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Abstract Nowadays, it is common for organizations to maintain collections of hun-
dreds or even thousands of business processes. Techniques exist to search through
such a collection, for business process models that are similar to a given query model.
However, those techniques compare the query model to each model in the collection
in terms of graph structure, which is inefficient and computationally complex. This
paper presents an efficient algorithm for similarity search. The algorithm works by ef-
ficiently estimating model similarity, based on small characteristic model fragments,
called features. The contribution of this paper is threefold. First, it presents three tech-
niques to improve the efficiency of the currently fastest similarity search algorithm.
Second, it presents a software architecture and prototype for a similarity search en-
gine. Third, it presents an advanced evaluation of the algorithm. Experiments show
that the algorithm in this paper helps to perform similarity search about 10 times
faster than the original algorithm.

Keywords Business process · Feature · Similarity · Search

1 Introduction

Nowadays, business process management techniques develop quickly in both aca-
demic and industrial fields. To increase the flexibility and controllability of the man-

Communicated by P.K. Chrysanthis.

Z. Yan · R. Dijkman (�) · P. Grefen
Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
e-mail: r.m.dijkman@tue.nl

Z. Yan
e-mail: z.yan@tue.nl

P. Grefen
e-mail: p.w.p.j.grefen@tue.nl

mailto:r.m.dijkman@tue.nl
mailto:z.yan@tue.nl
mailto:p.w.p.j.grefen@tue.nl


106 Distrib Parallel Databases (2012) 30:105–144

Fig. 1 Searching a collection of business process models

agement of organizations, business processes are used to describe the services that an
organization provides and the internal processes that implement those services. As a
result, it is common to see collections of hundreds or even thousands of business pro-
cess models. For example, the collection of SAP reference models consists of more
than 600 business process models [6], and the collection of the reference models for
Dutch Local Government contains a similar number of models [9]. As business pro-
cess model collections increase in size, tools and techniques are required to manage
them. This includes tools and techniques for quickly searching through a collection,
for business process models that meet certain criteria. These criteria can be specified
by means of a query language [1, 5], but also by means of (a part of) a query business
process model for which similar models must be retrieved [7, 8, 27].

This paper focuses on the second class of search techniques, which are also called
similarity search techniques. Figure 1 shows an example of business process similar-
ity search. It shows one query model and five process models in the BPMN notation.
Given a query model, a similarity search technique should only returns those process
models that are similar to the query model and it should return those similar process
models in order of their similarity to the query model. In the example, the technique
could return models 1, 2 and 3.

There currently exist similarity search techniques [7, 8, 27]. However, these tech-
niques focus on defining a metric to compute the similarity between two process
models. To rank the business process models in a collection, the similarity of each
of the process models to the query model must be computed. Subsequently, the pro-
cess models must be ordered according to their similarity. At the same time, busi-
ness process model collections are increasing in size. For example, Suncorp-Metway
Ltd [16] maintains a collection of more than 6000 business process models. Com-
paring a query model with such amount of models is time consuming and can cause
a similarity search operation to take multiple seconds or even minutes, depending
on the metric and algorithm that is used, while a query should be performed within
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milliseconds by a search engine. (Compare, for example, the response time that you
would require of an Internet search engine.)

Therefore, similarity search algorithms must be developed that are both accurate
and fast. This paper presents such an algorithm. It is developed by extending an
existing fast similarity search algorithm [32], by:

1. introducing preprocessing techniques, to reduce the search space that must be pro-
cessed and, therewith, the number of iterations that must be performed by the
algorithm;

2. introducing incremental computation in the algorithm, thus reducing the complex-
ity of each iteration; and

3. introducing prediction techniques to predict which choices in the algorithm will
lead to the best result, thus reducing the number of iterations that must be per-
formed to arrive at the best result.

These techniques are presented in Sect. 5. In addition, the paper extends previous
work [32] by presenting a detailed software architecture and a prototype for a busi-
ness process model repository that implements the algorithm (Sect. 7) and an ad-
vanced evaluation of the algorithm for the case in which query models are taken from
a different collection than the one that is being searched (Sect. 8.2).

The similarity search algorithm works in five steps, as shown in Fig. 2. First, fea-
tures are identified in the process models that have to be searched. Features are simple
but representative abstractions of a business process model, e.g., tasks and task suc-
cession. Second, the query model and the process models are compared by looking
at the features that they have in common, i.e.: that are similar enough such that we
say that they are ‘matched’. For example, suppose that we use tasks and task suc-
cession as features in Fig. 1. We can observe that model 1 has six matching features
with the query model: the task features ‘Buy Goods’, ‘Receive Goods’ and ‘Verify
Invoice’; and the succession features (‘Buy Goods’, ‘Receive Goods’), (‘Buy Goods’,
‘Verify Invoice’) and (‘Receive Goods’, ‘Verify Invoice’). Models 2 and 3 have fewer
matches or have weaker similarity with respect to their matches (e.g., ‘Buy Goods’,
‘Buy Special Goods Online’ and ‘Purchase Commodities’ are similar but not identi-
cal labels). Models 4 and 5 have an even weaker match or no match at all with respect
to the features that they have in common with the query model. Third, an estimation
of the similarity of process models to the query model is made, based on the ratio of
matching features, and models are classified based on their estimated similarity. For
example, depending on the exact metrics that are used, model 1 could be considered
as relevant based on matching features, models 2 and 3 considered as potentially rel-
evant, and models 4 and 5 as irrelevant. Fourth, an improved greedy algorithm for
determining process similarity is used to efficiently compute similarities between the
query model and potentially relevant models (e.g., models 2 and 3). Finally, the mod-
els in the collection are ranked according to their (estimated) similarity to the query
model.

Two experiments were performed to evaluate the algorithm in this paper. The first
experiment evaluates the use case in which a model is taken from a collection and
subsequently similar models in the same collection are searched. The results of this
experiment show that, for this use case, the algorithm helps to retrieve similar mod-
els 6.7 times faster than the original algorithm, without impacting the quality of the
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Fig. 2 Steps of the algorithm

results. It helps to retrieve similar models 8.6 times faster if a quality reduction of
1% is acceptable. The second experiment evaluates the use case in which the model
that is searched is not from the same collection. It shows that, for this use case, the
algorithm helps to retrieve similar models at least 8 times faster with a 4% quality
reduction; and 10.7 times faster with a 7% quality reduction.

The rest of the paper is organized as follows. Section 2 defines the concept of fea-
ture and presents features that can be used for business process similarity estimation
(step 1 in Fig. 2). Section 3 defines metrics for measuring the similarity of features
and checking whether features match (step 2 in Fig. 2). Section 4 presents metrics to
determine whether a model is relevant, irrelevant or potentially relevant to a query,
based on the features that match with features from the query model (step 3 in Fig. 2).
Section 5 presents the greedy algorithm for business process similarity search along
with indexing techniques and efficiency improvements (step 4 in Fig. 2). Section 6
explains how business processes can be ranked according to their similarity to a given
query model (step 5 in Fig. 2). Section 7 presents a software architecture and a pro-
totype for a business process model repository that uses the algorithm in this paper
for doing similarity search. Section 8 presents the experiments that were performed
to evaluate the properties of the algorithm that was introduced. Section 9 presents
related work and Sect. 10 concludes the paper.

2 Business process model features

In this paper features are defined as simple but representative abstractions of business
process models. Their simplicity allows similarity computation based on them to be
fast and their representativeness ensures that their similarity is strongly related to sim-
ilarity of the business process models themselves. This makes features very suitable
as means to quickly estimate the similarity of business process models. Provided that
we choose business process model features carefully, we can further speed up simi-
larity search by building an index of business process models based on those features.
In this section, we present the business process model features that we explore in this
paper.

Labels can be conveniently used as features, because they are simple strings and
therefore qualify as simple abstractions. In addition, indexing mechanisms for strings
are well-known, which enables indexing of label features. However, it is harder to
use the structure of a business process model as a feature. In fact, considering the
structure of a graph when computing the similarity between business process models
in our previous work is what makes the problem computationally hard. Therefore,
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Fig. 3 Business process graphs

we consider the structure of a business process model in terms of the simpler struc-
tural features: start, stop, sequence, split, and join. We define these features on the
abstraction of a business process graph.

Definition 1 (Business Process Graph, Pre-set, Post-set) Let L be a set of labels.
A business process graph is a tuple (N,E,λ), in which:

– N is the set of nodes;
– E ⊆ N × N is the set of edges; and
– λ : N → L is a function that maps nodes to labels.

Let G = (N,E,λ) be a business process graph and n ∈ N be a node: •n =
{m|(m,n) ∈ E} is the pre-set of n, while n• = {m|(n,m) ∈ E} is the post-set of n.

A business process graph is a graph representation of a business process model.
As such, it is an abstraction of a business process model that focuses purely on the
structure of that model, while abstracting from other aspects. We define our similarity
search techniques on business process graphs to be independent of a specific notation.

Optionally, certain types of nodes can be disregarded in a business process graph.
For example, Fig. 3 shows the business process graphs for the models from Fig. 1.
Only tasks are considered in these graphs, while events and gateways are disregarded.
We disregard events and gateways, because they do not provide (much) additional in-
formation when computing model similarity. For example, when two process models
have an AND-split, this does not provide us with much information about whether or
not these processes are similar. As another example, when an event ‘receive applica-
tion’ appears in a model, often an activity ‘process application’ appears in the model,
thus the event does not provide much additional information. On the other hand, the
efficiency of similarity computation is directly related to the number of nodes in the
model. Therefore, reducing the number of nodes helps to improve the efficiency. Con-
sidering that events and gateways do not provide much additional information when
computing similarity, this is a good trade-off.

Based on this the structural features are defined in Definition 2.

Definition 2 (Structural Business Process Model Features) Let G = (N,E,λ) be a
business process graph.

– A start feature is a node n ∈ N that has an empty pre-set;
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– A stop feature is a node n ∈ N that has an empty post-set;
– A sequence feature of size s is a list of nodes [n1, n2, n3, . . . , ns] ⊆ N , such that

(n1, n2) ∈ E, (n2, n3) ∈ E, . . . , (ns−1, ns) ∈ E, for s ≥ 2;
– A split feature of size s is a split node n and a set of nodes {n1, n2, . . . , ns−1} ⊆ N ,

such that (n,n1) ∈ E, (n,n2) ∈ E, . . . , (n,ns−1) ∈ E, for s ≥ 3;
– A join feature of size s is a join node n and a set of nodes {n1, n2, . . . , ns−1} ⊆ N ,

such that (n1, n) ∈ E, (n2, n) ∈ E, . . . , (ns−1, n) ∈ E, for s ≥ 3.

