
Distrib Parallel Databases (2012) 30:145–176
DOI 10.1007/s10619-012-7090-6

Dynamic routing of data stream tuples among parallel
query plan running on multi-core processors

Ali A. Safaei · Ali Sharifrazavian · Mohsen Sharifi ·
Mostafa S. Haghjoo

Published online: 8 March 2012
© Springer Science+Business Media, LLC 2012

Abstract In this paper, a method for fast processing of data stream tuples in paral-
lel execution of continuous queries over a multiprocessing environment is proposed.
A copy of the query plan is assigned to each of processing units in the multiprocessing
environment. Dynamic and continuous routing of input data stream tuples among the
graph constructed by these copies (called the Query Mega Graph) for each input tuple
determines that, after getting processed by each processing unit (e.g., processor), to
which next processor it should be forwarded. Selection of the proper next processor
is performed such that the destination processor imposes the minimum tuple latency
to the corresponding tuple, among all of the alternative processors. The tuple latency
is derived from processing, buffering and communication time delay which varies in
different practical parallel systems.

Parallel system architectures that would be suitable as the desired multiprocessing
environment for employing the proposed Dynamic Tuple Routing (DTR) method are
considered and analyzed. Also, practical challenges and issues for the proper parallel
underlying system are discussed. Implementation of the desired parallel system on
multi-core systems is provided and used for evaluating the proposed DTR method.
Evaluation results show that the proposed DTR method outperforms similar method
such as the Eddies in terms of tuple latency, throughput and tuple loss.

Communicated by: Mohamed F. Mokbel.

A.A. Safaei (�) · M. Sharifi · M.S. Haghjoo
School of Computer Engineering, Iran University of Science and Technology, Tehran, Iran
e-mail: safaeei@iust.ac.ir

M. Sharifi
e-mail: msharifi@iust.ac.ir

M.S. Haghjoo
e-mail: haghjoom@iust.ac.ir

A. Sharifrazavian
School of Computer Engineering and IT, Sharif University of Technology, Tehran, Iran
e-mail: sharifrazavian@ce.sharif.edu

mailto:safaeei@iust.ac.ir
mailto:msharifi@iust.ac.ir
mailto:haghjoom@iust.ac.ir
mailto:sharifrazavian@ce.sharif.edu

146 Distrib Parallel Databases (2012) 30:145–176

Keywords Data stream · Parallel processing · Query plan · Multi-core systems ·
Multistage Interconnection network

1 Introduction

Query processing in data stream systems is involved with new challenges regards to
properties of data stream (i.e., infinite, continuous, rapid and unpredictable sequence
of data elements). One of the most critical requirements of query processing in data
stream systems is fast processing. Single processor data stream management systems
are not capable of processing continuous queries over continuous streams with a sat-
isfactory speed. So, parallel processing of queries using multiple processing units
would be a good solution.

In [1], we proposed parallel processing of continuous queries in a multiprocessing
environment. Assuming to have K identical logical machines (e.g., whether physi-
cal such as CPUs or GPUs or logical such as threads running on a multi-core CPU),
a copy of the main query plan is assigned to each of logical machines [1]. Machines
would collaborate to execute operators of the query plan in parallel. In order to do
this, a graph consisting of all k copies of the main query plan is generated. This graph
which is called QMG (Query Mega Graph) represents only a logical view of the ma-
chines. After that, operator scheduling process determines which machine should
execute which operator of the query plan assigned to it. In other words, schedul-
ing (on the QMG) determines that each input data stream tuple must visit which
operator in which machine, to be processed [1]. This process (scheduling) is per-
formed in an event-driven manner in [1] (i.e., whenever an input queue becomes
full).

In order to be more compatible with the continuous nature of data streams as
well as continuous queries, we proposed in [2], short-term continuous scheduling
(called Dispatching) instead of the event-driven one, which provides a significant
improvement of system performance [2].

In this paper, dynamic routing of input data stream tuples among operators of
the QMG is proposed; theoretical concepts are based on the continuous scheduling
method (Dispatching) and practical challenges and issues for designing and imple-
menting proper parallel underlying system for employing the Dynamic Tuple Routing
(DTR) method are proposed, too.

A background on the parallel query processing method we have proposed in [1]
is briefly described in Sect. 2. Basic concepts and fundamentals of the proposed Dy-
namic Tuple Routing (DTR) are presented in Sect. 3 shows how employing DTR
causes to minimize tuple latency (fast query processing). Employing this method in
real-world applications needs operational parallel underlying system. Practical chal-
lenges and issues which we will deal with, are discussed and analyzed in Sect. 4.
Implementation of the DTR over a multi-core system as the proper parallel system is
presented in Sect. 5. Performance of the proposed DTR method over the implemented
parallel system is evaluated in Sect. 6. Finally we review related work in Sect. 7 and
conclude in Sect. 8.

Distrib Parallel Databases (2012) 30:145–176 147

2 Background

We presented a parallel DSMS in [1] in which there exist k identical machines (logi-
cal machines) which collaborate to process queries over input streams in parallel. For
each registered query, k identical copies of query plan are generated and each copy
is assigned to a machine. If an operator A sends its output tuples to operator B in a
query plan, then each particular machine P i is capable of sending output tuples of
operator A to operator B in the next level of all machines (Fig. 1).

The k identical copies of query plan make a directed graph together. Two special
nodes are added to this graph, source and sink. An edge connects the source node to
each node in the first level. Also, an edge connects each node in the last level to the
sink node. An edge connecting two nodes corresponds to a queue of operators. Weight
of an edge indicates number of tuples waiting in the queue. The result is a weighted
DAG named Query Mega Graph (QMG). In this way, the query plan is recognized by
all machines and they are capable of collaborating for parallel execution of operators
(Fig. 2).

Fig. 1 Collaboration of logical
machines for processing
operators of a query plan

Fig. 2 Query Mega Graph

148 Distrib Parallel Databases (2012) 30:145–176

Notations1:
A query plan is a DAG GQP = 〈V,E〉 in which:

V = {o | o ∈ stream query operators}
E = {〈A,B〉 | A,B ∈ V

}

Oi
j denotes operator O which is the ith operator of main query plan in machine j .

Oi− denotes the ith operator of main query plan, O−
j denotes operator O in ma-

chine j and O
|V|
− denotes the last operator of main query plan.

Query Mega Graph created from GQP = 〈V,E〉 is a triple QMG = 〈V ′,E′,W ′〉
such that:

V ′ = {src, sink}U
⋃

1≤i≤|V |
1≤j≤K

Oi
j

E′ = E ∪ {〈x, y〉|∀A,B ∈ V
(〈A,B〉 ∈ E

)

⇒ (∀i = 1,2, . . . , k, ∀j = 1,2, . . . , k, i
= j
(〈
A−

i ,B−
j

〉

∈ E′ ∧ (
x = A−

i ∧ y = B−
j

))) ∨ (∀i = 1,2, . . . , k
((

x = src ∧ y = O1
i

)

∨ (
x = O

|V |
i ∧ y = sink

)))}

W ′ : E′ → Z
+ such that ∀a, b ∈ V ′(W ′(a, b) = q_count(a, b)

)

q_count(a, b) returns number of tuples waiting in queue of edge (a, b).
Note that number of nodes and edges in QMG can be computed as:

∣∣V ′∣∣ = (|V | × K
) + 2

∣∣E′∣∣ = (|E| × K
) + (K − 1)

|V |∑

i=1

fan_outi + 2K

fan_outi is the number of edges outgoing from node i.
The operator scheduling process finds the shortest path in QMG to minimize tuple

latency. This path is a sequence of query plan operators distributed over k logical
machines (Fig. 3).

After finding the shortest path, a triple 〈p,o, s〉 (predecessor machine, opera-
tor_Id, successor machine) is sent to each machine. In this way, operator path could
be executed in parallel over k logical machines instead of serially in one. In [1],
scheduling (finding the shortest path in QMG) is performed using the Dijkstra’s short-
est path algorithm when a queue becomes full (considered as an event). In contrast
to event-driven scheduling, operator scheduling presented in this paper is performed
continuously over query processing period.

