
Distrib Parallel Databases (2010) 28: 93–118
DOI 10.1007/s10619-010-7066-3

Parallel processing of continuous queries
over data streams

Ali A. Safaei · Mostafa S. Haghjoo

Published online: 29 June 2010
© Springer Science+Business Media, LLC 2010

Abstract In this paper, we propose parallel processing of continuous queries over
data streams to handle the bottleneck of single processor DSMSs. Queries are
executed in parallel over the logical machines in a multiprocessing environment.
Scheduling parallel execution of operators is performed via finding the shortest path
in a weighted graph called Query Mega Graph (QMG), which is a logical view of K

machines. By lapse of time, number of tuples waiting in queues of different operators
may be very different. When a queue becomes full, re-scheduling is done by updating
weight of edges of QMG. In the new computed path, machines with more workload
will be used less. The proposed system is formally presented and its correctness is
proved. It is also modeled in PetriNets and its performance is evaluated and compared
with serial query processing as well as the Min-Latency scheduling algorithm. The
presented system is shown to outperform them w.r.t. tuple latency (response time),
memory usage, throughput and also tuple loss- critical parameters in any data stream
management systems.

Keywords Query plan · Data stream · Parallel execution · Tuple latency

1 Introduction

In many recent applications, data is not stored (as in traditional DBs) but is received
as streams which are infinite, rapid, unpredictable and time-varying sequences of

Communicated by Ahmed K. Elmagarmid.

A.A. Safaei (�) · M.S. Haghjoo
Department of Computer Engineering, Iran University of Science and Technology, Tehran, Iran
e-mail: safaeei@iust.ac.ir

M.S. Haghjoo
e-mail: haghjoom@iust.ac.ir

mailto:safaeei@iust.ac.ir
mailto:haghjoom@iust.ac.ir

94 Distrib Parallel Databases (2010) 28: 93–118

Fig. 1 A query plan generated
for a query on data stream

data elements. Traditional DBMSs are not able to process data streams with such
characteristics. To handle this problem, data stream management systems (DSMSs)
are introduced [1–3].

On the other hand, despite traditional DBMSs, queries are continuously executed
over the non-stopping data streams which are rapid and bursty [4, 5].

The above conditions give rise to the fact that a single processor is not capable
to process this volume of data and execute continuous queries over them with satis-
factory speed. In other words, a single processor used for serial execution of queries
in DSMSs causes reduction of output performance and is compelled to discard data
stream elements [6].

In this paper, parallel execution of queries based on a multiprocessor platform is
presented to eliminate system bottleneck (i.e., single processor). Parallelism in query
processing offers better performance, availability and extensibility [7].

Parallelism in query processing consists of the following phases:

I. Converting query into query plan
In a DSMS, a continuous query plan is decomposed into a set of operators such
as project, select, join, etc. as in a traditional DBMS. The output of one operator
is buffered in a queue, which consequently acts as the input to another operator
(if not the final one) (Fig. 1) [1, 2]. The query plan can be conceptualized as a
directed acyclic graph (DAG) in which a node represents a pipelined operator and
a directed edge between two nodes represents the queue connecting those two
operators. The edge also represents precedence relationship between nodes.
Regarding mass volumes of data stream in most applications, a negligible im-
provement in query plan or its parallel execution causes considerable performance
improvement.
Each tuple of data stream traverses a sequence of operators in the query plan,
called “operator path” [8].
Generating and optimizing query plan is discussed in [9–11].

II. Parallel execution of sub-queries

Generally, parallelism could be achieved via two approaches [12]:

• Parallel data (data partitioning): data set is partitioned into some fragments and
each one is assigned to a machine. So, all machines do identical processes on
distinct (partitioned) data.

Distrib Parallel Databases (2010) 28: 93–118 95

• Parallel control: the whole set of data is delivered to each machine which performs
parts of the total task on the whole set of data. In other words, data set is shared
among machines but each one performs a distinguished task on it.

Since the whole set of data stream is not available in most applications, in this
paper we present parallel query processing of data streams using parallel control ap-
proach.

Our main contributions are:

• Parallel processing of continuous queries in DSMSs based on a multiprocessing
platform, together with its system architecture (Sect. 2).

• Operator scheduling algorithm for parallel execution of query plan (Sect. 3).
• Parallel query processing algorithm in the proposed data stream management sys-

tem (Sect. 4).
• Complexity analysis of the presented parallel query processing algorithm (Sect. 5).
• Resource allocation of multiple query processing (Sect. 6).
• Presented system is modeled by the Petri Networks and its performance is evalu-

ated (Sect. 7).

Finally, we consider related work in Sect. 8 and conclude in Sect. 9.

2 Parallel query processing

Queries in data stream management systems are usually continuous. For a registered
query, DSMS generates its query plan. With respect to continuous nature of query and
data stream [13, 14], each operator must process data stream tuples continually while
there are several operators in a query plan. So, a single processor is not able to execute
operators on data stream tuples simultaneously and should serialize them. This is a
serious bottleneck in fast query processing. In order to handle this bottleneck, in this
paper, parallel query processing of data streams is presented. The proposed system
architecture is illustrated in Fig. 2.

In the parallel query processing engine, there are k identical processors (or logical
machines) collaborating each other. Machines might be physical (e.g. processors in
a multi-processor system or nodes of a cluster) or logical (e.g. threads running on a
multi-core CPU). Details of the desired platform are out of the scope of this paper.
We assume that in a multiprocessing environment, we have k identical processes
(called “logical machines” or “machines” hereafter) which can work in parallel with
collaboration. These machines prepare desired platform to process continuous queries
in parallel.

