥.

Temporal data types The following three data types enable themodeling of the discrete
multi-resolution time values.

Definition 1 Let R (resolution) be a value of data type FixedPrecision(P, S). Then the
following temporal data types are defined.

TimeInstant(R):

{t ∗ R | t ε I nteger ∧ −10MP < t < 10MP } ∪ {⊥}

Time(R):

{t ∗ R | t ε I nteger ∧ 0 <= t ∗ R < 24hours ∗ 3600seconds/hour} ∪ {⊥}

Date(R):

TimeInstant(86400)

123



76 Distrib Parallel Databases (2016) 34:65–99

Time instant values are semantically interpreted as temporal shifts (positive or
negative) in seconds from a reference system defined time instant (t = 0). A common
value for such a reference time instant in current DBMS implementations is “1970-
01-01 T 00:00:00.000000”.

Spatial data types The following two data types enable the modeling of 1D and 2D
Euclidean spaces.

Definition 2 Let P (Precision) and R (Resolution) be values of types Integer and
FixedPrecision(PR, SR), respectively. Then the following spatial data types are
defined.

Point1D(P, R):

{x ∗ R | x ε I nteger ∧ −10P < x < 10P } ∪ {⊥}

Point2D(P, R):

{(x ∗ R, y ∗ R) | x, y ε I nteger ∧ −10P < x, y < 10P } ∪ {⊥}

Geometric data types Based on data type Point2D(P, R) and on the standard specifi-
cation given by [12], the following data types enable the modelling of geometries in
2D Euclidean spaces.

– LineString(P, R): Vector polylines defined by sequences of elements of Point2D(P,
R).

– Polygon(P, R): Vector polygons, possibly with holes, whose borders are defined
by sequences of elements of Point2D(P, R).

– GeometryCollection(P, R): Heterogeneous collections of geometries of any of the
data types Point(P, R), Polyline(P,R) and Polygon(P,R).

– MultiPoint(P, R): Homogeneous collections of geometries of type Point2D(P,R).
– MultiLineString(P, R): Homogeneous collections of geometries of type LineString
(P,R).

– MultiPolygon(P,R):Homogeneous collections of geometries of typePolygon(P,R).
– Geometry(P, R): Abstract type. Geometries or collections of geometries of any of
the above 2D types.

3.1.2 Intensional mappings

Informally, Intensional Mappings are functions defined over the available data types.
These functions are always defined intensionally, in a mathematical sense, by either
some algorithm or expression. Notice the difference with Extensional Mappings
defined below in Sect. 3.1.3.

Definition 3 If T1, T2, . . ., Tn is a possibly empty sequence of not necessarily distinct
data types and T is also a data type, then an Intensional Mappingwith signature M(T1,
T2, . . ., Tn):T is defined as a function M: T1, T2, . . . Tn → T .

123



Distrib Parallel Databases (2016) 34:65–99 77

(a)

(b)

Fig. 3 Type castings between temporal and spatial types

Primitive Intensional Mappings are directly provided by the system in the syntac-
tic form of operators, functions and type castings. Implicit type castings are applied
between types of the same category (Boolean, CString and Numeric) during the eval-
uation of functions and operations.

Temporal intensional mappings Let t = i ∗ R, t1 = i1 ∗ R be two values of type
TimeInstant(R) and let n = in ∗ 10−SR be a value of type FixedPrecision(Pn, SR),
where SR matches the scale of the FixedPrecision type of R = r ∗ 10−SR . Then
the expression t − t1 yields value (i − i1) ∗ R of type FixedPrecision(MP, SR).
The expression t − n yields the TimeInstant(10−SR ) value (i ∗ r − in) ∗ 10−SR . The
expression t +n yields the TimeInstant(10−SR ) value (i ∗ r + in)∗10−SR . A complete
ordering is straightforwardly defined for values of each temporal data type and relevant
comparison operations might be applied accordingly. Temporal functions are also
provided although their definition is out of the scope of this paper. Castings between
temporal types enable multi-resolution temporal management. Thus, the expression
“cast(t to TimeInstant(R1))”yields the TimeInstant(R1) value trunc(i ∗ R/R1), as it
is illustrated in Fig. 3a. Type castings are implicitly applied between temporal types
during the evaluation of functions and operations.

123



78 Distrib Parallel Databases (2016) 34:65–99

Spatial intensional mappings If p = (x ∗ R, y ∗ R), p1 = (x1 ∗ R, y1 ∗ R) are two
values of typePoint2D(P, R), then the expressions p+ p1 and p− p1 yield respectively
values ((x + x1)∗ R, (y+ y1)∗ R) and (((x − x1)∗ R, (y− y1)∗ R)), both of the same
Point2D(P, R) data type. For completeness, a total ordering is defined for Point2D
data types, based on some space-filling curve [36]. Such an ordering enables the
application of comparison operators. If x, y are values of type FixedPrecision(P,S),
then function point2d(x, y) yields the value (x, y) of typePoint2D(P, 10−S). Inversely,
functions xcoord(p) and ycoord(p) yields respectively the values x ∗ R and y ∗ R of
type FixedPrecision(P, SR), where SR is the scale value of the FixedPrecision type
of R. Other spatial functions are provided, including distance and direction, however,
their definition is out of the scope of the paper. Type castings are defined between
Point2D types that enable transformations between different spatial resolutions. Thus,
the expression “cast(p toPoint2D(P1, R1))” yields value (round(x ∗R/R1), round(y∗
R/R1)), as it is illustrated in Fig. 3b. Similar operations, functions and castings are
also provided for Point1D types. Type castings are automatically applied between
spatial types during the evaluation of operations and functions.

Geometric intensional mappings Geometric functions specified in [12] are also sup-
ported. Besides, type castings enable the transformation between geometric values of
different spatial resolutions.

3.1.3 Extensional mappings

Informally, anExtensionalMapping is a function thatmaps values fromafinite domain,
defined as a finite subset of the Cartesian Product of data types, to a codomain defined
by a data type. Components of the domain of an Extensional Mapping are called
Dimensions. Informally, a Dimension is just a set of values of a given data type.

Definition 4 A Dimension d over data type T, denoted by d(T), is defined as a non-
empty finite subset of T − {⊥}

Finite sets of values of a given data type are recorded inDimensions. Temporal and
spatial samplings, defined below, are specific types of Dimensions of special interest
for spatio-temporal data representation.

Definition 5 Let min and max , min < max , be two values of the same TimeInstant,
Time, Date or Point1D type T. Then a 1D Sampling S from min to max , denoted by
S(min, max) is defined as the following Dimension over data type T.

{s ε T | min <= s <= max}.

Definition 6 Let sm = (xm, ym) and sM = (xM , yM ), xm < xM and ym < yM , be
two values of the same Point2D type T. Then a 2D Sampling S from sm to sM , denoted
by S(sm , sM ) is defined as the following Dimension over data type T.

{(x, y) ε T | xm <= x <= xM ∧ ym <= y <= yM }.

123



Distrib Parallel Databases (2016) 34:65–99 79

Efficient physical structures avoid having to record the values of very large sam-
plings (see Sect. 5.2).

Definition 7 If d1, d2, . . . , dn is a sequence of not necessarily distinctDimensions and
T is a data type, then a Extensional Mapping with signature M(d1, d2, . . . , dn): T is
defined as a function M: d1, d2, . . . , dn → T. The definition of a Extensional Mapping
is represented by a finite set of pairs (d, c), where d is an element of d1 ×d2 × . . .×dn
and c is an element of T.

Extensional Mappings in the proposed model have an extensional mathematical
definition, since each valid combination of domain and codomain values is explic-
itly recorded in the model. Notice the difference with Intensional Mappings, whose
definition is not given by an exhaustive listing of elements.