In [1], query plan operators are first assigned to the machines according to (1):

j = imod k (1)

1Notations are based on predicate logic in the Z notation [40].

Distrib Parallel Databases (2012) 30:145–176 149

Fig. 3 A sample outcome of scheduling algorithm (routing in QMG)

(j : machine_ Id, i: operator_Id and k: number of machines).
By lapse of time, since operators have different processing speed (some are faster

such as projection while others like join are much slower), number of tuples waiting
in input queue of different operators may vary too much. When a queue becomes full,
re-scheduling process should be performed, in which weight of edges are updated,
then the shortest path is found via the Dijkstra’s shortest path algorithm and triple
〈p,o, s〉 (predecessor machine, operator_Id and successor machine) is sent to each
machine to set the operator path. The new path and the old one are used concurrently
until all tuples waiting in queues of the old path are processed. The input ordering
of tuples may change in parallel query processing engine. In order to preserve input
ordering of data stream tuples, they are buffered and sorted in the sink node, before
delivery.

Moreover, short-term (high frequency) scheduling of data stream query operators
is proposed in [2] in which system’s performance is improved as well as its adaptivity.

In this paper, a dynamic tuple routing method is proposed which can be used for
processing data stream tuples by parallel processing of desired continuous queries in
such a multiprocessing environment.

3 The proposed Dynamic Tuple Routing (DTR) method

In [1], tuple processing schema (traversing the query mega graph operators dis-
tributed over K logical machines) is determined by the scheduling process. This is
performed via finding the shortest path in QMG that is done in an event-driven man-
ner [1]. This causes fluctuations in system’s performance level; when scheduling is
done, the path that would be used is the best one (the shortest path) in which tuple
suffers minimum latency. As the time proceeds, while queues are becoming full, tu-
ple latency increases. So, that path would not be the best one and tuple latency is not
the minimum anymore. Such situations would be continued up to the state in which
one of the queues becomes completely full and excess tuples should be discarded. In
this case, the reduced performance reaches to its minimum.

150 Distrib Parallel Databases (2012) 30:145–176

Fig. 4 Fluctuations of performance level caused by the event-driven scheduling [2]

By doing scheduling (re-scheduling) at this time (finding the new shortest path
w.r.t. the updated weights of edges in QMG), tuple latency would be minimal again.
An example of such scenario is shown in Fig. 4.

As a solution for this problem and reducing system performance fluctuations, op-
erator scheduling (routing in QMG) can be performed with higher frequency (e.g.,
for each incoming data stream tuple).

The golden rule and strength for employing dynamic tuple routing method is the
property that the QMG is of a specific and restricted type of graphs. In fact, QMG is
a multistage graph (Theorem 1). A multistage graph is defined as a graph in which
nodes are partitioned into sets (each set is called a stage); and each edge in this graph
connects a node in stage i ONLY to one of the nodes in stage i + 1. We call such
transition (from a node in stage i to a node in stage i + 1) a step.

Theorem 1 The QMG is a multi-stage graph.

Proof it is proved in [1] that query plan of a continuous query is a multi-stage graph.
According to the definition, QMG is composed of k identical copies of query plan,
plus nodes and edges which are added while preserving semantic of stages. It means
that there is an edge from operator a in machine l to operator b in machine t in QMG
if an edge from a to b exists in the main query plan:

(∀a, b ∈ V ∧ i, j = 1,2, . . . , |V | ∧ l, t = 1,2, . . . , k,
(
ai
l , b

j
t

) ∈ E′)

⇒ (
ai−, b

j
−
) ∈ E

therefore, a is in the stage immediately before b.
Also, edges from the source node are connected only to nodes in first level of

query plan and edges to the sink node are connected only from nodes in the last level.
Hence, all of the edges in QMG connect a node in stage i only to a node in stage

i + 1. �

In Query Mega Graph QMG = 〈V ′,E′,W ′〉 the notation OSi ⊆ V ′ shows the ith
stage in which V ′ = ⋃L

i=1 OSi such that:

Distrib Parallel Databases (2012) 30:145–176 151

(∀i, j ∴ i
= j.(OSi ∩ OSj = ∅)
)

∧ (∀e ∈ E′, e = (a, b)
(
�c, d ∈ V ′((a, c) ∈ E′ ∧ (d, b) ∈ E′)))

In data stream query processing context, the path in query plan that each input tuple
must traverse is known as operator path [3].

According to the definition of QMG and operator path, an operator path in QMG
is a sequence of nodes located chronologically in stages 1 to L (L is number of stages
in QMG):

Operator_paths(QMG)

= {〈x1, x2, . . . , xL〉|(xi ∈ OSi ∧ xi+1 ∈ OSj) ⇒ (j = i + 1)
}

Cost of each operator path in QMG is defined as the time delay each input tuple
will suffer while traversing corresponding path [1]. It is shown in [1] that in order
to have minimum tuple latency, the operator path that is selected for tuples to tra-
verse, must be the shortest path. Finding the shortest path (routing in QMG) in [1]
is performed using the Dijkstra’s shortest path algorithm and repeated in an event-
driven manner [1]. Regarding to the mentioned property of QMG (i.e., is a multistage
graph), routing in QMG could be performed dynamically and continuously instead of
event-driven using the Dijkstra algorithm.

Theorem 2 The shortest path in QMG is a sequence of steps from stage 1 to stage L

so that for each step, the edge with minimum weight (cost) among all corresponding
edges is selected.

Proof Sum of positive variables is minimum iff each variable has its minimal value.
According to the definition of OMG and operator path [2, 3], an operator path in
QMG (as a multi-stage graph) is a sequence of edges corresponding to steps 1 to L.
Since weight of an edge (number of tuples waiting in corresponding queue) is always
a positive value, sum of these weights is minimum iff each edge in this path has its
minimal value.

In other words, let’s assume that Da,Db, . . . ,Dz are domain of values for
a, b, . . . , z variables, respectively: Da,Db, . . . ,Dz ⊆ N

a + b + · · · + z = MIN_VALUE ⇐⇒
(
a = min

ai∈Da

{ai}
)

∧
(
b = min

bi∈Db

{bi}
)

∧ · · ·

∧
(
z = min

zi∈Dz

{zi}
)

�

According to Theorem 2, in order to find the shortest path in QMG, for each tuple,
in each step, we must determine and select the edge with the minimum cost value
among all corresponding edges in that step (Fig. 5).

The reason is that, cost (i.e., latency) of an operator path is equal to summation of
costs that traversing tuple suffers at each of steps (Lemma 2 in [1]).

As an axiom, summation of some integer numbers (e.g., cost of steps of an op-
erator path) will have its minimum value when each of these integer numbers has
its minimum value. So, in order to determine the shortest path in QMG to perform
Dynamic Tuple Routing (DTR), for each input data stream tuple, in each step, we
dynamically select the edge with the minimum weight (Fig. 5).

152 Distrib Parallel Databases (2012) 30:145–176

Fig. 5 Selecting minimum weight edge in each step in the DTR method

If 〈X,Y,Z〉 ∈ Operator_paths(QMG), then:
Cost

(〈X,Y,Z〉) = MIN_VALUE

⇐⇒
{(

X =
{q_count(ai ,bj)}

min
1≤i≤k,

1≤j≤k

)
∧

(
Y =

{q_count(bi ,cj)}
min

1≤i≤k,

1≤j≤k

)
∧

(
Z =

{q_count(ci ,dj)}
min

1≤i≤k,

1≤j≤k

)}

Such a determined operator path is the shortest path and has minimum tuple la-
tency. We can conclude that routing algorithm used in [1] (i.e., Dijkstra’s shortest path
algorithm) employs the greedy approach whilst the Dynamic Tuple Routing (DTR)
proposed in this paper employs dynamic programming approach; shortest path from
the src node to the sink node of QMG consists of the edge with minimum cost from
src to one of the nodes in next stage, named ą (i.e., the min cost edge in the first step),
concatenated with the shortest path from ą to the sink node which is determined with
the same manner, recursively.

Shortest path that is found by this method is the shortest one in that time instance
(system snapshot). This means that, in each step, the best choice in that time instance
is employed. So, although it may be possible that there exist a better path at some
future time, but we do not have the chance of analyzing and using it at this time
instance.