In order to process queries in parallel on these k machines, query plan is generated
and identical copies of it are sent to each one of them. This informs all of the machines
about the operators and their preferences. Two jobs are remained: assigning operators
to each machine and how the machines collaborate with each other. These two jobs
are handled by scheduling algorithm in Sect. 3.

Example 1 Consider query Q1 and 3 logical machines below. As shown in Fig. 3,
a copy of query plan (Fig. 3.a) is assigned to each logical machines (Fig. 3.b):

Q1: SELECT x FROM s WHERE p

96 Distrib Parallel Databases (2010) 28: 93–118

Fig. 2 The proposed system architecture for parallel query processing over data stream

Fig. 3 (a) Query plan for query Q1 and (b) assigning 3 copies to each logical machine

Fig. 4 Collaboration of logical
machines for processing
operators of query plan

For logical machines to collaborate with each other, if in the query plan an operator
a sends its output tuples to operator b, then in each particular machine Pi , operator a

is capable of sending its output tuples to b of all machines (Fig. 4).

Distrib Parallel Databases (2010) 28: 93–118 97

Fig. 5 Query Mega Graph
created from a query plan
including operators A–Z over K

logical machines

Accordingly, query plan generator unit generates Query Mega Graph and gives it
to the scheduler unit for parallel query scheduling over k existing logical machines
as elaborated below.

2.1 Query Mega Graph (QMG)

2.1.1 Generating Query Mega Graph

A DAG is created by generating k identical copies of a query plan and duplicating
edges between all machines. Two special nodes are assumed: a source and a sink
node before and after nodes of the main query plan respectively. An edge originating
from the source node links it to each node in first nodes of the main query plan. Also,
an edge links last nodes of the main query plan to the sink node. The created graph is
called Query Mega Graph (QMG). Figure 5 illustrates a QMG created from a query
plan including operators A–Z over k logical machines.

In a Query Mega Graph, an edge also represents the queue between its two op-
erators. The weight of the edge is number of data elements in the queue. Hence,
Query Mega Graph is a weighted DAG which also shows work load distribution in
the system and is used for scheduling operator execution to achieve parallel query
processing as elaborated in Sect. 3.

2.1.2 Formal definition

Definition 1 A query plan is a DAG GQP = 〈V,E〉 in which:

V = {o | o ∈ stream query processing operators}
E = {〈A,B〉 | A,B ∈ V }

Lemma 1 Query plan is a multi-stage graph.

Proof Each operator in a query plan processes tuples received from its immediate
pre-operator and delivers results to its immediate post-operator. Operators of query
plan can be partitioned into distinct stages in which each edge of query plan graph
only connects a node from stage i to a node in stage i + 1 due to standard relational
operators execution. �

98 Distrib Parallel Databases (2010) 28: 93–118

Notation Oi
j denotes operator O which is the i th operator of main query plan in

machine j . Accordingly, Oi− denotes the i th operator of main query plan, O−
j means

operator O in machine j and O
|V |
− denotes the last operator of main query plan.

Definition 2 Query Mega Graph created from GQP = 〈V,E〉 is a triple QMG =
〈V ′,E′,W ′〉 such that:

V ′ = {src, sink} ∪
⋃

1≤i≤|V |
1≤j≤K

Oi
j

E′ = E ∪ 〈x, y〉|∀A,B ∈ V (〈A,B〉 ∈ E)

⇒ (∀i = 1,2, . . . , k,∀j = 1,2, . . . , k, i
= j (〈A−
i ,B−

j 〉 ∈ E′

∧ (x = A−
i ∧ y = B−

j))) ∨ (∀i = 1,2, . . . , k
((

x = src ∧ y = O1
i

)

∨ (
x = O

|V |
i ∧ y = sink

)))}

W ′ : E′ → Z
+ such that ∀a, b ∈ V ′(W ′(a, b) = q_count(a, b))

q_count(a, b) returns number of tuples waiting in queue of edge (a, b).

Note Number of nodes and edges in QMG can be computed as:

|V ′| = (|V |.K) + 2 (1)

|E′| = (|E|.K) + (K − 1).

|V |∑

i=1

fan_outi + 2K

fan_outi is the number of edges outgoing from node i.

Theorem 1 Query Mega Graph is semantically equivalent to the main query plan.

Proof We must show that each operator path existing in QMG is equivalent to op-
erator path of the main query plan and vice-versa. We show that each edge in QMG
is equivalent to an edge in the main query plan or it doesn’t make any disorder in
processing the query.

With regard to formal definition of QMG, for edges not connected to the source or
sink we have:

∀x, y((〈x, y〉 ∈ E′) ∧ (x
= src ∧ y
= sink))

⇒ ∃i, j, k, l,A,B
((

x = Ai
j ∧ y = Bl

k

) ∧ 〈Ai−,Bl−〉 ∈ E′)

Also, edges in QMG that are connected to the source or sink, shift tuples to proper
nodes only (i.e., received tuples to the first operator the main query plan and deliver

Distrib Parallel Databases (2010) 28: 93–118 99

result tuples from the last operator of main query plan to user) without any extra
processing:

∀x, y((〈x, y〉 ∈ E′) ∧ (x = src ∨ y = sink))

⇒
 ∃X(∀O ∈ V ((〈src,X〉 ∈ E′ ∧ 〈X,O1−〉 ∈ E′)

∨ (〈O |V |
− ,X〉 ∈ E′ ∧ 〈X, sink〉 ∈ E′))) �

To process a tuple as fast as possible by the query plan, we should employ operator
path in Query Mega Graph with the minimum tuple latency (or the shortest path in
QMG).

Lemma 2 The difference between tuple latency of each two various operator paths
in QMG, is dependent only on the total delay of edges establishing each operator
path (independent of nodes of operator path).

