
Distrib Parallel Databases (2007) 21:5–37

DOI 10.1007/s10619-006-7003-7

Context-based matching for Web service composition

Brahim Medjahed · Yacine Atif

Published online: 14 November 2006
C© Springer Science + Business Media, LLC 2007

Abstract In this paper, we propose a novel matching framework for Web service
composition. The framework combines the concepts of Web service, context, and
ontology. We adopt a broad definition of context for Web services, encompassing all
information needed for enabling interactions between clients and providers. Context-
based matching for Web services requires dealing with three major research thrusts:
context categorization, modeling, and matching. We first propose an ontology-based
categorization of contextual information in Web service environments. We then define
a two-level mechanism for modeling Web service contexts. In the first level, service
providers create context specifications using category-specific Web service languages
and standards. In the second level, context specifications are enveloped by policies
(called context policies) using WS-Policy standard. Finally, we present a peer-to-peer
architecture for matching context policies. The architecture relies on a context match-
ing engine, context policy assistants, and context community services. Community
services implement rule-based techniques for comparing context policies.

Keywords Web service composition . Matching . Context . Policy . Ontology .

Agent

Recommended by: Djamal Benslimane and Zakaria Maamar

B. Medjahed (�)
Department of Computer and Information Science, University of Michigan, Dearborn, USA
e-mail: brahim@umich.edu

Y. Atif
Institute of Information Sciences and Technology, Massey University, New Zealand
e-mail: Y.Atif@massey.ac.nz

Springer

6 Distrib Parallel Databases (2007) 21:5–37

1 Introduction

The emergence of Web services has stimulated organizations from different domains
(e.g., business, government) to provide access to their core applications on the Web [1].
Web services expose XML-based interfaces (such as WSDL interfaces [11]) that can
be programmatically invoked on the Web. Two main motivations are promoting Web
services as the technology of choice for integrating intra and inter-enterprise appli-
cations. The use of standard technologies (e.g., XML, HTTP) reduces heterogeneity,
and is therefore key to facilitating application integration [1]. Additionally, the adop-
tion of a document-based messaging model in Web services caters for loosely cou-
pled relationships among cross-organizational applications [36]. Web services can be
combined across companies to define value-added services [48]. For example, a tax
preparator service may be defined by combining financial services at employees
companies to get W2 form (commonly used in the US to list an employee’s wages
and tax withheld), banks and investment companies services to retrieve investment
information, and electronic tax filing services provided by state and federal revenue
agencies [37]. We refer to a service that combines functionalities provided by other
Web services as a composite service (e.g., tax preparator). The Web services
that build-up a composite service (e.g., bank Web service) are called participants.

The process of composing Web services (i.e., service composition) is far from
trivial [1, 39]. To support users (or composers) in this effort, composition engines are
being developed. Composition engines provide abstractions and mechanisms facili-
tating the definition and execution of composite services. Standardization efforts are
under way in the service composition area. One such effort is BPEL (Business Process
Execution Language for Web Services), a language for the specification of composite
services [25]. BPWS4J, ActiveBPEL, Collaxa, and Oracle BPEL Process Manager
are examples of existing BPEL composition engines. Developing end-to-end com-
position engines requires dealing with several research thrusts such as orchestration,
exception handling, transactions, and service matching [27]. Our focus in this paper
is on service matching for Web service composition.

Service matching refers to the process of comparing Web services based on their
capabilities. The aim is to determine whether a Web service “relates to” another
Web service where “relates to” generically stands for “is equivalent to” and “is
compatible with”. We identify two scenarios where service matching can be used
in a service composition engine: substitution and dynamic composition. Substitution
aims at replacing a participant by another Web service. This may happen because
of a network problem or if the original participant is made temporarily unavailable
by its provider (e.g., for maintenance or upgrade). Such substitution should be done
in a way that will not affect the business logic and behavior of the entire composite
service. Dynamic composition enables the specification of composite services without
knowing a priori which participants will be actually used at run-time. Composers give
abstract specifications of their participants (e.g., by using the notion of generic service
node defined in eFlow [6]). At run-time, the composition engine selects Web services
that match participants’ abstract specifications.

Several techniques have been proposed to deal with service matching [3, 7, 8,
21, 28, 35, 41, 42, 44, 47]. However, these techniques use a limited set of match-
ing attributes defined within service descriptions (e.g., DAML-S descriptions [34]).

Springer

Distrib Parallel Databases (2007) 21:5–37 7

They merely compare text descriptions, signatures (inputs and outputs), and logical
constraints about inputs and output. In this paper, we provide a generic matching
framework for service composition. The framework uses Web service contexts to pro-
cess matching requests submitted by the composition engine. Simply put, a context is
“any information that can be used to characterize the situation of an entity. An entity is
a person, place, or object that is considered relevant to the interaction between a user
and an application, including the user and the application themselves” [13]. Context
has been used in several areas such as machine learning, computer vision, information
retrieval, decision support, and pervasive computing [40]. Our aim in this paper is to
apply context to service matching. We view context as any client or provider-related
information that enables interactions between service clients and providers. Our main
contributions in this paper are summarized as follows:

� We propose a novel categorization of Web service contexts suitable to service
matching. We use the concept of ontology to define such categorization. An ontol-
ogy is a formal and explicit specification of a shared conceptualization [15]. The
proposed categorization is dynamic in a sense that new context categories may be
added on the fly.

� We define a two-level mechanism for modeling Web service contexts. In the first
level, service providers create context specifications using appropriate Web ser-
vice languages and standards (e.g., WS-security, WS-Agreement). In the second
level, providers envelop their context specifications by policies using WS-Policy
standard [22].

� We propose a peer-to-peer approach for matching Web service contexts. The ap-
proach relies on a context matching engine, context policy assistants, and con-
text community services. Community services implement rule-based techniques for
comparing context policies.

The rest of the paper is organized as follows. Section 2 introduces a scenario from
the bioinformatics domain to motivate our approach. Section 3 describes the proposed
context-aware Web service model. Section 4 gives details about the framework for
matching Web services contexts. Section 5 is devoted to the implementation of the
proposed approach. Section 6 gives an overview of the related work. Section 7 provides
concluding remarks.

2 Motivating scenario

The motivating scenario is related the analysis of protein sequence information in
the bioinformatics domain. Consider a Gigabit Ethernet environment linking several
bioinformatics institutions. Each of the contributing institutions has an entry point
to this service grid to conduct scientific activities by invoking bioinformatics Web
services. Access to the service grid is provided to authenticated biologists through a
Web BioPortal. Such an infrastructure helps scientists avoid manual maintenance and
execution of several Web service-enabled bioinformatics applications. Performing a
complex process such as protein identification requires the combination of several
bioinformatics Web services. BioPortal uses a service composition engine to handle

Springer

8 Distrib Parallel Databases (2007) 21:5–37

F
ig

.1
M

ot
iv

at
in

g
sc

en
ar

io

Springer

Distrib Parallel Databases (2007) 21:5–37 9

the orchestration and management of such services. Figure 1 depicts an example of a
composite service used for analyzing DNA sequences.

The biologist first submits the DNA sequence specification to the BioPortal.
The BioPortal interacts with the service registry (e.g., UDDI) to discover a rele-
vant homology search Web service (Step 1). Homology search refers to scour-
ing a sequence database to find sequences that are likely to be homologous (i.e.,
have a common ancestor) to a given sequence [20]. Contextual information of ho-
mology search includes quality of service (e.g., response time) and constraints
about the sequence specification. BLAST-PSI and FASTA are examples of homology
search services. The execution of homology search generates a set of the target-
homologous protein sequences which genes’ data are available. An alignment
Web service follows to narrow down the search (Step 2). Alignment refers to the use
of amino-acid data to determine the degree of base or amino acid similarity which
reveals the degree of similarity between the target and the homologous genes [20].
T-Coffee and BLAST are examples of alignment services. The context of align-
ment Web service includes the specification of monitoring requests to check the
status of alignment requests (e.g., estimated left time).

A large number of sequences may be aligned as similar to the target in the second
step. To narrow down the search space, additional criteria in the target’s specification
are used. Such criteria refer to prior experimental results conducted on the target
(Step 3). This task is performed by a verification Web service such as myGrid’s
MIR and KAVE services. TheverificationWeb service compares protein experi-
mental reactions (e.g., biochemical and mutation experiments) and returns appropriate
results to determine whether there are proteins that lead to similar experimental results
as the target. Contextual information includes the specification of experimental results.
The resulting proteins which succeed the verification service are then analyzed
and used to infer a model for the target (Step 4). The modelingWeb service provides
a three-dimensional (3D) model of the target based on homologous sequences. MOD-
ELLER and SWISSModel are examples of such services. Contextual information in-
cludes a service description (i.e., how to invoke it) and the specification language of the
3D model. The resulting model is displayed using a visualization Web service
(Step 5) such as CINEMA 5 and RASMOL. This service is constrained by the user’s
graphical device capabilities which constitute part of the visualization service
context. Concurrently with the visualization process, the identified target is published
in a curation database through a curation Web service such as HGVbase and Bio-
Cyc (Step 6). Curation is the process of tracking the provenance of bioinformatics
results to accurately describe the purpose and design of bioinformatics data [20]. The
service uses as a context the biologist’s expertise level and authentication information.

