
Distrib Parallel Databases (2007) 21:85–111

DOI 10.1007/s10619-006-7005-5

Sharing hierarchical context for mobile web services

Christoph Dorn · Schahram Dustdar

Published online: 8 December 2006
C© Springer Science + Business Media, LLC 2007

Abstract Context has the potential to enhance Web services in mobile environments
to a great extent. Yet, challenges such as bandwidth restriction or dynamic changes
require considerations that need to be reflected in the distribution of context. In this pa-
per, we present a novel technique to share and control access to context. In structuring
context information according to levels of granularity, we achieve context propagation
at the relevant levels of detail while protecting the privacy of the user. Introducing
the Context Access control, Subscription and Query Language (CASQL), we enable
fine-grained subscriptions and control over context in our proposed Context Sharing
Architecture (CoSAr). A collaborative work scenario accompanies our approach for
a unified way of accessing context information.

1 Introduction

Providing Web services for and on mobile devices has not only become a major field
in the research community but also opened great business opportunities. Bringing the
Service-oriented Architecture to mobile devices enables nomadic users to access con-
ventional services that were formerly limited to static clients. Thus, this architecture
of loosely coupled components, based on standardized protocols and description tech-
niques featuring platform independence can realize pervasive computing—anytime,
anywhere, any device. However, this evolution is not only about invoking services
from mobile clients but also about providing services within the mobile network. As

Recommended by: Djamal Benslimane and Zakaria Maamar

C. Dorn (�) · S. Dustdar
VitaLab, Distributed Systems Group, Institute of Information Systems, Vienna University
of Technology, Vienna, Austria
e-mail: dorn@infosys.tuwien.ac.at

S. Dustdar
e-mail: dustdar@infosys.tuwien.ac.at

Springer

86 Distrib Parallel Databases (2007) 21:85–111

both service requestor and service provider become part of a dynamic environment,
new challenges arise. Hence, we will first motivate the use of context in mobile envi-
ronments. This will consist of discussing the dynamic nature of mobile services and
the importance of sharing context information. The subsequent problem statement
will discuss the encountered issues in more detail.

1.1 The mobile environment

Figure 1 depicts an environment that consists of a mobile and a static part. We
argue that a wire-line network needs to be part of such a dynamic environment as
communication happens not only within the wireless part but also to and from the
static one. However, possible scenarios in our environment need not rely on such
an infrastructure (e.g., mobile ad-hoc collaboration). In the scope of this paper, we
do not differentiate between different types of mobile devices, but instead we state
that we are aware of the heterogeneous nature of potentially participating appliances
such as smart phones, personal digital assistants (PDAs), and laptops. Furthermore,
our mobile environment features the three main interaction patterns we identified as
important to our analysis. They give an estimate of the complexity of mobile Web
service communication.

1. The wireless network hosts both requestor and provider. This usually occurs in
(mobile) ad-hoc networks. However, infrastructure might exist that aids interaction
between peers.

2. The requestor is mobile whereas the provider is situated in the wired part. This
is probably the most common setting, opening up wired services also to nomadic
users.

3. The requestor is located in the wired part and invokes a service on a mobile device.
Examples are push services or applications for tracking purposes.

Fig. 1 Mobile Environment: also a wired segment is part of a mobile environment as nomadic clients
access static services and vice versa. The three main interaction scenarios are denoted as S1 to S3

Springer

Distrib Parallel Databases (2007) 21:85–111 87

1.2 Mobile Web services

To outline where and how context provides a benefit, we need to go into further detail.
From the view of fulfilling a task by using one or several services, the following
dimensions help to understand vital (mobile) service characteristics.

– Service Execution Time: A service can be executed immediately or scheduled for
later invocation.

– Service Execution Occurrence: A service can be used just once, on a regular basis,
or event-triggered.

– Service Uniqueness: The nature of the task determines if an exact service is needed
(such as a personal calendar service) or any service from a given group (e.g., any
image processing service able to convert from gif to jpeg) or all available services
of a given type (e.g., all current chat services during a team meeting).

These dimensions visualize the complexity found in the service-oriented archi-
tecture. While they pose less of a concern in static networks, the dynamic nature of
mobile networks requires thorough considerations. At this point, we introduce the
concept of context to mobile Web services.

1.3 Service-oriented context

A single definition of context does not exist nor would it be sensible. Bazire and
Brézillon [1] collected 150 definitions from various areas of research. A widely
adopted definition in the domain of computer science by Dey and Abowd [2] is:

[. . .] any information that can be used to characterize the situation of an entity.
An entity is a person, place, or object that is considered relevant to the inter-
action between a user and an application, including the user and applications
themselves.

We need to modify this rather general definition to better suit a service-centric
view. Hence, we propose the following adaptation.

Context is any information that can be used to characterize the situation of an
entity. An entity is a person, place, or object that is considered relevant to the
interaction between a user and a service as well as in-between services, including
the user and services themselves.

In addition, we like to emphasize the main points of our definition. In the domain of
service-oriented computing where there exists no longer just a monolithic application,
the definition of context is not purely focused on the interaction between a user and
an application but also covers the interaction between services. Subsequently, context
also describes the situation—the embedding—of a service, service instance, and
service platform. Especially in a mobile environment, location can be used to describe
the context of the service client—representing the user—and the service instance,
possibly but not necessarily related to another user. Hence, two classes of context
information arise: user-related context and service-related context.

Assuming that services are invoked to reach a goal, we add another class:
task-related context. This rather conceptual class contains context information that

Springer

88 Distrib Parallel Databases (2007) 21:85–111

describes the overall goal, the current task, related tasks, and the role of the invoking
party to allow services to behave accordingly. In this case, the context neither de-
scribes the user nor the service but links a certain task to its social situation. To put it
differently, services can be invoked on behalf of a role (independently of its current
bearer) or a group—ranging from a small team to a large community.

The following list provides some examples for the three context classes.

– User-related context: preferences, location, activity, presence, available devices,
and communication capabilities.

– Service-related context: location, system capabilities (e.g. processing power, band-
width, storage capacities, or available main memory), network hop distance to
same, similar, or related services, position within a workflow.

– Task-related context: community, team, roles, goal, task, task patterns, related tasks.

Comparing service-related to task-related context, we can observe that the latter
describes information at a conceptually higher level. For example, related tasks and
patterns can be mapped to workflows. Yet this task-related context is of importance,
as workflows heavily rely on role definitions and group structure and not on individual
entities alone [3]. The four dimensions of context information location, identity, time,
and activity, identified by Dey [4], can be applied to all three above introduced context
classes.

1.4 Empowerment through context

Having discussed the basic nature of context, we can now present the benefits of
context in the area of mobile Web services. Above, we have pointed out, that the
presented dimensions such as service execution time, execution occurrence and service
uniqueness are of less concern in static networks than mobile ones. This results from
the fact that a mobile network is more prone to changes than a static one. These changes
can be anticipated and reacted upon more appropriately if decisions are based on
context information. The different context information classes as outlined above cover
the whole service flow starting at the user, stretching across service client, composite
services, service platforms, and finally reaching basic service providers. Examples at
various stages include service response adaptation as results are tailored to the user’s
device and activity. Trying to find the most stable service, the client might look up the
nearest service by applying location information in the form of network hops or GPS
coordinates.1 A composite service utilizes time as context information to predict load
peaks on employed services. Simple services anticipate load-distribution by observing
the number of similar services available. In addition, service execution platforms
incorporate context information about the mobile environment to proactively detect
changes and notify services to reconfigure. While these examples are rather generic, a
greater variety of context types and granularity would be specific to actual applications.
In short, in static networks we can plan and provide services well in advance, whereas
in mobile environments we need context information to achieve this as late as possible
and as early as sensible.