Proof Amount of latency a tuple is confronted while traversing an operator path gen-
erally can be considered as processing delays (by operators i.e., nodes of graph) in
addition to queuing delays (by queues i.e., edges of graph) [32]:

∀t ∈ data_stream_tuples

tuple_latency(t) =
∑

1≤i≤|V |
cost

(
Oi−

) +
∑

1≤i≤|V |

(
Buffer_size

(
Oi−

))

With respect to Theorem 1, for each tuple, every operator path existing in Query
Mega Graph is equal to operator path which it should traverse in the main query
plan. So, paths a tuple can use are the same in terms of operators, preference of
operators and total operators delay. Therefore, sum of operator delays is equal in
various operator paths. Hence, tuple latency in each path of QMG is dependent only
on delay of edges establishing that path. �

Theorem 2 The shortest path in Query Mega Graph has minimum tuple latency.

Proof According to Definition 2 and Lemma 2, amount of latency a tuple confronts
in traversing a path is equal to total delay it suffers in queues between operators of
that path, which is equal to the total number of data elements in queues (i.e., sum of
weight of edges establishing the path). By definition, the shortest path in Query Mega
Graph has minimum total weight of edges (or minimum number of data elements
waiting in queues). So, data stream tuples traversing this path suffers minimum tuple
latency. �

3 Scheduling algorithm

Generating Query Mega Graph from main query plan enables parallel query process-
ing. In order to employ this feasibility, an appropriate scheduling for parallel execu-
tion should be established. Since, among feasible operator paths in QMG, minimum

100 Distrib Parallel Databases (2010) 28: 93–118

Fig. 6 A sample outcome of
Dijkstra’s shortest path
algorithm over QNG of Fig. 5

tuple latency will be achieved from the shortest path (Theorem 2), this scheduling
algorithm determines the shortest path in QMG. In fact, QMG is a logical view of
k logical machines, each of which has the capability of executing the query plan.
But to use them for executing query operators in parallel, we schedule operators and
dispatch parallel query plan execution to the machines.

Operator scheduling algorithm in the presented system mainly consists of finding
the shortest path in Query Mega Graph from source to sink. For instance, Dijkstra’s
shortest path algorithm is applicable here.

The Dijkstra’s shortest path algorithm finds a path as a sequence of query plan
operators with nodes distributed over k existing logical machines. Figure 6 shows
a sample outcome of Dijkstra’s shortest path algorithm over Query Mega Graph of
Fig. 5.

According to the proposed architecture (Fig. 2), the scheduler finds shortest path
in Query Mega Graph received from query plan generator unit and sends a triple
〈p,o, s〉 (predecessor machine, operator_id, successor machine) to each machine.
For example in Fig. 6, after determination of the shortest path, triple 〈2,B,5〉 is sent
to machine 1.

Each machine receives data tuples from its predecessor, executes desired operators
on them, and sends the result tuples in to its successor machine.

Theorem 3 Outcome of finding shortest path in Query Mega Graph is tantamount to
parallel scheduling of query plan operators.

Proof Assigning copies of query plan to logical machines just helps them to be aware
of operators and their precedence. Outcome of finding shortest path in Query Mega
Graph is an operator path that is equivalent to the main query plan (Theorem 1)
and is used to execute query plan in parallel. So, this path is the main query plan in
runtime which is distributed over existing logical machines. In other words, query
plan is no longer executed on a single machine, but is executed in parallel over k

existing logical machines. Moreover, operators are assigned to machines such that
query processing has minimum tuple latency, because of using the shortest path in
Query Mega Graph. �

Accordingly, we use terms Dijkstra’s shortest path algorithm and our proposed
parallel operator scheduling algorithm interchangeably hereafter.

Distrib Parallel Databases (2010) 28: 93–118 101

3.1 Initial scheduling

Initially, all of the edges in QMG have zero weights (which means queues are empty).
Hence, the path found by routing algorithm (i.e., Dijkstra’s shortest path algorithm)
might be placed entirely on one machine. In order to balance workload over all of
the machines at the beginning, initializing weight of edges in QMG could be done
such that routing algorithm results in a path distributed over all existing machines.
To avoid the overload of assigning weights to edges of QMG, operators are initially
assigned manually (i.e., without using routing algorithm) to machines using the fol-
lowing equation:

j = i mod k (2)

(j : machine’s Id, i: operator’s Id, k: number of existing logical machines).

3.2 Re-scheduling

We need to re-schedule because different operators in query plan (e.g. selection, pro-
jection and join) need different execution time i.e., some operators (e.g. projection)
are faster than some others (e.g. join that is a blocking operator in general). By ar-
riving more and more tuples, system will be led to a status that some queues are full
while some others are nearly empty. For example, input queue of a join operator may
have 8 tuples whilst a projection operator has 2 tuples in its input queue. Hence, by
lapse of time, weight of different edges in QMG may be very different.

In common DSMSs, when input queue of an operator becomes full, subsequent
tuples are dropped. In our presented system, re-scheduling (re-routing in QMG) is
done to handle overload situations and to improve system performance. For example,
suppose that input queue of an operator o in machine A is full. In this situation,
re-scheduling is done and new shortest path is generated in which operator o is not
located in machine A anymore. At this leisure, machine A can process remaining
tuples in its input queue.

This is a dynamic load balancing (instead of load shedding) in which system tries
to process intermediate tuples (which some amount of system time has spent for
processing them) instead of discarding them.