Assume now that the curation Web service used by BioPortal’s composition
engine is unavailable (e.g., because of network problems). To provide uninterrupted
services to biologists, BioPortal needs to replace the existing curation service with
another Web service that “matches” the former. Performing the matching process man-
ually is tedious and time-consuming. In the rest of this paper, we propose to automate
this process through the development of a context-based matching framework for Web
service composition.

Springer

10 Distrib Parallel Databases (2007) 21:5–37

3 A context-aware Web service model

In this section, we describe the main components of the proposed model for matching
context-aware Web services. In Section 3.1, we give a context-oriented definition of
Web services. In Section 3.2, we propose a categorization of Web service contexts
using RDF ontology language. In Section 3.3, we define a two-level mechanism for
modeling Web service contexts. In Section 3.4, we illustrate the way contexts are
organized into communities based on their categories. In Section 3.5, we introduce
context-based policy assistants as means for facilitating the creation of contexts.

3.1 Web service = {context definitions}

A variety of definitions of the Web service concept are given by different industry
leaders, research groups, and Web service consortia. Existing definitions range from
the very generic and all-inclusive to the very specific and restrictive [1]. They mostly
focus on the rationale behind Web services (e.g., interoperation) and major technolo-
gies for interacting with Web services (e.g., XML, SOAP, WSDL). For example, the
W3C consortium defines a Web service as “a software system designed to support
interoperable machine-to-machine interaction over a network. It has an interface de-
scribed in a machine-processable format (specifically WSDL). Other systems interact
with the Web service in a manner prescribed by its description using SOAP messages,
typically conveyed using HTTP with an XML serialization in conjunction with other
Web-related standards”. In this section, we give a context-oriented definition of a Web
service, focusing on contextual information available to service clients and providers
during their interactions.

Web services involve two major participants (Fig. 2): providers and clients.
Providers are the parties (e.g., businesses) that define and make services available
on the Web. Clients are the entities that invoke those Web services. A client may
be an end-user, software agent, another Web service, or a composition engine. Inter-
actions between service providers and clients follow the producer-consumer model;
providers offer Web service that are consumed by clients. Although a client and
provider are involved in the same interaction, each participant has its own view on
that interaction. From a client’s perspective, interacting with providers depends on the
situation, or context, of the current Web service. The provider-related context contains
meta-data about the provider (and its service). Examples of such meta-data include
service description, service security policy, and quality of service. From a provider’s

Fig. 2 Context-aware Web
service interactions

Springer

Distrib Parallel Databases (2007) 21:5–37 11

perspective, interacting with a client depends on the situation, or context, of that
client. The client-related context contains meta-data about the client. Examples of
such meta-data include the user’s location, expertise level (e.g., expert, novice), and
identity.

We adopt a broad definition of context for Web services, encompassing all infor-
mation needed for enabling interactions between clients and providers. As depicted
in Fig. 2, we view a context as any information that can be used by (i) a Web service
to interact with clients, and (ii) client to interact with Web services. Web services
that use context, whether available to clients or providers, are called context aware.
A client-related context includes information (about the client) used by the provider
(or Web service) to interact with the client. The biologist’s expertise level is an exam-
ple of client-related context for the curation service (Fig. 1). A provider-related
context includes information (about the Web service or provider) used by the client
to interact with the Web service (or provider). In our motivating scenario, Authenti-
cation is an example of provider-related context for the curation service (Fig. 1).
This document, attached to the curation service, specifies the way service clients
are authenticated. It may for instance state that the service supports the “Basic 256
RSA 15” or the “3DES RSA 15” security algorithm suites [12]. Another example
of provider-related context is a service description (e.g., in WSDL [11] or OWL-
S [33]). This context describes the operational features of Web service (e.g., operation
signature, messages, operation semantics). Details about the different categories of
provider-related contexts are given in Section 3.2. We present below the definition of
a context-aware Web service.

Definition . A context-aware Web service WS is defined by set of context definitions
C(WS) = CC (WS) ∪ CP (WS) where CC (WS) and CP (WS) are the sets of client-related
and provider-related context definitions, respectively.

Our focus in the definition above is on context relevant to matching capabilities
for Web service composition. Other types of contexts geared toward the execution
and deployment of composite Web services may also be defined. We refer to these
contexts as run-time contexts. I-context and W-context defined in [30] are examples
of run-time contexts. I-context gives information about a specific running instance
of a participant Web service (e.g., whether the instance is in-progress, suspended,
or terminated). W-context contains information about all running instances of a
participant Web service (e.g., number of service instances that are currently running).
Information included in run-time contexts may be used in the matching process.
For example, a matching engine may decide to replace a participant service WS1

by an “equivalent” one, if the execution status of WS1 (defined in the I-context) is
“aborted”. Handling run-time contexts is out of the scope of this paper.

3.2 Categorization of Web service contexts

The categorization of Web service contexts is important for the development of
context-aware Web service environments. Despite the various attempts to develop
a taxonomy for contexts, there is no generic context categorization. Relevant infor-
mation differs from a domain to another and depends on the effective use of this

Springer

12 Distrib Parallel Databases (2007) 21:5–37

information [40]. We propose a categorization of contextual information in Web ser-
vice environments. Figure 3 depicts our categorization as an RDF ontology graph [15].
One or more context definitions are associated to a Web service. Each context def-
inition belongs to a certain category which can be either client-related or provider-
related.

Client-related context represents the provider’s view on the client. It is obtained
either explicitly or implicitly [13]. For example, end-users may explicitly feed a Web
service with inputs (e.g., name, address) that identify them. A tour guide Web
service may display different customized information on a hand-held computer based
on the implicitly-obtained tourist location. Both implicit and explicit contexts may
have subcategories. For example, implicit context may be sensed (e.g., acquired via
physical or software sensors) or derived (e.g., time and date). Details about client-
related contexts are out of the scope of this paper. The Provider-related context models
the client’s view on the provider (or Web service). It is explicitly defined by the service
provider. The provider of a Web service exposes a set of provider-related contexts to
convey the conditions under which that service may be used or outsourced. Standards
have so far been the key enablers for defining such contexts. For example, WSDL
enables the specification of a service interface that includes the service operations,
location, and protocols to access the service (e.g., SOAP/HTTP in RPC style). Clients
use this context to decide whether or not to interact with a Web service.

We identify the following categories of provider-related contexts (Fig. 3): func-
tional, non-functional, domain, and valued-added contexts. Functional context de-
scribes the operational features of a Web service (e.g., in OWL-S language). Func-
tional context attributes are of two types: syntactic and semantic. Examples of syntactic
attributes include the list of input/output parameters that define an operation’s mes-
sages, the data types of these parameters, and the protocol to be used for invoking
the Web service (e.g., SOAP/HTTP, ebXML Messaging Service). Examples of se-
mantic attributes include the pre-condition and effect of an operation execution [37].
For example, the modeling Web service (Fig. 1) has a service description (i.e.,
functional context) that includes the SOAP/HTTP address to invoke the service. A
non-functional, also called Quality of Service (QoS), context includes a set of metrics
that measure the quality of a Web service. The international quality standard ISO
9000 describes quality as “the totality of features and characteristics of a product or
service that bear on its ability to satisfy stated or implied needs” [45]. Examples of
such characteristics include time, availability, reliability, and cost. Two providers that
support the same service functionalities may have different values for their qualitative
attributes. These attributes model in fact the competitive advantage that providers
may have on each other. For example, the homology search Web service has a
non-functional context that includes an estimated response time for homology search
requests.

The domain context is organized into domain-dependent sub-categories. Each ap-
plication domain has its own requirements for interacting with Web services in that do-
main [36, 38, 53]. Shipping and billing are examples of contexts in B2B E-commerce.
A context in bio-informatics may refer to an experiment description in an experiment
specification language [53]. For example, the verification Web Service (Fig. 1)
makes use of a range of biological contexts to elicit a target DNA sequence in hope
of observing an expected phenotype. The value-added context brings “better” envi-

Springer

Distrib Parallel Databases (2007) 21:5–37 13

F
ig

.3
R

D
F

on
to

lo
gy

fo
r

W
eb

se
rv

ic
e

co
nt

ex
tc

at
eg

or
ie

s

Springer

14 Distrib Parallel Databases (2007) 21:5–37

ronments for Web service interactions. It includes a set of specifications (or context
definitions) for supporting optional (but important) requirements (e.g., security, pri-
vacy) useful while interacting with a Web service. We organize value-added contexts
into the following sub-categories:

� Security: A security context states whether a Web service is compliant with security
requirements such as encryption, authentication, non-repudiation, and reliability [4].
The curation Web service (Fig. 1), for example, has an authentication context.
Biologists need to be identified before storing their results in a curation database.

� Privacy: Providers indicate their privacy practices for a given Web service via
privacy contexts. Examples of privacy practices include the list of external entities
beyond the service provider where the collected data (e.g., input parameters) may
be distributed and the purpose from collecting this data (e.g., marketing) [24].
Referring to Step 6 of our motivating scenario, the curation Web service may be
restricted by the biologist’s privacy requirements in revealing the undertaken DNA
elicitation process.

� Trust: This context contains elements that are used to establish trust relationships
between clients and providers [2]. In order to secure a client-provider communica-
tion, the two parties must exchange security credentials. However, each party needs
to determine whether it can trust the asserted credentials of the other party. An
illustration of this context is given by the verification Web service (Fig. 1)
where comparative experimental reactions are performed to determine whether there
are proteins whose matching contexts lead to similar biochemical evolution as the
target. This step bears a certain level of trust requirement on the authority which
provides the protein reactions’ data.

