
Distrib Parallel Databases (2012) 30:179–207
DOI 10.1007/s10619-012-7092-4

Combining CPU and GPU architectures for fast
similarity search

Martin Kruliš · Tomáš Skopal · Jakub Lokoč ·
Christian Beecks

Published online: 23 May 2012
© Springer Science+Business Media, LLC 2012

Abstract The Signature Quadratic Form Distance on feature signatures represents
a flexible distance-based similarity model for effective content-based multimedia re-
trieval. Although metric indexing approaches are able to speed up query processing
by two orders of magnitude, their applicability to large-scale multimedia databases
containing billions of images is still a challenging issue. In this paper, we propose a
parallel approach that balances the utilization of CPU and many-core GPUs for ef-
ficient similarity search with the Signature Quadratic Form Distance. In particular,
we show how to process multiple distance computations and other parts of the search
procedure in parallel, achieving maximal performance of the combined CPU/GPU
system. The experimental evaluation demonstrates that our approach implemented on
a common workstation with 2 GPU cards outperforms traditional parallel implemen-
tation on a high-end 48-core NUMA server in terms of efficiency almost by an order
of magnitude. If we consider also the price of the high-end server that is ten times
higher than that of the GPU workstation then, based on price/performance ratio, the
GPU-based similarity search beats the CPU-based solution by almost two orders of
magnitude. Although proposed for the SQFD, our approach of fast GPU-based simi-

Communicated by: Kaushik Chakrabarti.

M. Kruliš · T. Skopal (�) · J. Lokoč
SIRET Research Group, Faculty of Mathematics and Physics, Charles University in Prague, Prague,
Czech Republic
e-mail: skopal@ksi.mff.cuni.cz

M. Kruliš
e-mail: krulis@ksi.mff.cuni.cz

J. Lokoč
e-mail: lokoc@ksi.mff.cuni.cz

C. Beecks
Data Management and Data Exploration Group, RWTH Aachen University, Aachen, Germany
e-mail: beecks@cs.rwth-aachen.de

mailto:skopal@ksi.mff.cuni.cz
mailto:krulis@ksi.mff.cuni.cz
mailto:lokoc@ksi.mff.cuni.cz
mailto:beecks@cs.rwth-aachen.de

180 Distrib Parallel Databases (2012) 30:179–207

larity search is applicable for any distance function that is efficiently parallelizable in
the SIMT execution model.

Keywords Similarity search · Database indexing · Parallel computing · GPU · Pivot
table · Metric · Ptolemaic · Multimedia databases

1 Introduction

Multimedia retrieval systems frequently store billions of images and provide users
with different ways of searching and browsing (e.g., catalog-based or keyword-
based search). However, effective yet efficient techniques for content-based similarity
search are still a hot research topic. To this end, multimedia retrieval systems are de-
signed based on advanced similarity models consisting of image representations and
similarity/distance measures.

A flexible way to represent the content of an image is by means of feature sig-
natures [28]. In general, a feature signature of an image is a set consisting of mul-
tiple local image features, where the length of a feature signature is not fixed (to
distinguish images of different complexities). However, the comparison of feature
signatures requires more sophisticated and computationally expensive adaptive dis-
tance measures [4], such as the Earth Mover’s Distance (EMD) [28] or the Signature
Quadratic Form Distance (SQFD) [3, 5]. In this paper, we focus on the latter, as the
SQFD shows higher retrieval quality [4], higher stability [2], and lower time complex-
ity compared to the EMD (O(n2) vs. O(n4)). Nevertheless, the quadratic complexity
is still too high to use the SQFD for a sequential search of a large database. In order
to reduce the computational effort, indexing [31] approaches have been applied to
the SQFD. It has been shown that metric indexing [1] and ptolemaic indexing [19]
reach a speed-up of more than two orders of magnitude with respect to the sequential
scan. However, even when using indexing approaches, the speed-up is generally lim-
ited due to the high intrinsic dimensionality [31]. Thus, in order to use the SQFD for
large-scale image retrieval, we propose to parallelize the SQFD query processing.

Parallelization of data retrieval problems on many-core architectures has already
been addressed from many perspectives. For instance the kNN query algorithm which
is used in almost every data retrieval system has been successfully parallelized on
GPUs by Bustos et al. [7] and later by Garcia et al. [10]. Pan et al. [26] showed
that the solution can be improved even further using a hashing approach to compute
the approximate kNN on GPUs. Other similarity-based operations can benefit from
parallelization aswell. Lieberman et al. [18] suggested using GPUs for similarity join-
ing operations. All these solutions exploited the parallel nature of GPUs to achieve
significant speedup over CPU. However, the potential of the GPU lies especially in
numeric computations, thus we can utilize its power even more efficiently to compute
expensive distance functions that offer higher precision of the similarity search.

In this paper, we consider the combination of many-core GPU devices and multi-
core CPU processors for parallel SQFD query processing. While parallel CPU pro-
cessing is straightforward and supported by many development tools, designing effi-
cient algorithms for GPUs is a challenging task for content-based retrieval purposes.

Distrib Parallel Databases (2012) 30:179–207 181

Although GPUs generally contain more cores than CPUs, they suffer from slow data
transfer rates and code execution restrictions. We discuss GPU processing limitations
and introduce two new schemes for efficient similarity search utilizing the combina-
tion of indexing approaches and the computational power of CPUs + GPUs.

The paper is organized as follows. Section 2 introduces the task of similarity
search, the motivation and definition of the SQFD, and also the indexing techniques
used for fast similarity search by the SQFD. Section 3 discusses the most impor-
tant aspects of GPU architectures. The contribution of the paper are two algorithms
addressing the implementation of similarity search on CPU and GPUs, described
in Sects. 4 and 5. The first algorithm (SQFD-only) utilizes the GPUs only to com-
pute the SQFD, leaving the other processing on CPU, while the second algorithm
(SQFD+LB) utilizes the GPUs also to compute lower bound distances used in index
pre-filtering. Section 6 presents the experimental results, and Sect. 7 concludes this
paper.

2 Similarity search in multimedia databases

When searching multimedia databases by content, users issue similarity queries by
selecting multimedia objects or by sketching the intended object contents. Given an
example multimedia object or sketch q , the multimedia database S ⊂ U (where U

is the object universe) is searched for the most related objects with respect to the
query by measuring the similarity between the query and each database object by
means of a distance function δ. As a result, the multimedia objects with the lowest
distance to the query are returned to the user. In particular, a range query (q, r),
q ∈ U, r ∈ R

+, reports all objects in S that are within a distance r to q , that is,
(q, r) = {x ∈ S | δ(x, q) ≤ r}. The subspace defined by q and r is called the query
ball. Another popular similarity query is the k nearest neighbors query (kNN). It
reports the k objects from S closest to q . That is, it returns the set C ⊆ S such that
|C| = k and ∀x ∈ C, y ∈ S − C, δ(x, q) ≤ δ(y, q). The kNN query also defines a
query ball (q, r), but the distance r to the kth NN is not known in advance.

2.1 Model representation

When determining content-based similarity between two multimedia objects, the dis-
tance is evaluated on feature descriptors which aggregate the inherent properties
of the multimedia objects. The conventional feature descriptors aggregate and store
these properties in feature histograms, which can be compared by vectorial distances
[15, 27].

2.1.1 Feature signatures

Unlike conventional feature histograms, feature signatures are frequently obtained
by clustering the objects’ properties, such as color, texture, or other more complex
features [9, 23], within a feature space and storing the cluster representatives and
weights. Thus, given a feature space F, the feature signature So of a multimedia

182 Distrib Parallel Databases (2012) 30:179–207

Fig. 1 Three example images with their corresponding feature signature visualizations

object o is defined as a set of tuples from F×R
+ consisting of representatives ro ∈ F

and weights wo ∈ R
+.