Updating weight of edges in QMG before re-routing should be done with load
balancing considerations. For example if operator a in machine A has m tuples and
operator b in machine B has n tuples, such that n � m, then after rescheduling,
operators a and b are swapped between machines. It means that for new arriving
tuples, a must be executed on B and b on A while concurrently, execution of a in
A and b in B would be continued for old tuples remaining in their input queues. So,
after re-routing in QMG, new arriving data stream tuples will traverse newly found
shortest path whilst the remaining tuples in input queues of old path will traverse
the same old path concurrently. In this way, machines that were executing heavy
operators are assigned light operators and complete processing on tuples remaining
in their input queues.

Having different paths, may cause tuples to lose their incoming orders i.e., a new
incoming data stream tuple may traverse a path with nearly empty queues and reach

102 Distrib Parallel Databases (2010) 28: 93–118

to the sink node whilst some tuples with lower input timestamp are still waiting in
queues of the old shortest path. This is not acceptable and needs to preserve input
ordering of data stream tuples (Sect. 3.4).

It may look better to redirect tuples remaining in input queues of the old path
into beginning of queues of the new shortest path, after re-scheduling, because if
so, incoming order of data stream tuples would be preserved and also there is just
one operator for each machine to execute. This is not reasonable as proved in the
following theorem.

Theorem 4 Moving tuples from input queues of the old path to front of corresponding
queues in the new path is the same as using the old path.

Proof By moving tuples from input queues of the old path to front of corresponding
queues in the new path, all of the tuples in a queue in the old path are moved to front
of queue of corresponding operator in the new path. So, each new tuple arriving to
this queue should wait until all old tuples are processed. Therefore, tuple latency for
new arriving tuples is equal to tuple latency in the old path. This is the same as using
the old path, i.e. re-scheduling has no effect. �

According to Theorem 4, after re-scheduling (re-routing in QMG) new arriving
data stream tuples will traverse newly found shortest path whilst tuples waiting in
queues of operators in the old path continue traversing old path, concurrently.

3.3 Weight updating in QMG

When re-scheduling becomes necessary, weight of edges in QMG should be updated
before, to decrease workload of more busy machines to let them complete their re-
maining work. Accordingly, the total number of tuples waiting in input queues of all
operators in each machine A is accumulated with the weight of ALL edges in QMG
with destination node in A, i.e.:

is used as weight of edges in re-routing QMG (re-scheduling)

3.4 Preserving order of tuples

In most data stream applications, it is desirable to preserve incoming ordering of data
stream tuples when delivered as system output. As input data stream tuples order may
be changed during query processing of the presented parallel system, we must assure
that output tuples preserve incoming order of data stream tuples. The problem is
solved by buffering and sorting output tuples before delivering. Using sliding window
mechanism, N output tuples are buffered and stored in ascending order of their input
timestamp.

An example of output queue is illustrated in Fig. 7.
Output queue is part of system’s limited memory space. So, its size and efficient

management is very important.
Also, complexity and overhead of sorting output queue is a challenging issue in

system performance.

Distrib Parallel Databases (2010) 28: 93–118 103

Fig. 7 An example of output
queue

Theorem 5 To preserve incoming order of data stream tuples, output queue should
have a minimum size of (L − 1) × B .

L: number of levels in main query plan
B: size of buffers (queues) between each two operators

Proof Incoming order of tuples may be modified in situations after re-routing when
a queue in the path is full. A new path is selected for new arriving tuples while old
tuples (waiting in queues) traverse the same old path. A query plan including L levels
has L − 1 edges in its corresponding operator path. Each edge has a queue of size B

(below):

�

In some applications preserving order of input streams is not important. In such cases,
we can relax the value (L− 1)×B via modeling and simulation (Sect. 7). Moreover,
the overhead of sorting output buffer can be relaxed via Insertion algorithm. For each
tuple, it just finds the proper location in output buffer and inserts the tuple. Also,
circular queue is a good mechanism for output buffer management here.

4 Parallel query processing algorithm

According to the proposed system architecture and the above discussions, parallel
query processing algorithm is stated below.

For example, assume that query Q1 is submitted to be processed in parallel over 4
logical machines.

Q1: SELECT x FROM s WHERE p

According the parallel query processing algorithm, figures show what is happening
step by step:

(1) Generate query plan for registered query.

104 Distrib Parallel Databases (2010) 28: 93–118

1. Generate query plan for registered query
2. Generate k identical copies of query plan and send each one to one of the machines
3. Generate Query Mega Graph
4. Initial scheduling: assign each operator of the main query plan to the corresponding machine

according to (1) (send proper triple (p,o, s) to each machine)
5. Repeat until there is no more input tuple or query expired:

5.1. Process tuples (by each operator (machine))
5.2. Buffer and sort output tuple and deliver them to user or application
5.3. If a queue is full, then:

5.3.1. Update weight of edges in QMG
5.3.2. Re-scheduling (re-routing in QMG): find the shortest path in QMG and send proper

triple (p,o, s) to each machine in the new path
5.3.3. New arriving data stream tuples traverse new computed path while the old ones (tuples

waiting in queues of the old path) traverse the same old path

(2) Generate k identical c Generate k identical copies of query plan and send each
one to one of the machines.

(3) Generate Query Mega Graph.

Distrib Parallel Databases (2010) 28: 93–118 105

(4) Initial scheduling: assign each operator of the main query plan to the corre-
sponding machine according to (1) (send proper triple (p,o, s) to each machine).

(5) Repeat in parallel:
5.1 Process tuples (by each operator)
5.2 Buffer and sort output tuple and deliver them to user or application (by the

sink)

5.3. If a queue is full, then:
5.3.1. Update weight of edges in QMG

{since selectivity and execution time of σ are so much more w.r.t. �,
by lapse of time, system will led to a situation in which input queue of
σ is full whilst others are partially empty}
Suppose:

w(src−
1 , σ−

2) = 10

w(σ−
2 ,�−

3) = 2

w(�−
3 , sink−

4) = 6

106 Distrib Parallel Databases (2010) 28: 93–118

and

B = 10

{Overload situation is happened and re-scheduling is performed}
5.3.2. Re-scheduling (re-routing in QMG): find the shortest path in QMG

and send proper triple (p,o, s) to each machine in the new path
scheduling: assign each operator of the main query plan to the cor-
responding machine according to (1) (send proper triple (p,o, s) to
each machine).

