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Abstract There is an ever increasing need to use optimization methods for thermal
design of data centers and the hardware populating them. Airflow simulations of cab-
inets and data centers are computationally intensive and this problem is exacerbated
when the simulation model is integrated with a design optimization method. Generally
speaking, thermal design of data center hardware can be posed as a constrained multi-
objective optimization problem. A popular approach for solving this kind of problem
is to use Multi-Objective Genetic Algorithms (MOGAs). However, the large number
of simulation evaluations needed for MOGAs has been preventing their applications
to realistic engineering design problems. In this paper, details of a substantially more
efficient MOGA are formulated and demonstrated through a thermal analysis simula-
tion model of a data center cabinet. First, a reduced-order model of the cabinet problem
is constructed using the Proper Orthogonal Decomposition (POD). The POD model

Recommended by: Monem Beitelmal

G. Li · M. Li · S. Azarm
Department of Mechanical Engineering, University of Maryland, College Park, MD 20742

G. Li
e-mail: ligenzi@umd.edu

M. Li
e-mail: mli6@umd.edu

S. Azarm
e-mail: azarm@umd.edu

J. Rambo
Shell Global Solutions, Houston, TX 77082
e-mail: jeff.rambo@shell.com

Y. Joshi (�)
G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta,
GA 30332
e-mail: yogendra.joshi@me.gatech.edu

Springer



168 Distrib Parallel Databases (2007) 21:167–192

is then used to form the objective and constraint functions of an optimization model.
Next, this optimization model is integrated with the new MOGA. The new MOGA
uses a “kriging” guided operation in addition to conventional genetic algorithm oper-
ations to search the design space for global optimal design solutions. This approach
for optimal design is essential to handle complex multi-objective situations, where the
optimal solutions may be non-obvious from simple analyses or intuition. It is shown
that in optimizing the data center cabinet problem, the new MOGA outperforms a
conventional MOGA by estimating the Pareto front using 50% fewer simulation calls,
which makes its use very promising for complex thermal design problems.

Keywords Data center . Thermal design . Multi-objective optimization . Genetic
algorithm . Meta-modeling

1 Introduction

Energy consumption for large data center facilities is currently in the 10 MW–100 MW
range [27, 28]. The computer room cooling equipment accounts for as much as 50%
additional energy consumption [19]. As old computing equipment is upgraded every
2–3 years to bring in higher performance cabinets, which often dissipate higher
power and have higher cooling requirements, the facility operators are increasingly
facing the challenge of optimizing the use of a fixed amount of cooling resources.
Currently, individual racks can dissipate as much as 30 kW of power, and projections
are for further increases, as dense architectures such as blades become more common
[4]. With continually rising energy costs, it is crucial to arrive at the best thermal
design that results in the least expenditure of cooling resources as new equipment
is brought in during such retrofits of data center facilities. An optimized layout of
heat generating servers within new cabinets provides an opportunity for reduction
in energy consumption for cooling. Moreover, such savings when accounted for the
entire facility may also result in substantial savings in utility bills for the facility
operator.

Generally speaking, there are two classes of design optimization methods that
can be used for optimizing thermal design problems of data centers (see, e.g., [3, 7,
26]). These two classes are gradient- and non-gradient-based methods. Gradient-based
methods (see, e.g., [6]) require derivative information for the optimization functions
(i.e., objective and constraint functions) and usually have an implicit assumption that
these functions are “smooth” and that design variables are continuous. In general,
gradient-based methods can only guarantee a local optimum design solution unless
the functions used in the problem have special properties such as linearity or convex-
ity. The smoothness assumption can be relaxed in non-gradient-based techniques. One
popular and general class of non-gradient-based techniques for design optimization is
Genetic Algorithms (GAs) [13, 14]. GAs were developed by John Holland [14] and are
based on evolutionary concepts. These algorithms can handle non-smooth functions, a
situation common in many engineering design problems. GAs can also obtain a global
optimum design solution. Moreover, they can be easily extended to handle multiple
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design objectives, i.e., Multi-Objective Genetic Algorithms or MOGAs [8, 10, 18, 23].
However, the main shortcoming of MOGA-based optimization methods is that they
require a large number of simulation calls. Unfortunately, the large number of sim-
ulation calls for MOGAs has prohibited applications of these algorithms to realis-
tic engineering design problems, such as thermal design of data centers, whereby
even a single simulation call can require a significant amount of computational
effort.

A common strategy to reduce the computational effort of optimization meth-
ods, such as MOGAs, when integrated with expensive simulation models is to
use meta-modeling (see, e.g., [5, 20, 35, 36, 39]). In particular, a number of tech-
niques incorporating meta-modeling with genetic algorithm based methods have
been reported in the literature (e.g., [16, 32]). Some of these methods use meta-
modeling in the genetic algorithm’s fitness estimation [16]. Others use meta-
modeling to guide the search in the design space [32]. While the fitness estima-
tion methods have been reported to reduce the computational cost significantly [16],
these methods have the risk of generating false optimum solutions. On the other
hand, the risk can be reduced by using meta-modeling for searching the design
space, especially when the approximations are not sufficiently accurate (see, e.g.,
[1, 2, 31, 38]). Unfortunately, all of the aforementioned methods heavily depend
on the accuracy of the meta-models over the entire design space or some specific
neighborhood.