We depict an example of image feature signatures according to a feature space
comprising position, color and texture information, i.e. F ⊆ R

7, in Fig. 1. For this
purpose we applied the k-means clustering algorithm where each representative ro

i ∈
F corresponds to the centroid of the cluster Co

i ⊆ F, i.e., ro
i =

∑
f ∈Co

i
f

|Co
i | , with relative

frequency wo
i = |Co

i |
∑

i |Co
i | . We depict the feature signatures’ representatives by circles

in the corresponding color. The weights are reflected by the diameter of the circles.
As can be seen in this example, feature signatures adjust to individual image contents
by aggregating the features according to their appearance in the underlying feature
space.

2.1.2 Signature quadratic form distance

The Signature Quadratic Form Distance (SQFD) [3, 5] is an adaptive distance-based
similarity measure for the comparison of feature signatures, generalizing the classic
vectorial Quadratic Form Distance (QFD) [12]. It is defined as follows.

Definition 1 (SQFD) Given two feature signatures Sq = {〈rq
i ,w

q
i 〉}ni=1 and So =

{〈ro
i ,wo

i 〉}mi=1 and a similarity function fs : F × F → R over a feature space F, the
signature quadratic form distance SQFDfs

between Sq and So is defined as:

SQFDfs

(
Sq,So

) =
√

(wq | −wo) · Afs · (wq | −wo)T ,

where Afs ∈ R
(n+m)×(n+m) is the similarity matrix arising from applying the simi-

larity function fs to the corresponding feature representatives, i.e., aij = fs(ri, rj).
Furthermore, wq = (w

q

1 , . . . ,w
q
n) and wo = (wo

1, . . . ,wo
m) form weight vectors, and

Distrib Parallel Databases (2012) 30:179–207 183

Fig. 2 The impact of α on the intrinsic dimensionality and mean average precision

(wq | −wo) = (w
q

1 , . . . ,w
q
n,−wo

1, . . . ,−wo
m) denotes the concatenation of weights

wq and −wo.

The similarity function fs is used to determine similarity values between all pairs
of representatives from the feature signatures. In our implementation we use the sim-
ilarity function fs(ri, rj) = e−αL2(ri ,rj)2

, where α is a constant for controlling the
precision-indexability tradeoff, as investigated in our previous works [1, 19], and L2
denotes the Euclidean distance. In particular, lower values of the parameter α lead to
better indexability, that is, to a smaller intrinsic dimensionality (iDIM) [8]. However,
lower values of the parameter α also decrease the retrieval effectiveness (frequently
measured in terms of mean average precision values), as can be seen in Fig. 2 for
the ALOI [11] and MIR Flickr [16] databases as examples. On the contrary, the best
mean average precision values can be reached using a large value of the parameter
α making the SQFD space no longer indexable. In such cases a parallel query pro-
cessing approach could be one feasible solution to significantly speedup the search
process. Nevertheless, before we proceed to the parallel implementation of the SQFD
query processing, we briefly summarize available indexing methods.

2.2 Indexing

When processing content-based similarity queries by the naïve sequential scan, the
computation of the SQFD has to be carried out for each database object individually.
Unlike the cheap Lp distances, the SQFD is of more than quadratic time complexity
(w.r.t. dimension), so the sequential scan, sometimes acceptable for Lp distances,
is impractical for the SQFD even on a moderately sized database. Although it has
been shown that the SQFD is a generalization [5] of the well-known Quadratic Form
Distance [12], recent approaches indexing the data by a homeomorphic mapping into
the Euclidean space [30] can not be applied to the SQFD, as the similarity matrix
changes from computation to computation.

Nevertheless, recent papers showed that SQFD can be indexed by metric access
methods [1] and ptolemaic indexing [19], achieving a speed-up of up to two orders

184 Distrib Parallel Databases (2012) 30:179–207

Fig. 3 Lower-bound distance
computed using triangle
inequality and a single pivot

of magnitude with respect to the sequential scan. In this section we review both ap-
proaches and detail the simplest and most intuitive metric/ptolemaic index: the pivot
tables.

2.2.1 Metric indexing

A metric space (U, δ) consists of a feature descriptor domain U (in this paper, the set
of all possible signatures) and a distance function δ which has to satisfy the metric
postulates: identity, non-negativity, symmetry, and triangle inequality. In this way,
metric spaces allow domain experts to model their notion of content-based similarity
by an appropriate feature representation and distance function serving as similarity
measure. At the same time, this approach allows database experts to design index
structures, so-called metric access methods (or metric indexes) [8, 13, 29, 31], for
efficient query processing of content-based similarity queries in a database S ⊂ U.
These methods rely on the distance function δ only, i.e., they do not necessarily know
the structure of the feature representation of the objects.

Metric access methods (or metric indexes) organize database objects oi ∈ S by
grouping them based on their distances, with the aim of minimizing not only tra-
ditional database costs like I/O but also the number of costly distance function δ

evaluations—in our case the number of SQFD evaluations. For this purpose, nearly
all metric access methods apply some form of filtering based on cheap computation
of lower bounds LBΔ(δ(q, o)). These bounds are based on the fact that exact pivot–
object distances are precomputed, where pivot is a suitable reference object selected
from the database S.

We illustrate this fundamental principle in Fig. 3 where we depict the query object
q ∈ U, some pivot object p ∈ S, and a database object o ∈ S in some metric space.
Given a range query (q, r), we wish to estimate the distance δ(q, o) by making use
of δ(q,p) and δ(o,p), with the latter already stored in the metric index. Because of
the triangle inequality, we can safely filter object o without needing to compute the
(costly) distance δ(q, o) if the triangular lower bound

LBΔ

(
δ(q, o)

) = ∣
∣δ(q,p) − δ(o,p)

∣
∣, (1)

also known as the inverse triangle inequality, is greater than the query radius r . The
SQFD has been proved [19] to be a metric distance, so metric indexing can be applied
for efficient similarity search using SQFD.

Distrib Parallel Databases (2012) 30:179–207 185

Fig. 4 Comparison of
triangle/Ptolemy’s lower-bound
distances computed for two
pivots

2.2.2 Ptolemaic indexing

In metric indexes, the triangle inequality is used to construct lower bounds for the
distance. Analogously, in Ptolemaic indexing [14, 19], Ptolemy’s inequality is used
to construct such lower bounds as well. A distance function is called a Ptolemaic
distance if it has the properties of identity, non-negativity, and symmetry, and satisfies
Ptolemy’s inequality. If a Ptolemaic distance also satisfies the triangle inequality, it
is a Ptolemaic metric.

Ptolemy’s inequality states that for any quadrilateral, the pairwise products of op-
posing sides sum to more than the product of the diagonals. In other words, for any
four points x, y, u, v ∈ U, we have the following:

δ(x, v) · δ(y,u) ≤ δ(x, y) · δ(u, v) + δ(x,u) · δ(y, v) (2)

One of the ways the inequality can be used for indexing is in constructing a pivot-
based lower bound. For a query q , object o, and pivots p and s, we get the candidate
bound:

δC(q, o,p, s) = |δ(q,p) · δ(o, s) − δ(q, s) · δ(o,p)|
δ(p, s)

(3)

For simplicity, we let δC(q, o,p, s) = 0 if δ(p, s) = 0. As for triangular lower-
bounding, one would normally have a set of pivots P, and the bound can then be
maximized over all (ordered) pairs of distinct pivots drawn from this set, giving us
the final Ptolemaic bound [14, 19]:

δ(q, o) ≥ LBptol
(
δ(q, o)

) = max
p,s ∈P

δC(q, o,p, s) (4)

As for the triangular case, the Ptolemaic lower bound LBptol could be used to
filter objects not contained in the query ball, i.e., exclude those oi ∈ S from search for
which LBptol(δ(q, oi)) > r .