{new and old paths are running concurrently until old path becomes
full. Then, only new path will work until next overload situation}
UNTIL there is no more input tuple or query expired

According to the proposed parallel query processing algorithm, Fig. 8 shows
pseudo codes for different parts of this algorithm.

5 Time complexity analysis

Time complexity of parallel query processing algorithm is analyzed from the follow-
ing three perspectives:

(a) Machines executing query plan operators

Time complexity of these algorithms (i.e., stream operators such as selection, projec-
tion, join over tuples in a queue of size n) is assumed O(n2).

(b) The sink node

The machine that executes sink node of the QMG sorts output buffer’s tuples. So, its
time complexity is O(n. logn) in which n is output buffer size.

Distrib Parallel Databases (2010) 28: 93–118 107

Fig. 8 Pseudo codes for different parts of the parallel query processing algorithm

108 Distrib Parallel Databases (2010) 28: 93–118

(c) The scheduler unit

Time complexity of algorithms that the scheduler unit executes is equal to sum of
time complexity of steps which scheduler performs, i.e.:

• Generating query plan, sending its copies to logical machines, and also generating
QMG which are done statically only once at the beginning (negligible).

• Initial scheduling which consists of determining machines for each query plan op-
erator with O(|V |) (according to (1), and sending proper triple (p, o, s) to each
machine with O(K).

• Steps that scheduler executes dynamically (2) as below:

O(|E′|) + O(|V ′|. log |V ′|) + O(K) (3)

They are updating QMG’s edges, finding the shortest path in QMG, and sending
proper triple (p,o, s) of the new path to machines respectively.

Accordingly, the most costly steps of the proposed parallel query processing algo-
rithm refer to the re-scheduling (3). With respect to (1) and (3), since K is a constant
and small value (Sect. 7), growing of main query plan dimensions (i.e., |V | and |E|),
leads to increasing re-scheduling time quasi linearly.

6 Resource allocation in multiple query processing

To process multiple queries in the presented system, computational resources can be
allocated to queries in one of the following approaches (M is the maximum number
of queries that can be executed simultaneously over K logical machines while K is a
constant value):

(a) Dynamic allocation

All of the resources are allocated to the first registered query at the beginning. When
a new query arrives, 1/M of resources is revoked and allocated to it.

(b) Static allocation

A quota equal to 1/M of K is allocated to each query.

(c) Hybrid allocation

Minimum amount of resources allocated to each query is K/M . Also, free re-
sources are assigned to existing queries (although they will be revoked when a new
query arrives).

The first approach is complex to implement. The second is simple and also ob-
serves fairness, but has low resource utilization. The third one has the best perfor-
mance but the most complexity.

In the presented system, static allocation approach is employed.

7 Performance evaluation

We have modeled the proposed parallel query processing system and evaluated it via
simulation. Our experimental setup is briefly described below.

Distrib Parallel Databases (2010) 28: 93–118 109

Fig. 9 PetriNets model of the presented system

The presented system is modeled in PetriNets for performance evaluation. Petri
nets and their extensions are appropriate formalisms for modeling and analyzing con-
current systems. Stochastic activity networks (SANs) are powerful and flexible exten-
sions of Petri nets. These models combine the representation of concurrency, timeli-
ness, fault-tolerance and degradable performance in a single model [16]. Colored sto-
chastic activity networks (CSANs) are a high-level extension of SANs which provide
features for hierarchical modeling and data manipulation by introducing macro ac-
tivity and colored place [16]. For modeling purpose, we have used PDETool [15, 17]
which is an extensible multi-formalism modeling and simulation framework that cur-
rently supports CSAN in addition to some other stochastic extensions of Petri nets.
Figure 9 shows our systems’ PetriNets model. At the beginning, there exists a token
in place start which causes firing activity B to initialize the model. Then, activity
Arrive fires periodically that models the packet arrival into the system. Each col-
ored place OpiMj is a FIFO queue that contains tuples in the queue of operationi

in machinej . To perform the appropriate operation on a tuple in machinej (Op1Mj ,
Op2Mj or Op3Mj), the activity selj is fired to carry the tuple into the colored place
tBuff j (temporal buffer).

The color for each token tuple is defined in a way that such a token can store all
the required properties of a tuple including its initial time, data, etc.

To perform an operation in machinej , an activity Doj fires to model the operation
on the selected tuple in place tBuff j . This is done based on the selectivity of the tuple
with cost time t . The result tuple(s) is enqueued in the proper queue (determined by
execution of the algorithm in the output gate ogj) or leaves the system by adding into
the place Finish.

The activity report which is uniformly fired every second, logs the current snap-
shot of the system to help in model evaluation stage. In addition, some steady-state
rewards (such as performance measures) are defined and calculated by the tool.

7.1 Experimental setup

The model is implemented in PDETool [17] and all the experiments were run on a
dedicated dual processor Alpha machine with 2GB of RAM. Algorithm presented in
this paper (that improve query processing speed via parallelism) is compared with
ordinary serial query processing (Serial—means without parallelism) [8] and also
with the Min-Latency scheduling algorithm used in the Aurora DSMS prototype [18].

