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Abstract The widespread use of GPS navigations and trip planning on web has
aroused considerable interests in fast and scalable path query processing. Existing
research has mostly focused on static route optimization where the traffic network is
assumed to be stable. Nevertheless, in most cases, route planning is in the presence of
frequent updates to the traffic graph due to the dynamic nature of traffic network, and
such updates always greatly affect the performance of route planning. Most existing
methods, however, cannot efficiently support traffic aware route planning. In this paper,
two efficient strategies are proposed to handle this problem. We analyze the traffic con-
dition on the road network and explore spatio-temporal knowledge to guide effective
route planning. In particular, several effective techniques are employed to avoid both
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unnecessary calculations on huge graph and excessive re-calculations caused by traf-
fic condition updates. A comprehensive experiment is also conducted to evaluate the
performance of our proposed strategies.

Keywords Route planning · Road networks · Road hierarchy · Dynamic road
networks · Spatio-temporal analysis · Query processing

1 Introduction

With the decreasing manufacturing cost and increasing population, the number of
automobiles in most big city surges significantly in recent years. In contrast, few of
those cities have carried out significant improvement on the underlying road network
facilities. As a result, the traffic problem is becoming greatly intensified, e.g., people
in Beijing (China) spend almost two hours on traffic everyday in average, according
to the latest report. This phenomenon has aroused wide interests in real time route
search for various applications such as travel navigation and logistics. In this paper,
we propose two solutions to find out the fastest route in dynamic road networks.

Most of existing route planning algorithms, for either travel distance or travel time
optimization, are generally based on a static graph, meaning that actual road condition
changes cannot be considered in the route planning process. However, a basic feature
of road network is its high dynamics. As shown in Fig. 1, the best route planned (the
green line in Fig. 1a could turn out to be slow 10 min later in the rush hours. Thus,
it is important to achieve traffic aware route planning like Fig. 1b does, such that the
planned route can be efficiently adjusted when necessary to guide users bypass new
congestions. We aim to handle this problem in this paper in order to help users who
tend to get stuck in the peak hour traffic congestions.

The main challenge of traffic aware route planning comes from the expensive com-
putational overhead. For instance, on the Beijing road network that contains over
40,000 links, even a single calculation for the fastest path search would cost iCarTel
several seconds. Since the road condition frequently changes in rush hour, it is obvi-
ously not realistic to re-plan the whole path for each road condition update, especially
when the number of concurrent queries grows. Therefore, it is crucial to improve
classical shortest path search algorithms, and to find ways for avoiding the time of
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Fig. 1 Illustration of route planning. a Illustration of route planning, b revised earliest arrival route
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re-computation caused by the dynamics of road condition. Due to the huge complexity
of this problem, we aim to explore near-optimal solutions in an efficient and practical
manner.

However, route planning on dynamic road networks needs to address two major
challenges. The first challenge comes from real time response, which requires the
query to be processed in a small search space; and the second challenge is that the
road condition updates may cause excessive re-calculations. We would like to tackle
these challenges by proposing two approaches in this paper. The first method is called
the incremental route search (IRS) strategy. The main idea of IRS strategy is to filters
out all faraway road segments, and to compute a partial path each time towards some
selected intermediate destinations based on some criteria. The second approach is
referred to as the hierarchical route search (HRS) strategy, which generates small
search graph based on the hierarchical road network, and then computes the fastest
path on it. To sum up, the key contributions of this paper are summarized as follows:

• We solve the traffic aware route planning. By adapting to the traffic condition
changes, our methods can guide drivers to bypass the new congestions and to follow
the best route in dynamic road networks continuously.

• We develop two novel approaches to process the fastest path queries in a small
sub-graph every time. Computational cost is significantly reduced to support real
time feedback of route queries, especially for the long distance queries.

• We take into account several features such as road hierarchy and driving flexibility
of selected path to find out a reliable route in the presence of high dynamics of
traffic condition in peak hours.

• We conduct extensive experimental evaluation to demonstrate the performance of
our proposed algorithms in different traffic settings.

It is worth noting that, a continuous route planning method was proposed in [20], with
a basic idea to store k best paths between any two vertexes offline based on some speed
patterns, and to find the online best path by ranking the k best from current position to
destination. It is a very practical solution from the system point of view, but it requires
the speed pattern to be very accurate, because good paths cannot be found otherwise
as it is not covered in the k best paths. Instead, our solutions are not based on the
assumption that road conditions always follow some particular speed patterns as [20],
and the IRS and HRS strategies are thus more robust to the dynamics of traffic for
finding reliable paths.

The rest of this paper is organized as follows. We review the related work in Sect. 2.
Section 3 describes the model and problem studied in the paper. Section 4 presents the
preliminaries. Sections 5 and 6 elaborate the IRS and HRS strategies respectively for
the route planning over dynamic road networks. Extensive experimental results and
our findings are reported in Sect. 7. Section 8 concludes the paper with some directions
for the future work.

2 Related work

Shortest path search is a classical problem with several typical solutions like Dijkstra,
A* and its variation [16,19], which traverses the road network nodes in ascending order
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of their distance from query position, and runs in O(nlogn+m) time by using Fibonacci
heap. Recently, many literatures like highway hierarchies (HH) [9,25], contraction
hierarchies (CH) [2,9], transit-node routing (TNR) [1], network indexing [3,23,24,
27], landmark [10], and estimation [22] algorithms try to exploit the hierarchical
structure of road network in a pre-processing step, and then properly use it to speed up
the search. HH and CH are based on shortcut techniques, i.e., some paths in the original
graph are represented by some shortcut edges. To answer a query, a bi-directional
search is executed on the overlay graph that constitute of the shortcuts and some edges
in the original graph. As the shortcuts are the only extra structure stored in the index,
the construction is relatively fast as compared to other index approaches. TNR is a
method that makes use of the observation that a driving path usually passes one of a few
important transit nodes. Though HH, CH and TRN also run in O(nlogn+m) time, the
search process can be significantly accelerated because of their much less search space.