1 We are aware, that location is not the only relevant context when determining the most suitable mobile
service that remains available to allow a successful invocation.

Springer

Distrib Parallel Databases (2007) 21:85–111 89

All these examples have the common need for exchanging context information as
this information resides distributed amongst the mobile network participants. Taking
the number of internet-enabled mobile devices in use worldwide and having experi-
enced the awkwardness in using the mostly context-unaware applications and services,
the need for enabling context usage becomes evident. Consequently, rendering context
sharing efficient and widely employable is one major concern. Hence, we are not going
to present a new context framework as a number have already been proposed—some
presented in the section on related work—but instead focus on sharing aspects.

The subsequent section gives an in-depth view on the faced challenges (Section 2)
including a motivating scenario followed by an introduction to the central ideas of
our paper (Section 3). Thereafter, we present our approach to these challenges. This
includes introducing levels of context details to reduce the amount of traffic as only
information of the required granularity is transferred. In addition, we suggest the
notion of dominant context information to further reduce transmitted data. Moreover,
a hybrid push-pull-based context sharing mechanism instead of a conventional one
enables context updates only being propagated if the local context of the interested
nodes indicates the update as relevant. Subsequently, Section 4 presents the integration
of these techniques into our Context Sharing Architecture (CoSAr). Describing in
detail our Context Access control, Subscription and Query Language (Section 5), we
move along to introduce our proof-of-concept implementation (Section 6). Section 7
provides an evaluation focusing also on aspects concerning mobility before sections
on related work (Section 8), future research (Section 9) and final remarks (Section 10)
complete our paper.

2 Problem statement

By focusing on sharing, we provide mechanisms and insights to allow also users
working on devices not especially suited for context sensing, processing, or storing to
benefit from the power of remote context information.

In the Introduction, we have pointed out the distributed nature of context in mobile
environments and the need for sharing such information. Yet, there are some challenges
that influence the sharing mechanism to a great extent.

To begin with, mobile devices are rather heterogeneous when it comes to processing
power, storage capacity, available memory, and communication capabilities. A sharing
mechanism thus needs to consider these differences.

Furthermore, the available transmission technologies such as Bluetooth, WLAN,
WIMAX, GSM, GPRS, UMTS, or HSDPA shape the amount of exchanged context
information to a great extent as the available bandwidth is very low or costly, the
transmission range is limited, or any combination thereof. Hence, reducing the amount
of transferred information is another requirement.

As users move around, switch on and off their devices, a sharing algorithm must
be able to cope with unreliable links and a dynamically changing environment.

In contrast to conventional, infrastructure-bound services, mobile Web services are
free to move around, thus generating and consuming context changes themselves.
Consequently, context is not only limited to the invoking party but also embraces the
providing one, thus additionally increasing the amount of context data.

Springer

90 Distrib Parallel Databases (2007) 21:85–111

Besides device relocation and service reconfigurations, ever-changing activities,
interactions, goals and situations produce an enormous amount of context data spread
all over the network. As context producer and consumer—including intermediaries
such as context brokers—are likely to be distributed but require such information, a
mechanism to define clearly what context information is of relevance (and thus needs
to be exchanged) is necessary.

Finally, for sharing context information we also need a means to manage access.
Especially as context is in many cases directly user-related, a fine-grained mechanism
provides privacy.

In the following subsection, we will further outline these challenges and corre-
sponding requirements embedded in a scenario.

2.1 Motivation scenario

This motivating scenario describes a situation taken from the domain of distributed
collaboration: Alice is member of a distributed mobile team for project CollabContext.
Her colleagues—Bob, Carol, and Dave—work on the same project, but are employed
at different companies working from their offices, on the move, and from home. Given
the heterogeneous organisational environment, the team members mostly provide
the necessary collaborative services on their respective devices. As each member is
involved in several other projects at the same time, their schedule is tight and their
calendars filled. In order to remain up-to-date of all team activities, they agree to
use a distributed awareness service that provides availability and device information.
In addition, members switch between activities related to different projects, move
around, change their devices, communicate by means of VoIP or mobile phones and
engage in video conferences or chats.

At one point, Alice wishes to arrange a meeting with her team members. She ac-
complishes this task by invoking a Meeting Scheduling and Agreement Web service.
This composite service possesses enough logic to arrange a meeting but needs to
access further services for acquiring calendar data, checking availability, executing
a scheduling algorithm, and resolving arising date conflicts. Figure 2 visualizes all
involved components and displays the steps made in the following description. There
are a number of context types involved, namely: activity (describing work environ-
ment, project, activities, and artefacts), reachability (which device and communication
means are available to contact a user), and device status (system load and capabili-
ties). These three types are structured as hierarchies and serve as the underlying data
structure used in our prototype.

1. Alice invokes the Meeting Scheduling and Agreement Web service stating the
members and corresponding project.

2. The meeting service then contacts the shared team Calendar Web service (2a)
to retrieve the calendars of all participating members (including Alice) and a
Awareness Web service (2b) to check for their current reachability. We assume
the awareness service has subscribed to all members, respectively their devices
for high-level availability and device status context information. Currently, Dave’s
laptop and PDA as well as Carol’s smartphone are online, while Bob is unavailable
for the moment.

Springer

Distrib Parallel Databases (2007) 21:85–111 91

Fig. 2 Meeting scheduling scenario in a mobile environment. The client and the collaboration services
reside on mobile devices, whereas the composite Meeting Scheduling and Agreement Web service as well
as the Calendar Web service and the Awareness Web service are abstract services and can be implemented
either distributed or centrally provided by the infrastructure. Lines represent information flow between
nodes. The numbers on the lines indicate the temporal aspect as given by the textual description of this
scenario. We abbreviated the labels for Scheduling Algorithm Web service and Collaboration Web service
on the mobile devices and omitted the links between each device and the Awareness Web service for clarity
reasons

3. Next, the service queries all available devices for their system load and capabilities
(3a) and finally invokes the Scheduling Algorithm Web service on Dave’s laptop
(3b), which is experiencing the least load.

4. In the meantime, the availability service notifies (4a) the meeting service that Bob
is available now and Alice has become offline. In addition, Carol changes from
her smartphone to her laptop, yet this information is not propagated as also the
awareness service has not subscribed at such level of granularity.

5. The Scheduling Algorithm Web service detects (5a) a conflict that requires human
intervention to be solved. As Alice is still offline, the meeting service cannot
contact all necessary members. Hence, it subscribes (5b) to activity information
concerning the whole team at a very coarse-grained level, as all members prefer
to be contacted when at work and not during their freetime. Thus when they are
at home, neither reachability nor device status information is available, even their
devices might be connected.

Springer

92 Distrib Parallel Databases (2007) 21:85–111

6. Once Alice reports back, the awareness service notifies (6b) the meeting service that
all members are online. Thus using fine-grained reachability information directly
from all connected devices a Collaboration Web service on the best suited device
for each participant brings together all involved team members to agree on the
proposed date or another date. As the Collaboration Web service knows about the
goal type of communication (task-related context information) it can choose the
right means of communication: in this case synchronous chat.

7. After the four have agreed on the meeting details, the team calendar is updated and
the meeting service terminates.

Once we consider the huge amount of information on activities, devices status and
reachability that would be transferred between nodes without any granular structuring,
the benefit of using hierarchical context information combined with a hybrid sharing
mechanism becomes evident. Imagine location information used within each company,
that is irrelevant in such a distributed team but nevertheless shared, as there is no mean
to control context flow.

Furthermore, this scenario highlights the two ways how context information is
retrieved. The composite meeting service subscribes and queries context information
at different levels of granularity. So, on the one hand it is interested in change events
(for which it receives notifications) and on the other hand it retrieves context facts
once relevant changes have occurred. Especially in such a dynamic, non-deterministic
environment, using either purely pull or push mechanism for both situations will result
in more traffic than necessary.