For example, for graph 1 in Fig. 3, the label feature set is {Buy Goods, Receive
Goods, Verify Invoice}, the start feature set is {Buy Goods} (using node labels to
identify nodes), the stop feature set is {Verify Invoice}, the sequence feature set is
{(Buy Goods, Receive Goods), (Buy Goods, Verify Invoice), (Receive Goods, Verify
Invoice)}, the split feature set is {(Buy Goods,{Receive Goods, Verify Invoice})},
and the join feature set is {({Buy Goods, Receive Goods},Verify Invoice)}.

Many more possible features can be considered in business process models, de-
pending on the business process model aspects that are taken into account (e.g., the
organizational aspect or the data aspect), the desired performance of the algorithm
(adding more features decreases performance) and the desired quality of the results
(adding more features is expected to increase the quality of the search results). In this
paper we focus on the most basic process model features. Extensions are possible and
are a topic for future work.

3 Feature similarity, matching and indexing

It is possible to use the similarity of the features of two business process models as
an estimator of the similarity of the business process models themselves. To this end,
metrics must be defined that quantify the similarity of the business process model
features. We say that two features that are sufficiently similar are matching features
and we show how we can determine feature matching based on their similarity. The
ratio of matching features will be used in the next section as an estimator of the sim-
ilarity of business process models. To be able to quickly identify matching features,
and therewith similar business process models, feature indices must be defined.

This section first presents metrics to quantify feature similarity. Second, it ex-
plains how a feature match can be determined based on feature similarity and, third,
it presents feature-based indices.

3.1 Feature similarity

Label feature similarity can be measured in a number of different ways [8, 27]. For
illustrative purposes we will use a syntactic similarity metric, which is based on string
edit-distance, in this paper. However, in realistic cases more advanced metrics should
be used that take synonyms and stemming [8, 27] and, if possible, domain ontologies
into account [11]. Label feature similarity is defined as follows in previous work
[7, 8].
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Definition 3 (Label Feature Similarity) Let G = (N,E,λ) be a business process
graph and n,m ∈ N be two nodes and let |l| represent the number of characters in
a label l. The string edit distance of the labels λ(n) and λ(m) of the nodes, denoted
ed(λ(n),λ(m)) is the minimal number of atomic string operations needed to trans-
form λ(n) into λ(m) or vice versa. The atomic string operations are: inserting a char-
acter, deleting a character or substituting a character for another. The label feature
similarity of λ(n) and λ(m), denoted lsim(n,m) is:

lsim(n,m) = 1.0 − ed(λ(n),λ(m))

max(|λ(n)|, |λ(m)|)

For example, the string edit distance between ‘Transportation planning and pro-
cessing’ and ‘Transporting’ is 26: delete ‘ion planning and process’. Consequently,
the label feature similarity is 1.0 − 26

38 ≈ 0.32. Optional preprocessing steps, such
as lower-casing and removing special characters, can improve the results of feature
similarity measurements.

The drawback of measuring similarities only by labels is that similar tasks can
have different labels. Therefore, it may be hard to determine task similarity solely
based on label similarity. For example, in Fig. 3, ‘Buy Special Goods Online’ of
Graph 2 and ‘Purchase Commodities’ of Graph 3 are related to ‘Buy Goods’ of Query
graph. However, compared with ‘Buy Goods’, ‘Buy Special Goods Online’ is more
verbose and ‘Purchase Commodities’ uses synonyms. Therefore, they may not match
based on the label similarity. To deal with this situation, we use structural information
together with the labels.

We can measure the structural similarity of two nodes, by determining the sim-
ilarity of the (structural) roles that they have in their business process graphs. We
distinguish five different roles that nodes can have: start, stop, regular (sequence),
split or join. We do not distinguish the type of splits or joins (e.g., XOR or AND),
because we established in previous work [7, 8] that the similarity of the types of two
splits or two joins is a bad indication for whether they are similar.

Definition 4 (Role Feature) Let n ∈ N be a node and R = {start, stop, split, join,

regular} be a set of roles that a node can have. The roles of n are determined by the
function roles: N → P(R), such that

start ∈ roles(n) ⇔ | • n| = 0
stop ∈ roles(n) ⇔ |n • | = 0
split ∈ roles(n) ⇔ |n • | ≥ 2
join ∈ roles(n) ⇔ | • n| ≥ 2
regular ∈ roles(n) ⇔ | • n| = 1 ∧ |n • | = 1

Roles of nodes are considered to be similar or not with respect to the input and out-
put paths of the nodes. The definition of role feature similarity is inspired by string
edit-distance, i.e., mainly considering the differences between numbers of input (out-
put) paths of two nodes. Formally, role feature similarity is defined as follows:
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Definition 5 (Role Feature Similarity) Let n,m ∈ N be two nodes. The role feature
similarity of these two nodes, denoted rsim(n,m), is defined as:1

rsim(n,m) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if start ∈ croles ∧ stop ∈ croles

avg(1 − abs(|n•|−|m•|)
|n•|+|m•| ,1) if start ∈ croles ∧ stop /∈ croles

avg(1,1 − abs(|•n|−|•m|)
|•n|+|•m| ) if start /∈ croles ∧ stop ∈ croles

avg(1 − abs(|n•|−|m•|)
|n•|+|m•| ,

1 − abs(|•n|−|•m|)
|•n|+|•m| ) otherwise

Where croles = roles(n) ∩ roles(m).

This formula covers all possible combinations of roles that nodes can have. For
example, the situation in which both nodes are split nodes as well as join nodes is
covered by the case ‘otherwise’ (start /∈ croles∧stop /∈ croles). The situation in which
both nodes are regular nodes is covered by the same case and leads to a role feature
similarity score of 1.

The drawback of measuring role similarity in this way is that it does not discount
for the fact that there is a large difference between the frequency of the occurrence
of the different role features. Therefore, using the role similarity metric in this way is
ineffective. Since, if we give a bonus for matching role features, most nodes would
receive that bonus. Therewith, the effect of the bonus would be minimal.

For that reason we refine the role similarity metric to take this effect into account.
We do that by not considering features that appear too frequently in the dataset; we
say that those features lack ‘discriminative power’.

Definition 6 (Discriminative Role Features) Let N be the set of nodes of all business
process models in a collection. We say that a role feature r ∈ R is discriminative,
denoted discriminative(r) if and only if the fraction of the nodes that have the feature
is sufficiently small:

|{n|n ∈ N , r ∈ roles(n)}|
|N | ≤ dcutoff

Where dcutoff is a cutoff value that determines when the fraction of nodes that have
the feature is sufficiently small. This cutoff value is a parameter that can be set as
desired, to produce the best results.

In general, a good setting for dcutoff is easy to determine, because there is a large
difference between the frequency of features with a low frequency of occurrence and
features with a high frequency of occurrence. For example, in the set of business
process models that we use for evaluation in this paper, there are 374 nodes in total.
Of these nodes, 178 have the ‘stop’ role, 153 have the ‘start’ role, 58 the ‘regular’ role,

1avg returns the average value; abs returns the absolute value.
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52 the ‘split’ role, 36 the ‘join’ role. Here, we have far more nodes with the ‘start’
and ‘stop’ roles than other nodes. Hence, if we set the dcutoff anywhere between
0.16 and 0.40, ‘start’ and ‘stop’ role features are not considered discriminative, while
other role features are considered discriminative. We incorporate the discriminative
power of role features into their similarity using the following formula.

Definition 7 (Role Feature Similarity with Discriminative Power) Let n,m ∈ N

be two nodes. Their role feature similarity with discriminative power, denoted
rdsim(n,m), is defined as:

rdsim(n,m) =
{

rsim(n,m) if ∀r ∈ roles(n) ∩ roles(m) : discriminative(r)
0 otherwise

3.2 Feature matching

We say that two features are matched if they are sufficiently similar. What is consid-
ered to be sufficient is determined by cutoff parameters that can be set accordingly. If
two business process models have sufficiently many matching features, we consider
them similar. This is explained in the next section.

We consider two node features to match, if their component features (label features
and role features) match. Strong label feature similarity is a strong indication that two
nodes are matched, while a combination of role feature similarity and (less strong)
label feature similarity is also an indication that two nodes are matched. We distin-
guish between these two cases when determining a node feature match, such that we
can set different thresholds for label similarity in case there is also role similarity and
in case there is no role similarity.

Definition 8 (Node Feature Match) Let n,m ∈ N be two node features with their
respective label features and role features. The node features match, if they satisfy
one of the following two rules:

– their label features are similar to a high degree, i.e., lsim(n,m) ≥ lcutoffhigh;
– their role features are similar, and their label features are similar to a medium

degree, i.e., rdsim(n,m) ≥ rcutoff and lsim(n,m) ≥ lcutoffmed.

Where lcutoffhigh, rcutoff and lcutoffmed are parameters that determine what is con-
sidered to be a similar to what degree. The parameters can be set as desired, to pro-
duce the best results.

We consider two structural features to match, if their component features (node
features) match.

Definition 9 (Structural Feature Match) Two start features with nodes n and m

match, if and only if their node features are matched. A stop feature match is de-
fined similarly.

Two sequence features of size s with lists of nodes Ln = [n1, n2, n3, . . . , ns] and
Lm = [m1,m2,m3, . . . ,ms] are matched if and only if for each 1 ≥ i ≥ s: the node
features of ni and mi are matched.
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Two split features of size s with split nodes n and m and sets of nodes Sn =
{n1, n2, . . . , ns−1} and Sm = {m1,m2, . . . ,ms−1} are matched if and only if the node
features of nodes n and m are matched and there exists a mapping Map : Sn → Sm

holds that for each (sn, sm) ∈ Map: the node features of sn and sm are matched.
A join feature match is defined similarly.

Features of different types or sizes are never matched with each other. We can use
these two definition to define general feature matching.

Definition 10 (Feature Match) Let f1 and f2 be two features. f1 and f2 match, de-
noted match(f1, f2), if and only if they are of the same type and they match according
to Definition 8 in case they are node features or Definition 9 in case they are structural
features.

3.3 Feature indexing

Node feature matching is mainly based on label similarity and, indirectly, structural
feature matching is as well, because it is based on node feature matching. There-
fore, if we can find similar labels more efficiently, we can do feature matching more
efficiently. We use two indexing techniques to find similar labels more efficiently.

First, we use an M-Tree index [2] on node labels. An M-Tree index is specifically
meant for quickly finding items that are similar to a given item to a given degree.
In our case, we use it to quickly find nodes with labels that have a similarity (Def-
inition 3) to a given node label that is higher than a specified cutoff (lcutoffhigh or
lcutoffmed in Definition 8).

Second, we use an inverted index [20] that maps node labels to nodes, such that,
given a node label, we can quickly find the nodes with that label. We use the in-
verted index, because multiple nodes with the same label may exist in a collection of
business process models. For example, in the set of business process models that we
use for evaluation in this paper, there are 374 labels, but only 190 distinct ones. The
inverted index can prevent comparing identical labels repeatedly.