� Agreement (or Contracting): Clients may require assurances or guarantees concern-
ing the level and type of service being offered by the provider [48]. Agreement con-
texts enable the explicit specification of agreement terms between service providers
and clients. For example, a disk storage service provider may specify the following
agreement: “I guarantee 12 MB of memory to the client for one hour on weekdays. I
have a high confidence (probability of 0.99) in meeting this guarantee. In the event,
I am not able to meet this guarantee, I will pay a penalty of 50 US Dollars”. Another
example is the homology search Web service (Fig. 1) which provides QoS
assurance guarantee on the response time to accomplish the requested service.

� Conversation: Conversation refers to the sequences of operations (i.e., message
exchanges) that could occur between a client and a Web service as part of the
invocation of that service [1]. Using a particular Web service typically involves
performing sequences of operations in a particular order. The conversation context
specifies the set of correct conversations that a client should support to interact
with a Web service. For example, The curation Web service (Fig. 1) exposes
a conversational context; biologists first provide authentication information. Then,
they give information about their expertise level. Finally, they store their experiment
data in the curation database.

� Resource: This context represents the computing means on which Web services
operate. It gives the list of resources to be used while interacting with a Web
service [16]. The resource context includes information about resources required
from clients to invoke the Web service (e.g., wireless device). It also contains

Springer

Distrib Parallel Databases (2007) 21:5–37 15

properties (e.g., number of blocks, block size, and manufacturers) of a resource (e.g.,
disk) used by a Web service (e.g., a disk storage service). The visualization
Web service in our motivating scenario may, for example, require that the client
graphical interface would have the capacity to perform at a certain resolution level.

� Monitoring: This context is required for a number of purposes, including status
checking, troubleshooting, performance tuning, and debugging [48]. The monitoring
context offers mechanisms that check the status of a service invocation. It also
includes elements for inquiring about the “health” of a service in real time by
detecting signs of failure. For example, the alignment Web service (Fig. 1)
may have a monitoring context that allows biologists to check the status of their
alignment requests (e.g., estimated left time, current number of aligned sequences).

The domain category refers to vertical contexts that are valid in specific application
domains such as B2B e-commerce, e-government, and bio-informatics. The other cat-
egories (i.e., functional, non-functional, and value-added) refer to horizontal contexts
that are applicable across domains. The proposed ontology for Web service context
categories is dynamic in the sense that new sub-categories may be added at any time.
For example, negotiation may be added to the set of value-added contexts. Coordi-
nation and transaction sub-categories may be added under the conversation category.
The security context may be organized into sub-categories encompassing contexts
about authentication, encryption, non-repudiation, and reliability. New domain sub-
categories may also be added at any time. The proposed technique for dynamically
defining contexts is described in Section 4.3.

3.3 Modeling contexts as policies

Context modeling is an important issue that need to be addressed for enabling
context-aware Web services. By context modeling, we refer to the language to be
used for defining Web service contexts. The diversity of contextual information has
led to several context modeling mechanisms such as ConteXtML [43], contextual
schemas [49], CxBR (context-based reasoning) [18], and CxG (contextual graphs) [5].
These languages provide means for defining context is specific application domains
such as pervasive computing, mobile computing, and robotics. They provide little
or no support for defining context in Web service environments. In this section, we
introduce an approach for context modeling suitable to service matching (Fig. 4).

Figure 4 depicts an onion-like structure of the proposed mechanism for modeling
Web service contexts. At the center is the category level surrounded by the envelope
level. In the category level, providers create specifications (called context specifica-
tions) using appropriate Web service languages and standards. Each context belongs
to a certain category (as stated in Fig. 3). It is specified in a language related to that
category. A Type attribute is associated to each context specification to state the lan-
guage/standard used for that context. The use of a category level allows the leverage
of existing Web service standards/languages for modeling contexts. It also ensures
interoperability with “legacy” Web services; existing Web services may be exposed as
context-aware and hence, be used in our framework. Our approach places no restric-
tions on the languages used in the category-specific level. Table 1 gives examples of
standards/languages that may be adopted within each context category. For example,

Springer

16 Distrib Parallel Databases (2007) 21:5–37

Table 1 Examples of category-specific languages for Web service contexts

Category Category-specific language

Functional WSDL-S, DAML-S, and OWL-S
Non-Functional WSCL (Web Services Conversation Language) and HQML(Hierarchical QoS Markup

Language)
Security WS-SecurityPolicy and WS-SecureConversation
Privacy P3P-like language
Trust WS-Trust
Agreement ebXML’s TPA and CPA, WS-Agreement, and Globus Toolkit’s SLAs (Service Level

Agreement)
Conversation RosettaNet PIP (Partner Interface Processes) and WSCI (Web Service Choreography

Interface)
Resource WS-Resource
Monitoring The Globus Toolkit’s Monitoring and Discovery service
Domain B2B E-commerce (shipping and billing) and bio-informatics (experiment specification

language)

functional contexts may be specified in WSDL-S, DAML-S, or OWL-S languages.
Languages for the agreement context include ebXML’s Trading-Partner Agreement
(TPA) and Collaboration-Protocol Agreement (CPA), WS-Agreement, and the Globus
Toolkit’s SLAs (Service Level Agreements). The way providers create context spec-
ifications is out of the scope of the matching framework. They may use appropriate
tools for that purpose. For example, a WSDL editor (e.g., Eclipse WSDL Editor,
Cape Clear WSDL Editor, XMLSpy WSDL editor) may be used to create a functional
context specification of type WSDL.

A service provider may create one or more context specifications for a given context
category. For example, she/he may define WSDL-S and OWL-S functional specifica-
tions for a given Web service. These specifications are exposed as (context) policies
at the envelope level. A policy may refer not only to privacy and security features but
also other service capabilities such as functional, non-functional (QoS), value-added,
and domain capabilities. Each Web service has at most one context policy for each
category; this policy envelops all context specifications corresponding to that category.
We use the emerging WS-Policy standard for the definition of context policies [22].

Fig. 4 Two-level approach for modeling Web service contexts

Springer

Distrib Parallel Databases (2007) 21:5–37 17

The use of the envelope level enables the wrapping of context specifications in a
uniform way. At a high level, all context specifications are seen as described in the
same language (i.e., WS-Policy).

WS-Policy provides a general purpose model and syntax to describe and commu-
nicate the policies of a Web service. It defines a policy as a collection of alternatives,
where each policy alternative is a collection of assertions. A policy assertion rep-
resents a requirement, capability, or other property of a policy subject (e.g., Web
service). Assertions indicate domain-specific (e.g., security, privacy) semantics and
are expected to be defined in separate, domain-specific specifications. An assertion
may have an arbitrary number of child assertions. A policy is described in XML as
a policy expression through a number of constructs such as “Policy” tag to start and
end a policy, “ExactlyOne” tag to contain a collection of alternatives, and “All” tag
to include all assertions of an alternative. To illustrate the way context policies are
specified, let us consider the following policy expression:

<wsp:Policy Name="mypolicy1">
<wsp:ExactlyOne>

<wsp:All>
<context.ws:contextSpecification Type="WSDL-S">

<!-- link to WSDL-S specification -->
</context.ws:contextSpecification>

</wsp:All>
<wsp:All>

<context.ws:contextSpecification Type="OWL-S">
<!-- link to OWL-S specification -->

</context.ws:contextSpecification>
</wsp:All>

</wsp:ExactlyOne>
<wsp:Policy>

The example above defines a policy for a functional context category. The way we
associate a category to a policy expression is illustrated in Section 3.4. The “wsp”
prefix refers to the WS-Policy XML namespace. The policy contains two alternatives,
each alternative models a context specification. A context policy contains as many
alternatives as the number of functional context specifications defined for the Web
service. An alternative includes a “contextSpecification” assertion defined within our
“context.ws” namespace. Each assertion has an attribute “Type”. A policy document
does not contain more than one assertion of a certain type. For example, a Web service
does not have more than one WSDL-S specification. Context specifications are given
in separate XML documents. The URIs (Uniform Resource Identifier) of those docu-
ments (WSDL-S and OWL-S in the example) are given in the “contextSpecification”
assertion.

3.4 Context communities

One or more context policies are associated to a Web service. Each policy is defined
by the service provider and belongs to a certain category. We cluster context policies
into communities; a community is a “container” that clumps together context policies

Springer

18 Distrib Parallel Databases (2007) 21:5–37

related to the same category. A community is itself a Web service that is created
and invoked similarly to “regular” Web services1. By defining communities as Web
services, new context categories may be easily added to the framework. Introducing
a new category is done by creating and deploying a new community service corre-
sponding to that category. A community provider may, for example, be a grid service
network administrator if the matching framework is to be used in grid environments.
Another example of community provider is a domain-specific consortium such as a
group of bioinformatics institutions contributing to the development of an experiment
specification language. Details about creating communities are given in Section 4.3.

A community service oversees all context policies defined under a given category.
It maintains two attributes: category and members. The category of a community is
similar to category of its underlying context policies. The members attribute contains
the list of context policies that fall into the community category. Each community
member is defined by the couple (serviceID,policyID) where serviceID is a unique ID
of a Web service (e.g., serviceKey in UDDI) that has the policy identified by policyID.
As any “regular” Web service, the community service is accessed via operations.
Details about community service operations are given in Section 4.2.