Thus in the following section, we demonstrate how a set of mechanism combined
offer a flexible and powerful solution to these challenges.

3 Accessing and sharing context

Our contribution consists of three key concepts—namely Context Granularity, Con-
text Dominance, and Granularity-Aware Context Sharing—that cover context data
modelling, context relevance ordering, and context distribution.

3.1 Context granularity

The idea of structuring context hierarchically is not new. For example, Ferscha et al.
[5] introduced a symbolic location containment hierarchy consisting of concrete and
abstract places (such as campus, 1st floor, or room1 in the former case and faculty1,
department1, or desk in the latter case). We argue that hierarchical structuring of
context information should not be application specific. Instead, we propose to map the
representation of a given context dimension to a level of granularity in a corresponding
hierarchy. That is to say, context information is modelled as required—by means of
an ontology, graph, tuple, etc. Yet, it needs to be accessible at various levels of detail.
Example hierarchies related to people could be focusing on location (town, district,
street, floor, room), abstract places (indoors, faculty, department, desk), presence
(not available, lunch, lunch with colleagues, lunch with Mr. X and Mrs. Y), time
(in the future, next week, Monday, 12:00), or activity (work, project X, document

Springer

Distrib Parallel Databases (2007) 21:85–111 93

Key Value Model
Network = 192.168.0.0
Networkshare = syscom
Downloads = test.doc, sys.com

Ontology Based Model
Person Device

Office

uses

works in

Object Oriented Model

Address
getStreet()
getCity()
getCountry()

Person
getAddress)
getProjects()
getOffice()

Activity
Hierarchy

Work/Freetime
-^-

Project
-^-

Document
-^-

Task

Location
Hierarchy

Region
-^-

Town
-^-

Street
-^-

Floor

Fig. 3 Providing context
access by means of hierarchies:
in this example activities and
locations are accessible at
different levels of granularity.
The three exemplary models
visualize how different context
forms map to the same
hierarchy. A model-to-hierarchy
mapping—indicated by means
of the lines between models and
hierarchies—determines how
context information flows
between the respective forms of
representation. This mapping is
specific for each problem
domain as the links contain
semantic information

Y, task Z). In the case of services, an exemplary hierarchy could describe the load
on a service execution platform: Available Services, high load, 80% load, Executed
Services. Figure 3 contains such an exemplary mapping.

It is neither sensible nor possible to provide all available context information in
such a way. Only information subject to frequent changes should be structured this
way to allow for a fine-grained access and update mechanism. Consequently, the
further up in a hierarchy an update occurs, the more significant it is. Yet, those data
that rule out hierarchical structuring or data always used at the same level of detail
(e.g., user preferences) need not necessarily be excluded but rather form a hierarchy
merely consisting of a single level.

Providing context information in such a way enables better context reuse between
peers using different context semantics. As long as the vocabulary is the same, both
peers—featuring different task specific high-level reasoning—can draw their own
conclusions from the shared set of context information. Subsequently, hierarchies can
be seen as interfaces of context models.

3.2 Context dominance

Context dominance describes the concept of ordering context information according
to importance. Taking our scenario as an example, the participants define the context
state “Freetime” of context type Activity as dominant over context information of type
Reachability and DeviceStatus as they would like to remain uninterrupted regardless
of changing devices. Therefore, occurring updates on context information concerning
these two context types are not propagated in case of such activity status. Context
dominance is expressed as a set of rules that are restricted to a device, a user, or are
globally applied to all participating services involved in fulfilling a given task. More-
over, dominance rules become active depending on context values at other granularity
levels and hierarchies. Thus, one context type might be dominant over a second one

Springer

94 Distrib Parallel Databases (2007) 21:85–111

under certain conditions but subordinate otherwise. We present the structure of such
rules in Section 5.

3.3 Granularity-aware context sharing

With our third contribution, we introduce a hybrid, granularity-aware context sharing
mechanism. Context information is neither purely pushed nor purely pulled between
nodes but a combined, hybrid technique is applied. Pushing context information results
in unnecessary traffic as updates are always propagated at the most detailed level—
event though the receiving node finds that data useless at the given time or granularity.
On the other hand, pulling context information either causes much network load (in
case of small polling intervals without any updates available) or delays delivery if
polling happens rarely.

We combine and enhance these mechanisms in two ways. On the one hand, pushing
context is based on well understood subscribe/notify techniques. The difference to
conventional publish/subscribe systems is the ability of subscribers to define in greater
detail the events they would like to be notified about by means of conditions. Thus,
the context requestors need not rely on predefined events. In our case, these events are
context updates at certain granularity levels. Two classes of subscriptions are available:
(1) basic subscription defining merely the level of detail and optionally the value of
which context changes are of relevance and (2) composed subscriptions that introduce
conditions based on values of other context type. Consequently, our subscribe/notify
mechanism requires access to context information at different granularity levels as
introduced above. We present our Context Access control, Subscription and Query
Language (CASQL) in further detail below where we also give some examples.

Besides a push mechanism, the pull-based one needs integration as we argue: rel-
evance of context information is dependent on the actual context. Subsequently, as
context updates of a given granularity arrive, the overall context can change which
might result in further context information at a different level of detail being required.
At this point, the receiver pulls additional—more detailed—context information from
the context provider and optionally updates the subscription rules. The motivating
scenario demonstrates this strategy: subscribing to coarse-grained availability infor-
mation combined with retrieving fine-grained device status on demand. Yet, obtaining
this information is not limited to the node providing the update in the first place but
includes all available context sources. As any incoming context information might
lead to inconsistencies within a hierarchy, we need a mechanism to deal with such
conflicting context data. The Hierarchy Adapter in Section 4 provides such a means.

We merged these three ideas in our Context Sharing Architecture (CoSAr) and
Context Access control, Subscription, and Query Language (CASQL) presented in
the following sections.

4 Context Sharing Architecture (CoSAr)

In this section, we present the integration of our techniques and mechanisms into a mo-
bile Web service execution platform in form of a logical layer. Our proposed Context
Sharing Architecture consists of a Context Publish/Subscribe (CPS) component, a

Springer

Distrib Parallel Databases (2007) 21:85–111 95

Context Sharing Architecture (CoSAr)

Hierarchy
Resource

Hierarchy
Descriptions

Subscribe
Client

Context Aware
Web service

Query
Client

Subscribe
Server

Query
Server

Context Aware
Web service

Context Aware
Web service

Context Aware
Web service

Context Publish/
Subscribe

Context Platform Manager

Hierarchy Adapter

Context System
Blackbox

Context System
Blackbox

Fig. 4 Context Sharing Architecture (CoSAr) for a mobile Web service execution platform: CoSAr
consists of a Context Publish/Subscribe component, Hierarchy Adapter, Hierarchy Descriptions, Platform
Context Manager and Context System Blackbox

Platform Context Manager (PCM), Hierarchy Descriptions (HD), a Hierarchy
Adapter (HA) and one or more Context System Blackboxes (CSB). These main com-
ponents are visualized in Fig. 4. Together they provide capabilities to Web services
for accessing local and remote context information. For our scenario, we envision
all participating devices to feature a complete (or partial on small-scale devices)
implementation of this architecture.