Furthermore, we can build a ‘parent-child’ index that exploits the fact that features
of a larger size (in terms of the number of nodes) are composed of features of a
smaller size. For example: sequence features of size 2 are composed node features
(of size 1); sequence features of size 3 are composed of sequence features of size 2
and, indirectly, of node features (of size 1). We call the (larger) composed features
‘child’ features and the (smaller) component features ‘parent’ features.

Definition 11 (Parent Feature, Child Feature) If feature A can generate feature B
by adding some node(s), feature A is a parent feature of feature B, and feature B is
a child feature of feature A. If feature A can generate feature B by adding a single
node, feature A is a direct parent feature of feature B, and feature B is a direct child
feature of feature A.

Using these properties, we can build a ‘parent-child’ index. Figure 4 illustrates
this. Node feature ‘Buy Special Goods Online’ is a direct parent feature of sequence
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Fig. 4 Feature index

feature (‘Buy Special Goods Online’, ‘Goods Receipt’), and sequence feature (‘Buy
Special Goods Online’, ‘Goods Receipt’) is a direct child feature of node feature ‘Buy
Special Goods Online’. The ‘parent-child’ index can help to increase the efficiency
of searching, if we consistently start by matching ‘smaller’ features, keeping track
of those matches and subsequently, when matching ‘larger’ features, re-using the
matches of the ‘smaller’ features that were already identified.

For example, suppose that we need to search for models that are similar to a
model that consists of only a single sequence: (‘receive goods’, ‘consume goods’).
The model, therefore, contains node features ‘receive goods’ and ‘consume goods’,
as well as sequence feature (‘receive goods’, ‘consume goods’). Starting the simi-
larity search in the ‘parent-child’ index, we first find matches (by using an M-Tree
lookup) between node features ‘receive goods’ and ‘Goods Receipt’ and between
node features ‘consume goods’ and ‘Consume Goods’. We cache these matches.
When subsequently looking for a match for the sequence feature (‘receive goods’,
‘consume goods’), we first look at the cached matches of its parent features (which
are ‘Goods Receipt’ and ‘Consume Goods’) and their common child features, the
sequence (‘Goods Receipt’, ‘Consume Goods’). Subsequently, we only have to es-
tablish the match between this sequence and the given sequence.

4 Feature-based similarity estimation

We use the fraction of matching features between two business process models to
estimate their similarity, as shown in Definition 12.

Definition 12 (Estimated Business Process Model Similarity) Given a query process
graph Gq and another process graph G, with feature sets Fq and F derived from
Gq and G. The estimated business process similarity, denoted ESim(Gq,G) is the
number of features in Gq or G that are matched by a feature in the other process
graph, divided by the number of all features in Gq and G:

|{fq ∈ Fq |∃f ∈ F : match(fq, f )}| + |{f ∈ F |∃fq ∈ Fq : match(fq, f )}|
|Fq | + |F |

Note that we count the number of features in Gq that match a feature in G sepa-
rately from the number of features in G that match a feature in Gq , because the match
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is not necessarily one-to-one. For example, a label feature ‘Fill-out Request Forms’
can match with label features ‘Fill-out Requester’s Detail’ and ‘Fill-out Request De-
tails’ in the other process graph.

Based on the estimated graph similarity, we can classify graphs as relevant, irrel-
evant or potentially relevant to a query graph. We do that by defining the minimal
estimated similarity that a graph must have to the query graph to be considered rel-
evant and the minimal estimated similarity that a graph must have to be considered
potentially relevant. We return relevant graphs directly, check the potentially relevant
graphs with expensive similarity search algorithms [7, 27], and discard irrelevant
graphs.

Definition 13 (Graph Relevance Classification) Given a query process graph Gq and
another process graph G, we classify G as:

– relevant to Gq if and only if ESim(Gq,G) ≥ ratior
– potentially relevant to Gq if and only if ratior > ESim(Gq,G) > ratiop
– irrelevant to Gq if and only if ratiop ≥ ESim(Gq,G)

Where ratior and ratiop are parameters that determine when a process graph is con-
sidered to be relevant, potentially relevant or irrelevant and can be set as desired, to
produce the best results.

5 The improved greedy algorithm for process similarity search

In Sect. 4, we classify process models as relevant, potentially relevant or irrelevant
to a given query model. Potentially relevant models still need to be checked by algo-
rithms that can compute exact process similarity. This section explains how to do this.
In previous work, a metric is defined to measure process similarity, and algorithms are
given to compute the similarity automatically [7]. In this section, we briefly introduce
the metric and the currently fastest algorithm to compute the similarity automatically,
the greedy algorithm [7]. Then we propose three improvements to the greedy algo-
rithm to further improve its performance.

5.1 The greedy algorithm for process similarity search

The similarity of two business process graphs is defined as a metric based on the
graph edit distance is defined, as described in Definition 14.

Definition 14 (Graph Similarity) Let G1 = (N1,E1, λ1) and G2 = (N2,E2, λ2) be
two graphs. The graph edit distance between two graphs is the minimal number of
atomic operations needed to transform G1 into G2 or vice versa. Atomic operations
include inserting, deleting, and substituting nodes and edges. Let M : N1 � N2 be
a partial injective mapping that maps N1 to N2. Let n1 ∈ N1 be a node in G1. n1
is a substituted node if and only if ∃n2 ∈ N2, M(n1) = n2, and accordingly n2 is
also a substituted node. A node n ∈ N is a skipped node if and only if it is not a
substituted node. Let n11, n12 ∈ N1 and (n11, n12) ∈ E1 be two nodes and an edge
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Fig. 5 Business process graphs

of G1. (n11, n12) is a skipped edge if and only if 
 ∃(n21, n22) ∈ E2, M(n11) = n21 ∧
M(n12) = n22. Similarly, we can define the skipped edge in G2.

Let subn, skipn and skipe be the sets of substituted nodes, skipped (inserted or
deleted) nodes, and skipped (inserted or deleted) edges respectively. The fraction of
inserted or deleted nodes, denoted fskipn, the fraction of inserted or deleted edges,
denoted fskipe and the average distance of substituted nodes, denoted fsubsn, are
defined as follows:

fskipn = |skipn|
|N1| + |N2| fskipe = |skipe|

|E1| + |E2|

fsubn = 2.0 · ∑(n,m)∈M 1.0 − lsim(n,m)

|subn|
The partial graph similarity induced by the mapping M , denoted as GSim(G1,G2,M),
is defined as follows:

GSim(G1,G2,M) = 1.0 − wskipn · fskipn + wskipe · fskipe + wsubn · fsubn

wskipn + wskipe + wsubn

where wsubn, wskipn and wskipe are the weights that we assign to substituted nodes,
skipped nodes, and skipped edges respectively. These parameters can be set as desired
to produce the best results.

The graph similarity of two graphs, denoted as GSim(G1,G2), is the maximal
possible similarity induced by a mapping between these graphs.

As an example, consider the query graph and graph 1 in Fig. 5. Let the weights
wsubn = 1.0, wskipn = 0.5 and wskipe = 0.5. Let the mapping M = {(“Buy Goods,”
“Buy Goods”), (“Reception of Goods,” “Receive Goods”)}. Then, the partial graph
similarity induced by M for the query graph, Gq , and graph 1, G1, can be com-
puted based on Definition 14. Note that there are 2 skipped nodes (“Consume Goods”
and “Verify Invoice”), 3 skipped edges, and that the label similarity of “Recep-
tion of Goods” and “Receive Goods” is 0.62. Consequently, GSim(Gq,G1,M) =
1.0 − 0.5·0.33+0.5·0.6+1.0·0.19

0.5+0.5+1.0 ≈ 0.68. This is also the maximal possible graph similar-
ity induced by any mapping and, hence, this is the graph similarity of the two graphs,
i.e., GSim(Gq,G1) = GSim(Gq,G1,M).

Algorithm 1 describes the greedy algorithm for computing the graph similarity of
two process graphs. The algorithm finds the mapping M for which two process graphs
have the highest similarity. The algorithm works as follows. Initially, all possible node
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pairs are added to openpairs (line 3) and no node pair to the mapping M (line 4).
Then, in each iteration, GSim(G1,G2,M ∪ {(n,m)}) is computed for all (n,m) ∈
openpairs to select the pair that increases the partial graph similarity the most (line 7
and 8). That pair is added to the mapping M (line 10) and all pairs that contain one
of the nodes from that pair are removed from openpairs (line 11), such that each
node can be mapped at most once. The algorithm ends when there is no node pair in
openpairs that can increase the graph similarity (line 7 and 8).

Algorithm 1: Greedy Algorithm [7]

input: two business process graphs G1 = (N1,E1, λ1), G2 = (N2,E2, λ2)1

init2

openpairs ⇐ N1 × N2;3

M ⇐ ∅;4

begin5

while6

∃(n,m) ∈ openpairs, GSim(G1,G2,M ∪ {(n,m)}) > GSim(G1,G2,M) ∧7


 ∃(x, y) ∈ openpairs,8

GSim(G1,G2,M ∪ {(x, y)}) > GSim(G1,G2,M ∪ {(n,m)})
do9

M ⇐ M ∪ {(n,m)};10

openpairs ⇐ {(x, y) ∈ openpairs|x 
= n,y 
= m};11

end12

return GSim(G1,G2,M);13

end14

We illustrate the algorithm using again the example based on the query graph and
graph 1 from Fig. 5. Initially, there are 9 (3 times 3) pairs in openpairs. In the first
iteration, the pair that increases the similarity most is (“Buy Goods”, “Buy Goods”),
because it has the highest label similarity. This pair is added to the mapping M and
all elements from openpairs that contain one of the nodes “Buy Goods” are removed
from, such that there are 4 (2 times 2) pairs left. In the second iteration, (“Reception
of Goods”, “Receive Goods”) is chosen, since the pair increases the partial graph
similarity most. Then, there is only one (one by one) pair left, but it cannot increase
the partial graph similarity and the function ends. In the example, the graph similarity
is computed 14 times (9 times in the first iteration, 4 times in the second iteration and
1 time in the third and last iteration).

5.2 Improvements

Below, we optimize the algorithm, by reducing the number of times that the graph
similarity has to be computed and by reducing the complexity of computing the sim-
ilarity itself. We present three improvements for Algorithm 1.
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5.2.1 Selecting only the top-k similar node pairs

We can reduce the number of times that the graph similarity has to be computed,
by initially reducing the number of openpairs. In Algorithm 1, openpairs is assigned
N1 ×N2 initially (line 3) to include all the possible node mappings between the query
graph and the graph in the dataset. However, only pairs with high similarity scores are
valuable because those can be expected to increase the similarity the most. The time
complexity of the algorithm is directly related to the size of openpairs. Consequently,
reducing the size of this set has direct impact on the execution time. Therefore, in this
section we aim to reduce the size of openpairs as follows. For each node in the query
graph, we find the top k most similar nodes in the graph and only put these node
pairs in the openpairs. Definition 15 presents the formal definition of the top k most
similar nodes.