Informally, a Constant is just one value of a given data type.

Definition 8 A Constant C of type T, denoted by C:T is defined as an atomic value
of type T.

Following a functional database approach [35], Dimensions and Extensional Map-
pings enable the modeling of Entities and Relationships between them. For example,
student, courses and enrollment data may be modeled as follows.

Dimensions
StudentId(Integer)
CourseId(Integer)

Extensional Mappings
StudentName(StudentId):CString
CourseName(CourseId):CString
EnrollMentDate(StudentId, CourseId):Date

Beyond classical ER data, the model elegantly integrates the representation of
scientific and sensor data. As an example, the evolution of sea surface temperature
and salinity data over time (sampled every minute), depth (sampled every meter) and
space (sampled every kilometer) might be modeled as follows:

Constants
minTime:TimeInstant(600), maxTime:TimeInstant(600),
maxDepth:Point1D(1),
southWestCorner:Point2D(1000), northEastCorner:Point2D(1000)

Dimensions
Time(minTime, maxTime)
Depth(cast(0 to Point1D(1)), maxDepth)
Space(southWestCorner, northEasCorner)

Extensional Mappings
Temperature(Time, Depth, Space):FixedPrecision(5, 2)
Salinity(Time, Depth, Space):FixedPrecision(5, 2)

The above data model fits very well column-oriented DBMS implementation tech-
niques, which are currently the trending technology for the implementation of data
warehouses (see Sects. 5.2 and 5.3).

123



80 Distrib Parallel Databases (2016) 34:65–99

3.2 Observation data model

Observed Entities and samplings are modeled in the proposed model with the concept
of Feature. As in the E/R model, Features are classified into Feature Types. Both key
and non-key Properties of Features may be defined. Properties of features may be
observed by Processes.

Processes are also classified into Process Types and Properties of them may also
be defined. For our purposes, a External process is performed out of the scope of the
framework and the observations that it produces are loaded into the data warehouse
with a typical ETL task. On the other hand, an Internal process is executed by the
framework during the ETL task to produce observations derived from both the data
that are being loaded and the data already available in the data warehouse. For our
purposes, we shall classify processes both as either Time-triggered or Event-triggered
and as either External or Internal.

The above concepts and the relationships between them are depicted in the UML
class diagram of Fig. 4. The schema of a spatial observation data warehouse is defined
in SODA using a XML language called XODDL (XML Observation Data Definition
Language), which is defined in the present work as an XML encoding of the UML
class diagram of Fig. 4.

In order to use the framework, the administrator must create a dataset scheme using
XODDL. Next, Observation Process metadata is added to the framework. Internal
Processes have also to be defined (see Sect. 4.2). Next, Feature Types with their non-
observed properties are inserted. At this stage, the framework is ready to execute
observation data ETL tasks. Each execution appends new values stamped with appro-
priate temporal data (phenomenonTime) to Observed Properties of Feature Types.
Notice that new data is always appended and deletions and updates are not supported
(except for data administration purposes).

The instances of the above concepts that define a proposed running example are
depicted in the UML object diagram of Fig. 5. A more detailed description of Feature
and Process Types and relevantDimensions and Extensional Mappings used to record
their data is given below.

Fig. 4 UML class diagram of the observation data model

123



Distrib Parallel Databases (2016) 34:65–99 81

Fig. 5 UML object diagram of a running example

3.2.1 Feature types

Feature Types enable the integrated modeling of entities and samplings. Two Fea-
ture Types are defined in the running example, Vessel is used to model fishing boats
(entities) and SeaSurface is used to model a geographic sampling. A Feature Type
is defined by one or more Key Properties and zero or more Feature Properties. Key
Properties are used to model either key properties of entities or dimensions of sam-
plings. Feature Properties are used to model either non-key properties of entities
or sampled properties. In the running example, vessels are identified by a Vessel.Id
key property of type string, whereas the spatial dimension of SeaSurface is modeled
by key property SeaSurface.Loc of type Point2D(9, 4000). Notice that an attribute
(sampling=“true”) is added to the SeaSurface.Loc key property to indicate that it is a
sampling dimension. Non-key properties of Vessel enable the recording of its name,
minimum and maximum fishing temperatures, location, water temperature measured
by the boat, ice alert risk according to measured temperature and the spatial fishing
zone according to the fishing temperature interval. SeaSurface is a sampling that has
just one MODISTemperature property that records the temperature at each location
provided by MODIS sensor installed on board of Terra and Aqua NASA satellites.
When the values of a specific Feature Property are generated by some Process, the rel-
evant Process Type metadata is referenced by attribute “sourceProcessType”. Notice

123



82 Distrib Parallel Databases (2016) 34:65–99

that in the running example, only names and fishing temperatures of vessels are not
generated by Observation Processes.

The following Dimensions and Extensional Mappings are recorded in the frame-
work for each Feature Type F.

– For each Key Property KP of type KPT of F, if the attribute sampling is false
then a non-sampling Dimension F.KP(KPT) is recorded, otherwise, a sampling
DimensionF.KP(lo, hi) is recorded,where lo and hi of typeKPT are the values that
define the boundaries of the sampling recorded in the framework. In the running
example, dimensions

Vessel.Id(CString) and
SeaSurface.Loc(lo:Point2D(9,4000),hi:Point2D(9, 4000))

enable the recording of relevant key properties. Notice that in the framework, each
Dimension and ExtensionalMappingmust have a unique name, therefore, to avoid
conflicts, the name of the Feature Type (or Process Type) is added as a prefix to
the name of the relevant property.

– For each Feature Property FP of type FPT of F, such that FP is not generated by
any source Process, an Extensional Mapping

F.FP(F.K P1, F.K P2, . . . F.K Pn):FPT
is recorded, where each F.K Pi is a Dimension corresponding to a relevant key
property of F. In the running example, Extensional Mappings

Vessel.Name(Vessel.Id):CString,
Vessel.MinFishingTemp(Vessel.Id):FixedPrecision(5, 2) and
Vessel.MaxFishingTemp(Vessel.Id):FixedPrecision(5, 2)

enable the recording of relevant non-key feature properties not generated byObser-
vation Processes.

– For each Feature Property FP of type FPT of F, such that FP is generated by an
observation source process of type SP and K P1, K P2, . . . K Pn are key properties
of F:
1. An Extensional Mapping

F.FP(F.K P1, F.K P2, . . . F.K Pn , SP.Time):FPT
enables the recording of the generated observations.

2. An Extensional Mapping
F.FP.Process(F.K P1, F.K P2, . . . F.K Pn , SP.Time):CString

enables the recording of the specific Observation Process used at each time
instant to generate observations.

Thus, for example,
Vessel.Location(Vessel.Id, GPS.Time):Point2D(9, 0.01)

enables the recording of the evolution with respect to time of the vessel location
generated by theGPSdevices. The identifier of theGPSdevice used at each specific
instant in a given vessel is provided by Extensional Mapping

Vessel.Location.Process(Vessel.Id, GPS.Time):CString.

123



Distrib Parallel Databases (2016) 34:65–99 83

3.2.2 Process types

Process Types record metadata of referenced observation Process. A Process Type
may be either Time or Event-Triggered at a given time resolution. Thus, for example,
GPS processes of vessels generate vessel location observations every 30 seconds.
On the other hand, at any moment the vessel crew uses a CTD sensor to obtain a
temperature observation, whose time is recorded with a resolution of 1 second. The
above processes are external to the framework. An example of an internal process
is the IceAlert that computes an ice risk value (either “High” or “Medium”) every
time the CTD sensor generates an observation with a temperature below zero. Internal
processes are executed by the framework during each ETL task to generate calculated
Feature Properties. Thus, the FishingZone property of each vessel (Polygon2D type)
is generated from sea surface temperatures provided by MODIS. The capabilities of
SODA to define internal analytical processes are described in Sect. 4.2. Finally, each
process of a given Process Type might be described by a set of Process Properties.
Thus, for example, a GPS process has Model and Serial properties as part of its
metadata.