The Conxtext Publish/Subscribe (CPS) component is the main module responsible
for sharing context information in a push- and pull-based manner. Pull-based re-
trieval is realized by a separate Web service interface using the same data-structure
as notification messages. The main tasks are twofold. On the one hand, the Con-
text Publish/Subscribe component processes incoming context (subscription and
query) requests, and on the other hand, it queries and subscribes to remote context
information on behalf of local Web services. In the latter case, the remote part needs
not be a context sharing layer of the same kind, but can be any context source able
to process subscription or query requests (specified in CASQL). The CPS module
has access to a set of rules to decide which context information may be subscribed
to. Specifically, the Privacy Rules and active Dominance Rules determine the extent
to which context is shared. Both sets contain rules—written in CASQL—that are
added and controlled by the user, via policies, or by means of Web services. Fur-
thermore, the module sustains a list with remote and local subscriptions. Finally, the
CPS shares the common set of available context Hierarchy Descriptions with the
Hierarchy Adapter. There are two remotely accessible interfaces. The Subscribe
Server serves as an endpoint for incoming subscribe requests, whereas the Query

Springer

96 Distrib Parallel Databases (2007) 21:85–111

Server handles incoming query requests. For local services, the Subscribe Client
and Query Client are source of outgoing requests and queries as well as destination
for incoming notifications.

Hierarchy Descriptions (HD) define the remotely available hierarchies and locally
supported ones. As the Hierarchy Resource interface enables retrieval of supported
context hierarchies, remote Web services can check whether the required context
information can be obtained via subscriptions. In addition, also the Context Pub-
lish/Subscribe module can check if subscription requests are likely to be accepted.
In both cases, the necessary messages run between the CPS modules, which provide
the acquired hierarchies to the local Web services.

The Hierarchy Adapter (HA) provides a bridge between Context System Blackboxes
and the given hierarchies. It translates the query and subscription statements into
the appropriate representations. Thus, it maps the given granularity levels to the
internal data structure and capabilities of the context system. In the other direction,
the HA module analyses context data (in form of events, notifications, etc.) from
the context system to determine the corresponding hierarchy and level of granular-
ity. Subsequently, the Hierarchy Adapter generates the appropriate CASQL event
description and forwards it to the CPS module for further processing. Depending
on the mapping between hierarchies and context system, an input from either side
(CPS or CSB) can result in multiple output statements on the other side. As the
mapping mechanism quite heavily depends on the semantics of the specific hierar-
chy and the underlying context model of the CSB, it is not possible to describe a
generic algorithm for all context representation forms. However, an approach for
mapping context information from an object based model to a generic hierarchy is
depicted in Fig. 5 and works as follows. Each object in the CSB that maps partially
or even completely to a hierarchy defines one or more parameters that are part in
possibly several mappings. A mapping describes how a parameter from the object
model fits to a value of a specific hierarchy. On the hierarchy side, each hierarchy
has levels that link to parent and child level by means of an aggregation method.

Hierarchy Level
Value

Placeholder

Atomic Composed

Value
Struct

1 * 1 *

1 0..1

0..*
1 ..*

Model
Object

Parameter1 1..*

 1

 1

Mapping* *

Aggregation
Method

 1

 0..*

Fig. 5 A generic approach to map hierarchies to objects and vice-versa

Springer

Distrib Parallel Databases (2007) 21:85–111 97

A level consists of value placeholders. These values either can be simple, atomic
values or composed ones that are further described in the value struct. Hence, if
a change event in the CSB occurs, the corresponding parameter is looked up and
the mapping(s) retrieved. Subsequently, the value of a hierarchy and level is cre-
ated and a CASQL event fired. Vice-versa, from an incoming notification, the HA
extracts the value, looks up the corresponding mapping and inserts the data for the
fitting parameters.
Conflicting values within a hierarchy are dealt with in two components. Either the
context system alone determines which piece of context information is discarded or
the Hierarchy Adapter assists in this task. As the the HA is unaware of the semantic
meaning of the contextual data, it cannot detect conflicts by itself. However, values
in a hierarchy feature a confidence value at each level, where more coarse-grained
values are more confident than fine-grained ones. Thus, the CSB is able to apply a
threshold that defines when lower level context information overrides higher ones.
Otherwise, the value at the higher level takes precedence. Another feature of the HA
is partial hierarchy coverage which describes the incomplete mapping of context
information and hierarchy levels as well as values. Here, some complete levels or
individual values are not considered, as corresponding context information is either
not available or of unsupported type. Thus, some levels of granularity are either
neglected or merged with hierarchically higher ones. More detailed mechanisms
of information matching are outside the scope of this paper. We will address
them in our future work. Moreover, also whole hierarchies are unaccounted for
at the Hierarchy Adapter, if they describe context information that Web services
subscribe to at remote nodes. Yet another aspect is the HA’s support for multiple,
heterogeneous context systems, each requiring a separate mapping. However, each
hierarchy can only contain information from one context system as otherwise the
HA would not know which CSB will produce the events for a given subscription
request. Hence, it cannot request that information from the correct CSB.

The Platform Context Manager (PCM) acts as a small-scale context system provid-
ing service specific context information. It analyses service requests to establish
who is invoking a service, what QoS properties are available or required, what
endpoints are accessed from local services, which services are deployed and what
instances of them are currently running. This context information allows classi-
fying context requestors according to participation in composite services. Hence,
the PCM pre-defines several roles to permit Privacy and Dominance rules based
on this information. For example, a service instance can restrict access to context
information to services participating in fulfilling a composite task. Thus, it needs
not state the exact type or address as defining the role is sufficient. Moreover, in
such a scenario, if one of these services no longer participates in the composi-
tion, it also looses its right to access context information. The first part of Table
1 lists the available roles, which relate to the service dimensions presented in the
introductory section. In addition, the PCM also provides abstract events related to
service compositions—not to be confused with context change events. Start or end-
points of service invocation allow restricting context access to a specific, a-priori
unknown time span. In this way, the PCM supplies service context information to
enable more efficient and effective use of general context information. Nevertheless,

Springer

98 Distrib Parallel Databases (2007) 21:85–111

Table 1 Platform context manager roles and events

Name Description

Roles Composition All services that participate in a composite task execution
Requestor The (remote) service or client that invoked the corresponding local

one, part of Composition
Provider Services that are used by the local one, also part of Composition
Interface All services (remote or local) that implement the same interface
Identical All services instances of the same local service
Local All local services
Remote All remote services

Events Invocation start The moment, a service method was invoked
Invocation end The moment, a service finished
Conversation start The moment a conversation is started
Conversation end The moment a conversation is finished

information regarding service platform load are not located at the PCM but made
available by means of a regular service and a corresponding hierarchy.

The Context System Blackbox (CSB) contains all elements of a context management
system such as the ones introduced in the section on related work. For our purpose, it
is sufficient to handle the system as a blackbox assuming that it includes components
such as context reasoner, context processor, context storage/database, and context
sensors (or interfaces to access sensors). In case of several CSBs, we assume each
of them remains unaware of the other ones. Furthermore, we expect applications—
or services in our case—to access the context system blackbox natively. Hence,
the context sharing layer enables context retrieval from the local CSB by means
of the Hierarchy Adapter or directly. The latter case is, however, subject to future
research.

Web Services become context-aware as they access context locally via the Hierarchy
Adapter or remotely by means of the Context Publish/Subscribe component. The
services themselves normally act as mere context consumers, however, the HA also
enables adding context information to the CSBs. This capability is required not only
to forward remote context events to the subscribing Web service but also to feed
this information into the local context system(s). In addition, Web services possess
a set of Privacy rules and private Dominance rules to adapt their subscriptions and
update the CPS’s active Dominance rules.
To provide a better understanding of the Context Sharing Architecture, the following

examples of information flow describe the interaction between the components in more
detail.

Service instantiation results in a new Web service instance provided with relevant
context information coming from the invoking party and the local context system.
This includes Dominance rules and Privacy rules. Subsequently, the service anal-
yses the current context and adapts these rules. The service checks upon start-up
whether the required context hierarchies are provided. By comparing the structure
of available and required hierarchies, the service determines the compatibility and
tries to detect if existing deviations prevent it from functioning properly. Such
an algorithm is briefly outlined in Annex A. In our scenario, upon invocation the

Springer

Distrib Parallel Databases (2007) 21:85–111 99

meeting service checks with the awareness service if their hierarchies are compat-
ible. In this case, as subscriptions to the awareness service are at a very coarse-
grained level only the top values need to fit.