More recently, some other major efforts related to this topic mainly include prob-
abilistic path queries [13], dynamic k-NN [21], path oracles and efficient processing
[7,8,26], skyline queries [5,17], trip planning with multiple destinations [18] and
complex road network structure [14,29]. In particular, in [26], part of the shortest path
distances called path oracles is pre-computed to answer approximated shortest path
query in O(log|V |) time and O( |v|

ε2
) space, where ε is the error bound of approx-

imation. Nevertheless, they rely on heavy pre-processing, and are thus not suitable
for dynamic scenarios where the road network topology or edge weights (e.g., when
denoting the time to pass through a road segment) are greatly changed.

However, the above distance based approaches do not consider the actual road con-
dition in the route planning, and as a result, they cannot provide satisfactory planning
results in most cases. Recently, increasing attentions have been put on time-dependent
shortest path search problem, where the shortest path search is based on a dynamic
graph due to the ever changing of edge weight (i.e., the time required to pass this
road). Classical algorithms like D∗ can be used to find the shortest path continuously
on dynamic graph, but they are essentially low-efficient solutions for traffic planning
scenarios because of the frequent speed updates. Some time-dependent route search
mechanisms were proposed in recent years [6,11,12,15], and most of them are pattern
based approach, which assumes that some knowledge or speed patterns about traffic are
available, and then makes use of such speed patterns to find the fast paths to destination.

Gonzalez et al. [11] proposed a traffic mining based fastest path search approach.
It uses mining techniques to derive frequent driving patterns, and then computes the
adaptive fastest path based on the match pattern. Route update is made when the
matched pattern switches. Ding et al. [6] studied the time-dependent shortest path
problem, with a Dijkastra based algorithm proposed to find the best departure time
and fastest path over the network, according to the speed pattern based on statistically
average road condition in different time intervals. Also, a critical-time-point approach
was presented in [12] to generate best routes and their corresponding time intervals,
and the issue of finding the fastest paths on a road network with speed patterns was
discussed in [15]. Nevertheless, these methods only rely on the speed patterns derived
from traffic data, which indicates, the searched path is unlikely to be optimal since the
real time information on road condition is not considered.
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Table 1 Symbols and
descriptions

Notation Description

ind(v), outd(v) The in-degree and out-degree of vertex v

L A road network hierarchy set

lv(e) The hierarchical level of a road segment e

π(i) A set of road segments of the hierarchical level i

C Road condition

S se ∈ S is the speed on a road segment e
under a road condition

T te ∈ T is the required time for passing a road
segment e under a road condition

traffCond(t) The traffic condition of time t

src, dist Source vertex and destination vertex of a
route query

More recently, some novel route planning approaches considering real-time road
condition are proposed. Malviya et al. [20] targeted to answer continuous route plan-
ning queries over a road network in the presence of speed updates on road segments.
Its basic idea is to calculate k fastest paths (based on speed patterns) between any
two vertexes with variance guarantee at the build time, and then to keep ranking the
k fastest paths from current position to destination at the run time. Also, a heuristic
based bidirectional route planning algorithm was proposed in [4] to speed up the search
process. However, the aforementioned approaches require huge computational over-
head, and hence, they are not feasible for the applications where the road conditions
are frequently updated.

Note that, we conducted preliminary work on the route planning in a dynamic traffic
network [28]. Based on this work, in this paper, we present two novel route search
strategies on the hierarchy of dynamic road networks.

3 Problem statement

In this section, we give a formal description of traffic aware route planning. Table 1
lists the symbols used frequently in the rest of this paper. Several definitions based on
the traffic network are presented to specify the problem we intend to address in this
paper:

Definition 3.1 (Road Network) A road network is defined as a directed graph
G =< V, E >, in which V = {v} is the set of vertices representing road ends or
intersections, and E = {(vi , v j |vi , v j ∈ V } is the set of (directed) edges represent-
ing road segments. For each vertex v, ind(v) and outd(v) indicate the in-degree and
out-degree of v according to the topology ofG respectively. Given a route r with the set
r.V of all vertices it passes, the in-degree of r is defined as IND(r) = ∑

v∈r.V ind(v)

and out-degree is defined as OUTD(r) = ∑
v∈r.V outd(v). For each edge e, we use

name(e) to denote its road name (e.g., ‘Elizabeth Street’), and lanes(e) to denote the
number of lanes on e.

The in-degree and out-degree of vertices are important attributes for route planning.
Given a vertex v, congestions are more likely to occur on v if ind(v) is high due to
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its influx of traffic flow. In contrast, vertices with high out(v) are preferred because
drivers have more (outgoing) paths to choose from. Such flexibility is very useful to
bypass the new congestion that may occur ahead.

Definition 3.2 (Hierarchy of Road Segments)The road network may have hierarchical
structure, where the road segments are classified into different hierarchical levels L=
{1, 2, …}, in which level 1 is the lowest. Given a road segment ewith name n= name(e),
the average lane number of all road segments having name n can be calculated as

AvgLanes(n) =
∑

e′∈RD(e)

lanes(e′)/|RD(e)|

where RD(e) is the set of road segments {e′|name(e′) = name(e)} having the same
name (e.g. ‘Queen Street’) with e. We can further measure its hierarchical level lv (e)
of road segment e according to the AvgLanes(n) based on the name of e as:

lv(e) = round(AvgLanes(name(e)))

where function round returns the closest integer value of average number of lanes.
In this model, all road segments belonging to the same road are considered as at

the same level. We reckon that the major roads (i.e., important and reliable roads) are
those at higher hierarchical level. Function π(i) returns the set of edges belonging to
level i .

Definition 3.3 (Road Condition) The road condition of a road network can be
expressed by C =< S, T, D >, where S and T are the speed and required travelling
time for road segments, and D denotes the time duration when this road condition is
valid. Given a road segment e, the speed on e is represented as se ∈ S, and the time
required for passing e is te ∈ T . Given a time t , we use function traffCond(t) to return
the road condition C satisfying t ∈ C.D.

Definition 3.4 (Route Query) In a dynamic road network G, a route query is defined
as qry = <src, dst>, where src is the source vertex and dst is the destination vertex
specified by users. We use this format as standard query type in this paper. In our
system, users can also input <src, dst, “no”> to answer the fastest route query without
continuous monitoring.