Definition 15 (Top-K Most Similar Nodes) Let n be a node, let N be a set of nodes,
let k be the number of similar nodes that should be considered for each node, and
let sim be a function to compare the similarity of two nodes (e.g., lsim). The set that
contains the top k similar nodes for the node n, denoted as TOP(k, n,N, sim), is the
set that makes the following conditions hold:

– TOP(k, n,N, sim) ⊆ N

– |TOP(k, n,N, sim)| = min(k, |N |)
– ∀p ∈ TOP(k, n,N, sim), 
 ∃o ∈ N/TOP(k, n,N, sim), such that sim(n, o) >

sim(n,p).

The parameter k can be set as desired to get the best results.

For example, consider the query graph and graph 1 from Fig. 5. Let k = 1, let n

be the node “Reception of Goods” in Query graph, let N be the node set of graph 1,
and let sim = lsim. Then, TOP(1, n,N, lsim) = {“Receive Goods”}.

There is a drawback to computing the top k node pairs by only using label simi-
larity. The graph edit similarity considers both the label similarity and the structural
similarity. However, the Top-K heuristic does not take structural information into ac-
count and therefore may not result in the optimal node pair. For example, considering
the query graph and graph 2 in Fig. 3, the labels “Buy Goods” and “Purchase Com-
modities” are related, but their label similarity is only 0.24. Consequently, the pair
(“Buy Goods”, “Purchase Commodities”) may not be put into openpairs when us-
ing the Top-K heuristic, even if it may increase the similarity score later on in the
execution of the algorithm.

To partly account for this issue, we can also take into account structural informa-
tion in the Top-K heuristic. We can do this by comparing the sizes of the pre-sets
and post-sets of nodes as defined in Definition 5. Then, we can compute the similar-
ity of two nodes by considering both the label and role similarities, as described in
Definition 16.

Definition 16 (Node Similarity) Let n,m ∈ N be two nodes. The node similarity is
a weighted average value of lsim(n,m) and rsim(n,m), i.e.,

nsim(n,m) = wl · lsim(n,m) + wr · rsim(n,m)

wl + wr
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where wl and wr are parameters that can be set as desired to produce the best re-
sults.

For example, let wl = 1.0 and wr = 0.5. Considering the nodes “Buy Goods” and
“Purchase Commodities” in query graph and graph 2 of Fig. 3, their node similarity
is 1.0·0.24+0.5·0.67

1.0+0.5 ≈ 0.38. Consequently, for k = 1 (“Buy Goods”, “Purchase Com-
modities”) would be put in openpairs, while, if we had used label similarity instead
of the node similarity, for the node “Buy Goods” in Query graph, the only node pair
in the openpairs would have been (“Buy Goods”, “Get Commodities”).

5.2.2 Incrementally computing the graph similarity

We can reduce the computation time of the graph similarity, by computing it incre-
mentally instead of anew in each iteration. In Algorithm 1, when we add a new node
pair (n,m) into the mapping M , we need to re-compute the partial graph similarity
according to the new mapping M ∪{(n,m)}, i.e., GSim(G1,G2,M ∪{(n,m)}) (line 7
and 8). However, GSim(G1,G2,M ∪{(n,m)}) is related to GSim(G1,G2,M), so we
should compute it incrementally. Therefore, this section investigates the definition of
graph similarity and deduces an incremental way to compute the partial graph simi-
larity.

From Definition 14, we know that the partial graph similarity is related to three
fractions, i.e., fskipn, fskipe and fsubsn. These fractions change when M changes. Let
us see how these fractions change one by one after putting a node pair to M .

First, no matter which node pairs are in M and which new node pair is put into M ,
the size of skipn always reduces by two, because two nodes are matched and removed
from the skipped node set. Thus, we can compute the increment of fskipn, as defined
in Definition 17.

Definition 17 (Skipped-node Fraction Increment) Let G1 = (N1,E1, λ1) and G2 =
(N2,E2, λ2) be two graphs. Let M be a partial injective mapping that maps N1 to N2.
Let (n,m) be a node pair in openpairs. After putting (n,m) into M , the increment of
fskipn, denoted as Δ|fskipn|, is defined as follows:

Δfskipn = −2

|N1| + |N2|
Second, the size reduction of skipe is related to the new node pair (n,m) and the

mapping M . We can compute this by only considering edge pairs that are related to
(n,m), instead of all possible edge pairs. The size reduction is equal to the size of the
intersection of •n × •m and M and the size of the intersection of n • ×m• and M .

Definition 18 (Skipped-edge Increment) Let G1 = (N1,E1, λ1) and G2 =
(N2,E2, λ2) be two graphs. Let M be a partial injective mapping that maps N1 to N2.
Let (n,m) be a node pair in openpairs. After putting (n,m) into M , the increment of
|skipe|, denoted as Δ|skipe|, is defined as follows:

Δ|skipe| = −2 · (∣∣{(x, y) ∈ M|x ∈ •n ∧ y ∈ •m
}∣
∣ + ∣

∣
{
(x, y) ∈ M|x ∈ n • ∧y ∈ m•}∣

∣
)
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The increment of f skipe is defined in Definition 19.

Definition 19 (Skipped-edge Fraction Increment) Let G1 = (N1,E1, λ1) and G2 =
(N2,E2, λ2) be two graphs. Let M be a partial injective mapping that maps N1 to N2.
Let (n,m) be a node pair in openpairs. After putting (n,m) into M , the increment of
fskipe, denoted as Δ|fskipe|, is defined as follows:

Δfskipe = Δ|skipe|
|E1| + |E2|

Third, contrary to skipn, the size of subn increases by two after putting (n,m)

into M . The increment of fsubn also involves the label similarities of (n,m) and pairs
in M , as defined in Definition 20.

Definition 20 (Substituted-node Fraction Increment) Let G1 = (N1,E1, λ1) and
G2 = (N2,E2, λ2) be two graphs. Let M be a partial injective mapping that maps
N1 to N2. Let (n,m) be a node pair in openpairs. After putting (n,m) into M , the
increment of fsubn, denoted as Δfsubn, is defined as follows:

Δfsubn =
∑

(x,y)∈M lsim(x, y)

|subn| −
∑

(x,y)∈M∪{(n,m)} lsim(x, y)

|subn| + 2

where |subn| = 2 · |M|.

From the analysis above, we can derive that after putting (n,m) into M , the graph
similarity increment can be computed by performing only two computations, those of
lsim(n,m) and Δ|skipe|. The other components of the computation are either constants
that can be computed before executing the algorithm, or functions of M that only
have to be computed once each time M changes. Proposition 1 shows how the graph
similarity increment can be computed as a function of lsim(n,m) and Δ|skipe|, two
constants c1 and c2 and two functions of M : ϕ1(M) and ϕ1(M).

Proposition 1 (Graph Similarity Increment) Let G1 = (N1,E1, λ1) and G2 =
(N2,E2, λ2) be two graphs. Let M be a partial injective mapping that maps N1 to N2.
Let (n,m) be a node pair in openpairs. After putting (n,m) into M , the graph simi-
larity increment, denoted as Δ, is defined as follows:

Δ = ϕ1(M) · lsim(n,m) + c1 · Δ|skipe| + ϕ2(M) + c2,

where:

c1 = −wskipe

(wskipn + wskipe + wsubn) · (|E1| + |E2|) ,

c2 = 2 · wskipn

(wskipn + wskipe + wsubn) · (|N1| + |N2|) ,

ϕ1(M) = wsubn

(wskipn + wskipe + wsubn) · (|M| + 1)
, and
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ϕ2(M) = −wsubn · ∑(x,y)∈M lsim(x, y)

(wskipn + wskipe + wsubn) · (|M| + 1) · |M| .

We prove Proposition 1 as follows.

Proof The graph similarity increment is equal to the graph similarity after adding
(n,m), i.e.: Δ = GSim(G1,G2,M ∪ {(n,m)}) − GSim(G1,G2,M). We can rewrite
this as follows.

Δ = GSim
(
G1,G2,M ∪ {

(n,m)
}) − GSim(G1,G2,M)

=
(

1.0 − wskipn · fskipn′ + wskipe · fskipe′ + wsubn · fsubn′

wskipn + wskipe + wsubn

)

−
(

1.0 − wskipn · fskipn + wskipe · fskipe + wsubn · fsubn

wskipn + wskipe + wsubn

)

= −wskipn · Δfskipn − wskipe · Δfskipe − wsubn · Δfsubn

wskipn + wskipe + wsubn

= 1

wskipn + wskipe + wsubn
·
(

2 · wskipn

|N1| + |N2| − wskipe

|E1| + |E2| · Δ|skipe|

+ wsubn ·
(

lsim(n,m) · 1

|M| + 1
− �(x,y)∈M lsim(x, y)

(|M| + 1) · |M|
))

= ϕ1(M) · lsim(n,m) + c1 · Δ|skipe| + ϕ2(M) + c2 �

From Proposition 1 we can see that only lsim(n,m) and Δ|skipe| are related to
the new pair (n,m). We already know how to compute them as described in Defi-
nitions 3 and 18. Therefore, we can compute the graph similarity incrementally. For
example, considering query graph and graph 1 from Fig. 5. Let the weights wsubn =
1.0, wskipn = 0.5 and wskipe = 0.5. Let the mapping M = {(“Buy Goods”, “Buy
Goods”)}. Then, after putting (“Reception of Goods”, “Receive Goods”) into M , the
graph similarity increment is 1

2.0 · ( 1.0·0.63
2 − 0.5·(−2)

5 − 1.0·1.0
2 + 2.0·0.5

6 ) ≈ 0.1.

5.2.3 Pre-selecting similar node pairs

We can reduce the number of times the graph similarity must be computed, by ‘pre-
dicting’ the pair in the mapping that would increase the similarity the most. In Al-
gorithm 1, to decide which node pair to add into the mapping M next, we need to
compute GSim(G1,G2,M ∪ {(n,m)}) for all the (n,m) in openpairs and find the
maximal value (lines 7 and 8). Proposition 1 discloses that the graph similarity in-
crement is related to two variables: lsim(n,m) and Δ|skipe| only. Consequently, if we
can ‘predict’ the value of those two variables, we can predict the value of the overall
similarity increase.

This section first proposes an efficient manner to compute the value of Δ|skipe|.
Then, it uses the values of lsim(n,m) and Δ|skipe| to pre-select a few candidate pairs
that potentially have the largest similarity increment. Last, it finds the node pair with
the maximal graph similarity increment from candidate pairs. By doing this, only
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the graph similarity increments of these candidate pairs, instead of all the pairs in
openpairs, need to be computed and compared to find the pair with the maximal
graph similarity increment.