Figure 4 illustrates a comparison (in two-dimensional Euclidean space) showing
that ptolemaic indexing could provide much tighter lower bounds. Having two pivots
s,p, both lower bounds constructed using triangle inequality would not filter the
object o from search, as the value is lower than a radius of the range query r . On
the other hand, the lower bound obtained using the ptolemaic approach leads to very
tight distance approximation, and so filtering the object o from search.

186 Distrib Parallel Databases (2012) 30:179–207

Luckily, the SQFD has been proved [19] to be both a metric and a ptolemaic
distance, so ptolemaic indexing can be applied for efficient similarity search using
SQFD.

2.3 Pivot tables

One of the most efficient (yet simple) indexes for similarity search is the pivot ta-
ble [24], originally introduced as LAESA [22]. Basically, the structure of a pivot ta-
ble is a simple matrix of distances δ(oi,pj) between the database objects oi ∈ S and
a pre-selected static set of m pivots pj ∈ P ⊂ S. For querying, pivot tables allow us
to perform cheap lower-bound filtering by computing the maximum lower bound to
δ(q, o) using all the pivots. Moreover, the lowerbounding could be coupled with the
querying more tightly because of the monotonous increase of the lower bound dur-
ing its computation (i.e., usage of an additional pivot leads to possibly tighter/greater
value). In particular, if the actual value of the lower bound being computed exceeds
the radius of a query, the computation of the lower bound can be safely terminated
and the object filtered out from further processing (so-called early termination opti-
mization).

Although pivot tables have been introduced as a metric index, they could be used
beyond the context of the metric space model. In fact, the data structure is just a dis-
tance matrix, so there is no metric-specific aggregate information stored (unlike in hi-
erarchical metric indexes) that would prevent from usage elsewhere. In consequence,
the original filtering based on triangular lower bounds (1) can be easily extended to
the ptolemaic case using (4), or even combined. This extension was already presented
as ptolemaic pivot tables [14, 19]. Because in the ptolemaic case there are pairs of
pivots used in the lowerbounding, the quadratic size could lead to a large internal
overhead when filtering. Therefore, there were also heuristics proposed for reduction
of the set of pivot pairs yet preserving their filtering power [19]. It was experimen-
tally confirmed that ptolemaic indexing could speedup the SQFD similarity search
up to 4 times with respect to the metric case and up to 300 times with respect to the
sequential scan [19].

2.4 Motivation for parallel indexing

The feature signatures and SQFD have been proved as an elegant and effective model
for similarity search allowing to compare multimedia descriptors based on local fea-
tures. There was also substantial effort spent on speeding up the SQFD search using
the metric and ptolemaic indexing. However, despite these advances the SQFD simi-
larity search is still not prepared for large-scale applications. Let us now analyze the
empirical evidence. Depending on the parameter α of the internal SQFD’s similarity
function fs , where higher α lead to more precise but slower search, the single-core
query times on Intel Xeon X5660 using a 25,000 database range from 150 ms to
1 s per query (see [19]). Obviously, even when the search complexity was heavily
reduced by the ptolemaic indexing (two orders of magnitude), the practical perfor-
mance is still not sufficient. In order to achieve competitive performance, it seems
necessary to parallelize the approach and reduce the real times by another two orders

Distrib Parallel Databases (2012) 30:179–207 187

of magnitude, yet keeping the hardware platform cheap (using common GPU cards).
Accomplishing this goal would enable searching databases comprising millions of
multimedia objects in real time.

In the rest of the paper we propose two algorithms. The SQFD-only algorithm par-
allelizes only the SQFD computation on GPU, leaving the other processing on CPU
(work dispatching, pivot table filtering, results aggregation). This approach is effi-
cient in case the workloads of SQFD computations and index filtering are balanced,
so that GPU need not to wait for CPU. However, advanced filtering techniques (e.g.,
ptolemaic indexing) reduce the workload of SQFD computations by pruning a num-
ber of candidates, thus shifting the workload from GPU to CPU. For such cases we
propose the SQFD+LB algorithm that precomputes on GPU the lower-bound values
used by candidate pre-filtering, reducing thus the workload of CPU.

3 GPU fundamentals

GPU architectures [25] differ from CPU architectures in multiple ways. In the re-
mainder of this section, we describe the GPU device architecture and its two major
aspects, the thread execution and the memory organization, which have direct impact
on the design of our framework and the SQFD implementation. The following de-
scription may be incomplete or simplified as we focus mainly on details important
for GPU programming.

3.1 GPU architecture

A GPU card is a peripheral device connected to the host system via the PCI-Express
(PCIe) bus. The device consist of a GPU processor and on-board memory modules.
The device also consists of other parts related to image processing, but they are out
of scope of our method.

The GPU processor (Fig. 5) consists of several symmetric multiprocessing units
(SMPs), while the SMPs share only the main memory bus and the L2 cache, other-
wise they are completely independent. Each SMP consists of multiple GPU cores,
single instruction decoder, L1 cache, and local memory. The GPU cores are tightly
coupled since they share SMP resources, even the instruction decoder. As a result, all
cores execute the same instruction at the same time. Each core has its own arithmeti-
cal units for integer and float operations and a private set of registers.

The most significant differences from the classic CPU architecture is the specific
instruction execution by multiple cores in SMP and also multiple types of memory.
Therefore, we address these issues in more detail in the following.

3.2 Thread execution

When it comes to parallel execution, we usually distinguish between two types of
parallelism—task parallelism and data parallelism. The task parallelism is usually
employed by CPUs as each core executes different code. In case of data parallelism,
all cores execute the same code but on different portions of data. The GPUs are tai-
lored to data parallelism since their original graphic-acceleration design is aimed at

188 Distrib Parallel Databases (2012) 30:179–207

Fig. 5 GPU processor architecture

Fig. 6 Example of thread allocation and grouping

processing large number of geometric vertices or image fragments using the same
algorithm.

The portions of code that are executed on the GPU are called kernels. A kernel
is a procedure that is invoked multiple times simultaneously, thus spawning multiple
threads that execute the same code. Each spawned thread gets the same set of calling
arguments and a unique identifier which is used to select the proper parts of the
parallel work. The threads are organized into one-, two-, or three-dimensional array
and the thread identifier is an index into this array. The thread managing and context
switching capabilities of the GPU are very advanced. Thus, it is usually better to
create a multitude of threads, even if they execute only a few instructions each, in
order to optimize the load balancing. In addition, fast context switching capabilities
of the GPU are used to inhibit the latency of global memory transactions.

Threads are aggregated into small bundles called groups (Fig. 6). A group usually
contains tens to hundreds of threads which are mapped to one SMP unit, thus execut-
ing the kernel code in SIMT (Single Instruction Multiple Threads) or virtual SIMT
fashion. Usually, there are many more thread groups than SMPs, where the groups
are planned sequentially and non-preemptively on available multiprocessors. When
a group is assigned to an SMP, it must finish its execution before another group can

Distrib Parallel Databases (2012) 30:179–207 189

be assigned to that SMP. Therefore, threads in one group must not wait for results of
another group, because such behavior could easily lead to a deadlock.

Threads in a group are divided into subgroups called warps (NVIDIA) or wave-
fronts (ATI/AMD). The number of threads in these subgroups is equal to the number
of GPU cores in SMPs, so threads in a subgroup run in real SIMT mode. Exactly one
subgroup is actually running while others are waiting. When a subgroup is forced to
wait (e.g., when transferring data from memory), SMP performs a fast context switch
so that another subgroup may compute meanwhile.