Problem Definition We target to solve the problem of traffic aware route planning
which is formally defined as: Given a route query qry = <src, dst> on a road network
G =< V, E >, with possible road condition updates C0, C1, C2, …, we process the
query for a continuous optimal path (route) pth= (vs , v, v′, …, vt ) on this dynamic road
network that satisfies the following spatio-temporal optimisation goals and constraints:

(1) Spatial constraints: source vertex vs =src and destination vertex vt =dst;
(2) Traffic condition constraints: route planning is subject to the actual road condition

and its continuous updates;
(3) Optimisation goal: The total travel time should be minimized. That means, any

route pth′ = (src, …, dst): total travel time
∑

e∈pth time(e) ≤ ∑
e∈pth′ t ime(e).

(4) Continuous optimisation: the result should be updated as optimum when the traffic
condition environment changes.
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This problem is computationally hard due to the huge scale of graph (i.e., a road
network) and the continuous re-calculation caused by the excessive traffic condition
updates on this graph. However, GPS navigation requires efficient query processing for
immediate response. Therefore, an efficient approach is highly sought after to tackle
this problem.

4 Preliminaries

In this section, we review the preliminaries of shortest path search, graph reduction, and
road condition monitoring in Sects. 4.1, 4.2 and 4.3, respectively. Note that effective
shortest path search and graph reduction are essential issues of route planning.

4.1 Shortest path search (A* algorithm)

The shortest path search on graph is a classical topic and Dijkstra algorithm is a
fundamental algorithm commonly used to solve it. Many approaches were designed
to improve Dijkstra algorithm, and the most famous one is A* algorithm. It adopts
the hill climbing method, and the ordering of search is based on the function f (x) =
g(x) + h(x), where g(x) denotes the exact distance from source vertex to current
vertex x and h(x) is an estimated distance (also the strict upper bound of the distance)
to destination vertex.

A* algorithm is usually adopted to find the shortest path on a static (current) graph.
To avoid over-estimation, the distance and time used for computing heuristic estimation
h(x) are ‘as-the-crow-flies’ distance and maximum speed limit on the road segments
respectively. This approach costs O(m+nlogn) time, where m is the number of edges
and n is the number of vertices. However, A* algorithm is not effective for time-
dependent shortest path cases because the maximal speed limit is used in estimation (to
guarantee h(x) is not over-estimated). As A* heuristic is not sensitive to the actual road
condition, earliest arrival query processing on a large graph turns to be very inefficient,
particularly when the traffic is heavy. To ensure that time-dependent queries can be
efficiently responded, our approach seeks to reduce the size of n, so that a route query
can be processed in a small sub-graph each time to improve efficiency.

4.2 Graph reduction

Although A* algorithm is very effective for the shortest distance query, its performance
is usually poor for earliest arriving route queries on a large graph. This is caused by the
fact that traffic conditions cannot be used in the A* heuristics to guide route search.
Moreover, the continuous monitoring on the dynamic traffic network must be restricted
in a relative small sub-graph. Therefore, graph reduction techniques can be used to
ensure that route queries can be efficiently processed.

Graph reduction is applied in [20] to facilitate the shortest path algorithm for
dynamic transportation networks. It reduces the whole space to an ellipse region,
and then monitors the road condition change in this region. Only road segments in this
region are admissible for route planning. Selected route is updated when the change
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in this region reaches a threshold because it may not be optimal since then. However,
these approaches are too mechanical since they only consider the locations of source
vertex and destination vertex. In Sect. 5, we propose a set of spatio-temporal feature
based techniques to shrink the search space for each computation.

4.3 Road condition monitoring

As the dynamics of traffic network is a core issue for location based service optimi-
sation, making use of information about updates of road condition in a close area is
essential for achieving traffic-aware route planning. Many previous efforts have been
endeavoured to address this problem. Among the existing approaches, the most practi-
cal solution is the technique used in [20], which sets up a relative region first, and then
checks if the number of segments with delay updates that locate inside the region for
a route query exceeds the average number of segments locating inside this region. If it
is true, the re-run of the shortest path computation (by A* algorithm) is invoked then.
In this paper, we adopt this basic idea, and propose an efficient monitoring approach
to guarantee that the selected route can be properly updated.

5 Incremental route search (IRS) strategy

In this section, we present an IRS strategy that keeps finding efficient partial paths,
so that excessive re-calculations on faraway road segments caused by the frequent
road condition updates can be avoided. In Sect. 5.1, we conduct a basic graph reduc-
tion to improve planning efficiency. Then top-k intermediate destinations are selected
according to several spatio-temporal criteria in Sect. 5.2. Afterwards in Sect. 5.3, route
planning is conducted towards the top-k intermediate destinations. In this way, we can
avoid re-calculation on faraway road segments due to high possibility of speed change.
Finally, the monitoring technique for the adaptation of route planning to dynamic road
conditions is introduced in Sect. 5.4.

5.1 Initialization

In the initialization phase, we conduct a basic graph reduction to settle a small sub-
graph as the region relative to route query processing: an ellipse region G ′ shown in
Fig. 2 is efficiently derived from the whole space G in the same way as [20]. Only the
road segments in this region are considered as relevant to route planning. However,
as only positions of source vertex and destination vertex are considered, this ellipse
region is very likely to be over-sized, and we only utilize it to set a base for route
planning operations used in remaining sections.

5.2 Top-k intermediate destinations

In traditional approaches, a path strictly from source to destination is usually planned
in each time. Nevertheless, it is not effective for earliest arriving route search because
the frequent updates on road condition are likely to cause excessive re-calculation,
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Fig. 2 Basic graph reduction
(default ellipse region)
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Fig. 3 Illustration of intermediate destination selection. a Intermediate destination, b evaluation criteria

especially on faraway road segments. For example, if congestion occurs on a road
segment that is part of planned route, re-planning is needed to guarantee service quality.
For efficiency purpose, it is thus reasonable to plan partial path in a limited scope, rather
than plan the whole route. Re-calculations caused by dynamic road condition can be
significantly reduced accordingly. To set the boundary of route search properly, we
must select some intermediate destinations as shown in Fig. 3a, toward which effective
route planning is conducted afterwards.