110 Distrib Parallel Databases (2010) 28: 93–118

Fig. 10 Comparison of system performance while increasing number of logical machines

Test queries consist of selection, projection and join (stream-to-relation and
stream-to-stream) operators. Each operator is modeled with two characteristics, ex-
ecution time (values between 2 and 5 milliseconds) and selectivity (values between
0.8 and 1.2). A query is considered as a sequence of 3 operators, join, selection and
projection. The query set consists of 12 queries of different types ranging from the
simplest queries (single operator) to the complicated ones (with 3 different opera-
tors). We used a synthetic data generator to generate input data stream. The input
data arrival times are generated as synthetic bursty traffic by flows that begin accord-
ing to a Poisson process (with mean inter arrival time equal to 1 time unit) and then
send packets continuously for some duration chosen from a heavy-tailed distribution.
The Pareto distribution is used for packet durations, which has a probability mass
function given by P(x) = αkαx−α−1, for k > 0, x ≥ k. We used k = 1 and α = 2.3
in our experiments as in [8]. Also, the attribute values are generated uniformly from
a numeric domain.

Note that in our performance evaluation, when we use k logical machines each
with speed of s in our parallel query processing engine, single machine used in serial
query processing methods has speed of k.s instead of s.

Based on [33], measured parameters are:

• tuple latency (or response time): difference between departure and arrival time for
each tuple

• memory usage: number of tuples which are stored in all of the queues in the query
plan at run time

• system throughput: number of output tuples
• tuple loss: number of tuples which are discarded from queues of query plan

7.2 Experimental results

Before analyzing performance of the presented system and comparing it with the
other methods, we analyze our system performance for different values of k (i.e.,
number of logical machines). Figure 10 shows system’s memory usage and tuple
latency for 1 ≤ k ≤ 5.

As shown in Fig. 10, the difference between single machine and two logical ma-
chines (parallel query processing) is very considerable. In general, a direct relation-
ship holds between number of logical machines and system performance. Although

Distrib Parallel Databases (2010) 28: 93–118 111

Fig. 11 Tuple latency and tuple loss for different sizes of operator’s queue

employing four logical machines (k = 4) would have better performance, but K = 2
is selected to present performance improvement whilst employing minimum compu-
tational resources.

Note In context of parallelism, increasing number of employed computational re-
sources does not necessarily result in considerable performance improvement. This
is known as speedup and Amdahl’s law [38–41]. Amdahl’s law, also known as Am-
dahl’s argument, is used in parallel computing to predict the theoretical maximum
speed up using multiple processors [wikipedia].

The speedup of a program using multiple processors in parallel computing is lim-
ited by the time needed for the sequential fraction of the program. For example, if
a program needs 20 hours using a single processor core, and a particular portion of
1 hour cannot be parallelized, while the remaining promising portion (95%) can be
parallelized, then regardless of how many processors we devote, the minimum exe-
cution time cannot be less than that critical 1 hour. So, in this situation the speed up
is limited up to 20× [wikipedia].

Furthermore, size of operator’s queue, B , has a significant impact on system perfor-
mance; the more the queue size, the more the tuple latency and the less the tuple loss.
Figure 11 shows these parameters for different values of B .

Although, it is better for the presented system—which aims to minimize tuple
latency—to use smaller queue size, but making a tradeoff, B = 20 is selected as
operator’s queue size.

Hereafter, parallel query processing using two logical machines and queue size
of 20 tuples (called PQP-2) is compared with ordinary query processing using the
Round Robin scheduling algorithm (called SR) [8], and serial query processing using
the Min-Latency scheduling algorithm (called ML) [18].

Figure 12 illustrates memory usage, tuple latency, throughput and tuple loss para-
meters versus duration (simulation time or data stream tuples arrival).

Figure 12 shows that, although the presented system is proposed to minimize tuple
latency, but it also makes a considerable improvement in terms of memory usage,
throughput and tuple loss. Also, average values of these parameters, computed from
five-times simulation is shown in Fig. 13.

Results shown in Fig. 13 state the fact that the presented parallel system has a
significant improvement over ordinary query processing as well as the Min-Latency

112 Distrib Parallel Databases (2010) 28: 93–118

Fig. 12 Comparison of measured parameters vs. simulation time

scheduling algorithm in terms of tuple latency and memory usage. Although, through-
put and tuple loss parameters of the ML method are much better than SR method, but
the presented method has the best performance. Standard deviation of measured pa-
rameters is computed and illustrated in Fig. 14.

Less value of deviation means to have a more stable and uniform operation. As
shown in Fig. 14, standard deviation of measured parameters in the presented method
is less than compared methods except in term of throughput.

In order to evaluate system performance against increasing number of queries,
memory usage, tuple latency, throughput and also tuple loss of the presented system
are compared in Fig. 15.

Distrib Parallel Databases (2010) 28: 93–118 113

Fig. 12 (Continued)

Figure 15 shows that in the presented system, memory usage, tuple latency and
throughput grow linearly against increasing number of queries, but tuple loss grows
nearly exponentially.

According to the experimental results, especially Figs. 12, 13 and 14, it can be
concluded that PQP-2 outperforms ordinary serial data stream query processing and
also scheduling algorithm employed in the Aurora DSMS prototype claiming to min-
imize tuple latency.

8 Related work

In primitive DSMSs such as the STREAM, aiming at compatibility with the relational
data model, query processing was experiencing a slow procedure (due to converting
stream to relation, executing relational operators and converting to stream) [2].