The following Dimensions and Extensional Mappings are recorded in the frame-
work for each Process Type P.

– A dimension P(CString) enables the recording of all the identifiers of processes
(instances) of P. In the running example, dimensions

GPS(CString)
CTD(CString)
IceAlert(CString)
FishingZone(CString) and
MODIS(CString)

enable the recording of all the required process identifiers.
– For each Process Property PP of type PPT, an Extensional Mapping

P.PP(P):PPT
is recorded. Thus, Extensional Mappings

GPS.Model(GPS):CString and
GPS.Serial(GPS): CString

enable the recording of GPS models and serial numbers in the running example.
Similarly, Extensional Mappings

CTD.serial(CTD):CString and
FishingZone.Description(FishingZone):CString

enable the recording of CTD serial numbers and FishingZone internal Process
descriptions.

– If P is a time-triggered Process of resolution R then a Sampling
P.Time(lo:TimeInstant(R), hi:TimeInstant(R))

is recorded, where lo and hi are respectively the lowest and highest time instants
inserted in the framework for observation times generated by P. On the other hand,
if P is an event-triggered Process of resolution R then a non-sampling Dimension

P.Time(TimeInstant(R))
is recorded.

123



84 Distrib Parallel Databases (2016) 34:65–99

4 Spatial observation data analysis

The following requirements for spatial observation data analysis are derived from
the generic functionalities of an observation data management system given in the
introduction.

1. The framework must support OLAP over large warehouses of spatial observation
data.

2. The framework must support the definition of the behavior of Internal Processes
using a spatio-temporal declarative analysis language.

3. The language must support the integrated analysis of both conventional E/R data
and temporal, spatial and spatio-temporal sampled data.

4. The language must support aggregation functionality.

Based on the above requirements, first an XML Mapping Analysis Language
(MAPAL) is defined and next it is shown how it can be used for the definition of
internal analytical observation processes that are executed by SODA during ETL.

4.1 Mapping analysis language

The use of data model based on functions and not on sets or sequences disables the
direct use of some extension of well known languages like SQL and XQuery. How-
ever, the hybrid logical-functional paradigm of the proposedMAPAL language reuses
constructs of those well known languages and combines them with an XML syntax
that simplifies their insertion in currently dominating web service interfaces. In partic-
ular, derived Constants and Intensional andExtensional Mappings are defined using
three types of expressions, namely, Functional Expressions, Conditional Expressions
and Aggregate Expressions. On the other hand, new Dimensions are defined using
either Sampling or Dimension Expressions. The syntax and semantics of all those
expressions are presented and illustrated with examples below.

Functional expressions A functional expression e defined in the context of variables
v1, v2, . . ., vn , denoted by e(v1, v2, . . ., vn), combines context variables with already
defined constructors, system provided literals, operators, primitive mappings and type
castings. The semantics are the obvious ones. The example below illustrates the use
of functional expressions to define two Constants and a Extensional Mapping.

Example 1 Obtain an extensional mapping that determines for each time instant
whether vessel “Bur124” is navigating inside or outside its fishing temperature inter-
val.

123



Distrib Parallel Databases (2016) 34:65–99 85

<Constant name="MinBur124">
<Return >Vessel .MinFishingTemp(" Bur124 ")</Return >

</Constant >

<Constant name="MaxBur124">
<Return >Vessel .MaxFishingTemp(" Bur124 ")</Return >

</Constant >

<ExtensionalMapping name="InsideTemperature" domain ="GPS.Time t">
<Return >
SeaSurface.MODISTemperature(t,Vessel.Location (t,"Bur124 "))&gt;= MinBur124

AND SeaSurface.MODISTemperature(t,Vessel.Location (t,"Bur124 "))&lt;= MaxBur124
</Return >
</ExtensionalMapping>

Notice that functional expressions used to define constants do not have context
variables. On the other hand, the functional expression used to define Extensional
Mapping “InsideTemperature” has a context variable t whose scope is the dimension
GPS.Time of its domain. Notice also that symbols < and > are not allowed in XML
content and their entities &lt; and &gt; have to be used instead.

Conditional expressions They enable the introduction of if-then-else structures in the
evaluation of Constants, Intensional and Extensional Mappings. The semantics are
the obvious ones and the syntax is illustrated below with an example.

Example 2 Define an Intensional Mapping SeaIce(t, p) that yields the risk of having
ice in point p at time instant t. Risk “Red” for temperatures below -2 degrees, risk
“Orange” for temperatures between 0 and -2 and risk “Green” for temperatures above
0 degrees.

<IntensionalMapping name="SeaIce " domain="t, p">
<When>fish:SeaSurface.MODISTemperature(t, p)&lt; -2 </When>
<ThenReturn>"Red"</ThenReturn>
<When>SeaSurface.MODISTemperature(t, p)&gt;= -2

AND SeaSurface.MODISTemperature(t, p)&lt;= 0
</When>
<ThenReturn>"Orange"</ ThenReturn>
<ElseReturn>"Green"</ ElseReturn>

</IntensionalMapping>

Set operations Union and Intersection between Dimensions are now formalized,
as a prerequisite for the definition of the Dimension and Aggregate Expressions of
MAPAL.

Definition 9 Let d1(T1) and d2(T2) be two non-sampling Dimensions, where T1 and
T2 are compatible data types, i.e., an implicit casting has been defined among them.
Then d1 Union d2 is defined as the Dimension d(T ) = cast(d1 as T) ∪ cast(d2 as T),
where T is the result type of the implicit cast between T1 and T2 and cast(di as T) is
the Dimension resulting from casting each element of di to type T.

Definition 10 Let d1(T1) and d2(T2) be twoDimensions, where T1 and T2 are compat-
ible data types whose implicit result cast type is T, and at least one of the Dimensions
is a 1D Sampling. Then d1 Union d2 is defined as the 1D Sampling S(m, M), where

m = min{cast (v as T )|v ε d1 ∪ d2}
M = max{cast (v as T )|v ε d1 ∪ d2}

123



86 Distrib Parallel Databases (2016) 34:65–99

Definition 11 Let d1(T1) and d2(T2) be twoDimensions, where T1 and T2 are compat-
ible data types whose implicit result cast type is T, and at least one of the Dimensions
is a 2D Sampling. Then d1 Union d2 is defined as the 2D Sampling S((xm , ym), (xM ,
yM )), where

xm = min{cast (x as T )|(x, y) ε d1 ∪ d2}
ym = min{cast (y as T )|(x, y) ε d1 ∪ d2}
xM = max{cast (x as T )|(x, y) ε d1 ∪ d2}
yM = max{cast (y as T )|(x, y) ε d1 ∪ d2}

Definition 12 Let d1(T1) and d2(T2) be two Dimensions (either sampling or non-
sampling), where T1 and T2 are compatible data types whose implicit cast type is T.
Then d1 Intersection d2 is defined as the Dimension d(T ) = cast(d1 as T) ∩ cast(d2 as
T), where cast(di as T) is the Dimension resulting from casting each element of di to
type T

DefiningUnion and Intersection in this way between samplings simplifies efficient
implementation structures and matches the requirements of applications.