The selection of intermediate destinations must follow a set of spatio-temporal
standards. First of all, the direction from source vertex to intermediate destination
has great evaluating merit. The direction to intermediate destination is expected to be
consistent with that to final destination. Assume that ang ((vs, vx ), (vs, vd)) is the
angle of two straight lines (vs → vx ) and (vs → vd), e.g., ‘c1’ in Fig. 3b, it can be
seen as the difference between direction to the intermediate destination and direction
to the final destination. We definitely prefer small angle due to less difference. To
ensure the direction to be consistent, only angles in [0, 90◦] are accepted. Given that
cos(θ ) is the cosine value of an angle θ , which is in reverse proportion to the degree of
ang. To evaluate the direction preference of selecting vx as intermediate destination,
we use dw(vx ) to measure the direction weight of vx as:

dw(vx ) = cos(ang((vs, vx ), (v
,
xvd)))

Meanwhile, the position of a vertex regarding to source and destination is an important
criterion according to ‘c2’ of Fig. 3b. A faraway intermediate destination may cause
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excessive re-calculation due to the frequent updates on traffic condition. Furthermore,
the distance should not be too close as the global view is neglected: it is hard to satisfy
global optimisation when partial path search is made toward an intersection 200 m
away. To achieve a good balance between reducing re-calculation (not too faraway)
and achieving global optimisation (not too close), we use position weight pw(vx ) to
measure intersection vx as intermediate destination as:

pw(vx ) = tmax − |h(vs, vx )) − tbest |
where h(vs, vx ) denotes the average travel time for the ‘as-the-crow-flies’ distance
(e.g., 10 miles) from vs to vx on the current issue time (e.g., 7PM). Statistical data is
used here. tmax is the upper bound of h(vs, vx ) for pruning faraway vertices, and tbest
is the time of favoured distance based on statistics.

Another important criterion for evaluating intermediate destinations is the flexibility
of future driving. According to ‘c3’ of Fig. 3b, high flexibility means better capability
for exception handling, e.g., to bypass new occurred congestions. Driving flexibility
of an intermediate destination is determined by a set of spatio-temporal features. It
is obvious that more out-going paths from an intersection give us more flexibility
to choose. Among out-going edges, those in the same direction to final destination
are definitely preferred. Wrapping up these issues, the flexibility weight fw(vx ) for
selecting vertex vx as intermediate destination is calculated as:

f w(vx ) =
∑

v∈FV (vx )

cos

(
ang((vx, v), (vx, vd))

2

)

where FV(vx ) = {v | edge e = (vx , v) ∈ E} is the set of forward vertices of vx , θ =
ang((vx , v), (vx , vd)) is the angle of two straight lines vx → v and vx → vd . More
out-going edges give drivers greater flexibility of route selection. For each out-going
edge to v from vx , we prefer θ to be small since its direction matches the required one.
The cosine value is in reverse proportion to the angle size θ in range of θ ∈ [0, 90◦]. We
thus use it to evaluate the preference of out-going paths regarding to moving direction.

To select proper intermediate destinations, issues mentioned above like spatial
features and driving flexibility must be considered, as they benefit us to reduce re-
calculations and to be more reliable under dynamics. In particular, the selectivity of
intermediate destinations follows the following criterion:

w(vx ) = dw(vx )/cd + pw(vx )/cp + f w(vx )/c f

Where dw(vx ) is the direction weight, pw(vx ) is the position weight, fw(vx ) is the
flexibility weight. Factors cd, cp and cf represent the average direction weight, posi-
tion weight and flexibility weight of all vertexes in the relevant ellipse respectively.
Thus, only vertices satisfying w(vx ) ≥ 3 are qualified as intermediate destination.
By ranking w(vx ) on vertices that meet this requirement and do not belong to the
congested region, k best vertices and the final destination are selected as the set of
intermediate destination candidates, denoted as IDC. Route search is then conducted
towards vertices in IDC. If no intermediate destination candidate can be detected, A*
algorithm is used to search time-dependent shortest path to final destination vd .
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5.3 Route search

Route search is made to find a path (partial route) to one of the top-k intermedi-
ate destination. We propose a novel algorithm to search the partial route efficiently.
Given a partial path, we measure its cost as the sum of exact time from source vertex
to intermediate destination and the lower bound of time required from intermedi-
ate destination to final destination (based on the Euclidean distance and maximal
speed allowed). Lower bound is used here to compress the search space by filter-
ing. Details of the (partial) route search toward intermediate destinations are given as
follows.

Algorithm 1 is an efficient partial path search strategy. Compared with the con-
ventional shortest path search, the optimization here is made for krather than just one
candidate, and the route returned is a partial one. Set PV contains all the processed
vertices, in which the earliest arrival time from source vertex is known and recorded
in SP. Set AV contains un-processed vertices adjacent to PV, and the search process is
made on a vertex in AV each time.

For each vertex in adjacent vertex setAV, the minimal time required to travel through
this vertex to destination is calculated in Lines 8–10, where LowBDTime(v, v′) is the
lower bound of the time required to pass v and v′ to destination, time(SP→ v) is the
shortest time from source vertex to v (refer shortest path record in SP), disEU (v, vd)

is the Euclidean distance from v to destination, and Speedmax is the possible max-
imal speed of the road network. Variable LowBound is the minimal time required
to pass a vertex in AV to destination, and it is updated if we find v having LowBD-
Time (v, v′) <LowBound (Line 11). A vertex pair vi ∈PV and v j ∈AV that satisfies
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EstmTime(vi , v j ) = MinTime is selected in Line 13. As v j has the minimal (esti-
mated) time to destination among un-processed vertexes, we include the path shortest
path to v j in SP, and update the PV and AV set in Lines 14–16. If v j is one of the
intermediate destinations, the partial path SP→ v j is added to candidate path set PC
(Line 18). This procedure continues until over half of intermediate destinations are
reached.

Then we need to select the best path among several path candidates stored in setPC.
The best path is selected by function selectFromPaths(PC) in Line 22. Road structure
features and estimated travel time of the paths are considered by this function. Then
we calculate the total number of outgoing paths o = OUTD(pth), the total travel time
t and the average lane number l of road segments on pth, and select the one with the
minimal value of

√
o × l/t (more driving flexibility and less travel time) to return as

the partial route to go.