This paper presents a genetic algorithm-based multi-objective optimization frame-
work and demonstrates applicability of this framework to thermal design of data
center cabinet problems. In the framework, a reduced-order model of the cabinet
problem is constructed using the Proper Orthogonal Decomposition (POD). The
POD model is then used to form the objective and constraint functions of an op-
timization model. This optimization model is integrated with the new MOGA. The
new MOGA falls under the methods that use meta-modeling to guide the search
in the design space, i.e., a kriging guided reproduction approach, that has several
advantages over the previous techniques as follows. First, the new MOGA has the
flexibility of using the meta-modeling in the design space only where the meta-
model produces reasonably accurate estimates of simulation responses. Second, the
new MOGA uses an objective rather than subjective measure to determine whether
the simulation response for a design alternative can be estimated by a meta-model.
Finally, in contrast to many meta-model assisted optimization methods in the liter-
ature, the new MOGA incorporates a global interpolation meta-modeling technique
based on a newly defined kriging guided reproduction approach that can signifi-
cantly reduce the number of iterations needed for convergence of the optimization
procedure.

The present paper is organized as follows. Definitions and terminology are col-
lected in Section 2. The thermal design of a data center cabinet problem and the
corresponding POD model are introduced in Section 3. In Section 4, brief re-
views of genetic algorithms and kriging meta-modeling are outlined, and details
of the new MOGA are provided. Results and discussions for the data center cabi-
net problem are given in Section 5. Key conclusions of the paper are provided in
Section 6.
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2 Definition and terminology

A multi-objective design optimization problem is formulated as follows:

minimize
x

fi (x) i = 1, . . . , M

subject to : g j (x) ≤ 0 j = 1, . . . , J
hk(x) = 0 k = 1, . . . , K

(1)

where fi refers to the scalar design objective function, x = (x1, . . . , xN )T is the design
variable vector, the scalar functions g1, . . . , gJ are the inequality constraints, and
h1, . . . , hK are the scalar equality constraints. It is assumed that there are trade-offs
among at least two of the M objective functions. As such, the optimization problem
in Eq. (1) has more than one optimum solution. Some terminologies that are used in
the paper are defined below.

Feasible design point. A design point that does not violate any constraints (i.e., gj and
hk in Eq. (1)).

Non-dominated and dominated design point and set. A design point is said to be non-
dominated if no other design point in the current set of design points is better than
that point with respect to all objectives [10]. The set of all non-dominated design
points in the current set of design points forms a non-dominated design set. The
remaining design points in the current set form a dominated set.

Pareto optimum design points (or Pareto frontier). Pareto optimum design points refer
to a set of points (or Pareto frontier) that are the solutions to the problem in Eq. (1),
and are non-dominated when the entire feasible design space is considered.

Kriging based non-dominated design points. These points are an estimate of Pareto
points obtained based on kriging meta-models.

3 Thermal design of a data center cabinet

The optimization of a two-dimensional representation of an enclosed data center
cabinet containing 10 individual servers is selected to illustrate the new MOGA
method. Cold supply air at 15◦C from the data center facility is delivered to the
servers through a 0.39 m cutout in the bottom of the rack. Each server contains two
0.30 m tall by 0.50 m long blocks with uniform heat generation to mimic the power
dissipation from actual chips. Since a two-dimensional geometry is considered, the
chips are assumed to extend infinitely in the third direction (depth) and the specified
power dissipation is per unit depth. A cubic pressure-velocity relationship is prescribed
at each server exhaust to model an induced draft fan and a lumped pressure drop model
is included at the inlet to server, producing a nominal server flow rate of 0.180 kg/s
(310 CFM). Figure 1 describes the rack dimensions, based on commercially available
units, and schematically depicts the dominant airflow paths.

The full numerical model neglects buoyancy effects [29] and solves the steady in-
compressible Reynolds-averaged Navier-Stokes (RANS) momentum equations using
the standard 2 equation k-ε turbulence modelclosure with no body forces. The compu-
tations used second order upwinding and SIMPLEC pressure-velocity coupling with
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Fig. 1 Rack model geometry and dominant airflow paths

PRESTO pressure interpolation, see [12] for a description of the numerical meth-
ods employed. The final converged model contained 20,263 grid cells for a total of
121,578 degrees of freedom. Note that the sum of the server flow rates will generally
be greater than the net rack flow rate. This flow rate imbalance requires a large degree
of recirculation, or a server’s hot exhaust being drawn through another server before
exiting the rack, and a correspondingly complex flow field.

The thermal design problem associated with the rack model in Fig. 1 is to dissipate
as much power as possible, while maintaining all chip temperatures below a prescribed
maximum allowable value, taken to be 85◦C. Increasing the rack inlet velocity causes
the blowers in the data center air handing units to consume more power, but does not
necessarily correlate with an overall reduction in chip temperatures. The partitioning
the cabinet into sections A, B and C will be explained in subsequent sections, but
note the complex geometry and resultant flow patterns within the rack cause the
cooling supply air to bypass the bottom 2 servers as Vin increases. This is the physical
mechanism that allows the power to the first 2 servers to be grouped as a single design
variable. Practically, redistributing the power to the individual servers corresponds
to changing the vertical arrangement of servers within the rack. The corresponding
optimization problem is formulated in Section 5, and results are obtained and also
discussed in that section.