Aggregate expressions They are composed of the following four sections:

– Variable scope specification: It is composed of a sequence of variable scope spec-
ifications of the form
<ForEach var="v1">dimSetExpr1</ForEach >
<ForEach var="v2">dimSetExpr2</ForEach >
...
<ForEach var="vn">dimSetExprN</ForEach >

where each vi is a variable name that iterates over the elements of the result of
each dimSet Expri . Each dimSet Expri is a Dimension Set Expression of the
form d1 OP d2 OP . . . OP dm, where each di is a Dimension name and OP is
either AND or OR. The semantics of AND and OR are those of Dimension Set
Operations Intersection and Union, respectively.

– Filtering: The valid combinations of variable values may be restricted with an
expression of the form
<Where >c(v1, v2, ..., vn)</Where >

where c(v1, v2, . . ., vn) is a Functional Expression that evaluates to boolean value
true only for valid combinations of variable values. Valid combinations of variables
are retrieved as a sequence of tuples, each of the form (v1, v2, …, vn), ordered
ascending by v1, v2,…, vn. A distinct ordering for the sequencemay be optionally
specified in the following Ordering section.

– Ordering: It is an optional sequence of expressions of either of the following two
forms
<OrderAscendingBy>o(v1, v2, ..., vn)</ OrderAscendingBy>
<OrderDescendingBy>o(v1, v2, ..., vn)</ OrderDescendingBy>

where o is a functional expression whose result is of some ordered type. The tuple
sequence resulting from the above sections is now ordered either ascending or
descending by the result of these functional expressions.

123



Distrib Parallel Databases (2016) 34:65–99 87

– Aggregate Evaluation: It specifies an aggregate expression of the form

<Aggregate>a(v1, v2, ..., vn)</ Aggregate>

where a combines functional expression elements with system provided aggre-
gate functions. Variables vi must appear in a inside the scope of some aggregate
function. Aggregate functions provided by the system may have the form of the
classical ones of SQL (AVG, SUM, etc.) but they may also exploit the sequence
ordering. Thus for example, function ATPOSITION(S, n) yields element located
at position n in sequence S.

The following example illustrates the use of an aggregate expression for the defin-
ition of an Extensional Mapping.

Example 3 Obtain the number of vessels that, at each time instant t, are navigating
through areas that have some risk of ice.

Dimension expressions A new non-sampling Dimension d may be defined with an
expression whose general form is as follows.

<Dimension name="d">
<ForEach var="v1">dimSetExpr1 </ForEach >
<ForEach var="v2">dimSetExpr2 </ForEach >
...

<ForEach var="vn">dimSetExprN </ForEach >
<Where >c(v1 , v2, ..., vn)</Where >
<Return >e(v1, v2, ..., vn) </Return >

</Dimension >

The semantics are similar to those of Aggregate Expressions, however tuple
sequence semantics are now replacedby tuple set semantics (as in the relationalmodel).

Example 4 Obtain a new dimension “boat3” that contains the names of the boats that
at instant “2013-01-04T12:00:00” are navigating through a zone with temperature
below 3 degrees.

<Dimension name="boat3">
<ForEach var="v">Vessel.Id</ForEach >
<Where >
SeaSurface.MODISTemperature("2013-01 -04T12:00:00",

Vessel .Location ("2013-01-04 T12:00:00",v)) &lt; 3
</Where >
<Return >Vessel .Name(v)</Return >

</Dimension>

Sampling expressions A new Sampling Dimension S(m, M) may be defined with an
expression of the form
<Dimension name="S">
<Start >m</Start >
<End>M</End>

</Dimension>

4.2 Definition of analytical processes

An XML language based on the MAPAL language described in the previous sub-
section enables the administrator of SODA to declaratively define internal analytical

123



88 Distrib Parallel Databases (2016) 34:65–99

Observation Processes that are executed during ETL. Each internal process is of a
specific Process Type, of those declared in XODDL. Therefore, during its definition,
both a unique Process identifier and values for relevant Process Properties have to be
provided. Besides, contrary to external processes, an internal process has a definition
that is expressed with MAPAL. In particular, such a definition is composed of three
sections.

1. Preliminaries: A possibly empty preliminary collection of temporary Constant
and IntensionalMapping definitions that will be reused in the remainder sections.

2. TimeDimension Definition: Definition of the timeDimension of the result Process.
It is recalled that each Process Type P of the framework has a Dimension P.Time,
which is a Sampling Dimension in the case of time-triggered Processes and a
non-sampling Dimension in the case of event-triggered Processes.

3. Observed Property Definitions: Definition of an Extensional Mappingwith appro-
priate domain for each observed Feature Property whose values are generated by
Processes of the present Process Type.

We shall focus here in points 2 and 3 above, since point 1 is just syntactic sugar.
The time dimension of a Time-Triggered internal process type P of time resolution R
is defined with an XML expression of the form

<TriggeredByTime>P1.Time , ..., Pn.Time</ TriggeredByTime>

where each Pi.Time is the time Dimension of a Process Type Pi. The semantics are
those of the 1D Sampling S(m, M), where

m = cast(min{v|v ε P1.T ime ∪ . . . ∪ Pn.T ime} as TimeInstant(R))
M = cast(max{v|v ε P1.T ime ∪ . . . ∪ Pn.T ime} as TimeInstant(R))

The time dimension of an event-triggered internal process type P of time resolution R
is defined with an XML expression of the form

<TriggeredByEvent>
<Event var="t">P1.Time , P2.Time , ..., Pn.Time</Event >
<Condition>c(t)</Condition>

</TriggeredByEvent>

where each Pi.Time is the timeDimension of a Process Type Pi and c(t) is a functional
expression of boolean type. The semantics are those of the non-sampling Dimension
defined by the set

{cast (t as T imeInstant (R))|t ε P1.T ime ∪ . . . ∪ Pn.T ime ∧ c(t)}.

Each feature property F.FP observed by an internal process type P has to be defined
as an Extensional Mapping within the definition of P. The first dimension of the
domain of F.FP will be P.Time. During ETL, each such Extensional Mapping will be
evaluated, but restricting the scope of the evaluation to the P.Time dimension elements
to be imported. This avoids the re-evaluation of theExtensionalMapping for the whole
time extension of the data warehouse.

The definition of process types “IceAlert” and “FishingZone” of the running exam-
ple are given next for illustration purposes.

123



Distrib Parallel Databases (2016) 34:65–99 89

<?xml version ="1.0" encoding ="utf -8"? >
<pd:ProcessDefinitions
xmlns="es.usc.citius.de.mapal"
xmlns:pd="es.usc.citius.de.soda.ProcessDefinition" >

<pd:Process id="IceAlert " processType="IceAlert ">
<pd:Definition>

<IntensionalMapping name="IceRisk " domain="temperature">
<When >temperature &lt;= -2</When><ThenReturn>"High"</ ThenReturn>
<When >temperature &lt; 0</When><ThenReturn>"Medium"</ ThenReturn>

</IntensionalMapping>
<IntensionalMapping name=" ExistsVesselInRisk" domain="t">

<ForEach var="v">Vessel.Id</ForEach >
<Where >Vessel.Temperature(t, v) &lt; 0</Where >
<Aggregate>not EMPTY(v)</ Aggregate>

</IntensionalMapping>
<pd:TriggeredByEvent>

<pd:Event var="t">CTD.Time</pd:Event >
<pd: Condition>ExistsVesselInRisk(t)</pd:Condition>

</pd:TriggeredByEvent>

<ExtensionalMapping name="Vessel.IceAlert "
domain ="IceAlert .Time t, Vessel .Id v">

<Return >IceRisk (Vessel. Temperature(t, v))</Return >
</ExtensionalMapping>

</pd:Definition>
</pd:Process >

<pd:Process id="FishingZone" processType="FishingZone">
<pd:Definition>

<pd:TriggeredByTime>MODIS.Time</pd:TriggeredByTime>
<ExtensionalMapping name="Vessel.FishingZone"

domain ="FishingZone.Time t, Vessel.Id v">
<ForEach var="p">SeaSurface.Loc</ForEach >
<Where >SeaSurface.MODISTemperature(t, p) &gt;=

Vessel.MinFishingTemp(v)
AND SeaSurface.MODISTemperature(t, p) &lt;=

Vessel.MaxFishingTemp(v)
</Where >
<Aggregate>VECTORIZE(p)</ Aggregate>

</ExtensionalMapping>
</pd:Definition>
<Description>

This process obtains the piece of sea surface with
appropriate water temperature for fishing .