5.4 Monitoring and update

Due to the high dynamics of road condition in rash hour, it is essential to monitor the
road condition and react to the relevant updates on it. In the IRS strategy, we conduct
road condition monitoring in the same way as [20]. On arrival of delay updates, we
check if the number of road segments affected by the updates that lie inside the pre-
computed ellipse for a routing query is larger than ε (a threshold) times the average
number of segments lying inside an ellipse of this area. If so, we simply re-run the
intermediate destination and route search and return a real-time optimal path to the
end user. In this way, computational overhead for the continuous monitoring can be
significantly reduced.

6 Hierarchical route search (HRS) strategy

The path derived from IRS strategy each time is a partial one, but this does not
meet the expectation of users sometimes, and causes extra cost on monitoring. To
tackle this problem, we further introduce a novel HRS strategy. To reduce com-
putation overhead, the basic idea of HRS is to plan the route and monitor it on a
compressed (rather than the whole) road network. The construction of compressed
road network is query aware (i.e. subject to query point and destination). To ensure
robust good route can be efficiently found in it, we tend to keep the useful road seg-
ments based on some measures, e.g. the fast roads in close region and the major
roads in distant region. In addition, we collect and use the road condition change
information subject to the compressed road network to adjust the planned route
rationally.

Specifically, we introduce the pre-processing in Sect. 6.1, which includes hierar-
chical road network partition and indexing. Afterwards, we discuss how to generate
a search graph with suitable size subject to a route query in Sect. 6.2, and efficiently
process a route query on that search graph in Sect. 6.3. In this way, a proper whole
path to final destination can be computed in real time. We then discuss how to achieve
route monitoring and to conduct route updates properly in Sect. 6.4.
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6.1 Pre-processing

In the pre-processing step, we partition the road network based on its hierarchical
structure, and create index to facilitate efficient access on sub-graph information.

Towards the offline the road network partition, we start from the highest hierarchical
level lv, and find the set of undirected edges in this level Elv = {(v, v′)|(v, v′)π(lv) or
(v′, v)π(lv)} first. Then we partition the whole space based on Elv as follows: (1) first,
we detect all of the rings subject to the undirected edges in Elv (each ring denotes a
sub-graph); (2) for each ring, to retrieve road segments and find those spatially inside
it to construct a sub-graph, and these graphs are spatially coherent and only share
boundary edges belonged to Elv . All edges not inside a ring are integrated as a sub-
graph; (3) then for each sub-graph, the partition on it is further conducted as above
based on road segments in level no less than lv − 1; This procedure continues until it
reaches a level that should stop.

Along with the road network partitioning, we also construct a hierarchical index
to preserve the hierarchical relation of different parts, so that efficient access can be
achieved. The format of a hierarchical index node n is n =<id, level, pred, succ, VE,
mbr>, where id, level, pred, succ are the ID, index level, predecessor and succes-
sors of node n (based on partitioning operation), and VE is the visible edge set may
appear when this node is included. That is, assume we derive a sub-graph sg through
partitioning based on road segments in level i , then only road segments in the next
level (i.e. in level i−1) can be added to VE. Based on VE, we can find its mbr, i.e. the
Minimum Bounded Rectangle (MBR) of VE.

For each hierarchical index node n, we can easily find its border intersections
after partition, where the border intersections BOR(n) of a node n is defined as its
intersections that also belongs to one or more sibling nodes of n in the hierarchical
index. In addition, we use spd(n, C) to reflect the road condition in the region (subject
to its visible edges VE) under a road condition C , and dist(curr, Gi ) to denote its
distance to the current position curr, and they are calculated as:

spd(Gi ,C) =
∑

e∈Ei
C.se

|Ei |
dist (curr, n) =

∑
v∈BOR(n) disEU (v, curr)

|BOR(n)|

where C.se is the speed of road segment e under the road condition C , and disEU (v,
curr) is the Euclidian distance from a given vertex v (border intersection) to the cur-
rent position curr. Such index and features are used in the search graph generation for
route search.

6.2 Search graph generation for route search

As route planning and monitoring on huge road network is usually inefficient while
real time response is needed, we hope that all operations can be made on a small part
of the road network, i.e. called search graph. The key problem is to find a search graph
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with all useful road segments preserved in despite it is small enough. To achieve this,
we try to explore a suitable search space SG that is formed by the major roads and fast
road segments rationally.

The major challenge comes from the problem how to rank the importance of fast
and major road segments regarding to a given route query. The spatial information is
useful for balancing hierarchy and speed preferences. For the road segments close to
the current position, current traffic status is definitely more important, so that we hope
to keep fast road segments. In contrast, for the faraway road segments, road hierarchical
information usually becomes more important. This is due to the fact that the speed on
these road segments when actually passing it in future may be varied from the current
speed, especially in peak hours. We use these important rules to guide search graph
compression in HRS approach.

Search graph initialization Hence, a basic reduction is conducted as Sect. 5.1 first,
through which a default ellipse region DR is derived (i.e. same as Fig. 2). It is a big
region such that road segments outside are considered as irrelevant to query. Assume
that root is the root node of hierarchical index I in pre-processing step, and succ(n) is
the function to return the set of all successor nodes of a given node n according to the
index hierarchy. For each index node n ∈succ(root) that appears as child of root node
of hierarchical index created in pre-processing step, we get its minimum bounding
rectangle n.mbr. If n.mbr∩DR �= ∅, the visible edges n.VE (i.e. road segments in
highest hierarchical level) of this node and involved vertexes are added to the search
graph SG. Otherwise, the node n is not relevant to query. Also, we continuously add
the hierarchical index nodes for including curr and dstn, so that they can be reachable
via the SG.

After the search graph initialization where only top level hierarchical index nodes
are involved, only the arterial roads (in greatest hierarchy) are included in the search
graph. Obviously that route search cannot be simply carried out on SG because it only
contains major road segments, which are not sufficient to provide a good route search
result. To guarantee the precision of route search, we further expand the search graph
by adding road segments that will appear on the optimal path.