Therefore, the shortest path found by DTR is the best one w.r.t our current ap-
proach (selecting the best possible choice at each time instance).

In the proposed DTR method, at the beginning, the first operator of the main query
plan is assigned to the first logical machine. Starting from first node of QMG, for
each tuple, each node performs:

1. Executing its assigned operator on the tuple, and
2. Forwarding result tuple to the next proper node (i.e., the node in the next stage

with the minimum cost).

By “cost of a step” we mean: the time a tuple suffer to be processed by destina-
tion node of the corresponding step. Generally, this cost consists of processing cost
if the node (assigned operator’s execution time) and buffering time (waiting in oper-
ator’s input queue) [1]. Of course, in an operational and practical parallel underlying

Distrib Parallel Databases (2012) 30:145–176 153

system, as the desired multiprocessing environment, some other costs (e.g., commu-
nication costs) would be considerable. The cost model which is used for selecting
min-cost edge at each step of DTR is presented in Sect. 4.6.

Since, by assigning a copy of main query plan to each of logical machines, they
are aware of the query plan (operators and their arrangement), each node sends its
result tuple beside the operator Id to the selected (min-cost) next node.

Pseudo-code of the proposed DTR and its time complexity analysis is presented in
Sect. 4.6.

Employing this DTR method in real-world applications requires a proper parallel
system as the desired multiprocessing environment. In next section, practical chal-
lenges and issues for such parallel underlying system are discussed and analyzed.

4 Practical challenges and issues

In order to implement multiprocessing environment of the proposed dynamic tuple
routing method, many practical challenges and issues would be considered. Some of
the most important ones are discussed below.

4.1 Context-switching

As selected edge with minimum weight changes dynamically, destination node (op-
erator) migrates among different machines. From a machine point of view, it may ex-
ecute different operators in each edge selection phase. Obviously, high frequency of
changing operators for a machine to execute imposes considerable context-switching
overhead for that machine. Some solutions for reducing this context-switching over-
head are itemized below:

(a) Restricting domain of operators for each machine to execute
Domain of operators for each machine to execute can be restricted in two ways:

• Partition set of logical machines as well as set of main query plan operators
into subsets, and assign operator subsets to logical machine subsets.
As a case, we may NOT copy all operators of query plan to all of the machines.
In fact, lightweight operators such as projection which does not introduce long
latency may not be replicated to all machines. Each such operator may be
bound to a specific machine. Corresponding issue, called asymmetry of the
machines, is discussed in Sect. 4.2. Although such approaches introduce some
more complexities to the system’s design and management, but would reduce
context-switching overheads and communication costs (Sect. 4.6). The case
that is mentioned above may lead to an extension of the proposed DTR and is
leftover for future work.

• Assign copies of query plan to all machines, but set weight of QMG edges to
∞ (infinite value) if the edge’s destination node is located in machine assigned
to an undesired operator.

(b) Per-ω-tuples instead of per-tuple scheduling

154 Distrib Parallel Databases (2012) 30:145–176

The more the machine change frequency, the more the context-switching over-
head. Since scheduling frequency of each operator is equal to the tuple arrival
rate, the context-switching overhead can be reduced by modifying routing fre-
quency from per-tuple to per-ω-tuples (ω > 1). Finding an optimal value for ω
is important because: (1) on one hand, routing is better to work per-tuple to be
compatible with the continuous nature of data streams and continuous queries
(2) on the other hand, the more the scheduling frequency, the more the context-
switching overhead.

4.2 Symmetry of the machines

In a multiprocessing system, all of the machines (processing units) may have identical
assigned functionality (i.e., SMP2) or some may have some special functionalities
(i.e., ASMP3 for example executing kernel-mode code of an OS on a processor while
executing user-mode code on the other processors).

Although making these limitations simplifies design of multiprocessor systems but
reduces system efficiency compared to the case in which processors are fully utilized.

In [1], since operator scheduling process is centralized, one of the processors is
assigned scheduling process (i.e., scheduler machine) whilst the others are executing
query operators. In contrast, the proposed DTR method, scheduling process (deter-
mining which operator must be executed on which processors) is performed dynami-
cally, continuously and in a distributed manner by all of the processors (each machine
itself determines the machine for executing next operator on its processed tuple). So,
in DTR, parallel multiprocessing environment is SMP (compared to the PQP [1]) and
employs processors utilizations more efficiently. Processor utilization comparison be-
tween PQP and DTR is analyzed in Sect. 6. Albeit, sorting the output result tuples is
still performed in a specific processor in DTR, as well as in PQP.

4.3 Heterogeneity of the machines

Designing a practical system for DTR to be implemented and applied, requires to
determine a proper heterogeneity level of machines (processing units e.g., GPP, GPU,
DSP, FPGA, etc.).

In modern computing systems, level of heterogeneity between processing units is
increased, as well as heterogeneity supports is provided in lower physical layers (i.e.,
in chip area)

In general, processors in heterogeneous computing may have different ISA.4 More
heterogeneity would be beneficial for computing systems that require better perfor-
mance, reliability, reaction and correlation to the environment (e.g., network or con-
trol systems).

Heterogeneity of the processing units could be derived in subjects such as API,5

low-level language capabilities, memory hierarchy, interface and interconnection.

2Symmetric Multi-Processors.
3ASymmetric Multi-Processors.
4Instruction Set Architecture.
5Application Programming Interface.

Distrib Parallel Databases (2012) 30:145–176 155

One of the most important heterogeneity subjects for the DTR is interconnec-
tion and communication model which processors in the multiprocessing environment
must support. These will be determined when proper system architecture is analyzed
and determined (Sect. 4.4).

Moreover, heterogeneity in processors’ memory interface can be in a level in
which length and structure of data (for data items that processors read, write and
transfer) should be homogeneous. This is because they must support sliding window
mechanisms. Also, supporting cache coherency protocols and NUMA access would
be beneficial.

4.4 System architecture analysis

In this paper, dynamic routing of data stream tuples in parallel execution of continu-
ous queries, over a multiprocessing environment is proposed. Multiprocessing means
employment of more than one processing unit at a time in order to improve system
throughput and performance. Based on the type of processing units employed, multi-
processing parallel systems are either multicomputer or multiprocessor.

Multicomputer systems in which some computers are connected using a commu-
nication network are suitable for applications that do not need high volume of com-
munication between processing units. Since in DTR’s multiprocessing environment
there will be a high volume of communications (multiple communications for each
data stream tuple), so multicomputer would not be a good choice.

Multiprocessor systems, in which some processors and some memory modules in
a computer system are connected, are classified as follows [5]:

• Tightly coupled: primary memory is shared between processors such that each
communication is performed via this shared memory (Fig. 6(a)).

• Loosely coupled: processors do not have shared memory and communication is
performed via passing messages through communication network (message pass-
ing (Fig. 6(b)).

Shared memory as communication model cause to have high performance as well
as low overhead via providing a global address space to programmers and sharing
data between tasks; but in addition to problems that the programmer must handle
(e.g., processors synchronization), weak scalability is the most critical shortcoming
of shared memory communication model.

Fig. 6 Communication models

156 Distrib Parallel Databases (2012) 30:145–176

On the contrary, message passing provides high scalability as well as flexibility of
employing off-the-shelf processors, but has high communication overhead in addition
to complexity in communication management and synchronization.

Although due to the following reasons message passing seems to be more proper
for multiprocessing environment of the proposed DTR method, but the two models
are compared and analyzed in more details in Sect. 6:

(a) Message passing is known as suitable model for streaming applications [4].
(b) Communication between logical machines’ operators (i.e., sending processed tu-

ple beside operator Id + 1 to the next logical machine) essentially uses message
passing.

(c) In data stream query processing context, operators are such that they modify
structure of their input data instead of overwriting.

For example, a projection operator selects only some of the all attributes and
passes it to the next operator. A selection operator may discard (not to select) the
considered tuple entirely; and a join operator may create a bigger data item for
some of the tuples.