Each context policy file is attached to the registration entry of corresponding Web
service. Registration allows providers to advertise general information about their
Web services. This information is used by clients for discovering providers and Web
services of interest. UDDI and ebXML Registry are examples of protocols that can
be used for the registration of Web services [1]. In this paper, we use UDDI as a
registration repository. We adopt the mechanism introduced in WS-PolicyAttachment
specification to attach policy expressions to UDDI [23]. We register context policies
of a Web service as distinct tModels and then reference these tModels in the busi-
nessService entry defined for that service. tModel is a UDDI concept introduced for
defining technical fingerprints (or specifications) of Web services [50]. We give below
an example of tModel snippet for the previous policy expression:

<tModel tModelKey="uuid:...">
...

<categoryBag>
<keyedReference
keyName="Reusable policy Expression"
keyValue="policy"
tModelKey="uuid:fa1d77dc-edf0-3a84-a99a-5972e434e993"/>

<keyedReference
keyName="Policy Expression for mypolicy1"
keyValue="http://www.example.com/myservice/mypolicy1"
tModelKey="uuid:a27078e4-fd38-320a-806f-6749e84f8005"/>

<keyedReference
tModelKey="uddi:uddi.org:categorization:general_keywords"
keyName="context.ws:categorization"
keyValue="functional"/>

</categoryBag>
</tModel>

1 We use the terms community and community service interchangeably.

Springer

Distrib Parallel Databases (2007) 21:5–37 19

The tModelKey attribute in the tModel tag refers to a unique UUID (Uni-
versal Unique Identifier) generated by UDDI to refer to the tModel. UUIDs are
128-bit numbers used to uniquely identify an object or entity on the Internet.
This UUID also represents the policyID of the context policy modeled by the
tModel. The first keyedReference states that the tModel represents a policy ex-
pression by using the WS-Policy’s built-in category “policy”, which is its single
valid value. This is necessary to enable UDDI inquiries for policy expressions
in general. The second keyedReference designates the policy expression repre-
sented by the tModel. The tModelKey must match the fixed tModelKey from the
Remote Policy Reference category system (i.e., “uuid:a27078e4-fd38-320a-806f-
6749e84f8005”). The keyValue must be the URI that identifies the policy expression
(i.e., “http://www.example.com/myservice/mypolicy1”). This keyedReference is nec-
essary to enable UDDI inquiries for particular policy expressions based on their URI.
The third keyedReference is a general keyword category. It consists of a namespace
identifier (i.e., “context.ws:categorization”) that refers to our context category, and a
value within this category (i.e., “functional”). This keyedReference is necessary to
enable UDDI inquiries for policy expressions based on their categories.

We define two techniques for updating the members attribute of a community
service: pull-based and push-based. In the pull-based technique, the community ser-
vice (of category C) periodically queries the UDDI registry to retrieve the list of
context policies of category C and their Web service IDs. This is done through the
find tModel and find service UDDI inquiries [1, 50]. The main issue of this
technique is the frequency for refreshing the list of community members. A high fre-
quency incurs a higher overhead for querying the UDDI registry. A low frequency has
the disadvantage of using an obsolete list of community members. In the push-based
technique, the members attribute of a community service is updated each time a new
context policy with a category C is created. In this paper, we adopt the push-based
technique. Details about this technique are given in Section 4.2.

3.5 Context policy assistants

Service providers create context policies via context policy assistants (CPAs). Each
service provider has a CPA attached to it. CPAs are software agents that facilitate
interaction between (i) providers and the service registry (to store the context policies),
and (ii) providers and community services (to update the list of community members).
A software agent is a piece of software that autonomously acts to carry out tasks on
behalf of users [52].

Service providers get their CPAs from a CPA agent pool. CPAs are mobile and
hence have the capacity to migrate from the pool to service providers’s sites. A
service provider may create several context specifications (e.g., WSDL-S and WS-
SecurityPolicy specifications) using context-specific languages such as those men-
tioned in Table 1. He/she first gives the URI and category of each context specification
to his/her CPA. The CPA creates context policy documents (one document per cate-
gory) as explained in Section 3.3. Then, it exposes each context policy as a tModel
and attaches it to the Web service in the registry as explained in Section 3.4. Finally,
the CPA notifies each community of category C about the creation of a new context
policy with similar category. Each CPA has a list of available communities. An entry

Springer

20 Distrib Parallel Databases (2007) 21:5–37

in the list contains the community ID (C-ID) and category. Details about the way this
list is created and updated are given in Section 4.1.

4 Matching Web service contexts

In this section, we describe our context-based matching framework (Fig. 5). Assume
that the composition engine wants to replace a participant WS by another Web service.
The composition engine sends a matching request mrq = match-context(WS-
ID) to the Context-based Matching Engine (CME), where WS-ID is the (unique)
service ID of WS (step 1). CME first retrieves WS context policies by submitting
appropriate find tModel and find service inquiries to UDDI (step 2). Then,
it decomposes the matching request mrq into sub-requests sub-mrq(C,P) based
on the category C of each context policy P of WS. Each sub-request sub-mrq(C,P)
is forwarded to the participating community service of category C (step 3). After
processing its sub-request, the community service returns the list of candidate Web
services with a context policy that matches P (step 4). CME finally gathers the
results returned by all participating communities, determines the list of matched Web
services, and returns it to the composition engine (step 5).

4.1 The context matching engine

The Context Matching Engine (CME) is the cornerstone of the proposed framework. It
receives matching requests from the composition engine and returns a list of matched
Web services. CME is itself a Web service accessible through a set of operations.

Fig. 5 Overview of the matching framework

Springer

Distrib Parallel Databases (2007) 21:5–37 21

Fig. 6 CME interface

Defining CME as a Web service has three main advantages. First, CME can be
integrated into existing service composition engines (e.g., BPEL engine) with minimal
changes to the business logic and code of that composition engine. CME promotes
significant decoupling with composition engines. It advertises an XML-based interface
that can be used to invoke it. This reduces complexity, as composition engine designers
do not have to worry about CME implementation details. Second, CME invocation
may be included as part of composite service specifications. Composite services
involve the orchestration of multiple participant Web services. Composers may specify
the invocation of CME matching operation as part of their exception handling policy
(e.g., in BPEL). Such exception handling policy may also be automatically inserted
by the composite engine. CME will then be seen as any participant in a composite
service specification. Third, defining CME as a Web service concords with the OGSA
(Open Grid Services Architecture) approach where all grid resources (both logical
and physical) are modeled as Web services [16]. CME would be a Web service in the
second layer (Web services layer) of OGSA architecture.

CME Web service has four operations (Fig. 6): updateCommunityList, up-
dateCPAList, notifyCPA, and matchWebService. The first operation is
invoked by community providers at the community creation time. The aim of this
operation is to update CME’s list of available communities. Each entry in commu-
nityList contains the community service ID (C-ID) and the community category. Each
time a new CPA agent is deployed at a service provider’s site (from the CPA agent
pool), it invokes the updateCPAList of CME engine. CME maintains a list of
all existing CPAs in CPAList. The CPA sends directions (e.g., URI of a CPA local
database) about the way CME can notify it about important events (e.g., availability
of a new community). CME returns as output the current communityList. This list
is used subsequently by the CPA to register its context policies with communities.
Whenever a community provider invokes the updateCommunityList operation
(to report the creation of a new community), CME automatically sends notifications
to existing CPAs via the notifyCPA operation. Each notification contains the newly
created community service ID (C-ID) and its category.

The matchWebService operation returns a list of Web services (called matched
Web services) from the registry whose context policies match the context policies of
a given Web service (called source service). The composition engine invokes this

Springer

22 Distrib Parallel Databases (2007) 21:5–37

Fig. 7 Two-phase matching algorithm

operation by sending the unique ID of the source service. It is up to the composition
engine’s internal business logic to select one service from the list of matched Web
services returned by CME. For example, a composition engine may select the Web
service with the “best” quality of service. The selection process is out of the scope of
the matching framework.

Figure 7 gives the algorithm executed by CME’s matchWebService operation.
The algorithm is composed of two phases: the polling phase and decision phase. In
the polling phase (lines 1–10), CME sends matching requests to relevant community
services. CME first gets the IDs of all context policies attached to the source service
WS-ID (line 4). For that purpose, it submits afind tModel inquiry to the UDDI reg-
istry. The inquiry uses as argument the tModelKey defined for WS-Policy expressions
(see Section 3.4). It returns a list of policyIDs of the corresponding context policies.
A get tModelDetail inquiry is also executed to get the tModel policy document
of each policyID. CME then determines the policyCategory of each tModel policy
document (lines 5–6). To this end, it checks the general keyword category represented
by the third keydReference in the tModel (see Section 3.4). CME gets the C-ID of the
community that has policyCategory as a category by accessing the communityList
table (line 7). It finally invokes the matchContextPolicy offered by the commu-
nity service identified by C-ID (line 8). As the size of a policy document may be large
(e.g., WSDL-S document with several XML elements), only policyID and WS-ID are
forwarded to the community. Communities may retrieve context information via the
registry. The previous steps (lines 6–8) are repeated for each context policy attached to
the source service. The way community services process matchContextPolicy
requests is community-dependent and done transparently to CME. Details about the
matchContextPolicy operation are given in Section 4.2.