Search graph expansion A divide-and-concur approach is used in HRS strategy to
expand SG for this purpose: we continuously select the hierarchical index node (i.e. a
sub-graph essentially) that is most relevant to route query q, and then apply ‘zoom-in’
to include its visible edges as depicted in Fig. 4b, until a proper search graph such as
Fig. 4c is available for route search. The key problem here is to select a suitable node
in I to include, where some important sub-graph features (e.g., the road condition in
this region and its distance to current position) must be taken into account.

To balance different regions in road segment inclusion, the density of road segments
for the next visible edge inclusion becomes an important feature. If the region is far
away from current location, a node with high density value can tend to be ignored
as we only hope to get a sketched view using major roads. In this paper, the density
dens(n) of a road segment n is defined as

dens(n) =
∑

e∈n.V E Length(e)

si ze(n)
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(a) (b) (c)

Fig. 4 Illustration of road network partition and search graph. a Default road network partition, b sub-graph
‘zoom-in’, c example of search graph

where n.VE is the visible edges of node n (road segments that will appear in search
graph if node n is included), Length(e) is the length of a road segment e, and size(n)

represent the size of the region corresponding to a given node nbased on its visible
edgesn.VE, and so far we use its mbr to compute an approximate value. Note that the
density is a static value so we can calculate it offline, and it thus does not incur real
time processing cost.

The core problem is to balance different factors (e.g., speed, position, direction,
etc.) to select the most important node (i.e. edges) to include. Some global variables

are employed to achieve this. The first variable is SPA =
∑

e∩DR �=φ C.se
|{e|e∩DR �=φ}| , i.e. the average

speed of edges in default ellipse region DR under current road condition C ; the second

variable is the average distance DA =
∑

Gi∈SG dist (curr,Gi )

|{Gi∈SG}| of all relevant hierarchical
index nodes to location curr.

Since the fast roads are preferred in close regions while major roads are preferred
in distant regions, we use DA as the boundary indicator to separate them first. For the
close regions corresponding to node n with dist(n) < DA, we tend to filter out the slow
regions that satisfies spd(n,C) <SPA if at lease k regions remain, or select top-k fastest
close regions otherwise. For the faraway regions such as noden with dist(n) ≥ DA,
we tend to filter out the dense regions whose density is over DA. The filtering can thus
well balance different crucial factors in this way. Additional road segment inclusion
is conducted on the most import region of remaining sub-graphs, the weight of the
sub-graph of hierarchical index node ni for ‘zoom-in’ selected can be calculated as,

Wi = spd(ni ,C) × dens(ni )

dist (curr, ni )

The weight of node ni for inclusion to search graph SG is in proportional to the average
speed of the road segments in this region because users prefer the fast regions than
others. In order to balance the close and faraway regions, Wi is in proportional to the
road segments density in the region ni belongs to. In contrast, Wi is in the reverse
proportion to the Euclidian distance to current position. The reason is that the uncer-
tainty of the speed that users actually pass a road segment increases with its distance
to current position.
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The generation of search graph for future route planning is processed as Algorithm
2. Initially, we find the set of hierarchical index nodes N that are children of root node
(Line 1). Default ellipse region DR is then computed for basic graph reduction (Line
2). For each node ni in N , we calculate the speed, density of this region and the weight
for inclusion selection if its MBR intersects DR (Lines 4–11). Then we derive the total
number of edgesnumOfEdges, average speed SPA and average distance DA of the
current visible search graph. While the number of edge is less than allowed (Line 15),
the set of candidate notes (candidates for ‘zoom-in’ inclusion) CN is derived based
on hierarchy of index I (Line 17). By checking nodes in CN one by one, we filter out
slow ones in close region, dense ones in far-away regions (Lines 18–22), and those
would cause total edge number of VC to exceed expected value ExpNum if we apply
zoom-in operation (Lines 23–24). Thereafter, we select the hierarchical index node
nk with maximal value of weight (Line 26) and update the visible search graph SG
by adding nk into it (Line 27). All the variables are updated afterwards (Line 28) to
continue the visible region inclusion process, and SG is returned for route planning
eventually.
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6.3 Route planning on search graph

Route planning is conducted on the search graph SG after it is generated in Sect. 6.1.
As depicted in Algorithm 3, route search on SG is processed in a similar way as A*,
where heuristic is employed to speed up the search process. As the distant part of
the planned route may not be optimal, we select a vertex on the route afterwards as a
reminder for future route improvement.

Starting from the curr vertex, we continuously include the vertex that has minimal
time.PV is the set of processed vertexes whose minimal travel time is known, andAV is
the set of vertexes that are adjacent to at least one vertex in PV but do not belong to PV
(Lines 1–2). Each vertex inclusion is made in a while loop (Lines 5–14). Specifically,
for each edge connecting vertex v in PV to vertex v′ in AV, we compute the weight
of v′ for inclusion f (v′), which is the lower bound of the time via v′ to destination.
The weight f (v′) contains two parts, where g(v′) means the actual time from curr
to v′, and h(v′) is the lowest time required from v′ to dstn. To guarantee h(v′) does
not over-estimate the time to dstn, we use the Euclidian distance and the maximal
speed allowed in all road segments in calculation. The search process is finished when
the destination is reached, and the fastest route is finally returned to users. Like A*
algorithm, the computational complexity of route search is O(m+n × logn), where
m is the number of edges and n is the number of vertexes. Nonetheless, the route
search is efficiently processed because the scale of graph is restricted to a low level.

However, as the distant sections of the planned route is not the optimal path because
many road segments are filtered out from the visible graph, a verification point on route
must be selected to indicate the validation of current plan. That means, current route
should be revised before this point even though the road condition is unchanged.
In our approach, we scan all vertexes on route in sequential order, and set the first
intersection v as verification point if

∑
e∈SuccSubG(v) lv(e)succSubG(v) is less than a

threshold, where succSubG(v) returns the set of sub-graphs (on SG) to which the path
of route from v to destination intersects. That means, for this partial path (from v to
destination), we should conduct ‘zoom-in’ on the sub-graphs on the path and replan
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Visible Graph

Sub-Graph Sub-Graph

Sub-Graph Sub-Graph Sub-Graph Sub-Graph Sub-Graph

Current Position

Destination

RS RS RS RS RS RS RS RS RS RS
Road 

segment

Planned Route

Fig. 5 The DM-Tree (for route monitoring)

the route to find the optimal path. Current route will be verified when the moving
object is approaching point v.