Outgoing Context Subscriptions are initiated by a Web service. It provides one or
more rules in CASQL, which represents the subscription request. In accessing the
Context Publish/Subscribe module, the service also states whether the required
context information is found locally or remotely. If in lack of this information,
the CPS module determines the correct context source by checking available hier-
archies, information embedded in the requests and information coming from the
Platform Context Manager. In case of a remote location, the CPS subscribes at its
remote counterpart. For example, the awareness possesses no context information
about Alice, Bob, Carol, and Dave locally, so it requests the CSP to subscribe to
such information remotely.

Incoming Context Events are augmented with context information from the Platform
Context Manager to establish related services and rules. In case such context
information is stored locally, the context changes are integrated in the corresponding
Context System Blackbox by first passing the Hierarchy Adapter. Otherwise, only
the subscribing Web service obtains the context event. Depending on the content of
the received context change, the service might find minor and major adaptations of
Privacy rules and current subscriptions necessary. In turn, major incoming events
can result in the CSB or Web service publishing context changes.

Incoming Context Subscriptions in CASQL are first checked against the existing
Privacy rules for permission. The Context Publish/Subscribe module also verifies
by means of the Dominance rules whether a subscription will ever receive any
notifications. Context information from the Platform Context Manager describes
which roles the subscribing party has in relation to invocation, composition and
policies. In case of a valid subscription, the Hierarchy Adapter parses the supplied
rule to extract the matching condition and maps it to a request for the Context System
Blackbox. The CSP collocated with the awareness service checks the subscription
request by the meeting service and accepts it as it subscribes on behalf of the team
member Alice.

Outgoing Context Change Event. Upon receiving a context change event from the
CSB, the HA creates the corresponding CASQL representation and forwards this to
the CPS module. There the subscriptions are matched against the event to determine
which ones fit. As in the meantime services might have changed Privacy and
Dominance rules, no longer valid subscriptions requests are deactivated and thus
excluded from the event matching process. Finally, the CPS component transmits
context changes for all matching subscriptions. Referring to the scenario, the CSP
collocated with the awareness service receives context changes from the team
members and forwards these data at the requested level to the meeting service.

Remote Service Invocation includes context transfer as the local composite Web
service provides relevant context information to the invoked services. Primarily
Dominance rules (and to a lesser extent Privacy rules) determine which context
is significant and thus needs to be pushed. Besides context, the invocation of
remote services also includes the transfer of Privacy and Dominance rules if
required.

Springer

100 Distrib Parallel Databases (2007) 21:85–111

5 Context access control, subscription and query language—CASQL

As we stated above, for efficiently using context we need access control, subscription
mechanisms and querying tools. These three requirements form the main focus in
our Context Access control, Subscription and Query Language (CASQL). Instead of
designing a new syntax for our language, we rely on XML and XML-Schema. This
enables the use of available tools for creating, validating, transforming, and general
processing of context information in XML documents.

Central to our language is the hierarchical representation of context information. An
XML-Schema document describes the general structure of this information, consisting
of hierarchy details, level details and value details. This skeleton provides a basis for
domain specific hierarchies, which then include specific levels and details on the
used context information format. Such precise hierarchies serve as contracts between
interacting services as they thus agree on supported levels and context format. The
following elements are part of the generic hierarchy structure:

Hierarchy. The top level element is a hierarchystruct node which has an identifier
for referencing from other documents, a version to allow for adapting and evolving
hierarchies, a name, a human readable description and information on the depth of
levels. In addition, the type field defines what kind of entity the hierarchy describes.
The three applicable values correspond to Dey’s et al. [4] classification of context
entities, namely persons, places, and things.

Level. Each hierarchy consists of a number of levelstruct elements which represent
context granularity. Each such level has an identifier, name and human readable
description. Furthermore, links to parent and child levels establish a double-linked
list that can include further levels later. In the simplest case, each level contains one
value. Several values are possible, thus establishing a tree by linking to the parent
value. Yet, we expect the number of branches and thus the complexity of the tree
to remain small.

Value. Finally, a value describes how context events are structured. Allowing several
values in each level enables extending the hierarchy at a later point without requiring
existing services to adapt. This also supports different context states at a rather
generic level featuring different context representations at lower levels, hence
reducing the need to handle two separate hierarchies and at the same time enabling
a more fine-grained context subscription.

The components of CASQL encompass XML schema descriptions of how queries,
subscriptions, notifications (also used for query results) dominance and privacy rules
are structured.

Dominance rules. As explained above, Dominance rules consist of statements that
describe under which conditions one hierarchy is dominant over another one. For
this purpose, a dominance rule defines the condition when it is valid (the dominant
context) and the hierarchy that is dominated. Specifying not only a hierarchy
but also levels and values enables to restrict sharing to a specific subtree of the
hierarchy. Further parameters describe optional conditions on valid time and entity.
Listing 1 shows one dominance rule taken from the scenario.

Springer

Distrib Parallel Databases (2007) 21:85–111 101

Privacy rules. In accordance with the context structure from the basic hierarchies,
Privacy rules also build upon optional conditions regarding confidence, context
value, timestamp and entity. More important, such a set is not restricted to single
role, group or service but bound to a list of those. The Platform Context Manager
manages the generally valid roles listed in the first part of Table 1. Additional ones
are specific to services, and thus are user or task defined. They remain outside the
PCM’s context scope; hence, the respective services need to provide the mapping
of roles and groups to entities.

Subscriptions define the entity (or role), level, and value for which to receive notifi-
cations. Optionally, it is possible to state a minimum confidence value, transition
type (if an entity has reached a certain state, or left it), notification type (whether to
receive an initial notification about the current state or just future events) and detail
type (which part of a hierarchy: only values at the exact given level, above, below
or all). The meetings service’s subscription to the team members concerning their
activity status is given in Listing 2.

Queries are similar to subscriptions except for the missing confidence value and
notification type. For our scenario, we have identified queries and subscriptions as
listed in Table 2.

1 <DominanceRule xmlns="http://ns1/vimocos/dominance" id="dr1">
2 <dominant >
3 <hierarchyId >ns2.activity.ActivityHierarchy</hierarchyId >
4 <levelId >L1</levelId >
5 <valueId >ns2.activity.Environment </valueId >
6 <value>
7 <Env:Environment xmlns:Env="http://ns1/vimocos/activity">
8 <Env:envType >FREETIME </Environment:envType >
9 </Env:Environment >

10 </value>
11 </dominant >
12 <subordinate >
13 <hierarchyId >ns2.vimocos.reachability.ReachabilityHierarchy</hierarchyId >
14 <levelId >L1</levelId >
15 <valueId >ns2.vimocos.reachability.TopStatus </valueId >
16 </subordinate >
17 <entity>Alice</entity>
18 </DominanceRule >

Listing 1 Example dominance statement: if the activity of Alice at level Environment is Freetime then
do not propagate any Reachability information. Namespaces are substituted for line length reasons: ns1:
www.vitalab.tuwien.ac.at and ns2: at.ac.tuwien.vitalab.vimocos

1 <Subscription xmlns:ns2="http://ns1/vimocos/sharing"
2 detailtype="UPPERINCL"
3 notificationtype="ALL"
4 transitiontype="TO" xmlns="">
5 <ns2:entity >Alice</ns2:entity >
6 <ns2:hierarchyId >ns2.activity.ActivtiyHierarchy</ns2:hierarchyId >
7 <ns2:levelId >L3</ns2:levelId >
8 <ns2:valueId >ns2.activity.Project </ns2:valueId >
9 <ns2:minConfidence>50</ns2:minConfidence>