3.1 Reduced-order modeling framework

A reduced-order model of the data center cabinet is constructed using the Proper
Orthogonal Decomposition (POD). The POD model is used to form the objective
and constraint functions of the optimization model. The POD empirically computes
the basis functions forming the optimal linear subspace given an ensemble of system
observations. The empirical basis functions or ‘POD modes’ are used to compute new
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approximate solutions using the expansion theorem:

u(x, t) = u0(x, t) +
m∑

i=1

ai (t)ϕi (x) (2)

where u is a distributed variable in space (x) and time (t), ai are the time-dependent
weight coefficients and ϕi are the spatially distributed basis functions on the domain
�(x). The basis functions, or ‘POD modes’, (ϕi ) are commonly homogeneous and
the u0 source function takes the inhomogeneous boundary conditions, akin to tra-
ditional spectral methods. This technique has been very successful in constructing
low-dimensional dynamical models in fluid mechanics [15] and developing control
schemes for distributed parameter systems (e.g., [24, 25, 33]) by projecting the govern-
ing equations onto the m-dimensional POD subspace, producing m coupled ordinary
differential equations in time describing the weight coefficient (ai) evolution. The
POD has been previously limited to prototypical systems with simple geometries be-
cause inhomogeneous boundary conditions present difficulties. The resultant models
are also only valid for the parameter (Reynolds or Nusselt number) value for which
the system observations were made and the models typically produce very poor results
outside that parameter value due to the highly nonlinear nature of the Navier-Stokes
and RANS equations.

A new POD-based modeling methodology intended for parametric models of sta-
tionary turbulent flows, and especially for numerical simulations of the (RANS)
equations, was developed in [30]. The method takes a data ensemble of steady solu-
tions at different parameter values and parameterizes the POD modes as a function
of the solution corresponding to the new parameter value using orthogonal comple-
ment subspaces. This is achieved by selecting the nearest observations to the new
approximate solutions in terms of the parameter values. To solidify this concept,
consider a turbulent flow model where the inlet mass flux is varied in a specified
range. In the analysis of complex flows, the exact velocity profile on the boundary is
often unknown. However, the design objectives are often based on integral conditions,
such as the appropriate mass flux through a given set of surfaces, �, prompting the
introduction of the mass flux function:

F(u) =
∫

�

ρu · ndx, � ⊆ � (3)

The mass flux function F computes the mass fluxes through surfaces � given the
fluid density ρ and the outward pointing surface normal, n. Note F is generally a
vector-valued function because � may define a set of discontinuous surfaces.

The modal weight coefficients are evaluated with a flux matching procedure that
satisfies the appropriate integral form of the parameter value, eliminating the time-
consuming projection step. A new approximate solution (denoted u∗) is defined by
an s-dimensional vector of mass flux goals (G) corresponding to the desired mass
flux through the set of control surfaces � = {�1, �2, . . . �s}, such that G = F(u∗).
The solution procedure becomes an optimization problem to find the set of weight
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coefficients that minimizes the mass flux error on the control surfaces �:

min

{∥∥∥∥G′ −
m∑

i=1

ai F(ϕi )

∥∥∥∥

}
where G′ = G − F(u0) (4)

Equation (4) can be solved as a = F+(ϕi )G′(u∗), where F(ϕ) is the s × m dimen-
sional matrix obtained by operating Eq. (3) on the s control surfaces of the m POD
modes and ()+ is a suitably defined generalized matrix inverse.

3.2 Rack reduced-order model

The rack observation database was created by varying the inlet velocity between 0.0
and 2.0 m/s on 0.25 m/s increments, Vobs = {0.0, 0.25, . . . , 2.0} m/s for a total of
nine observations. Based on inlet hydraulic diameter and first nonzero observation
Vobs = 0.25 m/s, the Reynolds number of the observations ranges from 6136 ≤ Re
≤ 70,629. To demonstrate the method, an approximate solution to Vin = 0.33 m/s
is computed. This scenario corresponds to a rack placed in an existing data center
facility with a fixed rack flow rate due to facility-level flow constraints imposed by
the raised floor plenum and other data processing racks.

Figure 2 plots the POD modal streamline patterns because the flow is too complex
to plot the velocity vectors to discern the flow patterns for the entire domain. The
POD modes are solutions to the governing equations and each successive POD mode
resolves higher order characteristics of the flow. Figure 3 plots the relative L2 error
over the entire domain for the test case, showing initially sharp error attenuation
and final velocity field approximation error of less than 4%. Examining the absolute
error field over the entire domain shows a region in the lower right hand corner of
the domain where the only significant errors occur. Figure 4 plots the local velocity
vectors for the full numerical model and the POD-based approximation in the region
of maximum error to illustrate the approximation accuracy.

Fig. 2 POD modal streamlines
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Fig. 3 Approximate solution
relative L2 error norm over the
entire domain

Fig. 4 Local exact solution from full CFD model and POD-based approximation projected to a coarser
grid than the actual model for illustrative purposes

The model reduction procedure was performed on the velocity field only because
the solution of the RANS momentum equations consumes significantly longer time
relative to solving the energy equation in forced convection. A RANS energy equa-
tion solver was developed to compute the temperature field given the reduced-order
velocity solution.

In validating the temperature solution solver against full numerical solutions, the
maximum chip temperature responses showed the servers could be grouped into three
sections (cf. Fig. 1) with the lower servers forming section ‘A’, servers 3 through 5
forming section ‘B’ and the top servers 6 though 10 forming section ‘C’. The quantities
QA, QB, and QC denote the heat generation of each processor in the respective cabinet
section. This partitioning is not a required step, but it is chosen to reduce the number of
control variables from 10 to 3 in this illustrative example. The model post-processes the
temperature field to obtain the maximum chip temperature for each server, ultimately
producing a one-dimensional output vector. The reduced-order model program flow
and computational times for each subroutine are shown in Fig. 5. Note the full
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Fig. 5 Reduced-order model program flow and computational time for a single function call

Fig. 6 (a) Crossover, and (b) mutation operations

numerical model requires approximately 1200 s to converge on a 2.8 GHz Xeon
processor workstation with 2 GB of memory whereas the POD-based approximate
solution requires 13 seconds.