6.4 Route monitoring and updating on search graph

Road condition monitoring starts immediately after a route is planned (by Algorithm
3). To update the planned route when necessary, we monitor both the current route
and the search graph SG used in route search respectively. Delays on the current route
are seen as reminder for route update (at least update on part of the route). By tackling
road condition changes on SG, we understand the traffic status in close region in order
to estimate if the current path is still optimal.

We frequently check the delays on the current route to detect new congestions,
and the frequency of checking is higher in the close route section. To improve the
effectiveness of route monitoring, we use road network spatial hierarchy to organise
road segments of route to form a delay-monitor tree (DM-Tree), where we apply
continuous monitoring until the current route is updated. As illustrated in Fig. 5,
all road segments of the current route appear on the DM-Tree as leaf nodes, and
non-leaf nodes (i.e., sub-graphs containing at least one road segment) are organised
as a tree according to their spatial hierarchical relationship. For each non-leaf node
n, we use n → SG to denote its corresponding sub-graph on visible graph, and
PT(n,C) to denote the travel time on the partial path inside n → SG based on road
condition C . We update the partial path belonging to a non-leaf if its travel time is
excessively increased: Assume the current route is planned based on road condition
C0, we continuously capture the non-leaf node n with PT(n,C)/PT(n,C0) greater
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than a threshold, and update the partial path in n → SG using A* algorithm on the
current visible graph.

To cope with the high dynamics of traffic, we also keep tackling the road condition
changes on the visible graph, with a frequency lower than route monitoring. For
each sub-graphs Gi in the visible graph, we continuously compute its average speed
spd(Gi , C) under latest road condition C , and measure the need of re-planning at this
moment from its local perspective as score(Gi , C)

score(Gi ,C) =
⎧
⎨

⎩

spd(Gi ,C)−spd(Gi ,C0)
spd(Gi ,C0)

route ∩ Gi = φ

spd(Gi ,C0)−spd(Gi ,C)
spd(Gi ,C0)

route ∩ Gi �= φ

where C0 is the road condition when route was planned in Sect. 6.2. The score equals
to the ratio of speed increased (to original average speed) for sub-graphs intersecting
with the current route, or the decreased speed ratio for other sub-graphs. The reason
is that faster paths are likely to be found if the average speed on the former regions
grows while that value on the latter regions decreases. Therefore, a higher value of
score(Gi , C) means the confidence of vote on route re-planning from the view of
sub-graph Gi .

Then, we compute the average score SC =
∑

G∈VG score(G,C)

|{G∈VG}| of all sub-graphs in
the visible graph, where SC denote the need of route re-planning from the global
perspective. If SC is larger than a threshold, we consider most sub-graphs have agreed
with path adjustment, and thus simply re-plan the whole route from current position
to destination using the HRS mechanism. Otherwise, we only focus on particular sub-
graphs where road condition is greatly changed. In such a sub-graph SGi , assume that
v j and vk are the first and last vertex of part of route in SGi respectively, we adjust
the partial path from v j to vk using A* algorithm in the search space of SGi to ensure
local optimization.

7 Experimental evaluation

In this section, we experimentally evaluate the techniques that have been proposed in
Sects. 5 and 6. Specifically, different approaches (including existing ones) are com-
pared based on three criteria: (1) the number of examined edges in a single query
processing, where we do not consider road condition changes; (2) search accuracy,
i.e., the actual travel time of the users along the whole trip; (3) the total time of the con-
tinuous query processing along the whole trip (consider dynamics of road condition).

7.1 Experimental setup

Our experiments were conducted on a HP Compaq 8180 Elite (i5 650) computer with
2-core CPUs at 3.2 and 1.12 GHz, 4GB RAM and running Windows XP operating
system. We use a road network that contains 226,238 directed edges (road segments)
and 171,187 vertices (intersections). The network graph corresponds to part of the
road network in the city of Beijing, China, and Fig. 6 describes the spatial distribution
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Fig. 6 Sketch of Beijing road network

of our map data. All edges and road segments they are stored with spatial grid indexes.
As the actual speeds of all road segments are not available, we use both real (extracted
from the Taxi trajectory data that can be downloaded at web, only densely distributed
on major road segments) and simulation speed information in this experiment.

Experiments are based on 200 test cases, including 100 cases with constant road
speed (Group 1) and 100 cases with dynamic road speed (Group 2). In the former
cases, we evaluate the performance of single route search, i.e. the response time of
different strategies (A*, IRS, HRS) and accuracy in different speed patterns, to tell
their feedback efficiency to users; For the latter case, we focus on the performance of
continuous route planning, including the number of recalculations, total processing
times at server side, and total travel times of the customer under the planed route.

7.2 Performance study

7.2.1 Pre-processing cost

In the pre-processing step, as the map data we use have the hierarchical information
of each road segment, we only need to partition it to sub-regions and construct a
hierarchical index structure of the traffic network. In reality the two operations are
process in a holistic way. By default, we create spatial grid index on the road network
which consists over 0.2 million edges and around 0,17 vertexes in a parallel programing
mode, and the total processing cost is as fast as no more than 1 min. Afterwards, we
conduct the network partition and hierarchical indexing creation in a holistic way.
Through our experiment, the road network can be partitioned based on the existing
hierarchical information of road segments within 13 min, in which the time cost of
creating hierarchical road index is around 4 min.

7.2.2 Performances on traditional query processing

We first test the performance of A*, IRS and HRS strategies on normal query process-
ing, where continuous querying is not considered. That means, we only focus on the
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Fig. 7 Efficiency versus average road speed. a Total processing time, b response time

Fig. 8 Efficiency versus query length. a Total processing time, b response time

static environment here, without taking the dynamics of road condition into consider-
ation. Therefore the test cases in Group 1 are used. The queries we use in experiment
are long distance queries, i.e. strictly more than 20 kilometres.