10 </Subscription >

Listing 2 Example subscription statement: request notifications for any events about Alice that concern
her Project status. In any case (events also occurring at higher levels), just return context from level three
upwards and only if the confidence is at least 50. Namespaces are substituted for line length reasons: ns1:
www.vitalab.tuwien.ac.at and ns2: at.ac.tuwien.vitalab.vimocos

Springer

102 Distrib Parallel Databases (2007) 21:85–111

Table 2 Subscriptions and Queries from the motivating scenario. Subscriptions and queries are based on
the level and not on exact values, as this is sufficient

Nr From To S/Q Hierarchy Level Type

0a Awareness Alice, Bob, Carol, Dave Sub Reachability L1 exact
0b Awareness AlicePDA, [. . .],

DaveLaptop
Sub DeviceStatus L1 exact

2b Meeting Awareness about Alice, Bob,
Carol, Dave

Query Reachability L1 exact

3a Meeting DaveLaptop, DavePDA,
CarolSmartphone

Query DeviceStatus L3 lowerincl

5b Meeting Alice, Bob, Carol, Dave Sub Activity L3 upperincl
6b Meeting Alice, Bob, Carol, Dave Query Reachability L1 lowerincl

Notifications. Eventually subscriptions lead to notifications. These represent one
possible path trough the respective hierarchy tree. Hence, at each level, there
resides only one value object. A notification consists of value objects that refer
to their respective level and hierarchy. Beside the specific context content, each
value features context metadata such as confidence, context source, and timestamp.
Both subscriptions and queries result in notifications being returned. In the case of
context events at a higher level than subscribed to, also notifications are created as
the context has consequently changed also at all lower levels.

The source of Privacy and Dominance rules is manifold. Some rules will be specific
to the current platform, others shared amongst collaborating services. In addition, some
will be user-defined, or come pre-installed with the service. These can then be refined
for each service instance.

For each component we presented in the scope of CASQL, there exists an XML-
Schema for validation. Moreover, example XML hierarchies, schemas, subscriptions,
queries, and notifications are available for download at our project site.2

6 Implementation

We chose the open source Knopflerfish OSGi3 platform as an environment for our
proof-of-concept implementation for several reasons. To begin with, it provides the
possibility to realize the individual components of our architecture as bundles that
allow for dynamic installation, update, and removal without influencing the other
bundles. Secondly, OSGi is able to run on mobile devices such as PDAs (using for
example IBMs J94 Java virtual machine) and Laptops thus reducing the need to write
a separate application for each class of mobile devices. In addition, OSGi support is
about to be incorporated in Smartphones as well. With regard to Web service support,

2 Project site link: http://www.vitalab.tuwien.ac.at/projects/vimocos
3 http://www.knopflerfish.org/index.html
4 http://www-306.ibm.com/software/wireless/wctme/bundle.html

Springer

Distrib Parallel Databases (2007) 21:85–111 103

Fig. 6 The internal message flow of the Context Publish Subscribe component and WS-Notification and
OSGi interfaces

the Knopflerfish project provides a plug-in bundle5 based on Axis 1 that allows any
bundle interface to be made available as a Web service.

For demonstrational reasons, we opted to change the nature of the hierarchy adapter
to include a context database. This reduces the complexity of the initial version
while preserving the benefits that come with the hierarchical structuring of context.
Otherwise, our implementation reflects the CoSAr architecture. Figure 6 displays the
internals of the context sharing bundle including the available internal and external
interfaces as well as additionally required bundles.

The Context Sharing Component is split into a generic WS-Notification Bundle
and a context specific bundle to allow reusing the WS-Notification sources. Also the
hierarchies and all XML-to-Java and vice-versa mapping code are combined in a
separate bundle. The database bundle provides the events and query interface and thus
can be exchange with a true hierarchy adapter and back-end context system at any time.
Making use of the intra-OSGi container communication facilities, the scenario Web
services access the internal interfaces of the context sharing component rather than
using the Web service based ones. To evaluate our architecture, we implemented the
services from the motivating scenario as well as a simulator to control the generation
of context change events. Having provided a first prototype, we are going to evaluate
our architecture in the next section.

5 https://www.knopflerfish.org/svn/knopflerfish.org/trunk/osgi/bundles opt/soap/readme.html

Springer

104 Distrib Parallel Databases (2007) 21:85–111

Table 3 Context sharing
protocol message size: numbers
are in bytes

Message type Size

Subscription Request 1200
Subscription Response 810
Unsubscribe Request 690
Unsubscribe Response 690
Notification Envelope 900
Query Request 710
Query Response Envelope 400

The values for Notification and
Query Response messages
exclude the actual context
payload.

7 Evaluation

We base our evaluation on a series of test runs where we observed the messages flow
to derive the average size for each type given in Table 3. We then demonstrate the
benefit of our architecture by calculating the reduction of transferred context data in
the following three areas.

1. The hybrid approach of query and subscription to context information reduces
protocol overhead as opposed to pure pull or pure push-based solutions.

2. Subscriptions based on levels and values reduce the amount of unnecessary (be-
cause too detailed) context information.

3. Specifying which part of a hierarchy to transfer upon a request or notification
further limits the transferred amount of context.

As we are dealing with context information that changes in a non-deterministic
way, we will not compare our hybrid approach with a purely pull based mechanism
that relies on polling for detection of changes. In the domain of mobile collaboration,
bandwidth is too expensive to apply polling and the frequency of events is too un-
predictable to select an appropriate polling interval. Hence, in respect to point (1) we
limit our comparison to pure publish/subscribe systems. Our hybrid approach reduces
the message overhead by substituting queries for short-lived subscription. Based on
the data from Table 3, the protocol overhead of a subscribe roundtrip (consisting of
a subscribe request, response and one notification) is nearly three times as high as a
simple query request response message exchange (2910 bytes to 1100 bytes). Context
information itself is not included in either case. The advantage of the pull mechanism
is even higher if we take possible unsubscribe requests and responses into account.
Nevertheless, we have to keep in mind that queries are only superior to subscriptions
when it comes to retrieving existing facts rather than events.

When we discuss point (2) that focuses on the ability to specify the level of change
and not only the whole context structure, we have to make some assumptions. For a
hierarchy consisting of five levels and assuming the subscription to be evenly spread,
Table 4 displays the difference between a hierarchy-aware subscription system and
a regular one. In the first case, events happen equally on every level, where as in
the second case the more likely situation of fine-grained changes happening more
often that coarse-grained ones is presented. Under the former assumptions, level-
based subscription saves 40%, while under the latter assumptions the number of
notifications is reduced by 53%.

Springer

Distrib Parallel Databases (2007) 21:85–111 105

Table 4 Context events
produced by a level-based
subscription mechanism and a
regular one

Level Sub Events Nfy w/ Nfy w/o Improvement

Case 1
L1 1 1 1 5
L2 1 1 2 5
L3 1 1 3 5
L4 1 1 4 5
L5 1 1 5 5
Total 15 25 40%

Case 2
L1 1 1 1 15
L2 1 2 3 15
L3 1 3 6 15
L4 1 4 10 15
L5 1 5 15 15
Total 35 75 53%

Subscriptions are evenly spread
across levels (one at each level).
In addition, in case (1) events are
evenly occurring whereas in
case (2) events at lower levels
are linear more likely than at
higher levels.