4 Background and proposed optimization approach

4.1 Background on single- and multi-objective genetic algorithms

Genetic algorithms (GAs) were originally developed for global optimization of uncon-
strained single-objective optimization problems. GAs are stochastic and population
based optimization methods whereby the design space is searched through selected
design points using random genetic operations. In a GA, each point in the design space
is coded as a binary string and assigned a fitness value that reflects its goodness in
terms of design objective function value. GA creates a new generation of design points
through two important operations: crossover and mutation. In a crossover operation,
as shown in Fig. 6(a), two design points are selected as parents and then portions
of their chromosomes (representing design alternatives) are swapped to produce off-
spring design points. For diversity, as shown in Fig. 6(b), a mutation operation is
performed in that a bit is randomly selected and changed from 0 to 1 or vice versa.

In GAs, design points are also “inherited” in that a subset of design points that have
good fitness values are chosen to migrate into the next generation. Together crossover,
mutation, and inheritance provide a powerful search mechanism for finding a global
optimum design point [10]. As shown in Fig. 7, a GA starts with an initial population of
design points that are often randomly generated. Next, design points in the population
are evaluated and their fitness assigned. After that, a stopping criterion is checked
to see whether the fitness of design points can be further improved or whether a
predefined number of iterations has been reached. If the stopping criterion is met,
then the GA is stopped; otherwise, crossover, mutation, and inheritance operations
are applied to produce a new generation of design points and the procedure is repeated.
For convenience, in this paper, the process of producing new design alternatives is
referred to as “reproduction.”
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Assign fitness to
design alternatives
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generation of 
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Fig. 7 Steps for a genetic algorithm
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Fig. 8 Domination relation in
MOGA

GAs can be easily modified to handle multi-objective optimization problems. Multi-
objective optimization version of the GAs are referred to as Multi-Objective Genetic
Algorithms (MOGAs) (e.g., [10, 18, 23]). MOGAs are capable of handling multiple
objectives by defining fitness in a multi-objective sense. For instance, Deb [10] used
a non-dominated sorting scheme, NSGA, in which the domination relations among
design points are established pair-wise for each design point.

Figure 8 shows an example, whereby both objectives are being minimized (as
illustrated by the two arrows on the two axes), with a population of six design
points. Four of these design points {a, b, c, d} are non-dominated. That is, each of
these design points is strictly dominant (or better) in terms of at least one objective
function value and at the same time is not inferior (or not worse) in terms of the other
objective function over any other design point. So, in the current generation, design
points {a, b, c, d} form the non-dominated set, and the design points {i, j} form the
dominated set. MOGAs can also handle multi-objective optimization problems with
constraints. A common approach for handling constraints is the penalty method (e.g.,
[9, 18]) whereby the constraints are combined with the objective functions for fitness
assignment.

The MOGA used in this paper is implemented based on the non-dominated sorting
algorithm [10] together with an elitism strategy similar to SPEA [41], and is considered
as a conventional MOGA in comparison to the proposed new MOGA approach in
this paper. In the conventional MOGA, the fitness value of each point is assigned by a
non-dominated sorting technique [10]. Then the non-dominated points in the current
generation are directly copied into the next generation as elite points. A diversity
measure is used to choose a subset of the non-dominated points if the number of those
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points is more than 70% of total number of design points in the current population.
This elite-preservation strategy is similar to SPEA [41]. According to the results from
[21], this conventional MOGA can converge to the true Pareto frontier for multi-
objective optimization problems, and its performance is comparable to NSGA-II [11]
or SPEA [41].

4.2 Background on kriging-based meta-modeling

Over the past several years kriging (e.g., [17, 37]) has become popular for meta-
modeling in the field of engineering design because of its general predictive modeling
ability. Kriging is a linear predictor estimating unknown response values based on
all the observed response values. That is, the predicted value at any design point is
a linear combination of all observed points. Often, the input points for observed (or
true) responses are referred to as experiments.

To simplify the description of kriging, we consider a single-input (x) single-
response (y) simulation model. A kriging method treats the deterministic response
y of the simulation as a realization of a stochastic process Y:

Y = µ + Z (x) (5)

where Y is the approximation of a true response y, µ is a constant representing the
known prior information (i.e., mean of the responses based on the current meta-
model), x is the input, and Z is assumed to be a stochastic process with zero mean and
non-zero variance σ 2.

It is assumed that the function (or simulation) to be approximated is continuous and
thus the responses will not change significantly for two adjacent design points in the
input space. In practice, this assumption can be somewhat relaxed and replaced with
a weaker assumption, i.e., for two input vectors xi and xj, the responses y(xi) and y(xj)
should be close to each other if the distance between xi and xj is small. In other words,
one can state that the random variables Y(xi) and Y(xj) tend to be highly correlated
if the distance between xi and xj, ‖ xi − xj ‖ , is small. The correlation “Corr”
between any two random variables Y(xi) and Y(xj) can be calculated by a variety of
correlation functions [22]. The normal correlation function [37] is the most commonly
used:

Corr[Y (xi ), Y (x j )] = exp(−θ ||xi − x j ||) (6)

where θ is a parameter determined by the degree of the correlation among responses.
The larger the value of θ the weaker the correlation and vice versa. In the rest of this
section, we assume the normal correlation function, i.e., all equations are based on
this assumption.