Springer

Distrib Parallel Databases (2007) 21:5–37 23

Fig. 8 Community service interface

In the second phase (decision phase), CME consolidates the results received from
communities involved in the polling phase (lines 11–19). Each community service
C-ID replies with a candidateWS list. The list includes the IDs of services whose
context policy matches (as defined by the community) the context policy (with similar
category) of the source service. We use a variable “replies” which contains the number
of votes received so far by CME. The variable is initialized and updated in lines 2
and 18 respectively. The decision phase terminates when CME receives the votes of
all communities participating in the first phase (i.e., replies = |all-policies|). In this
case, CME returns the list matchedWS to the composition engine (line 16). A Web
service belongs to the matchedWS list if each context policy in the source service is
matched by a corresponding context policy in that service. This is done by computing
the intersection of candidateWS lists returned by all community services involved in
the polling phase (lines 13–15).

4.2 Inside view of a community service

Community services provide a peer-to-peer topology for matching context policies.
Each community handles context policies that belong to a specific category (i.e., the
community’s category). The interface exposed by a community service is composed of
two operations (Fig. 8):updateCommunityMembers andmatchContextPol-
icy. The updateCommunityMembers operation enables interactions between
communities and CPAs (context policy assistants). As described in Section 3.5, ser-
vice providers create context policies via their CPAs. At policy definition time, the
CPA communicates with the corresponding community to update its members list.
If a policy (identified by P-ID) of category C is created for a Web service WS-ID,
then CPA invokes the updateCommunityMembers operation of the community
of category C. This operation is one-way (i.e., has only an input message) and contains
WS-ID and P-ID as input parameters.

The matchContextPolicy operation allows CME to send context matching
requests to community services (Fig. 7, line 8). It is an input/output operation; the
input message is composed of the WS-ID of the source Web service (i.e, service to be
matched) and a policyID of that service policy (called source policy). The operation
compares the source policy with all policies (called member policies) that are members
of the community. The output message contains the IDs of candidate Web services;
a candidate is a Web service with a policy (called candidate policy) that matches the
source policy.

Springer

24 Distrib Parallel Databases (2007) 21:5–37

The matchContextPolicy operation relies on context rules to decide whether
a member policy matches a source policy. Each community has its own set of context
rules stored in a context rule base (CxRB). The syntax of a context rule is given below:

Context Rule rule-name
Context Property property-name
Instances source-instance, member-instance
Type context-specification-type
Action matchContextProperty(source-instance, member-instance)

A context rule is identified by a name and corresponds to a specific context property.
A context property is a matching criterion used by the community to decide whether a
member policy matches the source policy. Several context properties may be associated
to a given context category. For example, a non-functional context policy includes a set
of quality of service parameters (e.g., response time) associated to the service. Each
qualitative parameter is seen by the non-functional community service as a context
property. This community has as many context rules as the number of qualitative
parameters (e.g., cost, availability) defined in non-functional contexts. A property has a
source and member instance; a source (member) instance is the value of the property in
the source (member) policy. For example, the actual response time of the homology
searchWeb service is the source instance of the response time property. As explained
in Section 3.3, each policy may contain several context specifications of different types
(e.g., WSDL-S, DAML-S, OWL-S). A rule deals with a context property as defined
in a context specification type. This information is specified in the type clause.

The action clause contains a boolean function matchContextProperty(source-
instance,member-instance) which returns true iff the member instance matches the
source instance. The internal business logic of this function is property-dependent.
It is up to the community provider to identify context properties and figure out the
appropriate code associated to each property. Community providers may include the
code of matchContextProperty() as part of the rule specification; they may also define
that code as a stored procedure and provide a link to it within the rule specification.
Below is an example of rule created for the response time property of a non-functional
community:

Context Rule rule-RT
Context Property response time
Instances timeS,timeM

Type HQML
Action matchContextProperty(timeS,timeM)

{ If timeM ≤ timeS Then return true Else return false }

The rule states that a member’s response time matches a source’s response time if
the member’s is at most equal to the source’s (i.e., the response time of the member
Web service is shorter or the same as the response time of the source). As specified
in the Type clause, the rule compares response time property instances of HQML
(Hierarchical QoS Markup Language) context specifications [19].

Springer

Distrib Parallel Databases (2007) 21:5–37 25

Fig. 9 Components of the
matchContextPolicy operation

The matchContextPolicy operation uses three major components to deter-
mine candidate services (Fig. 9): context handler, rule validator, and property ex-
tractor. The algorithm executed by the matchContextPolicy operation of a
community Ci is summarized in Fig. 10. Method calls that end with CH, RV, and PE
are executed by the context handler, rule validator, and property extractor respectively.
The context handler first retrieves the source policy document PS (line 3). For each
context specification CS (modeled as an alternative in the policy document), it gets
its type and URI (line 4–6). The context handler looks-up in Ci ’s members list for
each policy PM that includes a context specification CM of type similar to type-CS

and gets its URI (line 8–10). The getURL-CH (PM , type-CS) call return null if there is
no context specification of type equal to type-CS in PM (line 11). If a service member
already belongs to the list of candidate Web services, then it is skipped (line 8). There
is no need to process the policy document of a member service if that service has
already been selected by Ci as a candidate.

As mentioned in Section 3.3, PM contains at most one specification of type equal
to type-s. PM matches PS if the following predicate is true: ∃ CS ∈ PS ∃ CM ∈ PM

| CM matches CS. PM matches PS if there is a context specification in PM that matches
a context specification in PS . Assume that a source service WS has three context
specifications WSDL-S, DAML-S, and OWL-S defined within its functional context
policy PS . The three specifications are alternatives advertised by WS provider to
describe its functional context. Clients (e.g. composition engine) may consider any
of these alternatives as a functional specification of WS . Hence, a service with policy
PM should have one specification that matches the WSDL-S or DAML-S or OWL-S
specification of WS . There is no need to find a match for the three specifications at
the same time.

To check whether CM matches CS , the context handler forwards each tuple (PS , uri-
CS , PM , uri-CM , type-CS) to the rule validator. The rule validator retrieves from CxRB
rule base the set R of all rules of type equal to type-CS (line 7). The rule validator
then gets the property name P j of each rule R j in R and passes Pi along with the URIs
of CS and CM to the property extractor (lines 14–16). The property extractor parses
the XML documents of CS and CM and returns the value of Pi in each document.
Let IS and IM be the source’s and member’s instance respectively. The rule validator
checks whether IM matches IS as defined in the matchContextProperty function of
Ri (line 17). CM matches CS if the matchContextProperty function of each rule in
R returns the boolean true (line 18). In this case, the WS-ID of the member service

Springer

26 Distrib Parallel Databases (2007) 21:5–37

Fig. 10 Matching contexts in communities

corresponding to PM is added to the list of candidate Web services (line 20). Finally,
the matchContextPolicy operation returns the source ID and list of candidates
as a result (line 23).

The context matching algorithm depicted in Fig. 10 compares context specifications
that have the same type (see lines 6 and 10). Comparing context specifications that have
different types within a community (e.g., DAML-S with WSDL-S) requires dealing
with the issue of defining mappings between disparate languages or ontologies. This
issue is out of the scope of this paper. However, our framework can be extended to
deal with ontology mapping. Techniques such as the ones described in [14] may be
adopted.

4.3 Community factory

Web services operate in a highly dynamic environment where changes can occur to
adapt to actual business climate (e.g., politic, economic, organizational). For example,
new government regulations may require each Web service in the healthcare domain
to expose its privacy practices. Generally speaking, changes are initiated by Web
service providers or community providers. At the Web service side, service providers
may create a new context policy document of category C. For that purpose, the
service provider’s CPA invokes the updateCommunityMembers operation of the
community of category C (see Section 4.2).

Springer

Distrib Parallel Databases (2007) 21:5–37 27

At the community side, community providers may create community services at
any time. This happens when a new context category or subcategory is added to
the context categorization ontology (Fig. 3). Assume for example that a negotiation
context is added to the set of value-added contexts. A community provider (e.g.,
consortium of companies developing a negotiation standard for Web services) would
like then to create a new community for this category. We define a design pattern for
the creation of community services. Design patterns are a powerful tool for designing
flexible software [17]. They provide well-tested solutions to recurring software design
problems. One such widely used pattern is the Abstract Factory pattern. This pattern
provides an interface for creating families of related or dependent classes without
having to specify the actual classes. The Abstract Factory uses Factory Methods to
handle the actual creation of specific objects [17]. This is called a factory pattern
because it is responsible for “manufacturing” objects.

We define an abstract factory design pattern for communities called Commu-
nity Abstract Factory. This pattern’s interface includes four methods: matchCon-
textPolicy, notifyCME, extractInstance, and createCxRB. Commu-
nity providers create concrete implementations of the abstract factory. Each con-
crete implementation represents a community service. ThematchContextPolicy
method enables communities to compare context policies as described in Fig. 10. The
notifyCME method allows community providers to notify CME engine whenever
they create new communities. For that purpose, it invokes the updateCommu-
nityList operation exposed by CME engine (Fig. 6). The extractInstance
method is used by a community’s property extractor to retrieve the instance of a
context property from a context specification corresponding to that community. The
implementation of this method depends on the context category language. It is up to
community providers to implement this method as needed. For example, the provider
of a functional community should specify inextractInstance the way each qual-
itative parameter is retrieved from an HQML specification [19]. The createCxRB
allows community providers to create CxRB rule bases and populate them with ap-
propriate context rules. Community providers should identify the context property of
each rule. They also need to specify the business logic of the matchContextProperty()
function.