Accordingly, shared memory would not be suitable due to its high overhead
and complexity of memory management which is very frequent while message
passing communication model seems to be more suitable. Note that, if the oper-
ators modify content of data items instead of its structure (i.e., overwriting data
items such as in transaction management), then the shared memory model would
be preferred; in shared memory, this can be handled simply by assigning the
pointer to the modified data items in shared memory to the next processors.

Interconnection networks that are used to connect processors to each other (and/or to
memory modules) are broadly classified in two classes:

(a) Static networks in which links are passive and like a dedicated bus between
source and destination elements. Some well-known static network topologies are:
completely connected, star, ring, star, linear array, mesh and hypercube [5, 6]
(Fig. 7(a)).

(b) Dynamic networks in which links can be re-configured by switches. Some of the
most well-known categories for dynamic networks are bus-based, crossbar and
MIN (multistage Interconnection Network) [5, 6] (Fig. 7(b)).

Although it may sound to someone that the proposed architecture is somewhat
similar to the completely connected or mesh networks, but in fact, it is a dynamic
interconnection network not static. The reason is links between nodes in architecture
of the proposed DTR multiprocessing environment are not passive and dedicated and
not all of them are used every time (among all of the links between each a and b,
only those with minimum cost would be used i.e., re-configurability). So, the inter-
connection network of the proposed DTR multiprocessing environment is a dynamic
network that can use message passing communication model to send the messages
(processed tuple beside its operator Id + 1) to each selected next processor. Table 1
illustrates a brief comparison between dynamic interconnection networks topologies.

Among different dynamic interconnection network categories, according to Theo-
rem 1 (i.e., QMG is a multistage graph), MIN (Multistage Interconnection Network)
is the most adequate one for our proposed DTR’s system architecture.

Distrib Parallel Databases (2012) 30:145–176 157

Fig. 7 Examples of well-known (a) static and (b) dynamic interconnection networks topologies [5]

Table 1 Comparison between
dynamic interconnection
networks topologies [7]

Property Bus-based Crossbar Multistage

Speed Low High High

Cost Low High Moderate

Reliability Low High High

Configurability High Low Moderate

Complexity Low High Moderate

In a MIN, processors are connected to the others via a set of Switching Elements
(SE) such as in Fig. 8.

Each SE may have m inputs and n outputs (Fig. 9(a)) while switching policy de-
termines how inputs are mapped to the outputs. For example, for a 2 × 2 SE, four
switching policies can be defined as in Fig. 9(b).

158 Distrib Parallel Databases (2012) 30:145–176

Fig. 8 Multistage
Interconnection Network (MIN)

Fig. 9 Switching element and switching policies for a 2×2 SE

Fig. 10 The proposed UACP–MIN

According to the connection type (one-to-one, multipath or permutation, and also
the Inter-Stage Connection (ISC) pattern [5], different types of MIN exist. Some ex-
amples are Delta [8], Omega [9], Butterfly [10] and certain permutation [11] MINs.

Routing in MINs is commonly static self-routing performed by SEs based on des-
tination processor address of each message.

Interconnection network of the proposed DTR multiprocessing environment is a
MIN partially different from the other ones. One of its distinguishing properties is
this that the processors themselves act the role of switches (Fig. 10). It means that
each of the processors, in addition to performing its assigned task (i.e., executing the
operator on the received tuple), performs switching process to communicate with the

Distrib Parallel Databases (2012) 30:145–176 159

next processor that is in fact, a per-hop min-cost routing instead of switching. So,
hereafter, we use “Routing Element” (RE) instead of the “Switching Element” (SE).

Number of inputs and outputs for each RE is fi and fo, respectively that are equal
to K in general:

fi = fo = K

Also, inter-stage connection pattern in the MIN of the proposed system architecture
has two important properties as follows:

1. Unidirectional: unlike other generic MINs in which each processor is able to com-
municate with each other processors, communication in the proposed MIN is al-
lowed only in one direction (from the processor m that executed operator Om

i only
to the processors that execute O−

i+1, but not to the other ones). So, we name the
proposed MIN a “Unidirectional” MIN due to this property.

2. Adjutants-only: each RE can communicate ONLY with its next stage directly-
connected adjutants.

3. Complete-Permutation: each RE in each stage is connected to ALL of the REs in
the next stage (Fig. 10). MINs with such inter-stage connection pattern are also
called baseline [11, 12].

Accordingly, the interconnection network for connecting processing units in mul-
tiprocessing environment of the proposed DTR method is a Unidirectional, Adjutants-
only, Complete-Permutation, Multistage Interconnection Network (UACP–MIN) as
shown in Fig. 10.

Routing policy for this interconnection network is a hop-by-hop, min-cost routing
in which each RE selects its next connected RE with the minimum cost. Cost model
in which practical cost metrics of the selected system architecture are considered is
proposed in Sect. 4.6.

The most important properties of a dynamic interconnection network for parallel
processing are as follow [5]:

• low latency (delay)
• low cost (e.g., number of REs)
• high reliability (degree of fault tolerance)
• full access compatibility
• simple routing control

Comparison of the proposed unidirectional, adjutants-only, complete-permutation
MIN with the other dynamic interconnection network categories is shown in Table 2:

Table 2 The proposed UACP–MIN vs the other dynamic interconnection network categories

Delay Cost Blocking Degree of fault tolerance

Bus-based O(N) O(1) Yes 0

Crossbar O(1) O(N2) No 0

MIN O(logN) O(logN) Yes 0

UACP–MIN O(|V |) and �(1) O(N) Yes (k − 1).|V |

160 Distrib Parallel Databases (2012) 30:145–176

Cost of an interconnection network which is defined as number of SEs [5] in the
UAPC–MIN (in which no SE exists) is equal to Zero. But, since the processors them-
selves perform switching (routing) processes (Res instead of SEs) number of Res
can be considered as network cost. In the proposed multiprocessing environment, if a
processor is assigned to each of the nodes in QMG, number of processors (i.e., REs)
is:

N = (|V | × K
) + 2

Albeit, the sink node of the QMG does not perform routing and hence number of Res
will be (N − 1). Anyway, cost of the proposed UACP–MIN is of O(N) as stated in
Table 2.

In addition to better order of the UACP–MIN (in term of cost) rather than generic
MINs, another advantage is that no special hardware element (as SE) is required,
since processors themselves perform desired routing task.

Also, delay in an interconnection network is defined as delay of transferring an
(empty) message through the network (between two processors, or a processor and a
memory module), in the worst-case.

Theorem 3 Delay of the UAPC–MIN is of O(|V |) in which |V | is the number of
query’s operators.

Proof Generally, delay of a MIN is equal to number of its stages (i.e., number of
hops the message should traverse) [5].

In the UAPC–MIN (which is based on the QMG, a multistage graph), number of
stages is equal to number of stages in the QMG. QMG is semantically equivalent to
the main query graph [1] and it preserves the set and arrangement of operators (only
existent edges are replicated). So, number of stages in QMG is equal to number of
stages of the main query graph. Number of stages in the main query’s execution-plan
graph is equal to number of operators in query-plan that are executed one after the
other (i.e., equal to |V |). �

So, in the worst-case, delay of transferring a message (tuple) in the UAPC–MIN is
of O(|V |) and in practice, number of operators of a query is relatively small. More-
over, in the best-case, when the two source and destination processors are located in
stages i and i + 1 respectively, transferring a message is of O(1). Therefore, delay of
the UAPC–MIN will be of O(N) and �(1).

Probability of transferring a message with delay of O(1) is:

Prob
(
�(1)

)

=
∑N

i=1 number of states processor Pi send a message to its next stage adjustent processor
∑N

i=1 number of states processor Pi wants to send a message to a processor

= number of edges existent in the QMG (i.e., |E′|)
number of all possibleedges in the QMG (i.e., N × (N − 1) as in a completly connected graph)

= (|E| × K) + (K − 1)
∑|V |

i=1 fan_outi + 2K

((|V | × K) + 2) × ((|V | × K + 2) − 1)

Distrib Parallel Databases (2012) 30:145–176 161

In other words, since each processor can send its tuple (message) to one of its K

adjustment next processors and this will be replicated for each of N processors, the
numerator is (K × N) whilst its denominator is (N × (N − 1)). Hence:

Prob
(
�(1)

) = K × N

N × (N − 1)
= K

N − 1
= K

((|V | × K) + 2) − 1

∼= K

|V | × K
= 1

|V | (2)

Practical analyzing of tuple latency (i.e., message delay) for the proposed DTR
method over the underlying implemented system is provided in Sect. 6.