Suppose now we have n experiments: x1, x2, . . . ,xn, and ȳ is the set of n correspond-
ing observed true responses, R is a n × n correlation matrix with the (i, j) element
given by Eq. (6), r is a n × 1 correlation matrix for ȳ and an un-observed x0, and
J as a n × 1 vector of ones. Then the kriging estimate Y (x0) and the corresponding
kriging variance s2(x0) can be obtained using the following equations:
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Fig. 9 Kriging meta-modeling: (a) before any experiment is observed, and (b) after two experiments (x1
and xi) are observed

Y (x0) = µ + r T R−1(ȳ − Jµ) (7)

s2(x0) = σ 2

[
1 − r T R−1r + (1 − r T R−1r )2

J T R−1 J

]
(8)

The kriging meta-modeling is also illustrated in Fig. 9. Figure 9(a) shows the
prior distributions of Y’s with the given mean of the stochastic process and without
any observation of the response. On the other hand, Fig. 9(b) shows the posterior
distributions based on the observing the responses for two experiments (x1 and xi).
The kriging method updates the estimates of other responses, i.e., it revises the prior
distribution of Y’s (notice the difference between Y2 in Fig. 9(a) and Y2 in Fig. 9(b)).
The change of kriging variance s2(x0) is also illustrated in Fig. 9.

The kriging variance s2(x0) can serve as a measure of uncertainty for an estimated
response. Clearly, for observed experiments (e.g., x1 and xi of Fig. 9), the kriging
variance is zero. On the other hand, there is a non-zero kriging variance for any
unobserved experiment (e.g., x0, see Fig. 9(b)). The further away is the design point
x0 from current experiments, the higher the value of the kriging variance. When
Eq. (5) is assumed to be a normal process, the kriging variance is a conditional normal
distribution with zero mean and s2(x0) as the variance [40]. Thus, the kriging variance
can be converted to a “prediction interval” with a 95% confidence level and the range
of the interval equals to 4s(x0) (or ±2s(x0)). This prediction interval is used to measure
the uncertainty of a kriging meta-model estimate for the POD model response in the
proposed optimization approach.

4.3 Proposed optimization approach

In the proposed optimization approach, some design points in a new generation (or
new population) are produced using kriging meta-model of the simulation while the
rest are produced by conventional MOGA operations, i.e., cross-over, mutation and
inheritance operations. The proposed approach has the following two main features.
First, the approach uses a criterion that measures the accuracy of kriging meta-
models for a simulation. Second, the proposed approach uses a kriging-assisted design
point selection strategy based on the accuracy of the kriging meta-models. In other
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Fig. 10 Main steps for the proposed approach

words, a kriging meta-model is used to estimate the Pareto frontier and then select
design points from this so called kriging based non-dominated design points. These
selected design points are considered to have a higher probability to be eventually
on the Pareto frontier compared to those points not in the set of kriging based non-
dominated design points. This is because the estimated response for these points has
a reasonable accuracy. The remaining design points in the population are produced
using conventional MOGA operations. Since the new population is produced in such
a hybrid manner, the computational cost of converging to the Pareto frontier can
be significantly reduced compared to a conventional MOGA. The main steps of the
proposed approach are shown in Fig. 10.

Figure 10 is similar to Fig. 7 except that in Fig. 10 some design points in a new
generation are produced based on kriging meta-models (steps that are inside the
dashed box in Fig. 10). Also, the two output arrows from the block: “Evaluate design
alternative” in Fig 10 implies that the true responses from the simulation are used
for both: (i) updating the kriging meta-model, and (ii) assigning fitness to design
alternatives. As shown in the dashed box, for each generation, kriging meta-models
are constructed for the original simulation (i.e., for the objective and/or constraint
functions). Next, a conventional MOGA is applied to the kriging-based meta-models
of the optimization problem to obtain a kriging-based non-dominated set. Among
the design points in this set, those with a small kriging variance (or small prediction
interval) are selected for the next generation of design points.

A criterion determining how small the interval should be is defined in Section
4.3.2 by deriving a relationship between the prediction interval and a measure of
domination relation in objective space, which is defined by Minimum of Minimum
Distances (MMD) (initially introduced in [21]) and is discussed in Section 4.3.1.
Finally, a new kriging guided reproduction approach using the relation between MMD
and prediction interval is proposed in Section 4.3.3.
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4.3.1 Minimum of minimum distances

In each generation (after the initial population), the kriging meta-models can be used
to obtain the predicted response for each design point. There is a kriging variance
for each prediction. For an un-observed design point, this variance is non-zero and
a corresponding prediction interval can be obtained; while the kriging variance is
zero for an observed design point. Based on the predicted objective function values,
the domination relation can be determined for a set of observed and/or unobserved
design points, as shown in Fig. 11. Domination relation implies that the population
is partitioned into two sets: dominated set and non-dominated set. Notice that this
partitioning is based on predicted values, that is, no original function calls are used
(for unobserved design points) so far in the current generation.

A quantitative measure of domination is defined in the objective space. This mea-
sure is referred to as minimum of minimum distance (MMD). The quantity MMD refers
to the minimum distance of all distances between any non-dominated design point
(e.g., design point “a” in Fig. 11) and any dominated design point (e.g., design point
“j” in Fig. 11). For instance, in Fig. 11 MMD is obtained as follows:

(1) Calculate the minimum distance (“dis”) from each non-dominated design point to
all dominated design points:

min(disai, disaj) = disaj

min(disbi, disbj) = disbi

min(disci, discj) = discj

min(disdi, disdj) = disdj

(9)

(2) Obtain MMD as the minimum of the above minimum distances:

MMD = min(disaj, disbi, dcj, ddj) = daj (10)

The value of MMD determines the lower bound of distance between any two design
points whereby one of the points is in the non-dominated set while the other is not.
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Fig. 12 Relation between
MMD and prediction interval

Since a meta-model is constructed separately for each objective function, MMD is
projected to each dimension in objective space as: MMDfm (m = 1, . . . , M) so that
the MMD’s projected values can be used in the corresponding meta-models.