The SIMT execution suffers from branching problems. When different threads in
the group choose different branches—for instance when executing ‘if’ statements—
all branches must be executed by all threads. Each thread masks instruction execution
according to local result of the condition to ensure correct results. Therefore, heavily
branched code or ‘while’ loops with highly different number of iterations will not
perform well on GPUs. On the other hand, the SIMT approach simplifies synchro-
nization within the group and allows threads to communicate and collaborate through
SMP’s shared local memory.

3.3 Memory organization

The second difference is the memory organization which is depicted in Fig. 7. As we
can observe, there are four types of memory:

• host memory (RAM),
• global memory (VRAM),
• local memory,
• and private memory (GPU core registers).

The host memory is the operational memory of the computer. It is directly accessi-
ble by the CPU, but it cannot be accessed by any peripheral devices such as the GPU.
Input data needs to be transferred from the host memory (RAM) to the graphic device

Fig. 7 Memory organization scheme of host and GPU device

190 Distrib Parallel Databases (2012) 30:179–207

global memory (VRAM), and the results need to be transferred back when the kernel
execution finishes. For the transfer the PCI-Express bus is used, which is rather slow
(8 GB/s) when compared to the internal memory buses.

The global memory is directly accessible from GPU cores, while input data and the
results computed by a kernel are stored here. The global memory bus shows both high
latency and high bandwidth. In order to access the global memory optimally, threads
in one group are encouraged to use coalesced loads. A coalesced load is performed
when all threads of a group load or store a contiguous memory area, so that each
thread transfers a single 4-byte word of this block.

The local memory is shared among threads within one group. It is very small (tens
of kB) but almost as fast as the GPU registers. The local memory can play the role of
a program-managed cache for global memory, or the threads may share intermediate
results in here while they cooperate on a task. The memory is divided into several
(usually 16 or 32) banks. Two subsequent 4-byte words are stored in two subsequent
banks (modulo number of banks). When two threads access the same bank (except
if they read the same address), the memory operations are serialized which creates
undesirable delay for all threads due to the SIMT execution model.

Finally, the private memory belongs exclusively to a single thread and corresponds
to the GPU core registers. Private memory size is very limited (tens to hundreds of
words), therefore it is suitable just for a few local variables.

3.4 Summary

Finally, we would like to summarize the implications for our implementation.

• The latency of data transfers between the host system and the GPU devices needs
to be inhibited. The best way is to form a pipeline so that one block of data is being
transferred to GPU, one block of data is being processed and one block of results
is being transferred from GPU at the same time. Furthermore, the processing of a
data block should take at least as much time as its transfer.

• Each algorithm being adapted for GPU must be carefully analyzed and its data
transfers must be planned according to memory limitations of the GPU. The uti-
lized data structures need to be designed with respect to the memory architecture,
so that data can be fetched by coalesced loads from global memory and bank con-
flicts do not occur when accessing data in local memory by individual threads.

• Furthermore, the algorithm must embrace the SIMT execution model, at least for
the parts of the work processed by one thread group. Usually, it is not feasible
to parallelize an algorithm by simply assigning its inner loop to every spawned
thread as the resources of the threads are limited. In such cases the algorithm must
be redesigned so that threads of one group collaborate more closely and share their
resources.

• Multitude of threads (at least thousands) needs to be spawned in order to utilize all
available cores and balance the load efficiently.

Distrib Parallel Databases (2012) 30:179–207 191

4 Similarity search using GPU

The most time consuming operation in a search engine employing SQFD for simi-
larity search is the computation of a distance between two signatures. This operation
takes O((m + n)2) time, where m,n are the sizes of signatures being compared.
Even when using indexing techniques that massively reduce the number of SQFD
computations needed to compute, such as the pivot tables, there still remains a set of
candidate database signatures that has to be filtered using direct SQFD computations.

Therefore, our primary objective is to utilize the computational power of GPU
to calculate distances between query and database signatures in parallel. In our ap-
proach, we consider both the parallel execution of multiple SQFD computations dur-
ing the query evaluation as well as the parallel computation of a single SQFD between
two feature signatures.

4.1 Computing multiple distances in parallel

Since the SQFD is computed between the query signature and many database sig-
natures, it would be inefficient to execute each computation separately on the GPU
due to high latencies caused by data transfer and kernel executions. Therefore, we
perform a block-wise computation of multiple SQFDs in parallel. Each block con-
tains N + 1 feature signatures. The first feature signature is the query signature and
remaining N feature signatures are the database signatures, thus each block yields a
vector of N distances as a result. The choice of N is essential for good performance.
In general, a large number of N performs better.

The query processor treats the GPU implementation of the SQFD as an asyn-
chronous operation that does not block the CPU when started, so the system can wait
for its termination. The system may start as many operations as required, while the
operations are queued and distributed over available GPU devices equally.1 Since the
architecture is flexible and leaves the CPU relatively low-utilized, it could be easily
used with a distance-based index implemented in the CPU part of the system.

4.2 Computing each distance in parallel

In case of multi-core CPUs, computing multiple distances in parallel would be suf-
ficient to achieve optimal speedup, since the number of distances computed vastly
exceeds the number of available cores. Unfortunately, the same approach is not feasi-
ble on GPUs. The signatures need to be cached in local memory of the SMP, which is
very limited, so they are able to accommodate just a few signatures. Furthermore, it
would produce very imbalanced tasks for the threads in one group, which are running

1In theory, two subsequent blocks dispatched to the same GPU device may overlap in some operations.
Modern GPUs have independent units for host-device memory transfers, therefore it should be possible
to overlap data transfer and SQFD computation of two subsequent blocks. In order to do so, the size
of the block needs to be restricted so that at least two data blocks would fit the GPU device memory.
Unfortunately, we have encountered many technical problems when attempting to pipeline execution and
data transfers. It is our belief that these problems are caused by flaws in hardware drivers and/or OpenCL
implementation.

192 Distrib Parallel Databases (2012) 30:179–207

Fig. 8 Work decomposition
when computing the similarity
matrix Afs and A

in SIMT fashion on one SMP. Hence, to efficiently utilize all the cores on the SMP
unit we need to compute each distance in parallel as well.

Each SQFD is computed by a group of 256 threads, thus 256 × N threads are
spawned for one block. The constant 256 was selected based on current hardware ca-
pabilities. We have assigned one thread group to compute a single SQFD in a block,
because these threads benefit from shared local memory, as the group does cache
the input data from global memory and keeps intermediate results. Using multiple
groups to compute one SQFD would be problematic as the groups do not have any
effective means of communication. The opposite approach (using one group to com-
pute multiple SQFDs) is feasible. However, in case of sufficient signature lengths,
the parallelism would not be exploited any further and many technical complications
would arise due to the limited size of local memory.

The SQFD between two feature signatures has been defined in Definition 1. For
the sake of parallelism, we compute the elements of the similarity matrix Afs con-
currently by available threads in the group. Each element of the matrix is multiplied
with the corresponding weights of w = (wq | −wo), so that new matrix A is created,
where A(i,j) = w(j)Afs(i,j)w(i). Finally, we compute a sum of every element in the
matrix A and we find its square root. These modifications are direct applications of
distributivity and associativity laws, thus the result will not be affected in any way.
The SQFD GPU implementation has the following phases:

1. Load feature signatures into local memory.
2. Compute the similarity matrix Afs and multiply its elements by corresponding

elements in the weight vectors (creating A).
3. Sum up elements in the matrix A and yield the square root.