A network is blocking if some permutations of the network cannot be realized [12].
Since in the UACP–MIN some of the processors cannot be accessible through some
others, there is some impossible permutation in the network and it is blocking, such
as the generic MINs.

Finally, fault tolerance in the UACP–MIN is discussed in the next section.

4.5 Machine-failure handling

Generally, fault tolerance in parallel database systems is performed by re-executing
the faulty query entirely. Since this approach is very costly and not efficient especially
for large queries, some extended approaches (e.g., MapReduce [13, 14]) intends to
restart only the faulty operator (instead of the whole query). These approaches impose
high overhead to the system among its normal operation [14].

None of these are applicable for the proposed dynamic tuple routing method. Some
reasons are as follow:

• The MapReduce operator is blocking [14] which is not proper to be used for data
stream systems.

• Since in data stream query processing context, tuples that are processed and de-
livered as output results do not need (and also do not exist) to be processed again,
there is no need to restart the faulty query or even one of its operators.

In general, fault tolerance is realized with the redundancy (e.g., code, data, etc.).
Employing multiple processing units in the proposed DTR’s multiprocessing envi-
ronment and assigning copies of the query plan to all of them, improves potential of
fault tolerance via redundancy.

Also, since the UACP–MIN employed in DTR system architecture is a multipath
MIN [7], so there are multiple path to be substituted with the faulty path. To re-direct
tuples to a non-faulty path, cost of stages and steps are set to 8 for the faulty path (so,
the cost model should consider the failure (Sect. 4.6)).

Machine (processing unit) failure is the most important type of failure that should
be considered in such multiprocessing environment. Machine failure mechanism in
the proposed DTR multiprocessing environment is as follow:

• When failure happens:

(a) faulty processors: to inform (notify) the upstream processors about failure hap-
pening in order to prevent sending their next tuples.

162 Distrib Parallel Databases (2012) 30:145–176

Notification about failure happening can be performed via different mech-
anisms such as messaging, shared status flag and timeout. Anyway, to select
and implement the proper mechanism, it must be considered that if the faulty
processor is able to do any operation after its crash?

(b) upstream processors: setting cost of any outgoing edges to the faulty processor
to 8, causing bypassing the faulty processor.

(c) handling trapped tuples: in order to handle the tuples trapped in the faulty
processor’s input queue, the tow basic strategies are:
(i) non-strategy: trapped tuples are simply discarded.

(ii) re-directing-strategy: trapped tuples are re-directed to one or some non-
faulty, low-loaded processors.

An important challenge in the later strategy is preserving order of tuples (w.r.t.
the trapped ones).

If shared memory is used as communication model, re-directing strategy
can be implemented simply via assigning pointer of the trapped data tuples to
the non-faulty processors.

• After failure recovery:

(d) Faulty processors: returning to the set of processing units via notifying its
upstream processors.

(e) Upstream processors: resetting the outgoing edges’ cost.

4.6 Cost model

Routing in the proposed DTR method is performed as a hop-by-hop, min-cost routing
at each RE. So, each RE must compute the cost of forwarding its processed tuple to
the next connected REs. Note that, the main goal of the DTR is to minimize tuple
latency. Regarding practical challenges and issues (especially the selected system
architecture), proper practical cost model which is used by each RE in the routing
process is determined.

To achieve the proper cost model, we should walk through the steps in the pro-
posed Dynamic Tuple Routing (DTR) method (stated in pseudo-code in Fig. 11).

According to the steps of the proposed DTR method (pseudo-code in Fig. 11),
costs (in term of time) of the DTR steps can be detailed as follow. These costs are used
by each processing units (per-processed tuple) to select the min-cost next processing
unit, to pass the processed tuple to.

• CO_Sch: Cost of scheduling of operators the processor should execute.
(not taken into account in case that each processing unit (node of the QMG) is
assigned to a dedicated processor, but should be considered if not, as in our imple-
mented system (Sect. 5)).

• CT _Sel: for each selected operator, cost of selecting the respective tuple among
tuples in operator’s input queue (i.e., the Round Robin scheduling algorithm).

• CT _Fet: Cost of fetching the selected tuple (reading tuple from memory module
and transferring to the processor via the cache memories, if used).

• CO_Exec: Operator’s execution time.
• CT _Wrt: Cost of writing the result tuple.

Distrib Parallel Databases (2012) 30:145–176 163

1. DO IN PARALLEL, at each RE {
2. Select a message (tuple,Op_Id) from RE’s input queue, according to its queuing policy

(i.e., Round Robin)
3. processed_tuple ← CALL Op_Exec (Op_Id + 1, tuple)
4. m ← Make_Message(processed_tuple,Op_Id + 1)

5. min_cost = 0; min_cost_processor_Id = 1;
6. { for(1 ≤ i ≤ number of outgoing edges from this operator to each of the other proces-

sors)//(k − 1) times
7. {//finding each destination processor’s cost
8. for (1 ≤ j ≤ number of processors that can send tuples to this processor)//i.e., (k−1)

times
9. Compute_Costs (Pj)// according to (3)

10. if (Pj costs < min_cost)

min − cost_processor_Id = j ;
}

11. Send_Message (m, min_cost_processor_Id);
12. }

Fig. 11 DTR in pseudo-code

– message startup time: if message passing communication model is used.
– writing result tuple in processor’s local memory: if shared memory communica-

tion model is used
• CT _Rout: time of routing (computing weights (costs) for each of its outgoing edged

and selecting the min-cost edge for forwarding the result tuple).
• CT _Trans: cost of transferring the result tuple to the next processor

– sending the message via links of the UACP-MIN: if message passing communi-
cation model is used

– notification and synchronization of the next processor: if shared memory com-
munication model is used.

In general, the cost model is a function of processing costs, memory delay and com-
munication costs (which are considered above). Physical characteristics of hardware
elements in the operational underlying system (e.g., CPU speed, delay and bandwidth
of memory module and Bus, and levels of cache memories, if used) are important fac-
tors that should be considered for more accurate computation of the costs. Roughly
speaking, cost model can be simplified and stated as summation of the factors men-
tioned above:

Cost
(
Oi

m,Oi+1
n

) = (
m.C−

T _Rout

) + (
m.C−

T _Trans

) + (
n.Ci+1

O_Sch

) + (
n.Ci+1

T _Sel

)

+ (
n.Ci+1

T _Fet

) + (
n.Ci+1

O_Exec

) + (
n.Ci+1

T _Wrt

)
(3)

On the other hand, total time to transfer a message over a network comprises of the
following [15]:

• Startup time (ts): Time spent at sending and receiving nodes (executing the routing
algorithm, programming routers, etc.).

164 Distrib Parallel Databases (2012) 30:145–176

• Per-hop time (th): This time is a function of number of hops and includes factors
such as switch latencies, network delays, etc.

• Per-word transfer time (tw): This time includes all overheads that are determined
by the length of the message. This includes bandwidth of links, error checking and
correction, etc.

The total communication cost for a message of size m words to traverse l communi-
cation links (using the store-and-forward routing method) is:

tcomm = ts + (mtw + th)l

and

tcomm = ts + mltw

whenever th is negligible (as is in most platforms) [parallel comp].
But, in the proposed DTR routing method, ts (including CO_Sch, CT _Sel, CT _Fet,

CO_Exec and CT _Rout) is spent repetitively in each processing unit, and tw (includ-
ing CT _Wrt and CT _Trans) depends on the communication model that is used (i.e.,
near to zero for shared memory and a relatively considerable value for message pass-
ing).