5 Implementation

Figure 11 gives the implementation architecture of the proposed matching framework.
We implement CME and communities as Java Web services using Eclipse IDE. Details
about the way community services are implemented are given in Section 5.1. We use
Apache Axis 1.2.1 to deploy and invoke those Web services. To actually host CME
and community services, we use Apache Tomcat server (version 5.X). We use jUDDI,
an open source Java implementation of UDDI, as a service registry. Each community
implements the community factory pattern. Service providers are represented by their
CPAs. Each service provider downloads its CPA from a CPA agents pool using a
CPA editor (implemented in JSP 1.0 and Java Servlets 2.1). CPAs are mobile agents
developed in IBM’s Aglets Software Development Kit (version 2).

We provide two mechanisms for submitting matching requests to CME engine. In
the first mechanism, users enter a matching request via a graphical interface (imple-

Springer

28 Distrib Parallel Databases (2007) 21:5–37

Fig. 11 Implementation architecture

mented in HTML/servlets). The specified matching request includes context specifi-
cations along with their types. At the server side, we automatically generate policies
based on context specifications, create a new service entry in the jUDDI registry,
and invoke CME’s matchWebService() for the newly created service. This mechanism
gives users control over the cases that need to be tested in the matching framework
(e.g., test the framework for a specific context category, type, and property instances).
In the second mechanism, a Web service randomly invokes CME’s matchWebService()
operation for randomly selected source services. These services are pre-defined and
pre-registered in the jUDDI registry. This mechanism simulates matching requests
submitted from a composition engine. It is suitable for conducting experiments to
assess the performance of the proposed framework since a large number of random
matching requests may be generated.

5.1 Implementing community services

We are currently implementing two context categories: QoS (non-functional category)
and functional. Each category corresponds to a community service. For QoS, we are
adopting the QoS model presented in [54]. We are using WSDL as a type for the
functional category. Other context categories and types will be added in the future.
To illustrate the way community service are implemented, let us consider the QoS
community. In the current implementation, a QoS policy is composed of one context
specification that includes the following attributes: price, duration, reputation, and
availability [54]. The price of a service is the fee that a client has to pay for invoking
that service. The duration measures the expected delay in seconds between the moment

Springer

Distrib Parallel Databases (2007) 21:5–37 29

Table 2 Context Rules implemented in the QoS community

Context Rule Price Context Rule Duration
Context Property price Context Property duration
Instances PriceS, PriceM Instances DurS, DurM

Type QoS Type QoS
Action matchContextProperty(PriceS ,PriceM) Action matchContextProperty(DurS,DurM)
{ If PriceM ≤ PriceS { If DurM ≤ DurS

Then return true Else return false } Then return true Else return false }
Context Rule Reputation Context Rule Availability

Context Property reputation Context Property availability
Instances RepS, RepM Instances AvailS , AvailM

Type QoS Type QoS
Action matchContextProperty(RepS,RepM) Action matchContextProperty(AvailS ,AvailM)
{ If RepM ≥ RepS { If AvailM ≥ AvailS

Then return true Else return false } Then return true Else return false }

when a request is sent to a service and the moment when the results are received. The
reputation of a service s is a measure of its trustworthiness. It mainly depends on end
user’s experiences of using the service. Different end users may have different opinions
on the same service. The value of the reputation is defined as the average ranking
given to the service by end users. The availability of a service s is the probability that
the service is accessible. Each QoS attribute corresponds to a context property. Hence,
we have a total of four context rules (one for each context property). These rules are
summarized in Table 2. Let us consider two services WSsource and WSmember . The price
rule states that WSmember matches WSsource if WSmember has a price that is at most equal
to WSsource’s price. The duration rules indicates that WSmember matches WSsource if
WSmember ’s execution does not last more than WSsource’s execution. The reputation
rule specifies that WSmember matches WSsource if WSsource is not more reputable than
WSmember . The availability rule states that WSmember matches WSsource if WSmember is
at least as available as WSsource.

The context rules specified in Table 2 are stored in the community’s CxRB rule
base. CxRB is implemented as a relational table in Oracle9i. CxRB table has three
attributes: rule name, property name, and type. Each context rule will be represented
by a tuple in the table. The matchContextProperty() function of each rule is saved
in Oracle9i as a Java stored procedure. The source and member instances are not
saved in CxRB table since their values depend on the source service (different from
a matching request to another) and the current member service being processed.
The source and member instances are passed as parameters to stored procedures by
the community’s matchContextPolicy() algorithm (Fig. 10). Community providers
populate the CxRB table and save the stored procedures at community creation time.
This is done as part of the createCxRB method defined in the community abstract
factory (Section 4.3). The use of a relational table and stored procedures concept for
CxRB has two major advantages. First, the matchContextPolicy() algorithm (Fig. 10)
may use simple SQL queries to fetch appropriate context rules. One such SQL query
is the one that returns the rule names that correspond to a specific property name and
type. Second, community providers may modify CxRB at any time without changing

Springer

30 Distrib Parallel Databases (2007) 21:5–37

Table 3 Symbols and Parameters

Variables
Ncom Number of communities
Np Number of policies per service
NC S Number of context specifications per policy
Nmemb Number of members per community
NR−t Number of rules per type t
NS Number of services in the registry
Performance measurement parameters
TP−all Time to fetch all policies of a service from the registry
TP−one Time to fetch one policy of a service from the registry
TC S Time to get a context specification
TX M L Time to parse a service description
TNet Network transmission delay
TCx R B Time to fetch rules from CxRB rule base
TMC R Time to execute the matchContextProperty() function within a rule
Trep Time spent by CME to assess a reply from a community

the community logic and code. For example, they may add new rules, delete rules,
modify existing rules, and modify/add stored procedures.

5.2 Performance analysis

In this section, we study the performance of the proposed framework for context-based
matching. For that purpose, we define an analytical model and analyze the performance
of our framework using that model. Performance study via simulation or real-world
experiments will be reported in a future work. Table 3 defines the parameters and
symbols used in the analytical model. We compute the average matching time Tmatch .
Thus, Tmatch is equal to (T min

match + T max
match)/2 where T min

match and T max
match are the minimum

and maximum matching times respectively.
As specified in Fig. 7, the global matching time Tmatch includes a polling time Tpoll

and decision time Tdec (Tmatch = Tpoll+Tdec). Tpoll is composed of the time Tpoll1

spent by CME to decompose requests and invoke community services and the time
Tpoll2 spent by each involved community to process the its sub-request. In the best
case scenario (i.e., minimum time), the source service WS has only one policy. Hence,
T min

poll = T min
poll1 + T min

poll2. In the worst case scenario (i.e., maximum time), the source
service has Ncom policies and all sub-requests are processed sequentially. Hence,
T max

poll = T max
poll1 + Ncom × T max

poll2.
The following time delays have to be considered for computing Tpoll1: (1) Time

spent by CME to retrieve the context policies of W S (Fig. 7, line 4); (2) Time spent
by CME to decompose the matching request into sub-requests (Fig. 7, lines 5–7); and
(3) Time to send each sub-request to the community service of the related category
(Fig. 7, lines 8). T min

poll1 and T max
poll1 correspond to the cases where W S has one and Ncom

policies, respectively. Hence, T min
poll1 = TP−one + TXML + TNet and T max

poll1 = TP−all +
Ncom × (TXML + TNet). Before computing Tpoll2, let us first determine Tdec as part of
the algorithm presented in Fig. 7. In the best case scenario, T min

dec = TNet + Trep since
W S has only one policy and therefore CME receives one reply from a community. In
the worst case scenario, T max

dec = Ncom × (TNet + Trep) since CME receives sequential

Springer

Distrib Parallel Databases (2007) 21:5–37 31

replies from all community services. We summarize below the formulas for T min
poll ,

T max
poll , T min

poll1, T max
poll1, T min

dec , and T max
dec :

T min
poll = T min

poll1 + T min
poll2

T max
poll = T max

poll1 + Ncom × T max
poll2

T min
poll1 = TP−one + TXML + TNet

T max
poll1 = TP−all + Ncom × (TXML + TNet)

T min
dec = TNet + Trep

T max
dec = Ncom × (TNet + Trep)

Let us now compute Tpoll2 based on the algorithm given in Fig. 10. The community
first retrieves W S policy from the registry in a TP−one time delay (Fig. 10, line 3).
For each context specification (for a total of NC S), it parses the policy in TXML time
delay to get the type and URI of the specification and retrieves all matching rules (in
a TCx RB time delay) corresponding to the same type from CxRB rule base (Fig. 10,
line 4–7). Then, the community browses all members (for a total of Nmemb). For each
member, it fetches its policy from the registry and parses it to get the URI of a relevant
context specification in a TP−one + TXML time delay (Fig. 10, line 8–12). Next, the
community retrieves the source and member specifications based on the URIs (in
2 × TC S time delay). Finally, for each matching rule (for a total of NR−t), it parses the
source and member specifications to extract the source and member property instances
in a 2 × TXML time delay, and executes the matchContextProperty() function within
that rule in a TMC R time delay (Fig. 10, line 14-18). We can now determine T min

poll2

and T max
poll2. T min

poll2 corresponds to the case where NC S = 1, Nmemb = 1, and NR−t = 1.
T min

poll2 corresponds to the case where Nmemb = NS (all services are members of the
community). The formulas for Tpoll2, T min

poll2, and T max
poll2 are given below:

Tpoll2 = TP−one + NC S × (TXML + TCx RB + Nmemb

× (TP−one + TXML + 2 × TC S + NR−t × (2 × TXML + TMC R)))

T min
poll2 = 2 × TP−one + TCx RB + 2 × TC S + 4 × TXML + TMC R

T max
poll2 = TP−one + NC S × (TXML + TCx RB + NS

× (TP−one + TXML + 2 × TC S + NR−t × (2 × TXML + TMC R)))

Finally, based on our previous analysis, Tmatch , T min
match , and T max

match are defined as
follows:

T min
match = T min

Poll1 + T min
Poll2 + T min

dec

T max
match = T max

Poll1 + Ncom × T max
Poll2 + T max

dec

Tmatch = 1

2
× (

T min
Poll1 + T max

Poll1 + T min
Poll2 + Ncom × T max

Poll2 + T min
dec + T max

dec

)

Springer

32 Distrib Parallel Databases (2007) 21:5–37

6 Related work

In this section, we overview major techniques related to our approach. We first compare
our approach to matching techniques for Web services. Then, we position our work
with existing context-oriented Web service frameworks. Finally, we discuss related
policy-based techniques for Web services.