Reducing bandwidth usage does not stop at level-based subscription. As our mech-
anism enables subscriptions and queries to specify which part of the hierarchy to
transmit, the amount of data is further limited. For our three hierarchies, we have
listed in Table 5 the average context content size for events at each level. To obtain
these data, we created random (within a certain scope of choice) hierarchy data for
four (respectively six) entities.6 Then, queries at each level and data type were issued
and the response size collected. We then aggregated the value of each level from the
available entities and test runs. For queries and subscriptions in our scenario (as listed
in Table 2), we achieved an improvement of 29% up to 76% of payload reduction.
As push and pull of context information is based on the same data structure, these
numbers are valid for notifications and query result messages.

Further reductions occur from the use of Dominance Rules. However, as the rules
and respective application are domain specific as well as the affected context events
non-deterministic, no improvement results are possible to predict.

In general, the right choice of subscriptions and queries as well as the required
level and return type greatly influences the amount of data transmitted and exhibits a
lot of potential for improvement beyond the presented results.

7.1 Discussion

Although running in an OSGi platform, our proof-of-concept implementation might
not seem fit for a mobile environment on the first sight. It could be argued, that it is too
heavyweight for mobile, resource constraint devices. This is certainly true if certain
aspects remain unconsidered during the system’s deployment phase. The presented
framework presents a complete view on what components can be available on a certain
device, but need not necessarily be.

6 The entities were: Alice, Bob, Carol, Dave as well as AlicePDA, BobLaptop, CarolLaptop, CarolSmart-
phone, DavePDA, and DaveLaptop, respectively.

Springer

106 Distrib Parallel Databases (2007) 21:85–111

Table 5 Average context
query results in bytes for
Activity hierarchy, Reachability
hierarchy and DeviceStatus
hierarchy

Full Exact Lowerincl Upperincl

Activity
L1 3368 636 3368 636
L2 3368 783 2958 1193
L3 3368 675 2442 1642
L4 3368 1068 1953 2484
L5 3368 1111 1111 3368

Reachability
L1 2724 639 2724 639
L2 2724 615 2318 1026
L3 2724 831 1932 1624
L4 2724 1334 1334 2724

DeviceStatus
L1 2508 1043 2508 1043
L2 2508 674 1705 1477
L3 2508 692 1271 1929
L4 2508 818 818 2508

Mobile devices featuring sufficient processing power and storage capacity such as
Laptops require no adaptation of the presented software. Compared to hybrid peer-to-
peer networks, such machines resemble super nodes that provide context information
and services to clients that are more lightweight. These in turn require solely imple-
menting the context subscription mechanism without the need for a context system
or hierarchy adapter. On the other end of the scale reside pure context servers, which
provide context information without subscribing to any. These nodes are also the most
likely to feature access to several context systems.

A further issue concerns XML processing. Regular tools for parsing, validating,
analyzing, or transforming come with a large overhead. For example, keeping a
complete DOM tree in a smart phone’s memory is not an option. Instead, techniques
such as a typed, pull-based XML parser need to be employed on these devices.
However, this will be part of future implementations.

Clearly, optimizing context sharing and processing alone does not address all mo-
bility concerns. Web service related aspects such as service discovery, selection, and
composition remain outside the scope of this paper. Furthermore, service continuity
and message reliability are not addressed in this paper. On the one hand, we argue
that latter issue does not present a major concern. Each participant simply relies on
its local view rather than trying to establish a consistent one on a global level which
in highly dynamic environments might not be possible (with a reasonable amount of
effort). On the other hand, there is work available already dealing with such problems.
Papers by Lee and Fox [6], Jorstad et al. [7], Chakaborty et al. [8], Maamar et al. [9],
or Zahreddine and Mahmoud [10] address some of these areas.

Furthermore, in using hierarchies we require context to be available at a rather
aggregated state. This reduces the applicability of our framework concerning context
sensor-networks or sharing of sensor data. However, we argue that sharing context
makes more sense at a high aggregation level that is most useful to end-users.

Springer

Distrib Parallel Databases (2007) 21:85–111 107

Finally, we emphasise that the presented architecture is not intended to replace a
context system but should rather be seen as an add-on/plug-in/partial substitute for
the distribution mechanism. As such, it enables a more efficient sharing of context. By
using a SOA-based approach, we decouple the context distribution from the process
of sensing, aggregating, reasoning and storing. Greater decoupling also allows context
sources to be reused and exchanged more easily. This cannot be said of the context
frameworks presented in the following section.

8 Related work

Context-awareness has been the focus of many research efforts. Most of the available
toolkits focus on gathering, aggregating and providing context information—few
of them in a distributed manner. Some of the following frameworks would present
potential candidates for integration with our context-aware service platform.

Baldauf et al. [11] analyze representational applications concerning architecture,
context model and context lifecycle to generate a broad overview on context-aware
systems.

Biegel and Cahill [12] present a framework for developing mobile, context-aware
applications. They also introduce the concept of a context hierarchy. However, their
hierarchy has the notion of a task tree rather than structuring context information
into various levels of detail. Similar to our approach, components of their framework
(sentient objects) are context producers and consumers at the same time. Commu-
nication, however, happens only in one direction, whereas our approach allows for
more customized context transfer as we apply a hybrid push-pull based mechanism.
Finally, the authors also include a form of context dominance. Yet, their focus is not
on context information relevance, but on excluding rules that are of no importance in
the current context state.

Web Service Context (WS-Context) [13] is a specification proposed by OASIS to
describe the context of an activity—composed of several Web services. WS-Context
defines methods to pass context by value or just by reference. Thus, the receiving ser-
vice can obtain the actual information from the context manager service. Context in-
formation itself can be structured hierarchically as WS Context includes an optional el-
ement, which refers to the general parent context. Yet, WS Context provides no means
to access context at a specific level of granularity or to navigate down towards con-
text child-elements. Furthermore, context information is merely propagated along the
chain of invoked Web services, lacking capabilities for subscribing to context changes.

The service-oriented context-aware middleware (SOCAM) by Gu et al. [14] utilizes
a two level ontology to model context information. An upper-level ontology describes
generic concepts whereas the lower-level ontologies define specific domains. The
SOCAM framework includes push- and pull-mechanisms for retrieving context in-
formation as we do. However, such information is only gathered but not forwarded
to other services and solely provided to the applications build on top of SOCAM.
This restricts the applicability for composite services. Furthermore, access to context
information lacks the notion of granularity.

Although applying agents, the CoBrA framework by Chen et al. [15] relies on a
centralized context broker architecture. As we argued above, centralized storage of
context is not an efficient method for managing and processing context in a mobile

Springer

108 Distrib Parallel Databases (2007) 21:85–111

environment. Furthermore, sharing of context, granularity, and context dominance is
not explicitly supported.

Costa et al. [16] designed a platform for mobile context-aware applications. Context
information is shared by subscribing to this platform using the WASP Subscription
Language (WSL). Yet, their subscription language lacks the support for information
granularity. Furthermore, WSP depends on the proposed object-based context model,
thus restricting its use.

The Solar middleware by Chen and Kotz [17] provides a platform for context-
aware mobile applications consisting of one star and several planet nodes. Client
applications need not collect, aggregate, or process context themselves but subscribe
to context changes at the central star. This component computes an event flow graph
and distributes the context processing steps across the available planet nodes to reuse
existing context processing operators and filters. This approach differs from ours as
we propose to subscribe to changes and transmit context only to the nodes actually
requiring this information. Besides, context granularity is not supported.

To the best of our knowledge, no context aware system explicitly supports context
granularity. However, da Rocha and Endler [18] have recently proposed context gran-
ularity as an important part of distributed context-aware systems but they did not go
beyond pointing out this aspect.