So, assuming cost metrics of ts to be equal for different nodes, communication
cost for a tuple of size m to traverse |E′| edges of the QMG (number of links in the
UACP–MIN) can be stated as in (4):

tcomm = |E′| × ts × m × tw (4)

Also, time complexity of the DTR method (based on the pseudo code in Fig. 11) is
as follows: In DTR, each processor participates in dynamic tuple routing in addition
to executing the query plan operators that is assigned to it. Time complexity of exe-
cuting a data stream operator over an input queue of size n tuples is assumed O(n2)

where n is operator’s window size [41–43]. Finding the edge with minimum cost and
sending result tuple along with the header Op_Id to its destination has time complex-
ity of θ(k2). The reason is for each outgoing edge, destination processor’s costs is
computed using its K input edges, and is repeated for K outgoing edges (number of
outgoing edges of an operator is K in QMG); in other words, according to the above
pseudo code, selecting the min-cost processor and sending the result tuple has time
complexity of O(k2), since outer loop has (k − 1) iterations and the inner loop has
(k − 1) iterations.

So, time complexity of DTR for each operator in each processor (which being ex-
ecuted in parallel) is of O(n2 + K2) where n is its operator’s widow size and K is
number of logical machines participating in parallelism, and both are small in prac-
tice.

5 Implementing on multi-core systems

In order to implement parallel system, as the multiprocessing environment for em-
ploying the proposed DTR method, some important considerations regarding to the
environment’s properties should be noticed; if we want to use a processor for each of

Distrib Parallel Databases (2012) 30:145–176 165

the processing units (nodes in the QMG), a large number of processors is needed but
many of them might be idle or under-utilized (e.g., only one of the processing units
from K ones in each stage would be employed). So, assigning one processor to each
of the processing units leads to processing resources’ waste.

Moreover, number of processing units (nodes in the QMG) depends on the seman-
tic of the query and may vary for different queries (it is not a fixed value).

On the other hand, we need K logical machines that can work in parallel (simul-
taneously) to provide the ability of parallel processing.

Accordingly, a Hybrid parallel processing model is used in which each of K log-
ical machines is considered as a (physical/hardware) processor whilst each of pro-
cessing units (nodes in the QMG) considered as a thread in the corresponding pro-
cessor. In fact, it is implemented as threads running in cores of a multi-core sys-
tem.

The other important consideration in regard to the cost of the message passing
communication model is the necessity of comparing it toward the shared mem-
ory approach. Although we have implemented pure message passing (nothing is
shared—that causes costs to increase), using a hybrid communication model can
be more effective. For example, a lot of messages are transferred to notify up-
stream processing units of downstream ones’ cost. Storing their costs in a shared
place could reduce message passing overheads considerably. Anyway, both com-
munication models are implemented and compared in the performance evaluation
(Sect. 6).

Whether using cache memory is beneficial or not is another challenge. In gen-
eral, data reuse is critical for cache performance. Supporting state-full data stream
query operators such as the Join raises the need for using cache memories in the par-
allel underlying system. The presented DTR method is implemented and compared
with event-driven scheduling method proposed in [1] and Eddies algorithm proposed
in [16].

The codes are implemented in Linux kernel 2.6.32 Running on a multi-core pro-
cessor Core-i7 Machine. Linux kernel is used for the implementation mainly because
it supports many low level APIs (e.g., for scheduling, messaging and etc.). In both
DTR and the event-driven scheduling methods, every virtual machine is considered
as a Posix thread implemented in C++. In the DTR method, communication between
threads has been implemented in two following ways:

• Shared memory: To implement shared memory, every thread defines public vari-
ables so other threads can access them.

• Message passing: In order to implement messaging, the Message Passing Interface
(MPI) has been used.

Event-driven scheduling method is implemented with shared memory access and
Eddies [16] implemented using message passing.

Since the aim of implementing these methods was to evaluate their performances,
the queries are hard-coded in the implemented software and no parser for query lan-
guage has been provided in these experiments.

166 Distrib Parallel Databases (2012) 30:145–176

6 Evaluation

6.1 Experimental setup

The dataset used for the evaluation is Dec-Pkt-1 [17]. This dataset contains 3600
seconds of TCP and UDP packet traffics. Each tuple consists of the following 6 at-
tributes: Time stamp, Source Address, Destination Address, Source Port, Destination
Port and data size. The arrival rate of tuples is 770 tuple per seconds and the arrival
distribution over time is uniform.

The queries consist of selection, projection, join and group-by (average) operators.
Totally, 10 different query types have been used for evaluation and each query type
occurs twice in the time duration that is 3600 seconds. Queries are arrived to and
removed from the system dynamically during the run time. In Table 3 each query
type is shown according to its operators and the start and ending time by minutes for
both times it processes.

The arrival distribution of queries is uniform over the time and the average of 3.3
queries is getting process at each sampling time. Each query resides for average dura-
tion of 1210 seconds in the system. The distribution of queries over time is presented
in Fig. 12.

Table 3 Query set
specifications Selection Join Projection Group-by

Q1
√ √ √ √

Q2
√

–
√ √

Q3
√ √ √

–

Q4
√ √

– –

Q5 – –
√ √

Q6 –
√

–
√

Q7 – –
√

–

Q8
√

–
√ √

Q10 – – –
√

Fig. 12 Number of queries resides in the systems in each sampling time

Distrib Parallel Databases (2012) 30:145–176 167

The proposed DTR method with both two communication models (Shared Mem-
ory called DTR-SM and Message Passing called DTR-MP) is compared with the
event-driven scheduling (called EDS) method [1] and the Eddies [16].

Based on [18], measured parameters are:

• tuple latency (or response time): Time in milliseconds that takes a tuple to pass
through the System

• memory usage: The size of tuples stored in the buffers
• system throughput: number of output tuples
• tuple loss: number of tuples that fail to process due to buffer overflow

6.2 Experimental results

Before analyzing performance of the proposed DTR method and comparing it with
the event-driven scheduling method and the Eddies, system specifications must be
determined. One of the most important specifications of the DTR is the number of
machines/cores (i.e., K) that are used. Figure 13 shows values of performance pa-
rameters based on number of cores. Since the scheduling and memory management
task is done by the Linux kernel, two mode of symmetric and asymmetric load bal-
ancing has been evaluated.

Generally, K represents the number of cores which are running the DTR. In sym-
metric mode, the Linux kernel and every other process run on another core and which
is not taken into the account in K . In asymmetric mode, those process run on the same
cores that handles the DTR method.

A tradeoff must be made between performance and resources required. Respect to
Fig. 13, when there are 3 asymmetric cores, the DTR method has better performance

Fig. 13 Performance parameters vs. number of cores

168 Distrib Parallel Databases (2012) 30:145–176

Fig. 14 Performance parameters vs. buffer size

Fig. 15 Performance parameters versus ω

whilst using minimum resources. It means that in case of using 3 symmetric cores,
we have 25% resources wasting due to the fourth one. So, number of cores in our
system is set to three, hereafter (K = 3).

Furthermore, size of operators queue (buffer size) is analyzed in Fig. 14.
Since buffer size has reverse impact on the two parameters (tuple latency and tuple

loss), a tradeoff buffer size of 20 is selected (B = 20).
In order to decrease the context-switching overhead, dynamic tuple routing is per-

formed for each ω tuples (instead of per-tuple). To determine the proper value of ω,
system performance parameters are analyzed while increasing ω (Fig. 15).

Based on the Fig. 15, the value of ω = 8 is used in the DTR method.
Accordingly, henceforward, the proposed DTR method with three asymmetric

cores (K = 3), buffer size of 20 (B = 20)) and using the proposed DTR for each
8 tuples (ω = 8) is compared with the EDS method and the Eddies.

Figure 16 illustrates tuple latency, throughput, memory usage and tuple loss for
these methods w.r.t. the time duration.

Distrib Parallel Databases (2012) 30:145–176 169

Fig. 16 Performance parameters vs. time duration

Charts in Fig. 16 show that the DTR-SM method (the proposed DTR method
with Shared Memory) outperforms the EDS (Event-Driven Scheduling) method, the
Eddies and event DTR-MP (DTR with Message Passing) in terms of tuple latency,

170 Distrib Parallel Databases (2012) 30:145–176

Fig. 17 Average performance parameters

throughput, tuple loss and average of those parameters is shown in Fig. 17. But the
following notes should be considered, too:

– Tuple latency is measured in milliseconds. So, differences e.g., between DTR-SM
and DTR-MP (2 ms) are not significantly considerable.