</Description>
</pd:Process >

</pd:ProcessDefinitions>

First “IceAlert” is defined as an event-triggered Process that is fired every time a
CTD measures a temperature below 0. The Vessel.IceAlert Feature Property is then
defined as either “High” or “Medium” depending on the temperature value. Notice that
a vesselmightmeasure a temperature above zero at the same time another onemeasures
a temperature below zero. In that case, Extensional Mapping “Vessel.IceAlert” would
return an undefined value for the first vessel. The definition of “FishingZone” Process
illustrates the use of aggregate function VECTORIZE to generate a vector polygon
from the set of Point2D elements of a 2D Sampling for which a specific condition
holds.

123



90 Distrib Parallel Databases (2016) 34:65–99

Fig. 6 Overview of SODA architecture

5 Column-oriented implementation issues

This sections discusses some issues that are guiding to the column-oriented imple-
mentation of SODA that is currently being undertaken.

5.1 SODA architecture

A general overview of the architecture of the framework is depicted in Fig. 6. At
the bottom of the figure, on the left side data catalog and system catalog are shown.
The former records metadata related to Feature and Process Types and their relevant
Properties. The latter records metadata of system provided constructors, including
data types, primitive mappings and operators, aggregate functions and type castings.
Dimensions and Extensional Mappings are recorded in one or various Data Stor-
age Units. Besides, appropriate indexes are also recorded to speed up direct access
to the above data structures. Following common practice in column-oriented DBMS
implementations, lightweight compression techniques will be adopted for physical
data representation (see Sect. 5.2). The Data Storage Manager enables efficient data
access to the storage units, implementing buffering of data blocks. Access to all the

123



Distrib Parallel Databases (2016) 34:65–99 91

systemmetadata is provided through the CatalogManager. Feature and ProcessMeta-
data are generated from the schema definitions provided by the system administrator
through the Data Definition Service. Besides the interpretation of XODDL (see Sect.
3.2) and internal process definitions (see Sect. 4.2), the Data Definition Service must
enable the insertion of external processes together with their relevant Process Property
values and non-observed feature data. Spatio-temporal data analytics are supported
by an Observation Data Analysis Service, whose main functionality is the parsing
and execution of MAPAL scripts. The execution of MAPAL query plans is performed
by the Query Processor. Each query plan is represented by a Direct Acyclic Graph
of pipes. Each pipe is generally executed in a distinct thread and supports a specific
operation of the physical algebra described in Sect. 5.3. Finally, theObservation Data
ETL component supports the execution of the internal analytical processes defined in
the catalog during each observation data Extract Transform and Load (ETL).

5.2 Physical data representation

Various issues related to the physical data representation that are being considered
during the current implementation are now discussed. Generally, each Dimension
and Extensional Mapping is recorded as a header and a sequence of data blocks.
Dimension data is recorded in self order whereas Extensional Mappings are recorded
in the order of their respective Dimensions. Following common practices in column-
oriented implementations, light weight compression techniques may be used to record
both Dimensions and Extensional Mappings.

5.2.1 Light weight compression

The use of Light Weight Compression produces great performance improvement in
current column-oriented implementations [37]. Thus, a requisite for the present SODA
implementation is its flexibility to incorporate new compression techniques for both
Dimensions and Extensional Mappings, enabling if possible the direct processing of
compressed data. The current ongoing implementation uses three types ofDataBlock,
whose in-memory relevant data structures are depicted in Fig. 7 as a UML class
diagram. A RLEBlock stores an element of a Run Length Encoding (RLE) sequence,
i.e., it represents the repetition of a value from a start position to an end position.
A RangeBlock represents a sequence of consecutive values of a data type by just
recording the start and end values. A PlainBlock records a sequence of uncompressed
values of a data type. the attribute “defined”ofDataBlock records a compressedBitmap
that specifies which of the elements of RLEBlocks and RangeBlocks are valid.

A Sampling S(c1, c2) dimension is recorded as a single RangeBlock, that records
the boundaries c1 and c2 of S. Non-samplingDimensions are recorded with sequences
of self ordered PlainBlocks, i.e., non-compressed data. In the future, delta encodings
will be added to support efficient compression of numeric non-sampling Dimensions.
Regarding Extensional Mappings, they are recorded as sequences of DataBlocks,
ordered by the dimensions of their domain. Either RLEBlocks or PlainBlocks are
used to record Extensional Mappings. Other compression techniques including delta

123



92 Distrib Parallel Databases (2016) 34:65–99

Fig. 7 Data block types in SODA

encodings and dictionary encodings will be added in the future. Properties start and
end of a DataBlock are used in memory to reference the range of positions that repre-
sents the block inside itsDimension or Extensional Mapping. Property defined is used
to determine which elements of the block are valid, i.e., which of them are distinct
fromUndefined. These defined bitmaps may be set as a consequence of the evaluation
of a where clause of MAPAL.

5.2.2 Ordering

As it was already stated, Dimensions are self ordered whereas Extensional Map-
pings are ordered by the Dimensions of their domains. The time dimension of defined
processes will always be the first Dimension of relevant Extensional Mappings of
observed properties. This decision facilitates appending new temporal data without
having to insert data values in the middle of already existing Extensional Mappings.
1D Samplings are implicitly ordered from lower to higher values. Regarding 2D Sam-
plings, currently a linear ordering is used, however, in the future other orderings defined
by other Space Filling Curves shall also be considered.

5.2.3 Standardized data interchange

The interchange of data between the framework and its data providers and data con-
sumer is based on the use of the NetCDF standard file format. This format enables
the efficient representation of array data and it is broadly used in meteorological and
oceanographic applications. Currently it is also an OGC standard. Roughly speak-
ing, data in a NetCDF is organized in dimensions and variables defined on those
dimensions. These NetCDF concepts fit very well with the Sampling and Extensional
Mapping concepts of the present framework.

123



Distrib Parallel Databases (2016) 34:65–99 93

5.3 Query processing

Issues related to the evaluation ofMAPALexpressions are nowdiscussed. In particular,
first the physical algebra that is behind query processing is defined and next a couple
of issues related to the current implementation of this algebra are discussed.

5.3.1 Physical algebra

The proposed physical algebra is amany-sorted algebra over elements of four different
data structures, namely,Dimensions,Domains, Constants and Extensional Mappings.
Dimensions, Constants and Extensional Mappings have already been defined in Sect.
3.1. A Domain is defined as either a Dimension or a Cartesian Product of 2 or more
not necessarily distinct Dimensions. Operations of the algebra are classified into four
different groups according to the result structure that they produce. In general, the
signature of each operation has the form

OperatorName[ParameterList](ArgumentList)

where parameter list is a comma separated list of parameters and ArgumentList is
a comma separated list of arguments. Arguments are denoted by different charac-
ters, possibly subscripted, depending on their type. Thus di , Di , Ci and Mi denote
respectivelyDimensions,Domains, Constants and Extensional Mappings. Operations
that produce Dimensions and Domains are described in Table 1. Table 2 describes
operations that evaluate Constants and Extensional Mappings.