9 Future work

Open work and research is manifold. In the near future, major work effort will consist
of designing and deploying tools to aid the developer in designing hierarchies, mapping
hierarchies to context systems and support for defining dominance and privacy rules
on top of those hierarchies. Furthermore, algorithms to match similar hierarchies,
merging of hierarchies and automatic mapping of context models to hierarchies are
on our agenda. In addition, providing hierarchies at a repository for downloading and
sharing might prove worth realizing. At the same time, we will analyse the integration
of granularity levels into the whole context life cycle.

Another promising area of research will be context learning. We believe that by
enabling services to learn from previous situations, context information will not only
facilitate better-adapted services but also pro-active service aggregation. Analyzing
which services required what context under certain conditions just will be the begin-
ning. Elaborating on context granularity combined with rules and learning will enable
services to anticipate situations and enforce appropriate access to resources without
user interference. A first step into that direction will consist of describing hierarchies
by means of ontologies.

10 Conclusion

This paper discussed issues of context sharing in mobile environments. After iden-
tifying current challenges, we elaborated on the aspect of distribution. The aim in
highly dynamic systems is reducing the amount of transferred context updates. The
techniques we introduced achieve this goal by means of context hierarchies and
a fine-grained notification mechanism. This includes structuring context informa-

Springer

Distrib Parallel Databases (2007) 21:85–111 109

tion according to levels of granularity to limit change notification to the required
amount of details. We define hierarchies as problem specific views on a given context
model. Hence, we leave the utilized context system unchanged and merely provide
a hierarchy-to-model mapping for extracting and subscribing to information. In ad-
dition, the concept of context dominance enables relevance-based context transfer. A
scenario from the domain of distributed collaboration served as a test-bed to outline
the benefits of context granularity and dominance.

In the second part of our work, we combined these approaches to form CoSAr, a
context sharing architecture. Our newly formed Context Access control, Subscription
and Query Language (CASQL) based on XML standards allows for fine-grained
context control. Thus, not only reduces granularity-based context sharing bandwidth
usage but also improves on privacy issues that could not be solved without hierarchical
structuring. Evaluation based on a prototype implementation showed potential for
significant reduction in transferred context.

1 boolean matchHierarchy(hierarchy expH , hierarchy availH)
2 {
3 global list foundBackupValues = empty;
4 for each (expH.levels level)
5 {
6 if (level.contains (value.isRequired or
7 value.isOptionalBackup or
8 value.isBackup)
9 {

10 if (checkLevel(level , availH.rootLevel) == false)
11 return false;
12 }
13 }
14 return true;
15 }
16

17 boolean checkLevel(level expL , level availL)
18 {
19 if (availL == null)
20 return false
21 if (expL.id == availL.id)
22 return checkValues(expL.values , availL.values)
23 else
24 checkLevel(expL , availL.child)
25 }
26

27 boolean checkValues(list expValues , list availValues)
28 {
29 List reqValues = expValues(isRequired)
30 List opBackupValues = expValues(isOptionalBackup)
31 List backupValues = expValues(isBackup)
32 List notListed = (reqValues.subSetOf(availValues)
33 if (notListed = not empty)
34 return false;
35 foundBackupValues.append(reqValues.subSetOf(backupValues)
36 List notListed2 = (opBackupValues.subsetOf(availValues)
37 for each (notListed2.value value)
38 {
39 if (foundBackupValues.doesNotContain(value))
40 return false;
41 }
42 return true;
43 }

Listing 3 A Hierarchy Matching Algorithm

Springer

110 Distrib Parallel Databases (2007) 21:85–111

We conclude that describing context through granularity hierarchies provides a
means that requires further research but already now enables efficient handling of
major challenges in context-aware dynamic environments.

Appendix A—Hierarchy matching algorithm

The hierarchy matching algorithm takes two arguments as input: the expected hier-
archy (as a tree of all known values) and the complete available hierarchy (also as a
tree of values). The value nodes of the expected hierarchy tree are marked as optional,
required, or optional with backup value. In the last case, the specific value need not
be available if there is a given parent value available instead. Those backup values
are separately marked as such. The pseudo code in Listing 3 outlines our matching
algorithm.

Acknowledgments Part of this work was supported by the Austrian Science Fund (FWF) under grant
P18368-N04 Project OMNIS and EU STREP Project inContext (FP6-034718).

References

1. M. Bazire and P. Brézillon, “Understanding context before using it,” in Modeling and Using Context:
5th International and Interdisciplinary Conference CONTEXT 2005, 2005, pp. 29–41.

2. A. Dey and G. Abowd, “Towards a better understanding of context and context-awareness,” in
Workshop on the What, Who, Where, When, and How of Context-Awareness at CHI 2000, 2000.

3. S. Dustdar, T. Hoffmann, and W. van der Aalst, “Mining of ad-hoc business processes with Teamlog,”
Data and Knowledge Engineering, vol. 55, no. 2, pp. 129–158, 2005.

4. A. Dey, Providing Architectural Support for Building Context-Aware Applications, PhD thesis,
Georgia Institute of Technology, 2000.

5. A. Ferscha, C. Holzmann, and S. Oppl, “Context awareness for group interaction support,” in MobiWac
’04: Proceedings of the Second International Workshop on Mobility Management & Wireless Access
Protocols, New York, NY, USA, ACM Press, 2004, pp. 88–97.

6. S. Lee and G. Fox, “Wireless reliable messaging protocol for web services (WS-WRM),” in IEEE
International Conference on Web Services, 2004, pp. 350–357.

7. I. Jørstad, T. van Do, and S. Dustdar, “A service continuity layer for mobile services,” in IEEE
Wireless Communications and Networking Conference, 2005, pp. 2300–2305.

8. D. Chakraborty, A. Joshi, T. Finin, and Y. Yesha, “Service composition for mobile environments,”
Mobile Networks and Applications, vol. 10, no. 4, pp. 235–451, 2005.

9. Z. Maamar, Q.Z. Sheng, and B. Benatallah, “On composite web services provisioning in an
environment of fixed and mobile computing resources,” Information Technology and Management,
vol. 5, pp. 251–270, 2004.

10. W. Zahreddine and Q. Mahmoud, “An agent-based approach to composite mobile web services,” in
19th International Conference on Advanced Information Networking and Applications, 2005. AINA,
2005, pp. 189–192.

11. M. Baldauf, S. Dustdar, and F. Rosenberg, “A survey on context-aware systems,” International Journal
of Ad Hoc and Ubiquitous Computing, 2006 forthcoming.

12. G. Biegel and V. Cahill, “A framework for developing mobile, context-aware applications,” in Second
IEEE Annual Conference on Pervasive Computing and Communications. PerCom 2004, pp. 361–365,
2004.

13. M. Little, E. Newcomer, and G. Pavlik, Web Service Context Specification (WS-Context), OASIS,
2004.

14. T. Gu, H. K. Pung, and D.Q. Zhang, “A middleware for building context-aware mobile services,” in
59th Vehicular Technology Conference, VTC 2004, pp. 2656–2660, 2004.

Springer

Distrib Parallel Databases (2007) 21:85–111 111

15. H. Chen, T. Finin, and A. Joshi, “An ontology for context-aware pervasive computing environments,”
Special Issue on Ontologies for Distributed Systems, Knowledge Engineering Review, vol. 18, no. 3,
pp. 197–207, 2003.

16. P.D. Costa, L.F. Pires, M. van Sinderen, and J.P. Filho, “Towards a service platform for mobile
context-aware applications,” in 1st International Workshop on Ubiquitous Computing—IWUC 2004,
pp. 48–61, 2004.

17. G. Chen and D. Kotz, “Solar: An open platform for context-aware mobile applications,” in First
International Conference on Pervasive Computing (Short Paper), pp. 41–47, 2002.

18. R.C.A. da Rocha and M. Endler, “Context management in heterogeneous, evolving ubiquitous
environments,” IEEE Distributed Systems Online, vol. 7, no. 4, 2006.

Springer

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