4.3.2 Relation between prediction interval and MMD

As mentioned before, the estimated response from a kriging model has a variance
which can be converted to a prediction interval. As long as the values of prediction
interval do not affect the domination relation (which is represented as a distance
quantitatively) of two design points, it is considered that the kriging meta-model
outputs are accurate estimates for the true responses for these two design points.
Hence, the criterion that relates MMD and prediction interval can be defined by
checking whether or not the domination relation is changed when kriging estimates
are used. If the domination relation is changed, then the design points that contribute
to this change is evaluated using the original simulations. Those design points that do
not contribute to the change of the domination relation can be estimated using kriging
meta-models. An implementation of the aforementioned idea is shown in Fig. 12.

To obtain the relation between MMD and prediction interval, for simplicity, we
examine the situation in one dimension in the objective space (e.g., along objective
function f1). Because the prediction interval is symmetrical as described in Section
4.2, we only need to examine one half of the interval for each design point involved
in the evaluation. In the worst case, both half-intervals diminish the MMD projection,
as shown in Fig. 12. We define the prediction interval for design point j as IP ( j)
(note that IP ( j) = 4s( j) for a 95% confidence level). It can be observed from Fig. 12
that as long as the sum of half prediction intervals for design points a and j does not
exceed the corresponding MMD projection, the domination relation of a and j along
objective f1 will not be changed even if the kriging estimates for both design points
are used. This relation between MMD and prediction interval can also be expressed
by the following condition:

Ip(a) + Ip( j) ≤ 2MMD f1 (11)
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It can be seen from Eq. (11) that if the value of the half of the prediction interval
of a design point is greater than MMD, this design point must be evaluated using
the simulation. Note that this relation should hold for any design point that can be
estimated using kriging meta-models so that the domination relations for all design
points in the current population are not changed. For those design points that can
be estimated using kriging meta-models, the kriging-based estimated responses are
considered to be accurate enough to ensure a correct domination relation in the
current population. The aforementioned condition, Eq. (11), is achieved in a three-
stage procedure including shrinking, sorting, and selecting stages. This procedure is
applied in each generation of a MOGA to determine the number of design points
that can be estimated using kriging meta-models. A description of the three-stage
procedure follows. (To simplify the exposition, we consider a single-input (x) case.
The procedure can be readily extended to multi-input case, as demonstrated by the
data center cabinet example.)

In the first stage (i.e., the shrinking stage), design points with zero prediction
interval Ip and design points with a large value of the prediction interval (i.e., design
points with prediction interval greater than twice the value of MMD, recall Eq. (11))
are removed from the population. Note that the points with zero prediction have
already been evaluated while those with a large value of the prediction interval are
to be evaluated. After the removal of these two kinds of design points, the size of
the population becomes smaller than the original population. We refer to this reduced
size population as a “shrunk population”. We define the population size as n and the
shrunk population size as ns. Since some design points in the current population are
inherited, the number of design points with a zero prediction interval is always greater
than zero. That is, ns < n, and we will work on a set with fewer design points than
the original population.

In the second stage (i.e., sorting stage), the design points in the shrunk population
are sorted based on their prediction interval values, from large to small. In other words,
the first design point x1 in the set has the largest value of the prediction interval Ip(x1)
while the last design point xns has the smallest value of the prediction interval Ip(xns ),
as shown in Eq. (12).

2MMD f1 ≥ Ip(x1) ≥ · · · ≥ Ip(xns ) > 0 (12)

where xi is a design point in the sorted shrunk population, i = 1, . . . , ns .
In the last stage (i.e., selecting stage), the design points in the sorted shrunk

population are examined, beginning from the first design point x1, to see whether or
not it satisfies the following condition:

Ip(xi ) + Ip(xi+1) ≤ 2MMD f1 (13)

If the condition in Eq. (13) is not satisfied for a design point xi, then that design point
is removed from the sorted shrunk population and evaluated using the simulation. On
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Fig. 13 Shrinking, sorting, and selecting algorithm for one generation of design alternatives

the other hand, if the condition in Eq. (13) is satisfied, then following Eq. (12) we
have:

2MMD ≥ Ip(xi ) + Ip(xi+1) ≥ Ip(xi ) + Ip(xi+2) ≥ · · · ≥ Ip(xi ) + Ip(xi+ns−1)
(14)

which implies that the design point xi as well as all remaining design points in the
sorted shrunk population are to be estimated using the kriging metal-model for the
simulation.

This three-stage procedure is presented in detail in a flowchart in Fig. 13, N is
the counter for the original population (N = 1, . . . , n), and Ns is the counter for the
shrunk population (Ns = 1, . . . , ns). A step-by-step description of the procedure is
also given as follows.

Step 1: Initialize counters: N = 1, ns = 0, Ns = 1.
Step 2: Examine the value of prediction interval Ip(xN ) of the Nth design point in

current generation.
Step 3: If the value of prediction interval Ip(xN ) for the Nth design point is zero (i.e.,

this design point has been evaluated using simulation), go to Step 8.
Step 4: If the value of prediction interval Ip(xN ) for the Nth design point is greater

than 2MMD (i.e., this design point has a large variance and needs to be evaluated
using simulation), go to Step 5.

Step 5: Evaluate this design point using simulation, and go to Step 8.
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Step 6: If conditions in Steps 3 and 4 are not met, augment this design point into the
shrunk population.