Comparisons of the processing time of queries and response time to users are
plotted as Fig. 7a, b respectively. According to Fig. 7a, we can observe that A* has
the greatest computational overhead while the HRS algorithm has the least cost. This
phenomenon confirms with the efforts made by IRS and HRS to reduce search space
of query processing. This figure also shows that the variation of query processing time
of the three strategies tend to be small when the road condition becomes good. It is
due to the fact classical shortest path search algorithm like A* cannot make use of the
speed information, which have less great impact for cases that road condition is good.

Figure 7b compares three algorithms regarding to the required response time to
user, which is an important performance indicator of route planning services. From
this figure we can see that the IRS algorithm has the minimum response time while
A* is the worst. The reason here is that the result of query processing through IRS is
a partial path, rather than a whole path.

We also evaluate the efficiency of three algorithms in different query lengths in
Fig. 8. In general, the processing time and response time are similar for short distance
queries, but they tend to vary significantly for long distance queries. In Fig. 8a, we can
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Fig. 9 Accuracy versus average road speed. a Total processing time. b accuracy of algorithms

Fig. 10 Accuracy versus ellipse size and network compression ratio. a Accuracy versus ellipse size,
b response time

observe that the growth of query length incurs as the processing time increases accord-
ingly. Clearly, the A* algorithm has the greatest increase rate, while the efficiency of
HRS algorithm is the most stable. The main reason is that HRS adopts planning method
based on arterial roads, such that long distance queries can be processed on a com-
pressed road network in HRS. In contrast, the efficiency of road network expansion
based methods like A* and IRS are more sensitive to the query length. Figure 8b shows
the response time of the proposed algorithms. It is observed that, IRS is the one having
the minimum response time due to its partial result feedback nature.

Also, comparisons on the accuracy performance of different query processing algo-
rithms are shown as Fig. 9a, b respectively. We know A* algorithm returns the optimal
route to user, hence incurs the least travel time of user according to Fig. 9 a, and having
100 % accuracy as shown inFig. 9b. In general, IRS and HRS also has relatively good
accuracy around 90 %. We can also observe that the IRS algorithm is superior to HRS
algorithm when the road condition is good. In contrast, the HRS algorithm outper-
forms IRS in cases when the traffic becomes bad. This phenomenon can be explain
by the fact major roads are more reliable in rush hours, but more efficient paths can be
easily detected when the road condition becomes good because of their less distance.
Therefore, we can select IRS and HRS properly in use based on the real time road
condition for route planning.
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Fig. 11 Efficiency comparison versus average road speed. a Times of route updates, b total processing
time of continuous querying

To better understand the parameters affecting the accuracy of planning, we further
verify the accuracy of planned route in different settings of basic ellipse major radius
and road network compression ratio. In Fig. 10a, we compare the accuracy of IRS
and HRS algorithms with different settings of basic ellipse major radius (the value is
the times of major radius to network distance between start and end query points),
and it is obvious that the size of basic radius affects IRS greater than HRS, which
can be explained as that IRS is a local optimum based solution. Figure 10b indicates
the impact of HRS network compression ratio to route planning accuracy, and we
can see HRS performs fairly well even when the compression ratio is as high as
0.9 (i.e., the ratio of search graph size to the network graph size after basic graph
reduction).

7.2.3 Performances on continuous query processing

To support the traffic aware navigation, we further evaluate and compare the perfor-
mance of the above three algorithms on continuous query processing. The test cases
in Group 2 are used, where we update the road condition in 1–2 min, and note that the
average road speed before update and that after update strictly fall in the same value
range (e.g. 20–30 km).

Figure 11a shows the comparison results on the times of re-planning in continuous
route search. It is an important factor because each route update has the tune-in cost
(to mobile phone or GPS) and data transmission cost. From this figure we can see
that the HRS algorithm incurs least route updates. It is also shown that both A* based
solution and IRS algorithm are not robust to the dynamics of road condition as they
require the planned route to be updated frequently when the traffic condition is poor.

Figure 11b is the experimental results of total processing time of the route queries.
Specifically, for each time of the route updates in Fig. 11a, we have additional process-
ing cost, and Fig. 11b shows the total time cost of each continuous query processing.
We can easily observe that the HRS algorithm has the least total time cost of query
processing. In contrast, the A* based solution has the maximal total time cost. Though
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Fig. 12 Travel cost of users
versus average road speed

IRS results in a large number of re-calculations, its total time cost is also small due to
its cheap cost of each query processing (as it finds a partial path).

In addition, we use Figure 12 to illustrate the accuracy of continuous query process-
ing (i.e. travel cost of user based on the planned route) of the above algorithms. From
this figure we know that the planned routes returned by three solutions have similar
travel cost when the traffic is good, and HRS is slightly worse than other two in such
cases because it tend to stick on major roads, so may have longer distance to travel.
However when the road condition is poor, the HRS provides the best continuous route
to users. The A* is the worse than the HRS algorithm when the traffic is heavy, but it
turns out to be the best when the road condition becomes good. The reason lies here is
that the A* algorithm does not sensitive to the speed information. Meanwhile, the IRS
leads to the greatest travel cost of users because it is a local optimization algorithm for
finding a suitable partial path, and is thus not robust to the dynamics of road condition.

To sum up, experiments show that IRS and HRS returns near-optimal route for
single route query (without considering road condition changes), and IRS is more
suitable for scenarios when traffic is good, while HRS is more effective in the rush
hours. As for the continuous route planning, we should select the HRS for most cases
except when the road condition is extremely good, where we can simply use A* (only
update when the travel time of current route increases sharply) because the speed
information is not vital anymore when it becomes stable.

8 Conclusions

Traffic navigation is a basic service for people’s travel nowadays. However, most
studies focus on route planning on static road network, without considering the high
dynamics of road network, which can significantly affect the performance of route
search. In this paper, we present two traffic aware route planning strategies based on
the hierarchical road network, with a guarantee that route planning is conducted in
a small search space and that unnecessary re-calculations caused by the dynamics of
road conditions can be avoided. Finally, experiments with real dataset demonstrate the
effectiveness and efficiency of our proposed algorithms.

In the future, we will extract out and then use congestion evolution patterns from
traffic data to further improve the performance of route planning, and construct a
system based on the algorithms proposed in this paper.
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