– Tuple loss in DTR-SM is near to half of the tuple loss in DTR-MP. Also, number of
tuples which are lost is considerable (300 tuples in former whilst 600 in the later).

– The DTR-SM method requires to have shared memory which may be not possible
in all of the parallel system architectures. This is one of the cons of the shared
memory communication model rather than the message passing.
Of course, size of the required memory modules is not a disturbing limitation for
the system, even for the DTR-SM (i.e., 3 MB).

– Although message passing communication model can be employed in most of the
parallel system architectures, its major disadvantage is its costs and overheads.
It is shown in [19] that an implementation based on the shared memory might
operate worse than the one based on the message passing, especially due to its
communication overheads.

– Commonly, overheads in the DTR-MP are more compared to DTR-SM, and these
overheads mainly regard to transferring control messages (metadata).
We have implemented pure message passing (nothing is shared) in our system.
Using a hybrid communication model can be more effective. Since, for example,
a lot of messages are transferred to notify upstream processing units of downstream

Distrib Parallel Databases (2012) 30:145–176 171

one’s cost; storing their costs in a shared place could reduce message passing over-
heads considerably.

– On the other hand, multi-core systems are designed for UMA system architec-
tures, and hence have better performance while using the shared memory. Also,
multithread parallel processing model uses a variant of the shared memory com-
munication model for interaction between the threads.

– Therefore, implemented parallel system that is in fact a multithreaded multi-core
system provides better performance, as it was expected.

As stated before, shared memory may not be applicable (supported) in some par-
allel system architectures. So, in this paper, both of the shared memory and message
passing models are analyzed and evaluated.

6.3 System utilization monitoring

In order to evaluate the overhead of algorithms, for each core (i.e., CPU core), CPU
utilization is monitored based on its variation of tasks (Fig. 18).

Processing Time is the percentage of time the core spends to handle the operator
that is assigned to it. Higher percentage means the core spent less time on handling
the overheads. Clearly, DTR method uses the best of CPU utilization among these
methods. Memory Access time indicates the overall percentage of time in which the
core is allocating or freeing the memory or reading from or writes to a buffer. Routing
time is the time when core spends to find the next destination of a tuple. Messaging
time is the sum of the times that core takes to communicate via other threads through
messaging API. This time includes the time of sending and receiving tuples as well
as communicating with other threads to estimate the load of a machine.

Experimental observation shows that messaging is a slow API and each message
takes at least 300 µs to reach its destination which explains the reason why DTR-MP

Fig. 18 Average CPU time based on its tasks

172 Distrib Parallel Databases (2012) 30:145–176

Fig. 19 Loads of each core in time

and Eddies algorithm have low performance (lightweight operators take less than 1 µs
in average to handle a tuple).

In Fig. 19 the CPU utilization of 3 cores in a run is shown.
The above diagram in Fig. 19 shows the load of cores when DTR-SM runs. The

bottom diagram shows the loads of 3 cores when DTR-MP is used. As it’s shown
in above diagram, when no heavy operators are in the query set, cores are free of
load and even when they are under loads, they balance the load perfectly between
each other. But in the bottom diagram, messaging takes most of the time of threads
waiting for the reply to their requests, this way the routing algorithm won’t commit
their tasks completely; hence, the load between cores become imbalance.

7 Related work

Various scheduling strategies have been proposed for stream processing, ranging
from simple (e.g., Round Robin [3], Chain [20], Greedy [3]) to more complex ones
[21, 22]. Some address operator scheduling to optimize a single performance metric
[18, 23] such as memory usage [3, 24]. Some others aim to optimize a complex per-
formance metric [25, 26]. Generally, static scheduling strategies are weak in handling
unpredictable, aperiodic and bursty workload [24].

For an overview on query processing and most related work on parallel query
processing in databases, we refer the readers to [27–31].

In [1], parallel processing of continuous queries over logical machines is proposed
which outperform serial execution as well as the min-latency scheduling [24] used in

Distrib Parallel Databases (2012) 30:145–176 173

the Aurora [32] to minimize tuple latency. Scheduling method employed in [1] is
dynamic but event-driven (in overload situation). With respect to the continuous na-
ture of the queries as well as data streams, the need for compatibility with this nature
and adaptivity with time varying characteristics of data streams seems to be very im-
portant. A variant of such high-frequency (short-term) operator scheduling schema
called Dispatching is proposed in [2] which provides a significant improvement on
system’s performance.

In the Eddy architecture [16], the query plan is replaced with an operator called
Eddy which dynamically determines how each data tuple should be routed among op-
erators of the eliminated query plan. In order to handle the drawback of this architec-
ture (e.g., single source of failure, bottleneck, overheads and etc. [33]), a distributed
version of Eddies was proposed in [34]; although the drawbacks are still consider-
able, especially for employing in a distributed system. The Eddy architecture, as a
similar method, is compared with the proposed DTR method.

Dynamic operator placement in distributed query processing systems is discussed
in [35, 36]. In [36], due to distribution of system over a local network, load balancing
w.r.t. reducing communication costs is focused. Similar to the flux, [37] partitions
data streams according to the query, but it is not performed dynamically.

In [38], different routing strategies are compared and the WSCO (Weighted
Selectivity-Cost-Qlength) that considers all of selectivity, execution cost and queue’s
length of operator is concluded to be the best. However, in routing strategy employed
in our dispatching method, updating cost of edges to select the minimum one is based
on the destination machines’ workload. Since the destination machine must process
all of tuples waiting in its operators input queues, selectivity of operators is not taken
into account.

In contrast with our reactive failure handling approach, a predictive failure man-
agement approach for data stream processing systems is proposed in [39]. Online
learning methods are used to continuously classify operators at run time. Such ap-
proaches impose considerable overheads to the underlying system during its normal
operation. So, these are not desirable for parallel systems in which failure can be
tolerated by redundancies, such as in our proposed UAPC–MIN.

A topological classification of Multistage Interconnection Networks (MINs) and
performance evaluation metrics of MINs is provided in [8].

8 Conclusion and future work

Online and fast query processing is of the major requirements and challenges in data
stream systems. Single processor DSMSs are not capable of providing the required
speed [1, 37]. We proposed parallel processing of queries in data stream systems
over a multiprocessing environment in [1]. Operator scheduling in [1] is equal to
finding the shortest path (routing) in the QMG; that is performed in an event-driven
manner using the Dijkstra’s shortest path algorithm. To be event-driven causes system
performance to have too many fluctuations.

In order to reduce performance fluctuations, scheduling (routing in QMG) can be
performed with higher frequency e.g., continuously and dynamically for each input
tuple.

174 Distrib Parallel Databases (2012) 30:145–176

In this paper, Dynamic Tuple Routing (DTR) method is presented as a solution.
Each processing unit (node of the QMG), after executing its assigned query opera-
tor, selects its next proper (min-cost) processing unit to forward the processed tuple
to. Tuple latency—as the selection metric—is computed w.r.t. the cost model that
contains processing, buffering and communication time delay.

Architecture of desired parallel system as the multiprocessing environment is an-
alyzed and proposed. The interconnection network is a class of the MINs [5, 15],
called UACP–MIN, which is based on the QMG.

Due to the following properties of the proposed multiprocessing environment, a
priory-fixed parallel system topology is not a good choice for implementation:

• Number of processing units (i.e., nodes in the QMG) depends on the semantic of
query and may vary per each one (not-fixed).

• All the processing units would not be employed all the time (under-utilization).

So, a hybrid parallel processing model is preferred to be used for implementing
the practical parallel underlying system; in such system, each of k logical machines
are considered as a physical (hardware) processor whilst each of nodes in the QMG
implemented as a thread in the corresponding processor. Implementation of such sys-
tem on multi-core systems is provided and used for evaluation. Performance eval-
uation results show that the proposed DTR method outperforms the event-driven
scheduling [1] and Eddy [16] in terms of tuple latency, throughput and tuple loss.
As expected, pure message passing (nothing is shared) communication model has a
considerable overhead; So, employing a hybrid communication model would be very
beneficial. For example, if we can use some shared memories e.g., for storing cost
of each of downstream processing units, a large amount of messaging overheads will
be removed. In a multi-core system, performing such enhancements is very common
while not complicated. This is a part of our future works. Some of the others are listed
below:

• Intra-operator parallelism for heavy operators especially the Join.
• Context-switching and message passing overheads reduction.
• Analyzing and implementing distributed version of a desired parallel system.