114 Distrib Parallel Databases (2010) 28: 93–118

Fig. 13 Average value of measured parameters computed from 5-times simulation

Fig. 14 Standard deviation of measured parameters

Fast query processing in data stream management systems, as a challenging issue,
has been considered by researchers in form of scheduling algorithm [8, 18, 31]. Al-
though different scheduling strategies are proposed in context of data stream systems
but most of them are not profitable. Some of them such as FIFO and Round Robin are
very simple and show no adaptivity to the bursty nature of data stream [8]. Many of

Distrib Parallel Databases (2010) 28: 93–118 115

Fig. 15 Measured parameters versus number of queries in the presented system

scheduling algorithms strive to optimize one of the several critical parameters in data
stream management systems i.e., tuple latency, memory usage, throughput and tuple
loss. Among manifold scheduling algorithms proposed in data stream query process-
ing context, many have concentrated on efficient memory usage [19–21]. The Chain
scheduling algorithm which is employed in the STREAM DSMS, aims to minimize
memory requirements but it results in high output latency [20]. Extensions of the
Chain (e.g., Chain-Flush) are designed to simultaneously achieve low memory usage
and low latency [8]. Some others consider a complex hybrid function of metrics such
as memory usage and response time [22]. Aurora prototype provides QoS consider-
ation by employing different scheduling algorithms as inbox traversing method [3]
It uses a two-level scheduling approach; first, determining which query to process
and then, how to process it. For the latter one, three algorithms for traversing the
operator path are introduced in [18] which differ in the performance parameter they
strive to optimize: throughput, tuple latency, and memory usage. Min-Latency [18] is
such an algorithm that is used to minimize tuple latency and we compared it with our
proposed algorithm.

Dynamic load distribution over multiple machines is provided in the Borealis
[23, 24]. Although this is done in two static and dynamic phases, but reducing end-
to-end delay is issued just in static phase in which requires a coordinator to gather
load information in a learning time period. In dynamic phase, it just tries to achieve a
good balance between the load migration overhead and the quality of the new opera-
tor mapping plan.

Many data stream query processing researches concern adaptive query processing
[25]. This may help to handle the overload situations but the single processor bottle-

116 Distrib Parallel Databases (2010) 28: 93–118

neck would be left. One of the well-known solutions to handle this bottleneck is par-
allelism. Parallelism is considered in a vast spectrum of platforms in traditional DB
systems [26, 27] but is missed awhile in data stream management systems [28–30].
The system presented in this paper aims to solve the mentioned bottleneck via parallel
query processing in a multiprocessing environment.

In [34], in order to improve adaptivity and scalability, an operator named flux is
proposed for partitioning of context-sensitive operators (e.g., join and groupby). The
flux operator performs horizontal (intra-operator) adaptivity by online re-partitioning
and distributing the load and operators’ state across a cluster. The Eddy architec-
ture enables fine-grained (inter-operator) adaptivity via eliminating query plan. The
Eddy operator re-routes each tuple through operators dynamically. High amount of
overhead of the eddy architecture is its most important drawback [34]. In distributed
version of Eddy [35], it is not a bottleneck anymore but the storage overheads (e.g.,
storing done bitmap along with each tuple) as well as processing costs (e.g., updating
bitmaps and gathering statistical information such as selectivity and execution cost
for each operator) are leftover which are considerable w.r.t. distribution of the system.

In [36], using a classifier, a distinct path is computed and employed for each subset
of data with distinguishing characteristics. This strategy is a solution between the two
major query optimization approaches: employing a single monolithic execution plan
and planless execution such as the eddy architecture. Nehme et al. [37] improve its
adaptivity via the concept-drift mechanisms in machine learning.

9 Conclusion

Since in DSMSs, queries are continuously executed over the non-stopping data
streams which are rapid and bursty, a single processor is not capable to process this
volume of data and execute continuous queries over them with satisfactory speed. In
other words, a single processor used for serial execution of queries in DSMSs causes
reduction of output performance and is compelled to discard data stream elements.
Parallel query processing presented in this paper is a solution for problems arising
from this bottleneck in such systems. Scheduling of parallel execution of operators in
our presented system is performed via finding the shortest path in a weighted graph
called Query Mega Graph which is a logical view of K logical machines. By lapse
of time, number of tuples waiting in queues of different operators may be very differ-
ent. When a queue becomes full, re-scheduling is done by updating weight of edges
of QMG. In the new computed path, machines with more workload are used less.
Preserving input ordering of data stream tuples is a challenging issue discussed.

Parallel query processing algorithm, its complexity analysis and resource alloca-
tion in case of multiple query processing is presented. The presented system is for-
mally stated and its correctness is proved. Also system performance is evaluated and
compared with Serial query processing and the Min-Latency scheduling algorithms.
Even though it can be concluded that more logical machines causes better perfor-
mance, but minimum resources are employed in our evaluation (K = 2). The system
improves tuple latency, memory usage, throughput and tuple loss parameters.

Some of the future works are listed below:

Distrib Parallel Databases (2010) 28: 93–118 117

• More efficient algorithms for scheduling operators and preserving tuples ordering
• Optimization of resource allocation in case of multiple query processing
• Employing the presented parallel query processing engine in real-time DSMSs
• Distributing the presented parallel system
• Reliability analysis of the presented system

References

1. Babcock, B., et al.: Models and issues in data stream systems. In: Proceeding of PODS, Invited paper
(2002)

2. The STREAM Group.: STREAM: The Stanford stream data manager. IEEE Data Engineering Bul-
letin, March (2003)

3. Abadi, D., et al.: Aurora: A new model and architecture for data stream management. VLDB J. 2(12),
120–139 (2003)

4. Babcock, B.: Models and issues in data stream systems. In: Proceeding of PODS (2002)
5. Golab, L., Ozsu, M.T.: Issues in data stream management. SIGMOD Records (2003)
6. Tatbul, N., et al.: Load shedding in a data stream manager. In: Proceedings of VLDB’03, Germany,

pp. 309–320 (2003)
7. Chekuri, C., et al.: Scheduling problems in parallel query optimization. In: Proceeding of PODS

(1995)
8. Babcock, B., et al.: Operator scheduling in data stream systems. VLDB J. 13(4), 333–353 (2004)
9. Hong, W.: Parallel query processing using shared memory multiprocessors and disk arrays. Ph.D.

thesis (1992)
10. Hasan, W., et al.: Open issues in parallel query optimization. ACM SIGMOD Rec. 25(3), 28–33

(1996)
11. Graefe, G., et al.: Extensible Query Optimization and Parallel Execution in Volcano. Query Processing

for Advanced Database Systems. Morgan Kaufmann, San Mateo (1994)
12. DeWitt, D.J., Gray, J.: Parallel database systems: The future of high performance database processing.