We can efficiently compute the value of Δ|skipe| as follows. During iterations, given
a pair (n,m), lsim(n,m) is constant in spite of the changes of the mapping M . How-
ever, Δ|skipe| is related to both (n,m) and M . In each iteration, we need to know the
Δ|skipe| values for all the pairs in openpairs before the pre-selection. We can compute
the Δ|skipe| values based on Definition 18 in each iteration, but it is time consuming
because of the consideration of all pairs in openpairs. Instead, we build a cache to
store the Δ|skipe| values for all the pairs in openpairs. Initially, all the Δ|skipe| val-
ues are 0, because there is no node pair in M . When a node pair (o,p) is added
to M , we only need to update the Δ|skipe| values for (n,m) ∈ openpair that makes
n ∈ •o ∧ m ∈ •p or n ∈ o • ∧m ∈ p• hold. Proposition 2 presents the rule to update
the Δ|skipe| values.

Proposition 2 (Difference of Skipped-edge Increment) Let G1 = (N1,E1, λ1) and
G2 = (N2,E2, λ2) be two process graphs as defined in Definition 1. Let M be a
partial injective mapping that maps N1 to N2. Let (o,p) and (n,m) be two node
pairs in openpairs (o 
= n ∧ p 
= m). After putting (o,p) into M , the difference of the
Δ|skipe| value for (n,m) is defined as follows:

−2 ·(∣∣{(x, y) ∈ {
(o,p)

}|n ∈ •x∧m ∈ •y
}∣
∣+∣

∣
{
(x, y) ∈ {

(o,p)
}|n ∈ x •∧m ∈ y•}∣

∣
)
.

We prove Proposition 2 as follows.

Proof Let M ′ = M ∪ {(o,p)}.
Δ′|skipe| − Δ|skipe|

= −2 · (∣∣{(x, y) ∈ M ′|x ∈ •n ∧ y ∈ •m
}∣
∣+∣

∣
{
(x, y) ∈ M ′|x ∈ n • ∧y ∈ m•}∣

∣
)

− (−2 · (∣∣{(x, y) ∈ M|x ∈ •n ∧ y ∈ •m
}∣
∣+∣

∣
{
(x, y) ∈ M|x ∈ n • ∧y ∈ m•}∣

∣
))

= −2 · (∣∣{(x, y) ∈ {
(o,p)

}|x ∈ •n ∧ y ∈ •m
}∣
∣

+ ∣
∣
{
(x, y) ∈ {

(o,p)
}|x ∈ n • ∧y ∈ m•}∣

∣
)

= −2 · (∣∣{(x, y) ∈ {
(o,p)

}|n ∈ x • ∧m ∈ y•}∣
∣

+ ∣
∣
{
(x, y) ∈ {

(o,p)
}|n ∈ •x ∧ m ∈ •y

}∣
∣
)
. �

As an example, consider query graph and graph 1 from Fig. 5. Let the mapping
M = ∅. Then, after putting (“Buy Goods”, “Buy Goods”) into M , only the Δ|skipe|
values for (“Reception of Goods”, “Receive Goods”) and (“Reception of Goods”,
“Verify Invoice”) need to be modified to −2.

By now, we already know the values of lsim(n,m) and Δ|skipe|. Then, let us see
how to use them to pre-select candidate pairs. The value range of Δ|skipe| is typically
limited. For example, in the validation dataset of this article, it can only be 0, −2,
−4, or −6 (the values are always even, because only two edges can match each other
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at one time). Therefore, we can first consider Δ|skipe| and then lsim(n,m). For each
possible value of Δ|skipe|, the node pair (n,m) with the maximal lsim(n,m) value is
selected as a candidate pair (see Definition 1). To quickly get the pair (n,m) with
maximal label similarity, we can sort the node pairs in openpair descendingly with
respect to their label similarities in advance. We get a few candidate pairs, of which
the one with the maximal graph similarity increment is the pair we are looking for.

Next, we can pre-select the potential node pairs to be put into M . For example,
query graph and graph 1 in Fig. 3 are considered. When M ={(“Buy Goods”, “Buy
Goods”)}, the distinct values for Δ|skipe| are −2 or 0. The node pairs (“Reception of
Goods”, “Receive Goods”) and (“Consume Goods”, “Receive Goods”) are selected
as candidate pairs respectively for each Δ|skipe| value. Finally, (“Reception of Goods”,
“Receive Goods”) is put into M , because it provides a higher graph similarity incre-
ment.

There are algorithms solving multiple items with the highest overall values, e.g.,
the well-known threshold algorithm (TA) [13]. These algorithms are also applicable
for node pair pre-selection (two items in this case, Δ|skipe| and lsim(n,m)). In this
section, we present a simple but effective algorithm for the sake of explanation.

5.3 The improved greedy algorithm for process similarity search

This section integrates the improvements proposed in Sect. 5.2 into the Greedy Al-
gorithm that is presented in Sect. 5.1 and presents the improved algorithm after inte-
gration, as shown in Algorithm 2.

Initially, instead of considering all the possible node pairs, only the top k most sim-
ilar nodes are considered for each query node (see line 10) as explained in Sect. 5.2.1.
These node pairs are sorted with respect to their label similarities. The mapping is
empty at first (see line 11). Three more variables are defined (see lines 12–14: result,
skipedgecache and candidatepairs. result is the partial graph similarity for the current
mapping M . skipedgecache is a list that records the numbers of potentially matched
edges for each pair in openpairlist. candidatepairs is a mapping that, for each possi-
ble value in skipedgecache, records the node pair with maximal node similarity.

In each iteration, the node pair with the maximal graph similarity increment in
candidatepairs is added to the mapping; the variables are adapted according to the
current state after that. The function ends when there is no more node pair for which
the graph similarity increases.

Figure 6 shows an example in which the similarity of the query graph and graph 1
from Fig. 5 are computed according to the improved algorithm. Let k = 2, wskipn =
wskipe = wl = 0.5, and wsubn = wr = 1.0. In the figure the nodes are identified
by the first letters of the words in their labels. The figure shows the values for the
variables of the algorithm for three iterations. Initially, the top-2 most similar nodes
for each node in the query model are determined. Based on that information, the
openpairlist is constructed. Initially, none of the pairs in the openpairlist will reduce
the number of skipped edges. Consequently, the skipedgecache contains only 0s. The
only pair in candidatepairs is (“Buy Goods”, “Buy Goods”), which is consequently
put into M in the first iteration. As a result, the openpairlist, skipedgecache and
candidatepairs variables are updated. There are now two distinct values (−2 and 0)
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Algorithm 2: Improved Greedy Algorithm
input: two business process graphs G1 = (N1,E1, λ1), G2 = (N2,E2, λ2)

function sortedTopkPairs(N1,N2);1

begin2

foreach n1 ∈ N1 do3

select the top k n2 ∈ N2 with respect to nsim(n1, n2);4

put the top k (n1, n2) pairs in openpairlist;5

end6

return sorted openpairlist with respect to lsim(n1, n2) in descending order;7

end8

init9

openpairlist ⇐ sortedTopkPairs(N1,N2);10

M ⇐ ∅;11

result ⇐ 0;12

skipedgecache ⇐ [0,0, . . . ,0];13

candidatepairs ⇐ [(0,Head(openpairlist))];14

begin15

while ∃(n,m) ∈ candidatepairs,Δ > 0∧ 
 ∃(x, y) ∈ candidatepairs,Δ′ > Δ16

do
M ⇐ M ∪ {(n,m)};17

result+ = Δ;18

foreach (x, y) ∈ openpairlist ∧ (x = n ∨ y = m) do19

remove (x, y) from openpairlist;20

remove the according item for (x, y) from skipedgecache21

end22

foreach (x, y) ∈ openpairlist ∧ ((x ∈ •n ∧ y ∈ •m) ∨ (x ∈ n • ∧y ∈ m•))23

do
update skipedgecache//skipedge− = 2 or skipedge− = 424

end25

foreach distinct value in skipedgecache do26

update candidatepairs//store maximal lsim(n,m)27

end28

end29

return result;30

end31

in skipedgecache, and two pairs in candidatepairs. (“Reception of Goods”, “Receive
Goods”) provides higher graph similarity increase and is chosen to be in M in the
second iteration. Then, there is only one pair left in candidatepairs, but it cannot
increase the partial graph similarity and the algorithm ends.

During the iterations, only four partial graph similarities induced by different map-
pings are computed, and only two partial graph similarities are compared to select the
pair with the maximal graph similarity increment. Some additional computation is re-
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Fig. 6 Running example for query graph and graph 1 in Fig. 5

quired in Algorithm 2 as compared to the original algorithm (e.g., ranking node pairs
with respect to the label similarity). However, the improved algorithm is much less
time consuming, as will be shown in the evaluation results in Sect. 8.

6 Ranking

Using the similarity estimation metric ESim from Sect. 4 and the similarity measure-
ment metric GSim from Sect. 5, we can rank the models in a collection in the order
of their similarity to a query model.

Given a query business process model and a set of business process models, we
classify the set of business process models as ‘relevant’, ‘potentially relevant’ or ‘ir-
relevant’, according to Definition 13. We only rank the models in the ‘relevant’ and
the ‘potentially relevant’ sets, by first presenting the models in the ‘relevant’ set, in
the order of their estimated similarity ESim to the query model, and then present-
ing the models in the ‘potentially relevant’ set in the order of their similarity GSim
to the query model. Ranking models in a set, results in a sequence that is ordered
in descending order of similarity score (most similar item first). Sequences can be
concatenated to produce a complete search result. Given two sequences L and M ,
their concatenation, denoted L + +M , is the sequence in which the elements from
L are put in front of the elements from M operand. We only consider the potentially
relevant models that are sufficiently similar to the query model (i.e. we only consider
the models G, for which GSim(G,Gq) > cutoff , where cutoff is a parameter). More
precisely, the ranking is defined as follows.

Definition 21 (Ranking) Let Gq be a query graph and let Gs be a set of graphs. Fur-
thermore, let cutoff be a parameter that determines the minimum similarity score. The
ranking of the graphs from Gs according to their similarity to Gq is a mathematical
sequence Gr + +Gp, where:
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– Gr is the sequence that consists of all models from Gs that are relevant to Gq ,
such that for each Gri , Grj from Gr holds: if i < j then ESim(Gri ,Gq) ≥
ESim(Grj ,Gq); and

– Gp is the sequence that consists of all models G from Gs that are potentially rel-
evant to Gq and for which GSim(G,Gq) > cutoff , such that for each Gpi ,Gpj

from Gp holds: if i < j then GSim(Gpi ,Gq) ≥ GSim(Gpj ,Gq).