Table 1 Dimension and domain physical algebra operators

Dimension operators

DimensionScan[dimName]() Parameter dimName is the name of a Dimension. It generates a
RangeBlock describing the range of positions in dimName

Union(d1, d2) It performs the set Union of dimensions d1 and d2 (see Sect. 4.1)

Intersection(d1, d2) It performs the set Intersection of dimensions d1 and d2 (see
Sect. 4.1)

Sampling(c1, c2) It produces a sampling dimension whose boundaries are defined by
constants c1, c2. The result is encoded as a RangeBlock

DupRem(M) It generates the new Dimension resulting from the elimination of
duplicates from the codomain of Extensional Mapping M

Domain operators

Domain(d) It generates a Domain of just one component from dimension d

Product(D, d) It performs the Cartesian Product between Domain D and
Dimension d

Select(M) If Extensional Mapping M has a codomain of boolean type, then it
selects from the Domain of M the combinations where M yields
true

123



94 Distrib Parallel Databases (2016) 34:65–99

Table 2 Constant and mapping physical algebra operators

Constant operators

ConstantFetch[consName]() It obtains from storage the value recorded for Constant
consName

Literal[literal]() It produces the value represented by literal

IntensionalMapping[iMap](C1,
C2, . . ., Cn )

iMap is the name of either a primitive mapping, casting or
operator provided by the system or an Intensional
Mapping defined by the user. It evaluates iMap with
arguments C1, C2, . . ., Cn

ExtensionalMapping[eMap](C1,
C2, . . ., Cn )

eMap is the name of a Extensional Mapping. It obtains from
storage the value of eMap for the domain element defined
by C1, C2, . . ., Cn

Conditional(C1, C2, [C3]) If C1 is true then it yields C2 otherwise, if C3 is specified
then it yields C3, otherwise it yields Undefined

Aggregate[aFun](M1, M2, . . ., Mn ,
[MO1, MO2, . . ., MOm ])

All the argument Extensional Mappings are defined over the
same Domain. It first produce a sequence of n-tuples from
the codomains of M1, M2, . . ., Mn , ordered by the
codomains of MO1, MO2, . . ., MOm . Then it evaluates
Aggregate Function AFun over such an ordered sequence

Mapping operators

Constant(D, C) It generates an Extensional Mapping that yields the result of
evaluating Constant C for each element of Domain D

Project[dimRef](D) For each element of Domain D it yields the value of
Dimension referenced by dimRef of D

IntensionalMapping[iMap](M1,
M2, . . ., Mn )

iMap is the name of either a primitive mapping, casting or
operator provided by the system or an Intensional
Mapping defined by the user. It evaluates iMap using as
arguments the values obtained from the evaluation of M1,
M2, . . ., Mn , for each element of their common Domain

ExtensionalMapping[eMap](M1,
M2, . . ., Mn )

eMap is the name of a Extensional Mapping. For each
element of the common Domain of M1, M2, . . ., Mn , it
obtains from storage the value of eMap, using as domain
the n-tuple resulting from the evaluation of (M1, M2, . . .,
Mn )

Conditional(M1, M2, [M3]) For each element of the common Domain of M1, M2 and
M3, if M1 evaluates to true then it yields the result of
evaluating M2 otherwise, if M3 is specified then it yields
the result of evaluating M3, otherwise it yields Undefined

Aggregate[groupBy][aFun](M1,
M2, . . ., Mn , [MO1, MO2, . . .,
MOm ])

All the argument Extensional Mappings are defined over
the same Domain. The sequence of n-tuples resulting
from the evaluation of M1, M2, . . ., Mn are grouped by
dimension references groupBy. Each group of n-tuples is
ordered by the result of evaluating MO1, MO2, . . .,
MOm . Finally, Aggregate Function AFun is evaluated in
the scope of each group

123



Distrib Parallel Databases (2016) 34:65–99 95

5.3.2 Pipeline implementation

The physical algebra of the previous section is implemented following a Producer-
Driven Pipelining approach. Thus, each operator is implemented as a pipe that is gen-
erally executed in a different thread. Data and reference interchange between pipes is
asynchronous and it is supported by appropriateDataBlock buffers. This enablesCon-
stant andMapping evaluation to be performed in parallel by different processing units,
if they are available. Besides, if various storage units are available, different Dimen-
sions and Extensional Mappingsmight be retrieved from storage also in parallel. This
is known in the literature by pipeline parallelism [38]. The degree of pipeline paral-
lelism is increased by the vertical partitioning approach followed by column-oriented
implementations as the present one. An evaluation plan using the above operation
pipes for the query of Example 3 is given in Fig. 8. First, two DimensionScan pipes
obtain the range of reference positions of the two involved dimensions. Notice that
with just one RangeBlock for each pipe, all the reference positions of bothDimensions
are represented. After passing through Domain and Product pipes we have the Carte-
sian Product of these two inputRangeBlocks. Such a Cartesian Product may efficiently
be represented with a combination of RLEBlocks for Dimension t and RangeBlocks
for Dimension v. Next, three Project pipes generate three Extensional Mappings with
identical Domain and again just reference positions in their codomains. Notice that
up to this point, actual data values have not been read from storage yet. A Constant
pipe generates another Extensional Mapping that yields a constant value “Green” for
each combination of GPS.Time and Vessel.Id. A Extensional Mapping pipe retrieves
elements of Vessel.Location using as input the reference positions produced by the
Project pipes. Given that GPS.Time and Vessel.Id form in that order the Domain of
Vessel.Location, then position references do not have to bematerialized to data in order
to access Vessel.Location. Next, an Intensional Mapping pipe evaluates “SeaIce” for
each combination of GPS.Time and Vessel.Location. Notice that now, GPS.Time ref-
erence positions have to be materialized to TimeInstant values in order to be able to
evaluate “SeaIce”. Next, predicate “<>” is evaluated between the result of “SeaIce”
and the Constant “Green”. At this stage, the result Extensional Mapping yields a
boolean value for each combination of reference positions (t,v) from GPS.Time and
Vessel.Id. Domain pipe Select uses such a boolean Extensional Mapping to restrict
the combinations to only those that are valid. Next, again a Project pipe is applied and
finally an Aggregate pipe yields the expected result Extensional Mapping by grouping
by Dimension t and counting valid reference positions of v.

It is noticed that only the required data elements fromDimensions and Extensional
Mappings are read from storage when they are required for some evaluation. Actually,
in the example plan only values of GPS.Time Dimension and Vessel.Location Exten-
sional Mapping are obtained from disk. This approach of delaying data access opera-
tions asmuch as possible is calledLateMaterialization and it is awell known technique
in column-oriented implementations. It is also important to note that although the same
Extensional Mapping or Dimension might appear various times in a evaluation plan,
the appropriate use of buffers by the Data Storage Manager should avoid having to
read their values from tertiary storage more than once. Specific structures might be
required to achieve this as it has already been reported in [39].

123



96 Distrib Parallel Databases (2016) 34:65–99

Fig. 8 Example of query evaluation plan

123



Distrib Parallel Databases (2016) 34:65–99 97

6 Conclusions and further work

A framework for the analysis of spatial observation datawas designed and qualitatively
evaluated and compared with related data management technologies and approaches.
In particular, an observation data model was formalized based on the previous defini-
tion of a spatial data model. A declarative spatio-temporal data analysis language was
also described and physical implementation issues were discussed. The advantages of
the proposed framework may be summarized as follows.