In the first phase, data are loaded into local memory as they are required multiple
times and it would be ineffective to load them from global memory each time. Fur-
thermore, the loading is more efficient when all threads cooperate in coalesced loads.
The similarity matrix has (m + n) × (m + n) entries, where m and n are the numbers
of feature representatives in Sq and So, respectively. Since m + n is usually smaller
than 256 and varies for each pair of feature signatures, we use an irregular mapping
of similarity matrix elements to threads. Figure 8 depicts the mapping scheme, where
each area represents elements being computed in parallel. The numbers indicate con-
secutive (serial) steps in which the element areas are processed. In the last step the
remaining area of the similarity matrix could be smaller than the total number of
threads. In such case some threads remain idle.

In the second phase the matrices are not stored in memory but rather computed
on-the-fly since only a sum of elements in A is required. When a thread computes a

Distrib Parallel Databases (2012) 30:179–207 193

new element in the similarity matrix, its value is added to a partial sum and the ele-
ment itself is discarded. Even though this method requires significantly less memory,
it creates a synchronization problem as multiple elements are being computed and
added to the partial sum concurrently. To avoid explicit synchronization, every thread
is provided with its own instance of the partial sum.

When the second phase terminates, the total sum of the partial sums of each thread
is computed as the third phase of the algorithm. The total sum is only computed by
the first thread in the group, which is also responsible for determining the square root
and for writing the computed distance into the global memory. The total sum can also
be computed cooperatively by all threads using reduction tree of logarithmic depth.
However, such improvement has no measurable impact on the performance as the
time required by the second phase dominates significantly the time required by the
final summation.

4.3 The SQFD-only algorithm

The above described parallel computation of (multiple) SQFDs could be utilized in
query processing, either directly in sequential scan of the entire database, or with
the pivot table index. The SQFD-only algorithm utilizing the pivot table is depicted
in Fig. 9.2 When a query is started, the algorithm computes the SQFD distances
between query and pivot objects (signatures). These distances are used by the pivot
table for construction of lower bounds. Then, the pre-filtering based on the lower
bounds takes place, resulting in a set of remaining candidate objects that have to be
filtered using the expensively computed SQFDs. As depicted in the figure, only the
SQFD computations take place on the GPU, while the lower bound construction, pre-
filtering and filtering steps are performed on CPU. Since the computation of SQFDs
is assumed as the most expensive operation, the rest of the functionality is left to the
CPU. Moreover, because both the construction of lower bounds and the pre-filtering
steps are implemented together on CPU, the lower bound computation can benefit
from the early termination optimization (see Sect. 2.3).

In summary, the CPU iterates over the entire database, pre-filters the all the ob-
jects using the pivot table, and asynchronously dispatches blocks of candidate objects
(signatures) to the GPU. The GPU computes the distances for each block and sends
them back to CPU. Finally, the CPU compares the distances against the query range
and forms the results set of objects.

4.4 Integration to indexing and query processor

We have described how to compute distances between a query signature and a block
of database signatures on the GPU and also how to integrate such parallel compu-
tation of SQFD into a query algorithm using the pivot table index. In the remainder
of this section we detail how to integrate the SQFD-only algorithm into a database
indexer and query processor that evaluates range and kNN queries.

2We use a kind of schema together with a conceptual explanation of the algorithm, because a code listing
in parallel framework would be not as concise and easy to read.

194 Distrib Parallel Databases (2012) 30:179–207

Fig. 9 Workflow of the SQFD-only algorithm

4.4.1 Computing pivot table

When a database of signatures is being indexed, a pivot table needs to be computed.
The pivot table consists of distances from selected pivots to all objects in the database.
Even though these distances are computed only when new objects are inserted, we
can easily modify the SQFD-only algorithm to construct the pivot table in parallel
as well. In order to do so, we disable the lower bound construction and pre-filtering
steps and execute a query for each pivot object. Moreover, no result set is formed in
the filtering step but the distances are saved into the pivot table instead.

4.4.2 Range query

The sequential range query algorithm (i.e., without an index) is easy to implement by
the SQFD-only algorithm. The database is divided into blocks of appropriate size3

and all blocks are enqueued for GPU processing. The system waits for all SQFD
computations to complete, and the computed distances are filtered on the CPU to
exclude objects outside of the query range. Hence, the lower bound construction and
pre-filtering steps are just omitted (all database objects are candidates).

When using the pivot table index (either metric or ptolemaic variant), the SQFD-
only algorithm is used as described. In the pre-filtering and filtering steps the actual

3As mentioned before, the larger the better.

Distrib Parallel Databases (2012) 30:179–207 195

radius of the range query is used. Concerning the blocks of signatures that are dis-
patched to GPU, block size of 128–256 for α = 0.01 and 1024–2048 for α = 0.2
were observed as empirically optimal (see Sect. 6.5.1).

4.4.3 kNN query

The kNN query evaluation is slightly more complicated. When no indexing is used,
it works very much like sequential range query. When the pivot table indexing is
employed, some additional modifications are required. The problem is that the kNN
query has no fixed query range for the pivot table pre-filtering, as this range is dy-
namically refined during the kNN query processing using heuristics. In order to adapt
to the heuristics, we limit the block size to a value between 64 and 512 (depending
on index type and α value). Also, there are at most as many blocks pending as there
are the GPU devices available. These constants have been chosen empirically4 (see
Sect. 6.5.2). When the limit of pending blocks is reached, the system waits for the
first enqueued block to finish, its results are taken, and the query range is refined.
This way a pipeline effect is achieved, so that the CPU pre-filters the database ob-
jects and refines the resulting kNN set while the GPU computes the SQFD.

5 Moving the index to GPU

The design of the basic SQFD-only algorithm assumes that implementing SQFD
computation as an asynchronous operation performed on GPU leaves the CPU rather
low-utilized and so capable of performing other tasks like lower bound construction,
pre-filtering, and filtering. Although this holds true for the metric version of pivot
table, the lower bound construction step becomes quite expensive when using the
ptolemaic version (or combined ptolemaic and metric version). Instead of taking the
maximum value over the p lower bounds, in the ptolemaic case we need to maximize
over up to O(p2) bounds (see Sect. 2.3 for details). The SQFD-only algorithm, when
applied on the ptolemaic pivot table, cannot fully utilize the GPUs due to the CPU,
which is overloaded by the lower bound construction. In consequence, the CPU can-
not timely dispatch the blocks of signatures to GPUs and these must wait (see the
experiments for empirical evidence). To overcome this bottleneck, in this section we
propose the SQFD + LB algorithm that moves the lower bound construction to GPU,
thus reducing the computational load of CPU.

5.1 The SQFD + LB algorithm

The SQFD + LB algorithm is depicted in Fig. 10. The main difference is that the
query evaluation is divided into two stages. In the first (new) stage, the lower bound
construction step is moved to GPU. The second stage works as the original SQFD-
only algorithm, except that the CPU has much less work due to the lower bounds
constructed in the first stage.

4Actually, these constants are suitable only for α = 0.2 and α = 0.01. The value α = 3 requires the largest
possible blocks since it does not benefit much from indexing.

196 Distrib Parallel Databases (2012) 30:179–207

Fig. 10 Workflow of the SQFD + LB algorithm

Despite the improvement in the GPUs/CPU load balance, moving the lower bound
construction to GPU brings also an unpleasant side effect. Because now the lower
bound construction and pre-filtering steps run separately and asynchronously (the
former on GPUs, the latter on CPU), the lower bound construction cannot benefit
from the early termination optimization anymore (Sect. 2.3), which makes the whole
computation less efficient. However, the sacrifice is worth the overall gain in better
utilized GPUs (as shown in the experiments). We must note that moving both of the
steps to GPU (also the pre-filtering) cannot help, because the CPU still has to dispatch
the blocks of candidate signatures to GPU (which is done together with pre-filtering).