Commun. ACM 36(6), 377–387 (1992)
13. Babu, S., Widom, J.: Continuous queries over data streams. In: SIGMOD Record (2001)
14. DeWitt, C., Naughton: Design and evaluation of alternative selection placement strategies in optimiz-

ing continuous queries. In: Proceeding of ICDE (2002)
15. Movaghar, A.: Performability modeling with stochastic activity networks, Ph.D. dissertation, Univer-

sity of Michigan (1985)
16. Abdollahi Azgomi, M., Movaghar, A.: Coloured stochastic activity networks: Definitions and behav-

ior. In: Proceeding of UKPEW’04, UK, pp. 297–308 (2004)
17. Khalili, A., et al.: PDETool: A multi-formalism modeling tool for discrete-event systems based on

SDES description. In: Lecture Notes in Computer Science, vol. 5606, pp. 343–352. Springer, Berlin
(2009)

18. Carney, D., et al.: Operator scheduling in a data stream manager. In: Proceedings of the VLDB,
Germany, pp. 838–849 (2003)

19. Arasu, et al.: Characterizing memory requirements for queries over continuous data streams. In: Pro-
ceeding of the PODS (2002)

20. Babcock, B., et al.: Chain: Operator scheduling for memory minimization in data stream systems. In:
Proceeding of the ACM SIGMOD (2003)

21. Babu, et al.: Exploiting k-constraints to reduce memory overhead in continuous queries over data
streams. Technical Report, November (2002)

22. Ghalambor, M., Safaeei, A.A., Azgomi, M.A.: DSMS scheduling regarding complex QoS metrics. In:
IEEE/ACS International Conference on Computer Systems and Applications (AICCSA), 10–13 May
2009

23. Abadi, D.J., et al.: The design of the Borealis stream processing engine. In: Proceeding of the CIDR
(2005)

24. Xing, Y., et al.: Dynamic load distribution in the Borealis stream processor. In: Proceeding of ICDE
(2005)

25. Babu, S.: Adaptive query processing in data stream management systems. Ph.D. thesis (2005)

118 Distrib Parallel Databases (2010) 28: 93–118

26. Graefe, G.: Volcano—An extensible and parallel query evaluation system. IEEE Trans. Knowl. Data
Eng. 6(1), 120–135 (1994)

27. Apers, P.M.G., et al.: PRISMA/DB: A parallel, main memory relational DBMS. IEEE Trans. Knowl.
Data Eng. 4(6), 4–24 (1992)

28. Beringer, J., Hullermeier, E.: Online clustering of parallel data streams. Int. J. Data Knowl. Eng.
58(2), 180–204 (2006)

29. Kramer1, J.: Dynamic plan migration for snapshot-equivalent continuous queries in data stream sys-
tems. In: Proceeding of ICSWN (2006)

30. Zhu, Y., et al.: Dynamic plan migration for continuous queries over data streams. In: Proceeding of
SIGMOD (2004)

31. Safaei, A.A., et al.: Using finite state machines in processing continuous queries. Int. Rev. Comput.
Softw. 4(5), 551–556 (2009)

32. Tian, F., DeWitt, D.J.: Tuple routing strategies for distributed eddies. In: Proceeding of the VLDB
(2003)

33. Chakravarthy, S., Pajjuri, V.: Scheduling Strategies and Their Evaluation in a Data Stream Manage-
ment System. LNCS, vol. 4042. Springer, Berlin (2006)

34. Shah, M.A., et al.: Flux: An adaptive partitioning operator for continuous query systems. In: Proceed-
ing of the ICDE (2003)

35. Tian, F., DeWitt, D.J.: Tuple routing strategies for distributed eddies. In: Proceeding of the VLDB
(2003)

36. Nehme, R.V., et al.: Query mesh: Multiroute query processing technology. In: Proceeding of the
VLDB (2009)

37. Nehme, R., et al.: Self-tuning query mesh for adaptive multi-route query processing. In: Proceeding
of the ACM EDBT (2009)

38. Alqadi, Z.A.A., et al.: Performance analysis and evaluation of parallel matrix multiplication algo-
rithms. World Appl. Sci. J. 5(2), 211–214 (2008)

39. Akl, S.G., et al.: Data-movement-intensive problems: Two folk theorems in parallel computation re-
visited. Theor. Comput. Sci. 95, 323–337 (1992)

40. Almasi, G.S., Gottlieb, A.: Highly Parallel Computing. Benjamin/Cummings, Redwood City (1989)
41. Cosnard, M., Trystram, D.: Parallel Algorithms and Architectures. International Thompson Computer

Press, Boston (1995)

	Parallel processing of continuous queries over data streams
	Abstract
	Introduction
	Parallel query processing
	Query Mega Graph (QMG)
	Generating Query Mega Graph
	Formal definition

	Scheduling algorithm
	Initial scheduling
	Re-scheduling
	Weight updating in QMG
	Preserving order of tuples

	Parallel query processing algorithm
	Time complexity analysis
	Resource allocation in multiple query processing
	Performance evaluation
	Experimental setup
	Experimental results

	Related work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