References

1. Safaei, A.A., Haghjoo, M.S.: Parallel processing of data stream query operators. Distrib. Parallel
Databases 282, 93–118 (2010). doi:10.1007/s10619-010-7066-3

2. Safaei, Ali A., Haghjoo, Mostafa S.: Dispatching stream operators in parallel execution of continuous
queries. J. Supercomput. (2011). doi:10.1007/s11227-011-0621-5

3. Babcock, Brian, et al.: Operator scheduling in data stream systems. VLDB J. 13, 333–353 (2004)
4. Replicate and migrate objects in the runtime, not cache lines or pages in hardware (Invited Plenary

Lecture). In: Barcelona Multicore Workshop 2010, Barcelona, Spain, 21–22 Oct. (2010)
5. El-Rewini, H., Abd-El-Barr, M.: Advanced Computer Architecture and Parallel Processing. Wiley,

Hoboken (2005). doi:10.1002/0471478385.index
6. Feng, T.Y.: A survey of interconnection networks. Computer 14, 12–27 (1981)
7. Singah, B.: On multistage interconnection network. M.Sc. thesis (2000)
8. Aljundi, C., Chadi, A., Jundi, A., Dekeyser, J.-l., Scherson, I.D.: An interconnection networks com-

parative performance evaluation methodology: the case of delta and over-sized delta multistage in-
terconnection networks. In: Proc. of the 16th International Conference on Parallel and Distributed
Computing Systems (2003)

http://dx.doi.org/10.1007/s10619-010-7066-3
http://dx.doi.org/10.1007/s11227-011-0621-5
http://dx.doi.org/10.1002/0471478385.index

Distrib Parallel Databases (2012) 30:145–176 175

9. Lawrie, D.H.: Access and alignment of data in an array processor. IEEE Trans. Comput. C-24, 1145–
1155 (1975)

10. Thomas, R.H.: Behavior of butterfly parallel processor in the presence of memory hot spots. In: Proc.
of the 1986 Int. Conf. Parallel Processing, pp. 46–50 (1986)

11. Lin, W., et al.: A conflict routing scheme on multistage interconnection networks. IEEE Trans. Com-
put. 38(8), 1086–1097 (1989)

12. Tian, H., Katangur, A.K., Yipan, J.Z.: A novel multistage network architecture with multicast and
broadcast capability. J. Supercomput. 35, 277–300 (2006)

13. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. In: Proc. of the 6th
OSDI Symp. (2004)

14. Upadhyaya, P., Kwon, Y., Latency, A., Balazinska, M.: Fault-tolerance optimizer for online parallel
query plans. In: Proceedings of the ACM SIGMOD (2011)

15. Grama, A., Karypis, G., Kumar, V., Gupta, A.: Introduction to Parallel Computing, 2nd edn. Addison-
Wesley, Reading (2003)

16. Avnur, R., Hellerstein, J.M.: Eddies: continuously adaptive query processing. In: Proceedings of the
ACM SIGMOD (2000)

17. The Internet traffic archive, http://ita.ee.lbl.gov/html/contrib/DEC-PKT.html
18. Chakravarthy, S., Pajjuri, V.: Scheduling strategies and their evaluation in a data stream management

system. In: Lecture Notes in Computer Science, vol. 4042. Springer, Berlin (2006)
19. LeBlanc, T.J.: Shared memory versus message passing in a tightly coupled multiprocessor: a case

study. In: Proc. 1986 Int. Conf. Parallel Processing, pp. 463–466 (1986)
20. Babcock, B., et al.: Chain: operator scheduling for memory minimization in data stream systems. In:

Proceedings of the ACM SIGMOD International Conference (2003)
21. Sharaf, M.A.: Preemptive rate-based operator scheduling in a data stream management system. In:

IEEE/AICCSA (2005)
22. Soliman, M.S., Tan, G.: Operator-scheduling using dynamic chain for continuous-query processing.

In: IEEE Int. Conference on Computer Science and Software Engineering (2008)
23. Sharaf, M.A., et al.: Scheduling continuous queries in data stream management systems. In: PVLDB

(2008)
24. Don Carney, et al.: Operator scheduling in a data stream manager. In: Proceedings of the 29th Inter-

national Conference on Very Large Data Bases, Germany, pp. 838–849 (2003)
25. Ghalambor, M., Safaeei, Ali A., Azgomi, M.A.: DSMS scheduling regarding complex QoS metrics.

In: IEEE/ACS International Conference on Computer Systems and Applications (AICCSA), 10–13
May (2009)

26. Srivastava B., Widom: exploiting k-constraints to reduce memory overhead in continuous queries over
data streams. Technical report, November 2002

27. Graefe, G., et al.: Extensible query optimization and parallel execution in volcano. In: Query Process-
ing for Advanced Database Systems. Morgan Kaufman, San Mateo (1994)

28. DeWitt, D.J., Gray, J.: Parallel database systems: the future of high performance database processing.
Commun. ACM 36(6), 85–98 (1992)

29. Graefe, G.: Volcano—an extensible and parallel query evaluation system. IEEE Trans. Knowl. Data
Eng. 6(1), 120–135 (1994)

30. Apers, P.M.G., et al.: PRISMA/DB: a parallel, main memory relational DBMS. IEEE Trans. Knowl.
Data Eng. 4(6), 541–554 (1992)

31. Graefe, G.: Query evaluation techniques for large databases. ACM Comput. Surv. 25, 73–170 (1993)
32. Abadi, D., et al.: Aurora: a new model and architecture for data stream management. VLDB J. 2,

120–139 (2003)
33. Deshpande, A.: An initial study of overheads of eddies. SIGMOD Rec. 33, 44–49 (2004)
34. Tian, F., DeWitt, D.J.: Tuple routing strategies for distributed eddies. In: Proceedings of the 29th

VLDB (2000)
35. Osman, A., Ammar, H.: Dynamic load management for distributed continuous query systems. In:

Proceedings of the ICDE (2005)
36. Zhou, Y., et al.: Efficient dynamic operator placement in a locally distributed continuous query system.

In: Lecture Notes in Computer Science, vol. 4275 (2006)
37. Johnson, T., et al.: Query-aware partitioning for monitoring massive network data streams. In: Pro-

ceedings of the ACM SIGMOD (2008)
38. Tian, F., DeWitt, D.J.: Tuple routing strategies for distributed eddies. In: Proceedings of 29th VLDB

Conference, September 2003, pp. 333–344 (2003) (ISBN 0-12-722442-4)

http://ita.ee.lbl.gov/html/contrib/DEC-PKT.html

176 Distrib Parallel Databases (2012) 30:145–176

39. Gu, X., et al.: Online failure forecast for fault-tolerant data stream processing. In: Proceeding of ICDE
(2008)

40. Woodcock, J., Davies, J.: Using Z: Specification, Refinement, and Proof. Prentice-Hall International
Series in Computer Science. Prentice-Hall, New York (1996). ISBN: 0-13-948472-8

41. Babu, S.: Adaptive query processing in data stream management systems. Ph.D. thesis, Stanford Uni-
versity (2005)

42. Babu, S., Motwani, R., Munagala, K., Nishizawa, I., Widom, J.: Adaptive ordering of pipelined stream
filters. In: Proc. SIGMOD Conference, pp. 407–418 (2004)

43. Das, A., Gehrke, J., Riedewald, M.: Approximate join processing over data streams. In: Proc. SIG-
MOD Conference, pp. 40–51 (2003)

	Dynamic routing of data stream tuples among parallel query plan running on multi-core processors
	Abstract
	Introduction
	Background
	The proposed Dynamic Tuple Routing (DTR) method
	Practical challenges and issues
	Context-switching
	Symmetry of the machines
	Heterogeneity of the machines
	System architecture analysis
	Machine-failure handling
	Cost model

	Implementing on multi-core systems
	Evaluation
	Experimental setup
	Experimental results
	System utilization monitoring

	Related work
	Conclusion and future work
	References