– Observation data semantics are directly supported by the spatial observation data
model and also incorporated in the declarative definition of Internal Processes.

– The framework provides direct support for the integrated representation and analy-
sis of both conventional E/R data and temporal, spatial and spatio-temporal sam-
pled data.

– The formalized temporal and spatial data types support the representation and
transformation between different data resolutions.

– Both data (Extensional Mappings) and behavior (Intensional Mappings) are rep-
resented with the well known mathematical concept of function. Therefore, it is
likely that the approach will be friendly to scientific users. Besides, a functional
approach simplifies the definition and reuse of intermediate results, enabling the
well known software engineering Black Box concept.

– The use of XML syntax of the proposed languages (XODDL and MAPAL) sim-
plifies their incorporation in web service interfaces and enables the use of widely
adopted XML technologies in the implementation.

– It is estimated that the use of a single non-nested data structure in the data model
will simplify the efficient implementation of the framework.

The main drawback of SODA arise from the assumption of a brand new data
management paradigm departing from the classical relational-SQL one, which is a
clear handicap for current DBMS users. However, this is alleviated by the fact that
well known logical and functional formalisms were combined to define MAPAL,
which makes its constructors very similar to those of currently available languages
like XQuery.

Future work issues include the following. Complete a first prototype of the frame-
work in a single node multi-core hardware architecture and test its performance in
comparison with other relevant solutions; Incorporate query optimization techniques
and appropriate indexing structures to improve system performance; Redesign and
implement a new version for a multi-node share nothing architecture, exploiting the
parallelism with appropriate horizontal partitioning of Dimensions and Extensional
Mappings.

Acknowledgments This work has been partially supported by the Spanish Ministry of Science and
Innovation (TIN2010-21246-C02-02). The authors are also grateful to the reviewers, whose comments
contributed to greatly improve the paper.

123



98 Distrib Parallel Databases (2016) 34:65–99

References

1. Cox, S.: Geographic Information—Observations and Measurements. Open Geospatial Consortium
(OGC) Abstract Specification Topic 20 and ISO 19156:2011(E) (2013). http://www.opengeospatial.
org/standards/om. Accessed Jan 2014

2. Open Geospatial Consortium (OGC): OpenGIS Sensor Model Language (SensorML) Implementation
Specification (2007). http://www.opengeospatial.org/standards/sensorml. Accessed Jan 2014

3. Bröring, A., Stasch, C., Echterhoff, J.: OGC Sensor Observation Service Interface Standard. Open
Geospatial Consortium (OGC) (2012). http://www.opengeospatial.org/standards/sos. Accessed Jan
2014

4. Bowers, S.,Madin, J., Schildhauer,M.: A conceptualmodeling framework for expressing observational
data semantics. In: Q. Li, S. Spaccapietra, E. Yu, A. Oliv (eds.) Conceptual Modeling - ER 2008,
Lecture Notes in Computer Science, vol. 5231, pp. 41–54. Springer, Berlin (2008). doi:10.1007/
978-3-540-87877-3_5

5. Compton, M., Barnaghi, P., Bermudez, L., Garca-Castro, R., Corcho, O., Cox, S., Graybeal, J.,
Hauswirth, M., Henson, C., Herzog, A., Huang, V., Janowicz, K., Kelsey, W.D., Phuoc, D.L., Lefort,
L., Leggieri, M., Neuhaus, H., Nikolov, A., Page, K., Passant, A., Sheth, A., Taylor, K.: The SSN
ontology of the W3C semantic sensor network incubator group. Web Semant. 17(0), 25–32 (2012).
doi:10.1016/j.websem.2012.05.003

6. Madin, J., Bowers, S., Schildhauer, M., Krivov, S., Pennington, D., Villa, F.: An ontology for describ-
ing and synthesizing ecological observation data. Ecol. Inf. 2(3), 279–296 (2007). Meta-information
systems and ontologies. In: A Special Feature from the 5th International Conference on Ecological
Informatics ISEI5, Santa Barbara, CA, Dec. 4–7, 2006—Novel Concepts of Ecological Data Manage-
ment S.I. doi:10.1016/j.ecoinf.2007.05.004

7. Neteler, M., Mitasova, H.: Open Source GIS: A GRASS GIS Approach, 3rd edn. Springer, New York
(2008)

8. Galpin, I., Brenninkmeijer, C., Gray, A., Jabeen, F., Fernandes, A., Paton, N.: Snee: a query proces-
sor for wireless sensor networks. Distrib. Parallel Databases 29(1–2), 31–85 (2011). doi:10.1007/
s10619-010-7074-3

9. Madden, S.R., Franklin, M.J., Hellerstein, J.M., Hong, W.: Tinydb: an acquisitional query processing
system for sensor networks. ACMTrans. Database Syst. 30(1), 122–173 (2005). doi:10.1145/1061318.
1061322

10. Güting, R.H.: Spatial Databases. John Wiley, Hoboken (2001). doi:10.1002/047134608X.W4317
11. Lorentzos, N.A., Viqueira, J.R.R.: Relational formalism for the management of spatial data. Comput.

J. 49(1), 62–81 (2006). doi:10.1093/comjnl/bxh136
12. International Organization for Standardization (ISO): Information technology—Database languages—

SQL multimedia and application packages—Part 3: Spatial. ISO/IEC 13249–3:2011 (2011)
13. Obe, R., Hsu, L.: PostGIS in Action. Manning, Stamford, CT (2011)
14. Mongodb: http://www.mongodb.org/ (2014). Accessed Jan 2014
15. Idreos, S., Groffen, F.E., Nes, N.J., Manegold, S., Mullender, K.S., Kersten, M.L.: MonetDB: Two

decades of research in column-oriented database architectures. IEEE Data Eng. Bull. 35(1), 40–45
(2012). http://oai.cwi.nl/oai/asset/19929/19929B.pdf. Accessed Jan 2014

16. Baumann, P., Dehmel, A., Furtado, P., Ritsch, R.,Widmann, N.: Themultidimensional database system
rasdaman. In: Proceedings of the 1998 ACM SIGMOD International Conference on Management of
data, SIGMOD ’98, pp. 575–577. ACM, New York, NY (1998). doi:10.1145/276304.276386

17. Brown, P.G.: Overview of scidb: large scale array storage, processing and analysis. In: Proceedings
of the 2010 ACM SIGMOD International Conference on Management of data, SIGMOD ’10, pp.
963–968. ACM, New York, NY (2010). doi:10.1145/1807167.1807271

18. Zhang, Y., Kersten, M.L., Manegold, S.: SciQL: array data processing inside an RDBMS. In: Pro-
ceedings of ACM SIGMOD International Conference on Management of Data 2013, pp. 1049–1052.
ACM, New York, NY (2013). http://oai.cwi.nl/oai/asset/21401/21401A.pdf. Accessed Jan 2014

19. Cugola, G., Margara, A.: Processing flows of information: from data stream to complex event process-
ing. ACM Comput. Surv. 44(3), 15:1–15:62 (2012). doi:10.1145/2187671.2187677

20. Arasu, A., Babu, S., Widom, J.: The cql continuous query language: semantic foundations and query
execution. VLDB J. 15(2), 121–142 (2006). doi:10.1007/s00778-004-0147-z