The improvement in the time complexity when using the similarity estimation
step, can be characterized as follows. Let k be the total number of process models in
a collection and n be the average number of nodes in a process model. If node features
are used for similarity estimation, the similarity estimation searches the most similar
node in a tree-based index, for each node in the query model. There are k · n nodes
in the tree at most, when all nodes in the process model collection are distinct from
each other. Therefore, the time complexity of the similarity estimation step (using
the node features only) has an upper bound of O(n · log(k · n)). The time complexity
of the greedy algorithm for process similarity search is O(n3) [7]. Therefore, the
improvement in time complexity is characterized as: O(p ·n3 −n · log(k ·n)), where
p is the fraction of models that can directly be classified as relevant or irrelevant,
after the similarity estimation step.

7 Implementation

This section describes the architecture that we propose for implementing the search
algorithm in a business process model repository. The architecture in this paper is
based on the more general architecture for business process model repositories that
we propose in [33] and focuses on the similarity search aspect. As such, it provides a
more detailed design of a single aspect of the architecture for business process model
repositories. As a proof of concept, we implemented a web-based prototype of the
architecture and the search algorithm.2 In this section, first, we present the general
three-layer architecture of the tool in terms of a UML component diagram. Second,
we make the architecture more concrete, by presenting details of the interfaces of
the components and implementations of some of the components. Third, we present
the sequence diagrams that describe the behavior of the architecture: one sequence
diagram for building an index of business process models and their features and one
for searching similar processes. Last, we present the prototype that implements the
architecture.

Figure 7 present the general architecture of the tool, which is based on our refer-
ence architecture [33]. However, where the reference architecture presents a general
architecture that contains all functions that can be implemented by a business pro-
cess model repository at a high level of abstraction, this paper presents a detailed
architecture for the search function only. The architecture consists of three layers: the
presentation layer, the process repository management layer and the storage layer.

2Access the prototype at: http://is.tm.tue.nl/research/apromore.html. Please take Firefox or Google
Chrome as your web browser, since IE does not support the script we use.

http://is.tm.tue.nl/research/apromore.html
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Fig. 7 Architecture of the tool

The presentation layer provides a (graphical) interface for users to interact with the
tool. The process repository management layer provides the model management func-
tions. The storage layer stores process data, including indexing information, an inter-
nal representation of the business process models that focuses on performance and
an external representation of the business process models that focuses on interop-
erability. Although a business process model repository would typically contain a
number of model management functions (such as checking in and checking out mod-
els, version management and configuration management), this paper focuses only on
the similarity search function. However, the implementation of the search function is
consistent with the possible implementation of other functions. The search function is
implemented by a single component, such that additional components that implement
other functions can be added easily.

Figure 8 shows the architecture in more detail. The process repository manage-
ment layer consists of four components. The main component is the component that
provides the search interface. This interface provides two operations: one for creat-
ing an index and one for searching the models that are similar to a given model. The
process repository management layer contains three more components: one that pro-
vides process graph management functions, one that provides access to the improved
greedy algorithm and one that provides operations for managing the indices of pro-
cess graph features. The greedy algorithm component provides only a single opera-
tion for determining process graph similarity, as it is explained in Sect. 5. The pro-
cess graph component provides two operations: one for transforming a given process
model into a process graph and one for deriving the features of a given process graph,
as it is explained in Sect. 2. The operation for transforming a process model into a
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process graph can be overloaded to enable the conversion of multiple process mod-
eling notations. Our prototype supports both the EPC and the BPMN notation. The
index management component provides operations for adapting the indices. It has an
operation for initializing the indices (i.e.: creating empty indices) and an operation
“constructIndex” that adds a single feature to the existing indices. The component
also provides operations for retrieving process models based on the indices. It has an
operation “estimate” that estimates which graphs are relevant or potentially relevant
to a query graph through indices (Sects. 3.3 and 4). This operation is supported by an
operation “getESim” that computes the estimated similarity of two graphs, based on
their matched features (Sect. 4) and an operation “getMatchedFeatures” that returns,
given a feature, the matching features. More information about the way in which
these operations work together to create an index or perform a search will be given in
terms of sequence diagrams later on in this section.

The storage layer consists of three components: the indexing component and the
internal and external process model component. The indexing component is the core
of our design. It stores features and an index based on features. As examples, Fig. 8
contains two types of features. However, subclasses of “Feature” can be created as de-
sired to also store other features. “NodeFeature” stores a label and a number of input
and output edges; “Seq2Feature” stores sequences of two nodes. The class diagram
describes two types of indices, “InvertedFeatureIndex” and “FeatureRelationIndex”.
The former stores the relation between features and the business process graphs in
which they are contained. The latter stores hierarchical relations between features as
explained in Sect. 4. More precisely, it stores which feature is (direct) parent of which
features (Fig. 4). The internal process model component stores the business process
models in the format that is used in the repository for efficient computation, which is
the process graph in this case (Definition 1). The external process model stores the
business process models in their original format. Process models are described in the
“ProcessModel” class, which has several subclasses, indicating that process models
can be described in different notations, e.g., EPC and BPMN. The class can be ex-
tended as desired to store other types of models. In order for those models to work
in the repository, the process repository management layer must contain functions to
convert them to business process graphs. Note that process models, the corresponding
process graphs and features of those process graphs are related via the “processId”
that must be unique for a given process model.

For conciseness, Fig. 8 only describes the most important components in detail.
We excluded details about the other components, because they are not essential to
understand the design and because they would differ in different repositories, for ex-
ample, to cater for different GUI requirements or to include business process models
in different notations. For the same reason, not all operations that are made available
by the repository are shown. For example, the external process model storage com-
ponent only provides an operation to read all models, but obviously also operations
should be provided to create, read, update and delete singular models. These oper-
ations, however, are not essential to understanding the design. As another example,
additional operations should be provided to add a single model to the indexes or to
remove a single model from the indexes, such that indexes can be updated incremen-
tally when a model is added to or removed from the repository.
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Fig. 8 Class diagram of the tool

As mentioned above, two functions have to be performed by the repository to en-
able efficient similarity search: building the index and searching for similar processes
with respect to a query process. Figures 9 and 10 present the sequence diagrams for
these two functions respectively.

To build the index, the GUI invokes the “createIndex” function. First, this function
initializes the indexes, by creating empty indexes. Second, it reads all process mod-
els from the repository. Third, it converts each process model into a process graph,
retrieves all of its features (Sect. 2) and stores the process graph into the repository.
Fourth, it inserts each feature of a process graph into the index (Sect. 3.3) and up-
dates the index in the repository. Note that, at this moment, the index is constructed
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Fig. 9 Sequence diagram for building index

in-memory, instead of in the storage layer. This is not efficient and must be improved
in future work.

To search similar processes, the GUI invokes the “search” function. First, this
function transforms the given model into a process graph. Second, it invokes the
“estimate” function, to compute the relevant and potentially relevant process graphs
for the given process graph. The “estimate” function first computes all features of the
given query graph. It then reads the indexes into memory. (Again, processing of the
indexes is done in-memory, which must be improved in future work.) The “estimate”
function then retrieves, from the indexes, the features that match features from the
process graph. It then uses this information to compute the estimated similarity of the
query graph and the process graphs that have at least one matching feature. Finally,
it uses the estimated similarity to determine which graphs are relevant and which
graphs are potentially relevant. These two lists are returned. The search component
then invokes the improved greedy algorithm (Sect. 5) to compute the similarity of
the query graph to each of the potentially relevant process graphs. Finally, the list of
results is returned to the user.

As a proof of concept, we implemented a web-based prototype of the architecture
and the search algorithm. Figure 11 presents a screenshot of the tool, displaying its
main functionality. The GUI consists of three main parts. On the left side the names of
the models in the repository are displayed. When a model is selected, it is displayed
on the right side. Above the model display there is a toolbar that provides access
to the functions that can be performed on the model. One of those functions is the
similarity search function. When the similarity search button is clicked, the list of
model names on the left is changed to contain only those models that are similar to
the given model. Models are automatically indexed by the repository when they are
added.
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Fig. 10 Sequence diagram for process similarity search

8 Evaluation

This section presents the evaluations of the algorithm described in this paper. The
evaluations determine the execution time of the algorithm and the quality of the
search results that it returns. In particular we compare the execution time and search
result quality of the algorithm from this paper to those of the greedy algorithm [7].
Two evaluations are performed. One homogeneous evaluation in which the query
models are taken from the collection that is searched and one heterogeneous evalua-
tion in which the query models are taken from a different model collection.

8.1 Homogeneous evaluation

In this subsection, we present the homogeneous evaluation. We first explain the setup
of the evaluation and then the results.

8.1.1 Evaluation setup

We have two experimental setups: one for evaluating the quality of retrieved results
and one for evaluating the execution time, respectively.
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Fig. 11 A screenshot of the tool

Both experiments are performed on the collection of SAP reference models. This
is a collection of 604 business process models (described as EPCs) that capture the
business processes that are supported by SAP [6]. On average each process model in
the collection contains 21.6 nodes with a minimum of 3 and a maximum 130 nodes.
The average size of node labels is 3.8 words.

To evaluate the quality of retrieved results, we use the same evaluation dataset as
in [7]. This dataset consists of 100 process models that were extracted from the col-
lection of SAP reference models. In addition to that we extracted 10 process models
as query models. Consequently, there are 1000 combinations of a query model and
a model in the dataset for which the similarity can be determined. For each of those
combinations three human observers judged whether the process model is a relevant
search result for a particular query model. Next, we can determine the quality of
the search results that are returned by a particular algorithm by comparing them to
the relevance judgement that is given by the human observers. We can quantify the
quality in terms of the R-Precision [4].

Definition 22 (R-Precision) Let D be the set of process models, Q be the set of
query models and relevant : Q → P(D) be the function that returns the set of relevant
process models for each query model (as determined by the human observer).

Given the list of search results D = [d1, d2, . . . , dn] for a query q with di ∈ D, the
R-Precision is the precision of the first R results, where R = |relevant(q)| is the total



134 Distrib Parallel Databases (2012) 30:105–144

Table 1 Result quality of the homogeneous evaluation

Feature (n) Occurrences Matches Rel PoR Ir R-Prec

Previous Work [7] – – 0 100 0 0.84

1: Node(1) 374 581 5.5 10.9 83.6 0.84

2: 1+Seq(2) +267 +197 8.1 8 83.9 0.83

3: 2+Seq(3) +175 +96 7.8 10.1 82.1 0.83

4: 2+Split(3) +87 +93 7.8 10.1 82.1 0.83

5: 4+Split(4) +23 +11 7.8 10.1 82.1 0.83

6: 2+Join(3) +58 +18 7.8 10.1 82.1 0.83

7: 6+Join(4) +14 +1 7.8 10.1 82.1 0.83

number of process models that is relevant to the query:

R-Precision = |[di ∈ D|i ≤ n, i ≤ R,di ∈ relevant(q)]|
R

We compare the R-Precision of the greedy algorithm that we developed in previous
work [7] to the R-Precision of the improved greedy algorithm that is described in this
paper. We use the greedy algorithm, because it is the fastest algorithm of the ones
we studied [7] and, therefore, provides a lower-bound for improvements in execution
time.