6.1 Matching techniques for web services

Several techniques have been proposed to deal with Web service matching. LARKS
defines five techniques for service matchmaking: context matching, profile compari-
son, similarity matching, signature matching, and constraint matching [47]. Matching
services to requests is performed by using any combination of the above techniques.
The ATLAS matchmaker defines two methods for comparing service capabilities
described in DAML-S [42, 44]. The first method compares functional attributes to
check whether advertisements support the required type of service or deliver suf-
ficient quality of service. The second compares the functional capabilities of Web
services in terms of inputs and outputs. [8] presents a service matching technique
for pervasive computing environments. Service descriptions are provided in DAML-
S. They also include platform specific information such as processor type, speed,
and memory availability. The composition manager uses a semantic service discov-
ery mechanism to select participant services. This mechanism is based on DReggie, a
Jini-based semantic discovery framework [7]. Li and Harrocks [28] adopts techniques
from knowledge representation to match DAML-S service capabilities. In particular,
it defines a description logic (DL) reasoner; advertisements and requests are rep-
resented in DL notations. Another DAML-S based matchmaker implementation is
KarmaSIM [41] where DAML-S descriptions are described in terms of a first-order
logic language (predicates) and then converted to Petri-nets where the composition
can be simulated, evaluated and performed. Other service matching techniques are
also presented in [3, 21, 35]. However, they techniques mostly focus on comparing
syntactic attributes of Web services.

We identify several differences between our approach for service matching and the
aforementioned frameworks. First, existing frameworks use a limited set of matching
attributes. They merely compare text descriptions, signatures (inputs and outputs), and
logical constraints about inputs and output. In our approach, we define an ontology-
based categorization of contexts that includes functional, non-functional, value-added,
and domain context specifications. The matching engine uses those context specifica-
tions to decide about the outcome of the matching process. Second, existing frame-
works model matching attributes as part of Web service descriptions. In our approach,
we define a two-level mechanism for modeling the contextual information to be used
in a service matching process. Service descriptions represent part of the context spec-
ified in the first level. Other contexts such as security, privacy, agreement, and quality
of service may also be specified in that level. We use WS-Policy standard in the
second level to provide a uniform (policy-based) envelop for context specifications.
Third, we propose a peer-to-peer topology for matching context-oriented services in
Web service composition. The topology includes a context matching Web service and

Springer

Distrib Parallel Databases (2007) 21:5–37 33

set of specialized community services. The matching process is performed through
interactions between matching-related Web services. Finally, our approach is more
dynamic than the existing frameworks for Web service matching. New context cat-
egories and community services can be added on the fly. Context policies may join
and leave community services at any time. Context rules within a community may be
updated, removed, and added dynamically.

6.2 Context-oriented Web services

Several context-aware approaches have recently been proposed to enhance Web ser-
vice discovery and composition mechanisms. Lee and Helal [26] proposes a context-
aware service discovery technique for mobile environments. It defines the context of
a Web service as a set of attributes included in the service description. Examples of
context attributes include user’s location and network bandwidth. The discovery en-
gine first lookups for Web services based on traditional criteria (e.g., service category
in UDDI). Then, it reduces the qualified services to be returned to clients through
context attribute evaluation. This approach uses contextual information for service
discovery not for service composition. Additionally, it focuses on client-related con-
textual information. It does not seem to consider provider-related context which is
important for Web service composition. Finally, the definition of context in [26] is
limited to some attributes added to service descriptions. We adopt a more generic def-
inition of Web service context through an ontology-based categorization of contextual
information. Maamar et al. [30] proposes an approach for Web service composition
based on the use of agents and context. The suggested context model comprises
three types of context: I-context refers to a Web service instance context, W-context
is the Web service context that is defined by means of I-contexts, and C-context is
the context of the composite service and is defined by the respective W-contexts.
Maamar et al. [30] focuses on run-time context which includes information related to
the execution of composite Web services and their participants (e.g., number of current
service instances and their status). In this paper, we adopt a complementary approach
by considering context needed for matching services in Web service composition.
We propose a novel categorization of contextual information suitable to Web service
matching. Our approach can be combined with the one presented in [30] to consider
both run-time and provider/client-related context during service matching.

Contextualization is proposed at the Web service deployment, composition and
conciliation or matching levels in [29]. The description of contexts is assumed to occur
along three categories: profile, process model, and grounding. The profile describes
the arguments and capabilities of context (what does the context require and provide).
The process model suggests how context collects raw data from sensors and detects
changes that need to be submitted to the Web service. Finally, the grounding defines
the bindings (protocol, input/output messages, etc.) that make context accessible
to a Web service. The authors did not however mention how relevant contexts are
elicited in a service matchmaking process. A policy-based approach for developing
context-oriented Web services is introduced in [32]. A Web service policy contains
two elements: the resource element which identifies the computing means on which
Web services operate, and the user element which identifies the personalization that

Springer

34 Distrib Parallel Databases (2007) 21:5–37

Web services are subject to [31]. Context categorization proposed in our approach is
more generic than the one defined in [32]. Additionally, [32] does not consider the
issue of service matching.

6.3 Policy-based Web services

An approach for matching non-functional properties of Web services represented
using WS-Policy is defined in [51]. Our definition of policy is however broader;
it encompasses non-functional attributes, as well as other context-related specifica-
tions (functional, value-added, and domain). Additionally, we provide an end-to-end
framework for processing service matching requests. A policy-based approach for
Web service composition is proposed in [9]. The authors propose a classification of
rules into syntactic, semantic and policy rules to discover and and compose Web
services. The authors claim that the provision of rules with topic concepts allows the
system to identify the relevant rules in a certain domain which are going to be used to
select appropriate Web services for composition. Unlike our proposed model which is
WS-Policy standard compliant, the policy specification used in [9] does not provide
a uniform (policy-based) envelop for context specifications. Additionally, our defi-
nition of policy is broader, encompassing contextual information such as functional,
non-functional, value-added, and domain contexts. We also propose a peer-to-peer
framework for matching context policies. A specification of Web service business
rules based on WS-Policy framework is suggested in [46]. The policy assertions are
modeled by the actions relating to the service and the conditions for performing
them. Sriharee et al. [46] focuses on checking the policy of a Web Service against a
service consumer’s request. It does not provide a matching technique for Web service
composition which could exploit such integration of context-related information in
the policy assertions.

7 Conclusion

We presented a context-based matching framework for Web service composition. The
framework relies on an ontology-based categorization of service contexts. Providers
expose their service contexts as policies using context policy assistants (CPAs). CPAs
implement a two-level mechanism for modeling Web service contexts. The matching
process is performed via peer-to-peer interactions between a context-based match-
ing engine (CME), CPAs, and community services. In this paper, we consider full
matching between Web services where each context of a source service should be
matched by a policy of the candidate service. As future work, we are investigat-
ing techniques for enabling partial service matching. Another possible extension is
the use of ontology mapping approaches to support the matching of contexts that
have different types within the same category (e.g., WSDL-S vs. DAML-S). Fi-
nally, we will conduct experiments to assess the performance of the proposed frame-
work and compare the experiments’ results with those obtained in our analytical
analysis.

Springer

Distrib Parallel Databases (2007) 21:5–37 35

References

1. G. Alonso, F. Casati, H. Kuno, and V. Machiraju, Web Services: Concepts, Architecture, and Applica-
tions, Springer Verlag (ISBN: 3540440089), June 2003.

2. Y. Atif, “Building trust in E-commerce,” IEEE Internet Computing, vol. 6, no. 1, pp. 18–24, 2002.
3. K. Baina, K. Benali, and C. Godart, “A process service model for dynamic enterprise process intercon-

nection,” in CoopIS Conf., pp. 239–254, September 2001.
4. R. Bhatti, E. Bertino, and A. Ghafoor, “A trust-based context-aware access control model for Web-

services,” Distributed and Parallel Databases, vol. 18, no. 1, pp. 83–105, July 2005.
5. P. Brezillon, “Context-based modeling of operators’ Practices by Contextual Graphs,” in Human

Centered Processes: 14th Mini Euro Conference, 2003.
6. F. Casati and M.-C. Shan, “Dynamic and adaptive composition of E-services,” Information Systems,

vol. 26, no. 3, pp. 143–163, 2001.
7. D. Chakraborty, F. Perich, S. Avancha, and A. Joshi, “DReggie: a smart service discovery technique

for E-commerce applications,” in Workshop at the 20th Symposium on Reliable Distributed Systems,
October 2001.