Computing lower bounds for all the database objects on GPUs means the pivot
table as well as the query-to-pivot distances must be transferred to global memory of
the GPU (VRAM). In case the pivot table cannot fit the memory or in case we have
multiple GPU devices available, the table is divided into blocks which are as large
as possible.5 The lower bound construction is then performed in block-wise fashion
the same way as SQFD computation is performed on the blocks of signatures. In the

5It is safe to say that modern GPUs have sufficient memory capacity to accommodate pivot tables for
databases that fit the host memory of an ordinary server.

Distrib Parallel Databases (2012) 30:179–207 197

Fig. 11 Pivot table memory representation

following we take more detailed look at the parallel lower bounds construction on
GPU.

5.2 Pivot table representation

The most delicate issue of the lower bound construction is the memory representation
of the pivot table. A pivot table is two dimensional array that holds distances between
a small number of pivots to every object in the database. There are many ways how to
represent two-dimensional array in linear memory. However, both direct approaches
(row-wise or column-wise concatenation) are not suitable in our case. We need to
consider the following requirements:

• The pivot table must be divisible (with acceptable granularity) to blocks in case it
does not fit the VRAM or there are multiple GPU devices available.

• Pivot table fragment being processed by one thread group must be organized so
that the data transfers are performed in coalesced loads.

• Data required by threads of one group at the same time should be distributed into
the local memory banks as evenly as possible.

In order to meet these requirements, we have chosen a memory representation as
depicted in Fig. 11. The pivot table is divided into blocks of equal size. Each block
is assigned to one thread group so its size is determined accordingly. In our case the
block spans over 256 columns of the pivot table as we use 256 threads per group.

Each pivot table block is stored in a contiguous part of the memory, where dis-
tances to each particular pivot are stored consecutively. This representation is suitable
for a model where one thread computes lower bound value for one database object.
When a thread iterates over pivots, all threads in a group process distances to one
pivot at the same time. Therefore, the data loaded by the threads lie in aligned con-
tinuous range of memory. Furthermore, distances are evenly distributed over memory
banks as each distance is represented by one float value.

5.3 Computing lower bounds on the GPU

Given the pivot table memory representation described above, the GPU-based lower
bound construction is much simpler than the GPU-based SQFD computation. Each
thread computes the lower bound of one database object and each thread group op-
erates on one pivot table block. To compute a lower bound for a database object, a

198 Distrib Parallel Databases (2012) 30:179–207

vector of query-to-pivot distances and the matrix of pivot-to-pivot distances is addi-
tionally required to be transferred and stored in the memory of GPUs.

In particular, the query-to-pivot distances are computed and stored into a buffer on
every GPU device available. It is cached in the local memory when the computation
starts. The pivot-to-pivot matrix could be extracted from pivot table, but for the sake
of simplicity and faster loading the data are duplicated so that all pivot-to-pivot dis-
tances are in one compact block. Also this matrix is cached in the local memory. The
corresponding pivot table block may be cached in the local memory too; however, on
the state-of-the-art GPUs we need not to cache it implicitly as the data is accessed in
such manner that they are cached in L1 and L2 automatically.

6 Experiments

In this section we evaluate the efficiency of parallel similarity search using the SQFD.
We have compared the performance of high-end multi-core CPU server with a com-
mon workstation that used one or two GPU cards. In the experiments we have ob-
served the behavior of the two proposed query algorithms under various parameters,
like the α used in SQFD computation, the type of lowerbounding used by pivot ta-
ble indexes, and the size of the blocks dispatched for parallel processing. The last
one in the list was especially important for the evaluation, as the block size heavily
determined the throughput of the system and the load balancing between CPU and
GPU. In all the experiments we measured just the real times, because other types
of cost, like the number of distance computations, were not affected by the parallel
processing.

6.1 Methodology and hardware setup

Each test was performed using 100 query signatures with different numbers of cen-
troids, while each query was measured five times and then the mean value was de-
termined by computing arithmetic average of the measured values. If any of the time
values deviated from the average more than 15 %, the value was discarded and the
test was repeated. In the results we show the mean value of the average times of all
100 queries.

Tests conducted on the GPU platform are denoted GPU1 and GPU2 in the fig-
ures, where the number refers to either on one or two GPU used. The workstation
was based on Intel Core i7 870 CPU clocked at 2.93 GHz, and was equipped with
16 GB of RAM and two NVIDIA GTX 580 GPU cards with 512 CUDA cores and
1.5 GB of RAM each. Tests conducted on the multi-core CPU server platform are de-
noted CPU48 in the figures. We used Dell M910 server with four six-core Intel Xeon
E7540 processors with hyper-threading (i.e., 48 logical cores) clocked at 2.0 GHz.
The server was equipped with 128 GB of RAM organized as 4-node cache coher-
ent NUMA. A RedHat Enterprise Linux 6 was used as operating system on both
machines.

In order to compare the proposed algorithms to the multi-core CPU platform
(CPU48), we have also modified the SQFD-only algorithm for pure CPU system

Distrib Parallel Databases (2012) 30:179–207 199

by utilizing all available cores. Its architecture mimics the original SQFD-only algo-
rithm, where one CPU core performs the pre-filtering, block dispatching, and final
filtering, while the remaining cores compute SQFD distances in parallel instead of
the GPU.

6.2 Datasets

The experiments were conducted on one synthetic dataset representing clouds of
points and one real dataset consisting of feature signatures extracted from images.

A synthetic Clouds database was generated [20], namely 2,097,152 clouds (sets)
of 100–140 5-dimensional points (embedded in a unitary 5D cube). This database
was chosen as a set analogy to synthetic vector datasets when evaluating vectorial
similarity search. Moreover, the cloud of points is a common representation for sim-
plified representations of complex objects or objects consisting of multiple obser-
vations [21]. Each point has assigned a weight where the sum of all weights in the
cloud was 10,000. For each cloud, its center was generated at random, while another
10,000 points were generated under normal distribution around the center (the mean
and variance in each dimension were adjusted to not generate points outside the uni-
tary cube). Then an adaptive variant of the k-means clustering [17] was used to create
100–139 centroids representing the original data. The weight of each centroid cor-
responded to the number of points assigned to the centroid in the last iteration of
the k-means clustering. On average, a feature signature consisted of 120 representa-
tives (centroids), i.e., 720 numbers per signature. The distribution of the number of
representatives for Clouds is depicted on Fig. 12a.

As a dataset from the real world, we have extracted feature signatures from
950,000 images from the CoPhIR database [6]. The extraction was based on seven-
dimensional features (L; a; b; x; y; c; e)—color (L; a; b), position (x; y), contrast c,
and entropy e. These features were extracted for a randomly selected subset of pix-
els for each image and then again aggregated by applying the adaptive variant of the
k-means clustering algorithm. Thus, we have obtained one feature signature for each

Fig. 12 Distribution of the number of signature centroids for (a) Clouds and (b) CoPhIR databases

200 Distrib Parallel Databases (2012) 30:179–207

single image. These signatures vary in size between 15 and 215 feature representa-
tives (for more details about the size distribution see Fig. 12b). On average, a feature
signature consists of 75 representatives (i.e., 600 numbers per signature).

6.3 Index setup

For both the hardware platforms we have used a parallel implementation of the pivot
table index (see Sect. 2.3). In order to observe the difference between SQFD-Only
and SQFD + LB algorithm, we have used three types of lowerbounding in the pivot
table, the metric type using triangle inequality (denoted Tri in the figures), ptolemaic
type using Ptolemy’s inequality (denoted Pto), and both metric + ptolemaic type (de-
noted TriPto). In all experiments we used 32 pivots. Actually, we used as many pivots
as possible with respect to memory and cache sizes available on present hardware.
The limited number of pivots, however, is not crucial when using the ptolemaic pivot
tables, because ptolemaic filtering exploits every distinct pair of pivots (e.g., the num-
ber of pivots squared).