To evaluate the execution time, we compare the 10 queries with all 604 business
process models in the collection of SAP reference models, instead of just the 100
process models. We do this, because to compute the execution time we do not need
the human judgement and computing the execution time for a larger set of models
leads to a more realistic result. We record the average execution time per query.

8.1.2 Evaluation results

Table 1 shows the quality of the results that are retrieved by the greedy algorithm
and those returned by the improved greedy algorithm in combination with similarity
estimation, based on various feature types.

The rows in the table show the features that are used to do the feature-based simi-
larity estimation. In the first row no feature-based similarity estimation is done. This
row lists the performance of the greedy algorithm. In the second row similarity es-
timation is done based only on node features (of size 1). In the third row similarity
estimation is done based on node features plus sequence features of size 2 and so on.

The columns in the table show the properties of the features and similarity estima-
tion based on the features. First, they show the number of times features of a given
type occur in the set of process models and the number of times features of a certain
type match in the set of process models. For example, in the set of process models,
there could be four nodes labeled ‘A’. These nodes count as four occurrences of the
node feature type. Because of their high label feature similarity, these nodes can be
considered to match. This leads to six matches, because each of the four nodes can
be matches to each of the others. Second, the columns show the average number of



Distrib Parallel Databases (2012) 30:105–144 135

Table 2 Execution time of the homogeneous evaluation

Features (n) Rel PoR Ir Test Tcom Tavg
total Tmin

total Tmax
total

Previous Work [7] 0 604 0 0.00 s 0.60 s 0.60 s 0.16 s 1.45 s

1: Node(1) 7 73 524 0.05 s 0.04 s 0.09 s 0.03 s 0.14 s

2: 1+Seq(2) 13.7 44.9 554.4 0.05 s 0.02 s 0.07 s 0.03 s 0.09 s

3: 2+Seq(3) 9.5 73.2 521.3 0.05 s 0.05 s 0.10 s 0.03 s 0.15 s

4: 2+Split(3) 9.5 73.2 521.3 0.05 s 0.05 s 0.10 s 0.03 s 0.15 s

5: 4+Split(4) 9.5 73.2 521.3 0.05 s 0.05 s 0.10 s 0.03 s 0.15 s

6: 2+Join(3) 9.5 73.2 521.3 0.05 s 0.05 s 0.10 s 0.03 s 0.15 s

7: 6+Join(4) 9.5 73.2 521.3 0.05 s 0.05 s 0.10 s 0.03 s 0.15 s

process models that, after the similarity estimation step, are estimated as being rele-
vant (Rel), potentially relevant (PoR) and irrelevant (Ir) over the ten queries. Third,
the columns show the average R-Precision (R-Prec) over the ten queries.

The table shows that when similarity estimation is done based only on node fea-
tures on average 5.5 models are estimated to be relevant, 10.9 models to be poten-
tially relevant and 83.6 models as irrelevant. Therefore, in this situation, the improved
greedy algorithm only has to be used to measure the similarity of about 11% of the
total number of process models, about 6% of the models are immediately judged as
relevant and the remaining models are judged as irrelevant. In this case the quality
of the returned results in terms of R-Precision remains the same. If sequences of size
two are also used to perform the similarity estimation, only 8% of the process models
has to be compared using the improved greedy algorithm. However, this does lead
to a slightly lower R-Precision. Inclusion of other types of features does not improve
the similarity estimation any further.

Table 2 shows the execution time of the similarity search both when only using the
greedy algorithm and when using certain feature types for similarity estimation and
the improved greedy algorithm. All the experiments are done on a computer with the
Intel Core2 Duo processor T7500 CPU (2.2 GHz, 800 MHz FSB, 4 MB L2 cache),
4 GB DDR2 memory, the Windows Vista operating system and the SUN Java Virtual
Machine version 1.6.

The execution time consists of two parts: the time it takes to estimate the similarity
and classify process models as relevant (Rel), potentially relevant (PoR) or irrelevant
(Ir), denoted Test; and the time it takes to compute the similarity for the models clas-
sified as potentially relevant, denoted Tcom. Table 2 shows the average estimation and
execution times over the ten search queries. In addition to that it shows the average
total time over the ten queries and the (minimum) time of processing the query that
takes the least time and the (maximum) time of processing the query that takes the
most time.

The table shows that, on average, estimating similarity based on node features
helps to retrieve similar models 6.7 times faster and from Table 1 we know that this
does not impact the quality of the search results. Also including sequence features
of size two helps retrieve similar models 8.6 times faster, but from Table 1 we know
that this reduces the quality of the results by about 0.01 in terms of R-Precision as a
tradeoff.
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Fig. 12 Results of the homogeneous evaluation

The table also shows that, on average, the total search time for the greedy algo-
rithm is quite acceptable and takes only 0.60 seconds. However, in the worst case
the total search time for the greedy algorithm is already 1.45 seconds. This is slower
than the response time that one would expect of a search engine. In addition to that,
the search time of the greedy algorithm is linear over the number of models in the
collection, meaning that if we were to search a collection of 6000 models (which is
the size of the collection of business process models of Suncorp-Metway Ltd [16])
the search time would already be around 14 seconds in the worst case.

Figure 12 summarizes the results of the homogeneous evaluation, by showing both
the quality and the execution time evaluation. We can see that the algorithm in this
paper reduces the execution time (from 0.6 s to less than 0.1 s per query on average)
with a stable quality (0.83–0.84 on average) in terms of R-Precision.

Similarity estimation depends on the following parameters:

– dcutoff, which is a parameter that determines whether a role feature is considered
to be discriminative (Definition 6).

– lcutoffhigh, rcutoff and lcutoffmed, which are parameters that determine what is
considered to be a sufficiently similar for a feature to match (Definition 10).

– ratior and ratiop, which are parameters that determine which class a process model
belongs to based on the fraction of features that match with the query model (Def-
inition 13).

We vary each of these parameters from 0 to 1 in increments of 0.1 and ran the
experiments with all possible combinations of parameter values within this range.
We use the parameters that, on average, give the highest R-Precision or the fewest
potentially relevant models with respect to the queries to show attractive trade-
offs. The values that we use are dcutoff = 0.3, lcutoff high = 0.8, rcutoff = 1.0 and
lcutoff med = 0.2. The other two parameters also depend on the type of features we
use. For the node feature (the second row in Table 1 or 2), ratior = 0.5; otherwise,
ratior = 0.2. For the node and sequence (with two nodes) features (the second and
third rows in Table 1 or 2), ratiop = 0.1; otherwise, ratiop = 0.0.

The improved greedy algorithm for process similarity search depends on the fol-
lowing parameters:

– wskipn, wskipe and wsubn, which denote the weights given to node deletion, node
substitution and edge deletion (Definition 14).

– k, which denotes how many most similar nodes are considered for a search node
(Definition 15).
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– wl and wr , which denote the weights given to the label and role similarities (Defi-
nition 16).

For the first group, we used the same values as in [7], i.e., wskipn = 0.1, wskipe =
0.4 and wsubn = 0.9. For the second group, we varied each of these parameters from
1 to 10 in increments of 1, and it returns best results when k = 3. For the third group,
we varied each of these parameters from 0 to 1 in increments of 0.1 and ran the
experiments with all possible combinations of parameter values within this range.
We used the parameters that give best results, i.e., wl = 1.0 and wr = 0.6.

Note that the parameter settings are specifically tuned to give the best results
for this dataset. Parameter values that are generically applicable should be obtained
through additional experiments on other process model collections. However, note
that a change in parameter settings should not change the conclusions about the com-
parison between the greedy algorithm and the algorithm in this paper, because both
algorithm profit equally from the optimization of the parameters for the evaluation
dataset.

8.2 Heterogeneous evaluation

In this subsection, we present the heterogeneous evaluation. We first explain the setup
of the evaluation and then the results.

8.2.1 Evaluation setup

In the heterogeneous evaluation, the model collection was extracted from the same
collection as for the homogeneous evaluation. However, the query models were taken
from a different collection of business process models, which represent the processes
of a large manufacturing company. Ten query models were extracted. On average
each of these ten process models contains 20.3 nodes with a minimum of 9 and a
maximum 35 nodes. The average size of node labels is 4.6 words.

The main difference between the heterogeneous and the homogeneous evaluation
is that, in the homogeneous evaluation, it is more clear which models are similar to a
given model. For example, the SAP Reference Model contains 7 purchasing models
that resemble each other strongly. Consequently, given one of the purchasing models,
it is very easy to find the other, similar, ones. For the heterogeneous evaluation, this is
more difficult: given a purchasing model (that is not from the SAP Reference Model),
similar models are less easy to identify. Therefore, the similarity estimation step will
initially lead to more models that are potentially relevant. Consequently, we expect
that the similarity estimation step will lead to a smaller efficiency improvement.

Both the SAP reference models and the manufacturing models cover a large num-
ber of business functions, which are distributed over different “branches” of the busi-
ness process model collections (e.g., the collection of SAP reference models has 29
branches and a total of 604 business process models). Models that belong to different
branches are typically not similar. To develop a collection of business process models
that can be feasibly compared by human observers and that also contains models that
are similar, selections from both model collections were made, by first determining
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Table 3 Setup for the heterogeneous evaluation

Branch/Business Function nr. of query models nr. of document models

Procurement 3 37

Delivery and invoicing 1

Production planning 17

Sales 4 43

Business planning 2

Management 2

similar branches and then selecting models from similar branches. As shown in Ta-
ble 3, 10 manufacturing models are selected as query models, and 97 SAP reference
models are selected as models in dataset, taking overlapping or related branches from
the models. The metrics for evaluating quality and time are the same as the previous
evaluation, i.e., the R-Precision and the average execution time per query.

8.2.2 Evaluation results

Table 4 shows the results of the greedy algorithm and the algorithm in this paper. The
experiments are run on the same computer as the homogeneous evaluation. The rows
show the features that are used to estimate the similarity. The columns show the clas-
sification of models, result quality and the execution times per query. Process Models
are classified as relevant (Rel), potentially relevant (PoR) or irrelevant (Ir) models.
Result quality is also measured by R-Precision (R-Prec). The average execution time
(Tavg

total) consists of the estimation time based on features (Test) and the computation
time by the improved greedy algorithm (Tcom). Besides these the columns also show
the execution time for the queries that take least (Tmin

total) and most (Tmax
total) time.