Step 7: Set ns = ns + 1, go to step 8.
Step 8: Check whether all design points in current population are examined: if yes,

go to Step 10; otherwise, go to Step 9.
Step 9: Set N = N + 1, and repeat Steps 3 to 7 for the Nth design point.
Step 10: Form the shrunk population with design points obtained from the previous

steps.
Step 11: Examine whether there is any design point in the shrunk population: if yes,

go to Step 12; otherwise, end the procedure (i.e., all the design points with non-zero
prediction interval are to be evaluated using simulation).

Step 12: Sort the design points in the shrunk population by the value of prediction
interval (from large to small) to obtain a sorted shrunk population.

Step 13: Examine the Nsth design point with the criterion described in Eq. (13): if
satisfied, it means this design point as well as remaining design points in the sorted
shrunk population can be estimated using kriging meta-models; otherwise, go to
Step 15.

Step 14: Form the set of design points that can be estimated using kriging meta-models.
Step 15: Evaluate the Nsth design point using simulation.
Step 16: Check whether all the design points in the sorted shrunk population have

been examined: if yes, end the procedure; otherwise, go to Step 17.
Step 17: Set Ns = Ns + 1, and go back to Step 12.

This procedure is repeated for all objective functions in the simulation. (Recall from
Section 4.1 that the constraint functions can be embedded into the objective functions
using a penalty approach.) If a design point is selected to be evaluated using kriging
for all objective functions, then that point is estimated using kriging; otherwise, that
design point is evaluated using the simulation. Following the above procedure, the
design points in the current population can be divided into three groups in terms of
the value of their prediction interval. The first group of design points refers to those
that are selected by the above mentioned three-stage procedure. The second group
of design points refers to those design points that have non-zero prediction interval
and are not selected by the above mentioned procedure. Finally, the third group refers
to those design points that have a zero prediction interval and also not selected by
the above mentioned procedure. Note that the third group has already been evaluated
using simulation and their true responses have already been used to construct kriging
meta-models.

We define the ratio of the number of design points that should be evaluated using
kriging (first group) over the number of design points with non-zero prediction interval
(first and second groups), in the current population, as ratiok . This ratio can be used
as a good estimate of the meta-model accuracy for the current kriging meta-models.
This is because the number of design points that can be evaluated by the kriging meta-
model is directly dependent on the meta-model accuracy which is proportional to the
value of ratiok . The quantity ratiok is used in the proposed approach as a percentage at
which some design points from the set of kriging based non-dominated design points
are selected for new population.
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4.3.3 Kriging guided reproduction approach

The proposed kriging guided reproduction approach has four operations. These include
the three conventional genetic algorithm operations (i.e., cross-over, mutation and in-
heritance) and a newly defined kriging guided operation. The kriging guided operation
has two major components. The first component involves obtaining a kriging-based
non-dominated set. The second component involves selecting some design points from
the obtained set according to ratiok . The stopping criterion used in this paper is that
the procedure stops when the number of non-dominated points exceeds a pre-specified
threshold (e.g., 85%) of the total population for several consecutive generations.

A step-by-step description of this approach is given as follows, and also presented
as a flowchart in Fig. 14.

Step 1: Set generation counter to gen = 0.
Step 2: Randomly generate an initial set of design alternatives.
Step 3: For design alternatives, use simulation to obtain true responses.
Step 4: Based on the true responses, obtain a non-dominated set.
Step 5: Check stopping criterion. If satisfied, stop. Otherwise, continue to the next

step.
Step 6: Apply inheritance, i.e., migrate the non-dominate solutions from the last

generation. (It is recommended that at most 85% of design points in the current
generation is obtained from inheritance. Steps 7 to 11 are applied only if this
percentage is less than 85%; otherwise, the procedure continues to Step 12.)

Step 7: Initialize (for the initial iteration) or update (for the remaining iterations) the
kriging meta-models using simulation responses.
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Step 8: Obtain kriging-based non-dominated design points. (As mentioned at the
beginning of Section 4.3, this step involves an inner optimization wherein MOGA
is applied to the current kriging based meta-models.). Use the three-stage procedure
(recall Section 4.3.2) to obtain an ordered set of kriging-based non-dominated design
points.

Step 9: Obtain MMD for the current generation.
Step 10: Calculate ratiok . (It is recommended to set ratiok to 100% for gen ≤ 4.)
Step 11: Use ratiok to select a number of design points with small value of variance

from the ordered set of kriging-based non-dominated design points.
Step 12: Augment the current generation by creating design points using the cross-

over and mutation operations. (It is recommended that at least 15% of the design
points in the current generation are created by these operations.)

Step 13: Combine the design points obtained from inheritance, cross-over, mutation,
and kriging meta-models.

Step 14: Reset the generation counter: gen = gen + 1, and go to Step 3.

Note that the proposed approach is different from the one introduced in [21],
although both of which use the concept of MMD. The emphasis in the proposed
approach is on searching the design space efficiently, while the approach in [21]
focuses on estimating design alternatives in each generation.

In the next section, the proposed approach is applied to the data center cabinet
thermal design problem introduced in Section 3, which is formulated as a constrained
multi-objective optimization problem. The results from the proposed approach are
compared with those from a conventional MOGA (e.g., [10, 18]), and discussions
follow to explain the obtained results.