6.4 Sequential search and indexing

In the first set of tests we performed similarity search without the aid of an index, that
is, sequential search over the database, however, parallelized for both CPU48 and
GPU platforms. The overhead of particular query result construction is negligible,
thus we do not distinguish between range queries or kNN queries in sequential search.
Furthermore, all tests were conducted only for α = 0.2 as different alpha values affect
only the efficiency of pivot table pre-filtering, but they have no measurable impact
on the speed of SQFD evaluation. Besides query processing, these tests can also be
interpreted as parallel construction of the pivot table, since the sequential search/pivot
table construction procedures are similar.

First, we will examine how the performance is affected by different block size
(Fig. 13). As there is no pre-filtering, this graph helps us determine the overhead of
block dispatching. The experimental results show that dispatching distance compu-
tations in blocks of at least 1024 signatures is sufficient for optimal performance.

Fig. 13 The impact of the
varying block size

Distrib Parallel Databases (2012) 30:179–207 201

Fig. 14 Comparison of total GPU speedup over multi-core CPU server

However, this predicament holds only in case the CPU is capable of supplying GPU
steadily with data blocks.

Next, we compare the best possible result on GPU (using block size of 8,192 signa-
tures) against our CPU implementation running on 48 logical cores (Fig. 14). The best
speedup was achieved for Clouds database on 2 GPUs (1024 cores total)—10.08×
w.r.t. to CPU 48 version. The Clouds dataset with signatures formed on average by
120 centroids shows better speedup than CoPhIR containing signatures formed on av-
erage by 75 centroids. Furthermore, we have observed that the CPU version has rather
higher variance of measured times since the SQFD computation depends heavily on
signature length which differs amongst the test queries. On the other hand, this ef-
fect is considerably reduced on GPU, where better speedup on larger signatures and
stronger resistance to length variance were observed, because the GPU utilized the
parallelism better on large signatures.

6.5 Index search

In the second set of tests, we executed queries on pivot table indexes. Three types of
pre-filtering were used in pivot table: the metric filter with triangular inequality (Tri),
Ptolemaic filter (Pto) and combination of both (TriPto). We were testing both SQFD-
only and SQFD + LB algorithms. The results are shown for α = 0.01, which gave
us the best indexability, and for α = 0.2, which gave us the best tradeoff between
performance and retrieval precision. Larger α values (such as α = 3 which gave us
the best precision but worst indexability) did not benefit much from indexing, so the
results were similar to sequential search.

Furthermore, the SQFD + LB algorithm had preloaded the pivot table into the
GPU memory and the table was kept in the memory during the whole test so all
queries could use it. In our case the pivot table was small enough to not affect SQFD
computations in any way. The upload of the pivot table to GPU memory took 54 ms
for CoPhIR database and 118 ms for Clouds database.

202 Distrib Parallel Databases (2012) 30:179–207

6.5.1 Range queries

In order to normalize sizes of query results, the range queries were designed to have
always the same selectivity (0.1 % of the database size). The results of tests per-
formed to determine the optimal block size for each method are shown in Fig. 15.

All results exhibit the same behavior. Unlike the sequential search, all methods
were parameterized by an optimal block size where the CPU workload, GPU work-
load, and overhead were in balance. Increasing the block size beyond the optimal
value did not help the performance, since it increased time periods when GPU waits
for CPU or vice versa.

On single GPU the SQFD + LB algorithm is slower than (α = 0.01) or approx-
imately as fast as (α = 0.2) the SQFD-only algorithm. This result is caused by fact
that in case of single GPU, the CPU-GPU workload is almost in balance and the par-
allel lower bound construction does not completely make up for sacrifice of the early
termination optimization. However, as we can see from 2 GPU tests, the SQFD + LB
scales much better than SQFD-only algorithm and gives better results. In case of
α = 0.2, the SQFD + LB using TriPto index is by 21 % faster than SQFD-only al-
gorithm with the same parameters. We believe that on more GPUs the difference
between these two algorithms would be even greater.

Fig. 15 The impact of the varying block size for range queries

Distrib Parallel Databases (2012) 30:179–207 203

Fig. 16 Comparison of the best results on different architectures

Finally, we present comparison of best results for both algorithms employing
TriPto index and choosing optimal block size on GPU 1, GPU 2 and CPU 48
(Fig. 16). The CPU version ran solely the SQFD-only algorithm as the SQFD + LB
algorithm is not suitable for CPUs.

6.5.2 kNN queries

For the kNN queries we used k = 100, so that 100 nearest neighbors of the query
object were selected. The kNN query differs from range query in fact that the query
radius, which was also used for the pre-filtering step, was refined during the com-
putation. Therefore, selecting appropriate block size was even more delicate than in
sequential search or range queries (Fig. 17).

The results indicate that even smaller blocks are required in order to achieve op-
timal performance, especially for α = 0.01. For most algorithms, the optimal block
size is 64–128 for α = 0.01 and about 256 for α = 0.2.

204 Distrib Parallel Databases (2012) 30:179–207

Fig. 17 The impact of the varying block size for kNN queries

As shown in range queries tests, the SQFD + LB algorithm was slightly slower in
case of α = 0.01 on single GPU and slightly faster for α = 0.2. But most importantly,
it exhibits better speedup when comparing GPU1 and GPU2 results, thus provides
much better opportunities for scalability.

The overall comparison of kNN results is reviewed in the remaining set of graphs
(Fig. 18).

6.6 Summary

We have experimentally proved that our GPU-based algorithms are significantly
faster than multi-core CPU implementation in every type of query processing and
also in indexing. Furthermore, the SQFD+LB algorithm demonstrates great scalabil-
ity potential and offers better performance in case there is more GPU computational
power available.

7 Conclusion

We have proposed a parallel approach to fast similarity search using the Signature
Quadratic Form Distance (SQFD) on combined CPU and GPU architectures. In par-
ticular, we proposed two algorithms that adopt metric/ptolemaic indexing within a

Distrib Parallel Databases (2012) 30:179–207 205

Fig. 18 Comparison of the best results on different architectures

parallel architecture, such that the query processing workload is split between the
CPU and multiple GPUs. The first algorithm utilizes the GPUs just by computation of
SQFDs batches, leaving the other processing on CPU. The second algorithm utilizes
the GPUs additionally by construction of lower-bound distances used in the index
pre-filtering, leading to better balance of workload between the CPU and GPUs when
expensive lower bound construction is used (such as the ptolemaic lowerbounding).
In experimental evaluation we have shown that our implementation on a common
workstation with just 2 GPU cards outperforms the traditional parallel implementa-
tion on a high-end 48-core server by up to an order of magnitude. If we consider
also the price of the high-end server which is ten times higher than the GPU work-
station, then based on price/performance ratio, the GPU-based similarity search beats
the CPU-based solution by almost two orders of magnitude.

Acknowledgements This research has been supported by Czech Science Foundation (GAČR) project
202/11/0968, by the grant agency of Charles University (GAUK) project no. 277911, and by the Deutsche
Forschungsgemeinschaft within the Collaborative Research Center SFB 686.