The table shows that, by using node features only, around 20% of process mod-
els need to be checked with the improved greedy algorithm; the execution time is
reduced by 8 times; while the quality is reduced by 0.02 in terms of R-Precision.
These findings support our expectation that in the heterogeneous case more models
will need to be checked with the greedy algorithm than in the homogeneous case (in
the homogeneous case 10% of the process models need to be checked). By further in-
cluding sequence with two nodes features, around 12% of process models need to be
checked with the improved greedy algorithm; the execution time is reduced by 10.7
times; while the quality is reduced by 0.04 in terms of R-Precision. Similar to the
previous evaluation, the results do not improve anymore by including more features.

Figure 13 summarizes the results of the heterogeneous evaluation, by showing
both the quality and the execution time evaluation. We can see that the algorithm in
this paper significantly reduces the execution time with a small decrease in quality.

For the heterogeneous evaluation we changed the values for the parameters
lcutoff high = 0.2, lcutoff med = 0.1, wskipe = 0.0 and wsubn = 0.1 to obtain the best
results. The values of other parameters stay the same as for the homogeneous evalu-
ation.

From both the homogeneous and heterogeneous experiments, we can see that the
quality of the homogeneous experiment is higher (0.84 v.s. 0.54). This is because
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Table 4 Results of the heterogeneous evaluation

Features (n) Rel PoR Ir R-Prec Test Tcom Tavg
total Tmin

total Tmax
total

Previous [7] 0 100 0 0.56 0.00 s 0.32 s 0.32 s 0.20 s 0.51 s

1: Node(1) 74.2 20.4 5.4 0.54 0.02 s 0.02 s 0.04 s 0.02 s 0.06 s

2: 1+Seq(2) 83 11.6 5.4 0.52 0.02 s 0.01 s 0.03 s 0.02 s 0.05 s

3: 2+Seq(3) 85 9.6 5.4 0.50 0.02 s 0.01 s 0.03 s 0.02 s 0.05 s

4: 2+Split(3) 85 9.6 5.4 0.50 0.02 s 0.01 s 0.03 s 0.02 s 0.05 s

5: 4+Split(4) 85 9.6 5.4 0.50 0.02 s 0.01 s 0.03 s 0.02 s 0.05 s

6: 2+Join(3) 85 9.6 5.4 0.50 0.02 s 0.01 s 0.03 s 0.02 s 0.05 s

7: 6+Join(4) 85 9.6 5.4 0.50 0.02 s 0.01 s 0.03 s 0.02 s 0.05 s

Fig. 13 Results of the heterogeneous evaluation

similar tasks are typically labeled with the same terms in the same collection, but
with different terms in different collections. Therefore, it is easier to establish task
similarity based on label similarity in homogeneous datasets. Moreover, we currently
use string edit distance to compute label similarity in this paper, which is a naive
label similarity metric that cannot deal well with different (synonymous) terms being
used in similar labels. The result quality of the heterogeneous experiment should
therefore be improved by considering synonyms [8, 27] and domain ontologies [11].
We can also see that the execution time of the heterogeneous experiment is much less
(0.60 s v.s. 0.32 s). This is because the size of query models. Although the average
sizes are almost the same for both sets of query models (21.6 v.s. 20.3), the maximal
size differs a lot (130 v.s. 35). Consequently, the slowest query of the homogeneous
experiment takes 1.45 s, while the slowest query of the heterogeneous experiment
only takes 0.51 s. This causes the homogeneous experiment to take more time on
average.

9 Related work

The work presented in this paper is related to: business process similarity search,
business process querying, general graph similarity (isomorphism) search, schema
matching and ontology matching. We present work on these topics as related work.

Business process similarity search techniques have been developed from differ-
ent angles [11, 17–19, 23, 26, 29]. These techniques mainly vary with respect to the
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information, incorporated in the business process models, that they use to determine
similarity [7] and the underlying formalism that they use to determine similarity [10].
The work described in this paper complements existing business process similarity
search techniques, because it focuses on estimating business process similarity, rather
than measuring it exactly, and using that estimate to improve the time performance of
existing techniques. As such it can be combined with any of the existing techniques
to improve their performance. Lu and Sadiq [18] also use features to determine sim-
ilarity, but because their goal differs from the goal of this paper (they want to mea-
sure similarity exactly), their features are larger than ours, potentially consisting of a
complete process model. This makes their features suitable for measuring similarity
exactly, but not for estimating it quickly. Kunze and Weske [15] combine metric trees
with process similarity metrics based on edit distances to reduce comparison oper-
ations. They compare process similarity based on complete process models, while
we estimate process similarity based on different types of features. Furthermore, this
method completely relays on metric trees, which requires the process similarity met-
rics satisfying the positivity, symmetry, and triangle inequality postulates. It is not
always the case when we consider synonyms [8, 27] and domain ontologies [11]. Al-
though we also choose metric trees to index labels in this paper, it is optional. For
example, we can use the inverted index to index labels for the label similarity metrics
considering synonyms.

Process model querying is another related topic. Instead of computing similarity
between models, it retrieves process models that satisfy a given query. A query can be
described by a query language for process models [1, 3, 5] or a (fragment of a) process
model [14]. Awad [1] develops BPMN-Q, a language to query business processes,
by extending the BPMN notation. Beeri et al. [3] proposes BP-QL, a language to
query business processes modeled in BPEL. Choi et al. [5] proposes IPM-EPDL, a
query language for a proprietary process modeling notation based on XML. A notable
relation to the work is this paper is the work by Jin et al. [14], who also develop
indexing techniques, using sequences in the process models, to improve the efficiency
of process model querying.

General graph search has been applied in various application domains, including
fingerprint search, DNA search and chemical compound search. In these domains,
(sub)graph isomorphism algorithms are used as a basis of graph search, by checking
whether a query graph is a subgraph of a graph in the dataset. To avoid comparing
two entire graphs, which is time consuming, graph fragments are used as features
to build index. This idea is also the basis for this paper. Willett et al. [28] describe
feature-based similarity search in a chemical compound databases. ShaSha et al. [25]
propose a path-based approach; Yan et al. [30] use discriminative frequent structures
to index graphs; Zhao et al. [34] prove that using tree structures and a small number
of discriminative graph structures to index graphs is a good choice. Yan et al. [31]
also investigate the relationship between feature-based and structure-based methods
and built a connection between the two. The main difference between the work that
has been done in this area and the work in this paper, is the different nature of busi-
ness process graphs as compared to graphs in other domains. In particular, there is
practically no restriction to the number of possible node labels in a business process
graph and matching nodes do not necessarily have the identical labels. In comparison
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DNA nodes have four possible labels, chemical compound nodes have 117 possible
labels, and in both cases matching nodes have identical labels. Also, business process
graphs have different structural properties and patterns. These characteristics require
that feature types are defined specifically for business process graphs. In addition
to that processing feature similarity is different, because business process graphs do
not require features to match exactly for graphs to be similar, while graphs in other
domains do require features to match exactly.

The problem of process model similarity search can be related to that of schema
matching [24]. There are, however, important differences between process models
and schemas. Firstly, data models and schemas generally have labeled edges (associ-
ations or schema elements) in addition to labeled nodes. Secondly, the types of nodes
and the attributes attached to nodes are different in process models when compared
to schemas or data models (e.g. there are no control nodes in data models). During
our experiments, we implemented a graph matching technique originally designed
for schema matching, namely Similarity Flooding [21]. After adapting the technique
to deal with process models, we tested it on the dataset discussed in this paper using
various parameter settings [8]. The similarity flooding technique led to a poor score—
0.56 of mean average precision for the best settings (with a first-10 precision of 0.6).
We attribute this poor performance to the fact that edges in process models do not
have labels, while schema matching techniques, such as similarity flooding, heavily
rely on edge labels. Madhusudan et al. [19] introduce a structural metric for process
model comparison based on similarity flooding. However, Madhusudan et al. rely on
a semantic notation in which process models have labels attached to their edges.

The problem of process model similarity search can also be related to that of on-
tology matching [12]. However, the nature of ontologies and business processes is
different; a process model consists of labeled tasks and control flow relations, while
an ontology provides a vocabulary, which records the relationship of its terms, e.g.,
generalization and specialization. This makes it hard to directly use techniques from
the area of ontology matching in the area of business process similarity search. How-
ever, in future work, it would be worthwhile to investigate the possible use of ontolo-
gies and ontology matching for matching tasks and task labels. Ehrig et al. [11] apply
such a technique, using WordNet synonyms [22] as an ontology. In previous work we
also applied WordNet synonyms to measure the semantic similarity of two labels [8,
27]. However, we still need to develop indexing techniques to use those similarity
metrics efficiently.

10 Conclusion

This paper presents an algorithm that improves the efficiency of business process sim-
ilarity search. The algorithm contains three improvements to an existing algorithm for
fast business process similarity search [32]. In addition to that it presents a prepro-
cessing step, in which the similarity of business process models is estimated. The
estimation is used to quickly classify business process models as relevant, irrelevant
or potentially relevant to a query. The actual similarity computation, which is compu-
tationally expensive, then has to be performed for fewer models, namely only those



142 Distrib Parallel Databases (2012) 30:105–144

models that were classified as potentially relevant. The classification is done based
on simple, but representative, parts of business process models, also called features.

The greedy algorithm for process similarity search, developed in previous work,
is improved in three ways. First, the number of node pairs that must be compared
to determine similarity is reduced by initially selecting only a subset of all possible
combinations of nodes. Second, the algorithm for similarity computation is improved
by computing the similarity incrementally, rather than anew in each iteration of the
algorithm. Third, the number of node pairs that must be compared is further reduced
by ‘predicting’ the node pairs that should increase the similarity the most in each
iteration of the algorithm.

The evaluations that are performed on the algorithm show that, as a consequence
of the improvements, the search time of the fastest algorithm for business process
similarity search that currently exists can be reduced by a factor 10 with a quality
reduction of less than 0.04 (In terms of R-Precision). These reductions are computed
as the average over ten search queries. The time reduction for the most complex query
is a factor 24.5 and the reduction for the least complex query is a factor 2.5.

The evaluations also show that individual nodes and sequences of two nodes are
effective features to quickly compare and classify business process models. Other
features that have been used are sequences of three nodes and splits and joins. How-
ever, these features do not further improve the quality of the search results or reduce
the search time.

There are some research topics that are left for future work. First, in this paper the
similarity of nodes in business process models is mainly based on string similarity.
However, nodes can be labeled differently using synonyms, in particular when the
query models and the models in the dataset are from different organizations. There-
fore, we propose that in future work more advanced metrics for label similarity that
consider synonyms [8, 27] and domain ontologies [11] are applied. Second, the algo-
rithm in this paper mainly focuses on tasks and connections between them. However,
process models often contain more information that may be exploited when deter-
mining their similarity, e.g., resources and data used. We propose that the extent to
which such information can be used to determine process similarity is investigated in
future work. Third, the architecture for fast process similarity search can be extended
to incorporate technical measures that improve the efficiency of similarity search. For
example, the architecture may allow for distributed processing of search queries.
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