5 Results and discussions for the cabinet case study

In this case study, we consider the optimal thermal design for a cabinet where the
emphasis is on optimizing the layout of heat generating components within the cabinet.
Based on the simulation model for the cabinet thermal design, we formed a two-
objective design optimization problem. In this thermal optimization model, inlet air
velocity Vin (in m/s) and chip heat generation rates (in W) Qj, ( j = 1, . . . , 10) are
continuous design variables, where Q1 = Q2, Q3 = Q4 = Q5 and Q6 = · · · = Q10

(as shown in Fig. 1). The output of the simulation model is a 10-element vector of
temperatures, one for the maximum temperature in each server. The objectives are to:
(1) minimize the maximum of chip temperatures (in ◦C), and (2) maximize the sum of
total heat generation rates. In this regard, the two design objectives are correlated and
conflicting. That is, reducing the maximum temperature (which is preferred) requires
reducing the total heat generated by the cabinet servers (which is not preferred). Note
that the maximum temperatures (Tj) optimized here can be used to represent the server
inlet temperatures. In other words, when Tj goes up, the corresponding server inlet
temperature also goes up. Also, Max(Tj), j = 1, . . . , 10, is used in the constraints,
which requires that maximum chip temperature for each server to be less than 85◦C.
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The optimization problem is formulated as follows:

Minimize
Vin,Qa,b,c

Max(Tj ) j = 1, . . . , 10

Maximize
Vin,Qa,b,c

Sum(Q j ) j = 1, . . . , 10

subject to

Max(Tj )/85 − 1 ≤ 0 j = 1, . . . , 10 (15)

where

0.2 ≤ Vin ≤ 2

2 ≤ Q j ≤ 200

An alternative data center optimization problem is to fixed the net power dissipation
and vary the server-level power dissipation and flow rate in order to minimize the chip
temperatures, Tj. Such an investigation was performed using robust design methods
[34].

The proposed MOGA approach and a conventional MOGA are used to obtain the
solutions for the problem in Eq. (15). Figure 15 illustrates the Pareto optimal solutions
from the conventional MOGA and the proposed approach. We used 30 design points
per generation for both approaches. According to the stopping criterion described
in Section 4.3.3, the new approach requires about 20 generations to obtain Pareto
optimum design solutions, while the conventional MOGA needs about 50 genera-
tions to obtain a comparable Pareto optimum design solutions. As shown in Fig. 15,
the results from the proposed approach are in good agreement with those from the
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conventional MOGA. In the Pareto design points obtained from the new approach,
three optimized design alternatives are selected and their corresponding design objec-
tive function values are shown in Fig. 16.

The results in Figs. 15 and 16 show several interesting and unexpected features. First
of all, due to the airflow bypass patterns created near the lower servers, their maximum
power dissipations are significantly lower than the upper servers as shown in Fig. 16.
Of course, it would be possible to re-design the flow patterns by placement of baffles.
Secondly, it is also seen that the maximum total power dissipation with this example
air-cooled geometry is limited to ∼ 1,800 W (as shown in Fig. 15), beyond which the
maximum temperature specification cannot be met. It is extremely useful to deduce
such limits for various cooling solutions, so that one could determine the overall
thermal management approach for a given total cabinet power dissipation. Finally,
due to the rather flat shape of the Pareto Front in Fig. 15 it is seen that proper placement
of servers at the higher end of total powers is very important in reducing temperatures.

Note that the corresponding temperatures for some extreme inputs of the model
are not necessarily optimal or even feasible. For example, as shown in Fig. 17, when
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Vin = 2.0 m/s and Qi = 200 W, the corresponding temperature for server 1 violates
the temperature constraint (i.e., junction temperature for server 1 exceeds 85◦C) as
given in Eq. (15), thus the obtained solution is infeasible. This demonstrates that
the optimal solutions are far from being trivial or obvious, which further shows the
necessity for using an optimization technique such as the one proposed in this paper.

To account for stochastic nature of MOGA, we ran the new MOGA and the
conventional MOGA for this problem 30 times with identical initial population of
design points. The obtained results are depicted in Fig. 18. It can be observed that
the number of simulation calls has been significantly reduced when the new approach
is used. The mean for the number of simulation calls are obtained to be 255 for the
new approach and 565 for the conventional MOGA. Hence, for this example, on the
average 55% (i.e., 1 − 255/565 = 0.55) simulation calls are saved when the new
approach is used compared with the conventional MOGA. Also, the results from the
new approach have a similar standard deviation (i.e., 20.7) compared to that from the
conventional MOGA (i.e., 18.8). Since these two values are close to each other, the
performance of the new approach can be considered to be almost as robust as the
conventional MOGA.

6 Concluding remarks

Multi-objective design optimization model of an enclosed data center cabinet has
been formulated and solved. For this model, the design objectives are: (i) minimizing
the maximum chip temperature, and (ii) maximizing the total heat dissipations, over
all servers in a modeled air-cooled cabinet. Appropriate bounds on the temperature
and design variables (Vin and Qj) form the constraints for this constrained multi-
objective design optimization problem. To facilitate the optimization task, a POD-
based reduced-order model of the data center cabinet is constructed first. The POD
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model is used to substitute the original simulation model for the cabinet problem
and forms objective and constraint functions of the optimization model. Next, this
optimization model is integrated and solved with the new MOGA. The new MOGA
uses a kriging guided operation in addition to the conventional genetic algorithm
operations such as inheritance, crossover, and mutation to efficiently search the design
space for optimal design solutions.

It is observed that the application of the new MOGA to thermal design of a data
center cabinet obtains Pareto optimal design solutions that are very close to those
obtained from a conventional MOGA. Furthermore, the number of simulation calls
needed in the new MOGA approach to obtain the optimal solutions is about 55%
fewer than that in the conventional MOGA. This makes the new approach attractive in
handing multiple cabinets that interact with each other and are housed in a data center
or similar facility. Such problems are currently outside the demonstrated capability of
optimal design, due to the large computational requirements.

Finally, while in this paper the new MOGA is only demonstrated with a data center
cabinet thermal design problem, the approach is general and can be applied to other
multi-objective engineering design optimization problems.
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