206 Distrib Parallel Databases (2012) 30:179–207

References

1. Beecks, C., Lokoč, J., Seidl, T., Skopal, T.: Indexing the signature quadratic form distance for efficient
content-based multimedia retrieval. In: Proc. ACM Int. Conf. on Multimedia Retrieval, pp. 24:1–24:8
(2011)

2. Beecks, C., Seidl, T.: On stability of adaptive similarity measures for content-based image retrieval.
In: MMM, pp. 346–357 (2012)

3. Beecks, C., Uysal, M.S., Seidl, T.: Signature quadratic form distances for content-based similarity. In:
Proc. ACM Multimedia, pp. 697–700 (2009)

4. Beecks, C., Uysal, M.S., Seidl, T.: A comparative study of similarity measures for content-based
multimedia retrieval. In: Proc. IEEE ICME, pp. 1552–1557 (2010)

5. Beecks, C., Uysal, M.S., Seidl, T.: Signature quadratic form distance. In: Proc. ACM CIVR, pp. 438–
445 (2010)

6. Bolettieri, P., Esuli, A., Falchi, F., Lucchese, C., Perego, R., Piccioli, T., Rabitti, F.: CoPhIR: a test
collection for content-based image retrieval. 0905.4627v2 (2009). http://cophir.isti.cnr.it

7. Bustos, B., Deussen, O., Hiller, S., Keim, D.: A graphics hardware accelerated algorithm for nearest
neighbor search. In: Computational Science—ICCS 2006, pp. 196–199 (2006)

8. Chávez, E., Navarro, G., Baeza-Yates, R., Marroquín, J.L.: Searching in metric spaces. ACM Comput.
Surv. 33(3), 273–321 (2001). doi:10.1145/502807.502808

9. Deselaers, T., Keysers, D., Ney, H.: Features for image retrieval: an experimental comparison. Inf.
Retr. 11(2), 77–107 (2008). doi:10.1007/s10791-007-9039-3

10. Garcia, V., Debreuve, E., Barlaud, M.: Fast k nearest neighbor search using gpu. In: IEEE Computer
Society Conference on Computer Vision and Pattern Recognition Workshops, CVPRW’08, pp. 1–6.
IEEE, New York (2008)

11. Geusebroek, J.M., Burghouts, G.J., Smeulders, A.W.M.: The Amsterdam library of object images.
Int. J. Comput. Vis. 61(1), 103–112 (2005)

12. Hafner, J., Sawhney, H.S., Equitz, W., Flickner, M., Niblack, W.: Efficient color histogram indexing
for quadratic form distance functions. IEEE Trans. Pattern Anal. Mach. Intell. 17, 729–736 (1995).
doi:10.1109/34.391417

13. Hetland, M.L.: The basic principles of metric indexing. In: Coello, C.A.C., Dehuri, S., Ghosh, S.
(eds.) Swarm Intelligence for Multi-objective Problems in Data Mining. Studies in Computational
Intelligence, vol. 242. Springer, Berlin (2009)

14. Hetland, M.L.: Ptolemaic indexing. arXiv:0911.4384 [cs.DS] (2009)
15. Hu, R., Rüger, S., Song, D., Liu, H., Huang, Z.: Dissimilarity measures for content-based image

retrieval. In: Proc. IEEE International Conference on Multimedia & Expo, pp. 1365–1368 (2008).
doi:10.1109/ICME.2008.4607697

16. Huiskes, M.J., Lew, M.S.: The mir flickr retrieval evaluation. In: Proc. ACM MIR, pp. 39–43 (2008)
17. Leow, W.K., Li, R.: The analysis and applications of adaptive-binning color histograms. Comput. Vis.

Image Underst. 94(1–3), 67–91 (2004). doi:10.1016/j.cviu.2003.10.010
18. Lieberman, M., Sankaranarayanan, J., Samet, H.: A fast similarity join algorithm using graphics pro-

cessing units. In: IEEE 24th International Conference on Data Engineering, ICDE 2008, pp. 1111–
1120. IEEE, New York (2008)

19. Lokoč, J., Hetland, M., Skopal, T., Beecks, C.: Ptolemaic indexing of the signature quadratic form dis-
tance. In: Proceedings of the Fourth International Conference on Similarity Search and Applications,
pp. 9–16. ACM, New York (2011)

20. Lokoč, J.: Cloud of points generator. SIRET Research Group (2010). http://siret.ms.mff.cuni.cz/
projects/pointgenerator/

21. Mémoli, F., Sapiro, G.: Comparing point clouds. In: SGP’04: Proceedings of the 2004 Eurograph-
ics/ACM SIGGRAPH Symposium on Geometry Processing, pp. 32–40. ACM, New York (2004).
doi:10.1145/1057432.1057436

22. Mico, M.L., Oncina, J., Vidal, E.: A new version of the nearest-neighbour approximating and elim-
inating search algorithm (aesa) with linear preprocessing time and memory requirements. Pattern
Recognit. Lett. 15(1), 9–17 (1994). doi:10.1016/0167-8655(94)90095-7

23. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern
Anal. Mach. Intell. 27(10), 1615–1630 (2005). doi:10.1109/TPAMI.2005.188

24. Navarro, G.: Analyzing metric space indexes: what for? In: IEEE SISAP 2009, pp. 3–10 (2009)
25. NVIDIA: Fermi GPU Architecture. http://www.nvidia.com/object/fermi_architecture.html

http://arxiv.org/abs/0905.4627v2
http://cophir.isti.cnr.it
http://dx.doi.org/10.1145/502807.502808
http://dx.doi.org/10.1007/s10791-007-9039-3
http://dx.doi.org/10.1109/34.391417
http://arxiv.org/abs/arXiv:0911.4384
http://dx.doi.org/10.1109/ICME.2008.4607697
http://dx.doi.org/10.1016/j.cviu.2003.10.010
http://siret.ms.mff.cuni.cz/projects/pointgenerator/
http://siret.ms.mff.cuni.cz/projects/pointgenerator/
http://dx.doi.org/10.1145/1057432.1057436
http://dx.doi.org/10.1016/0167-8655(94)90095-7
http://dx.doi.org/10.1109/TPAMI.2005.188
http://www.nvidia.com/object/fermi_architecture.html

Distrib Parallel Databases (2012) 30:179–207 207

26. Pan, J., Manocha, D.: Fast gpu-based locality sensitive hashing for k-nearest neighbor computation.
In: Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems, pp. 211–220. ACM, New York (2011)

27. Puzicha, J., Buhmann, J., Rubner, Y., Tomasi, C.: Empirical evaluation of dissimilarity measures for
color and texture. In: Proc. IEEE International Conference on Computer Vision, vol. 2, pp. 1165–1172
(1999)

28. Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for image retrieval. Int.
J. Comput. Vis. 40(2), 99–121 (2000). doi:10.1023/A:1026543900054

29. Samet, H.: Foundations of Multidimensional and Metric Data Structures. Morgan Kaufmann, San
Mateo (2006)

30. Skopal, T., Bartoš, T., Lokoč, J.: On (not) indexing quadratic form distance by metric access methods.
In: Proc. Extending Database Technology (EDBT). ACM, New York (2011)

31. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space Approach. Ad-
vances in Database Systems. Springer, New York (2005)

http://dx.doi.org/10.1023/A:1026543900054

	Combining CPU and GPU architectures for fast similarity search
	Abstract
	Introduction
	Similarity search in multimedia databases
	Model representation
	Feature signatures
	Signature quadratic form distance

	Indexing
	Metric indexing
	Ptolemaic indexing

	Pivot tables
	Motivation for parallel indexing

	GPU fundamentals
	GPU architecture
	Thread execution
	Memory organization
	Summary

	Similarity search using GPU
	Computing multiple distances in parallel
	Computing each distance in parallel
	The SQFD-only algorithm
	Integration to indexing and query processor
	Computing pivot table
	Range query
	kNN query

	Moving the index to GPU
	The SQFD+LB algorithm
	Pivot table representation
	Computing lower bounds on the GPU

	Experiments
	Methodology and hardware setup
	Datasets
	Index setup
	Sequential search and indexing
	Index search
	Range queries
	kNN queries

	Summary

	Conclusion
	Acknowledgements
	References