123

http://www.opengeospatial.org/standards/om
http://www.opengeospatial.org/standards/om
http://www.opengeospatial.org/standards/sensorml
http://www.opengeospatial.org/standards/sos
http://dx.doi.org/10.1007/978-3-540-87877-3_5
http://dx.doi.org/10.1007/978-3-540-87877-3_5
http://dx.doi.org/10.1016/j.websem.2012.05.003
http://dx.doi.org/10.1016/ j.ecoinf.2007.05.004
http://dx.doi.org/10.1007/s10619-010-7074-3
http://dx.doi.org/10.1007/s10619-010-7074-3
http://dx.doi.org/10.1145/1061318.1061322
http://dx.doi.org/10.1145/1061318.1061322
http://dx.doi.org/10.1002/047134608X.W4317
http://dx.doi.org/10.1093/comjnl/bxh136
http://www.mongodb.org/
http://oai.cwi.nl/oai/asset/19929/19929B.pdf
http://dx.doi.org/10.1145/276304.276386
http://dx.doi.org/10.1145/1807167.1807271
http://oai.cwi.nl/oai/asset/21401/21401A.pdf
http://dx.doi.org/10.1145/2187671.2187677
http://dx.doi.org/10.1007/s00778-004-0147-z


Distrib Parallel Databases (2016) 34:65–99 99

21. Jain, N.,Mishra, S., Srinivasan, A., Gehrke, J.,Widom, J., Balakrishnan, H., Çetintemel, U., Cherniack,
M., Tibbetts, R., Zdonik, S.: Towards a streaming sql standard. Proc. VLDB Endow. 1(2), 1379–1390
(2008). http://dl.acm.org/citation.cfm?id=1454159.1454179. Accessed Jan 2014

22. Apache cassandra: http://cassandra.apache.org/ (2014). Accessed Jan 2014
23. Voltdb: http://voltdb.com/ (2014). Accessed Jan 2014
24. Vertica: http://www.vertica.com/ (2014). Accessed Jan 2014
25. Stonebraker, M., Abadi, D.J., Batkin, A., Chen, X., Cherniack, M., Ferreira, M., Lau, E., Lin, A.,

Madden, S., O’Neil, E., O’Neil, P., Rasin, A., Tran, N., Zdonik, S.: C-store: a column-oriented dbms.
In: Proceedings of the 31st International Conference on Very Large Data Bases, VLDB ’05, pp. 553–
564. VLDB Endowment (2005). http://dl.acm.org/citation.cfm?id=1083592.1083658. Accessed Jan
2014

26. Schut, P.: OpenGISWeb Processing Service. Open Geospatial Consortium (OGC) (2007). http://www.
opengeospatial.org/standards/wps. Accessed Jan 2014

27. Cerveira Cordeiro, JaP, Câmara, G., Moura De Freitas, U., Almeida, F.: Yet another map algebra.
Geoinformatica 13(2), 183–202 (2009). doi:10.1007/s10707-008-0045-4

28. Date, C.J., Darwen, H., Darwen, H.: Temporal Data and the RelationalModel: ADetailed Investigation
into the Application of Interval and Relation Theory to the Problem of Temporal. Kaufmann series in
data management systems, 1st edn. Morgan Kaufmann Publishers, Inc., San Francisco, CA (2002)

29. Snodgrass, R.T. (ed.): The TSQL2 Temporal Query Language. Kluwer, Philip Drive Norwell, MA
(1995)

30. Kulkarni, K., Michels, J.E.: Temporal features in SQL:2011. SIGMOD Rec. 41(3), 34–43 (2012).
doi:10.1145/2380776.2380786

31. Vaisman, A., Zimányi, E.: A multidimensional model representing continuous fields in spatial data
warehouses. In: Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems, GIS’09, pp. 168–177. ACM, New York, NY (2009). doi:10.1145/
1653771.1653797

32. Güting, R.H., Böhlen, M.H., Erwig, M., Jensen, C.S., Lorentzos, N.A., Schneider, M., Vazirgiannis,
M.: A foundation for representing and querying moving objects. ACM Trans. Database Syst. 25(1),
1–42 (2000). doi:10.1145/352958.352963

33. Viqueira, J., Lorentzos, N.: Sql extension for spatio-temporal data. VLDB J. 16(2), 179–200 (2007)
34. Baumann, P., Holsten, S.: A comparative analysis of arraymodels for databases. In: Kim, Th, Adeli, H.,

Cuzzocrea, A., Arslan, T., Zhang, Y., Ma, J., Chung, Ki, Mariyam, S., Song, X. (eds.) Database Theory
and Application, Bio-Science and Bio-Technology, Communications in Computer and Information
Science, pp. 80–89. Springer, Berlin (2011). doi:10.1007/978-3-642-27157-1_9

35. Gray, P.M.D.: The Functional Approach to Data Management: : Modeling, Analyzing, and Integrating
Heterogeneous Data. Springer, Berlin (2004)

36. Sagan, H.: Space-Filling Curves. Springer, Berlin (1994)
37. Abadi, D., Madden, S., Ferreira, M.: Integrating compression and execution in column-oriented data-

base systems. In: Proceedings of the 2006 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’06, pp. 671–682. ACM, New York, NY (2006). doi:10.1145/1142473.1142548

38. Harizopoulos, S., Shkapenyuk, V., Ailamaki, A.: Qpipe: A simultaneously pipelined relational query
engine. In: Proceedings of the 2005ACMSIGMOD International Conference onManagement of Data,
SIGMOD ’05, pp. 383–394. ACM, New York, NY (2005). doi:10.1145/1066157.1066201

39. Abadi, D., Myers, D., DeWitt, D., Madden, S.: Materialization strategies in a column-oriented dbms.
In: Proceedings of the IEEE 23rd International Conference on Data Engineering, ICDE 2007, pp.
466–475 (2007). doi:10.1109/ICDE.2007.367892

123

http://dl.acm.org/citation.cfm?id=1454159.1454179
http://cassandra.apache.org/
http://voltdb.com/
http://www.vertica.com/
http://dl.acm.org/citation.cfm?id=1083592.1083658
http://www.opengeospatial.org/standards/wps
http://www.opengeospatial.org/standards/wps
http://dx.doi.org/10.1007/s10707-008-0045-4
http://dx.doi.org/10.1145/2380776.2380786
http://dx.doi.org/10.1145/1653771.1653797
http://dx.doi.org/10.1145/1653771.1653797
http://dx.doi.org/10.1145/352958.352963
http://dx.doi.org/10.1007/978-3-642-27157-1_9
http://dx.doi.org/10.1145/1142473.1142548
http://dx.doi.org/10.1145/1066157.1066201
http://dx.doi.org/10.1109/ICDE.2007.367892

	SODA: A framework for spatial observation data analysis
	Abstract
	1 Introduction
	2 Related work
	2.1 OGC SWE standards
	2.2 Observation data models
	2.3 Geographic information systems (GIS)
	2.4 Sensor stream processing approaches
	2.5 Spatial and spatio-temporal DBMSs
	2.6 Spatial NoSQL approaches
	2.7 Spatial high performance data warehouse approaches
	2.8 Array data managers
	2.9 SciQL
	2.10 SODA

	3 Observation data warehouse
	3.1 Underlying spatio-temporal data model
	3.1.1 Data types
	3.1.2 Intensional mappings
	3.1.3 Extensional mappings

	3.2 Observation data model
	3.2.1 Feature types
	3.2.2 Process types


	4 Spatial observation data analysis
	4.1 Mapping analysis language
	4.2 Definition of analytical processes

	5 Column-oriented implementation issues
	5.1 SODA architecture
	5.2 Physical data representation
	5.2.1 Light weight compression
	5.2.2 Ordering
	5.2.3 Standardized data interchange

	5.3 Query processing
	5.3.1 Physical algebra
	5.3.2 Pipeline implementation


	6 Conclusions and further work
	Acknowledgments
	References