8. D. Chakraborty, F. Perich, A. Joshi, T. Finin, and Y. Yesha, “A reactive service composition architecture
for pervasive computing environments,” in 7th Personal Wireless Communications Conference, pp. 53–
62, October 2002.

9. S.A. Chun, V. Atluri, and N.R. Adam, “Using semantics for policy-based web service composition,”
Distributed and Parallel Databases, vol. 18, no. 1, pp. 37–64, 2005.

10. L.F. Cranor, “P3P: making privacy policies more useful,” IEEE Security and Privacy, vol. 1, no. 6, pp.
50–55, November 2003.

11. F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weerawarana, “Unraveling the Web
services Web: an introduction to SOAP, WSDL, and UDDI,” IEEE Internet Computing, vol. 6, no. 2,
pp. 86–93, 2002.

12. G. Della-Libera, M. Gudgin, P. Hallam-Baker, M. Hondo, H. Granqvist, C. Kaler, H.
Maruyamaand M. McIntosh, A. Nadalin, N. Nagaratnam, R. Philpott, H. Prafullchandra, J. Shewchuk,
D. Walter, and R. Zolfonoon, “Web services security policy language (WS-SecurityPolicy),”
http://specs.xmlsoap.org/ws/2005/07/securitypolicy/ws-securitypolicy.pdf, July 2005.

13. A.K. Dey, “Providing architectural support for building context-aware applications,” Ph.D. Dissertation,
Georgia Tech, December 2000.

14. A. Doan, “Learning to map between structured representations of data,” Ph.D. Dissertation, University
of Washington, 2002.

15. D. Fensel, Ontologies: A Silver Bullet for Knowledge Management and Electronic Commerce, Springer
Verlag (ISBN: 3540003029), September 2003.

16. I. Foster and C. Kesselman, The Grid: Blueprint for a New Computing Infrastructure, 2nd Edn, Morgan
Kaufmann (ISBN: 1-55860-933-4), November 2004.

17. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley (ISBN: 0201633612), January 1995.

18. A.J. Gonzales and R Ahlers, “Context-based representation of intelligent behavior in training simula-
tions,” International Transactions of the Society for Computer Simulation, 1999, pp. 153–166.

19. X. Gu, K. Nahrstedt, W. Yuan, D. Wichadakul, and D. Xu, “An XML-based quality of service enabling
language for the web,” J. Vis. Lang. Comput., vol. 13, no. 1, pp. 61–95, 2002.

20. J.M. Hancock and M.J. Zvelebil, Dictionary of Bioinformatics and Computational Biology, Wiley-Liss
(ISBN: 0471436224), August 2004.

21. J.V.D. Heuvel, J. Yang, and M.P. Papazoglou, “Service representation, discovery and composition for
E-marketplaces,” in CoopIS Conf., September 2001, pp. 270–284.

22. IBM, BEA Systems, Microsoft, SAP AG, Sonic Software, and VeriSign, “WS-policy specification,”
http://www.ibm.com/developerworks/library/specification/ws-polfram, March 2006.

23. IBM, BEA Systems, Microsoft, SAP AG, Sonic Software, and VeriSign, “WS-policyattachment spec-
ification,” http://www.ibm.com/developerworks/library/specification/ws-polatt, March 2006.

24. L. Kagal, M. Paolucci, N. Srinivasan, G. Denker, T.W. Finin, and K.P. Sycara, “Authorization and
privacy for semantic Web services,” IEEE Intelligent Systems, vol. 19, no. 4, pp. 50–56, 2004.

25. R. Khalaf, N. Mukhi, and S. Weerawarana, “Service-oriented composition in BPEL4WS,” in WWW
(Alternate Paper Tracks), May 2003.

26. C. Lee and S. Helal, “Context attributes: an approach to enable context- awareness for service discovery,”
in 2003 Symposium on Applications and the Internet (SAINT’03), 2003.

Springer

36 Distrib Parallel Databases (2007) 21:5–37

27. F. Leymann, D. Roller, and M.-T. Schmidt, “Web services and business process management,” IBM
Systems Journal, vol. 41, no. 2, pp. 198–211, 2002.

28. L. Li and I. Horrocks, “A software framework for matchmaking based on semantic Web technology,”
in WWW 2003 Conf., May 2003, pp. 331–339.

29. Z. Maamar, D Benslimane, and N. C. Narendra, “What can context do for Web services,” Communi-
cations of the ACM, to appear in 2006.

30. Z. Maamar, S.K. Mostefaoui, and H. Yahyaoui, “Toward an agent-based and context-oriented approach
for Web services composition,” IEEE Transactions on Knowledge and Data Engineering (TKDE), vol.
17, no. 5, pp. 686–697, 2005.

31. Z. Maamar, S. Kouadri Mostefaoui, and Q.H. Mahmoud, “On personalizing Web services using con-
text,” International Journal of E-Business Research, vol. 1, no. 3, 2005.

32. Z. Maamar, G. Kouadri Mostéfaoui, D. Benslimane, S. Sattanathan, and C. Ghedira, “Developing
interoperable business processes using Web services and policies,” in 2nd International Conference on
Interoperability for Enterprise Software and Applications, 2006.

33. D. Martin, M. Paolucci, S. McIlraith, M. Burstein, D. McDermott, D. McGuinness, B. Parsia, T. Payne,
M. Sabou, M. Solanki, N. Srinivasan, and K. Sycara, “Bringing semantics to Web services: the OWL-S
approach,” in First International Workshop on Semantic Web Services and Web Process Composition
(SWSWPC 2004), California, July 2004.

34. S.A. McIlraith, T.C. Son, and H. Zeng, “Semantic Web services,” IEEE Intelligent Systems, vol. 16,
no. 2, pp. 46–53, 2001.

35. M. Mecella, B. Pernici, and P. Craca, “Compatibility of e-services in a cooperative multi-platform
environment,” in 2nd VLDB TES Workshop, September 2001, pp. 44–57.

36. B. Medjahed, B. Benatallah, A. Bouguettaya, A.H.H. Ngu, and A.K. Elmagarmid, “Business-to-
Business Interactions: Issues and Enabling Technologies,” The VLDB Journal, vol. 12, no. 1, pp.
59–85, May 2003.

37. B. Medjahed and A. Bouguettaya, “A multilevel composability model for semantic Web services,”
IEEE Transactions on Knowledge and Data Engineering (TKDE), vol. 17, no. 7, pp. 954–968, July
2005.

38. B. Medjahed and A. Bouguettaya, “Customized delivery of E-government Web services,” IEEE Intel-
ligent Systems, vol. 20, no. 6, pp. 77–84, December 2005.

39. B. Medjahed, A. Bouguettaya, and A. Elmagarmid, “Composing Web services on the semantic Web,”
The VLDB Journal, vol. 12, no. 4, pp. 333–351, November 2003.

40. G. Kouadri Mostefaoui, “Towards a conceptual and software framework for integrating context-based
security in pervasive environments,” Ph.D. Dissertation, University of Fribourg, October 2004.

41. S. Narayanan and S.A. McIlraith, “Simulation verification and automated composition of Web services,”
in WWW 2002 Conf., 2002, pp. 77–88.

42. M. Paolucci, T. Kawamura, T.R. Payne, and K. Sycara, “Semantic matching of Web services capabili-
ties,” in First International Semantic Web Conference, 2002, pp. 333–347.

43. J. Pascoe, “The stick-e note architecture: extending the interface beyond the user,” in Intelligent User
Interfaces, 1997, pp. 261–264.

44. T.R. Payne, M. Paolucci, , and K. Sycara, “Advertising and matching DAML-S service descriptions
(position paper),” In Int’l Semantic Web Working Symp., 2001, pp. 76–78.

45. S. Ran, “A model for Web services discovery with QoS,” SIGecom Exchanges, vol. 4, no. 1, pp. 1–10,
2003.

46. N. Sriharee, T. Senivongse, K. Verma, and A.P. Sheth, “On using WS-policy, ontology, and rule
reasoning to discover Web services,” in INTELLCOMM 2004, 2004, pp. 246–255.

47. K. Sycara, M. Klush, , and S. Widoff, “Dynamic service matchmaking among agents in open information
environments,” ACM SIGMOD Record, vol. 28, no. 1, pp. 47–53, 1999.

48. A. Tsalgatidou and T. Pilioura, “An overview of standards and related technology in Web services,”
Distributed and Parallel Databases, vol. 12, no. 3, pp. 135–162, November 2002.

49. R.M. Turner, “Context-mediated behavior for intelligent agents,” Int. J. Hum.-Comput. Stud., vol. 48,
no. 3, pp. 307–330, 1998.

50. UDDI, “The universal description, discovery and integration (3.0),” http://www.uddi.org, February
2005.

51. K. Verma, R. Akkiraju, and R. Goodwin, “Semantic matching of Web service policies,” in Second
International Workshop on Semantic and Dynamic Web Processes, 2005, pp. 79–90.

52. M. Wooldridge and N.R. Jennings, “Intelligent agents: theory and practice,” Knowledge Engineering
Review, vol. 10, no. 2, pp. 115–152, 1995.

Springer

Distrib Parallel Databases (2007) 21:5–37 37

53. C. Wroe, R. Stevens, C.A. Goble, A. Roberts, and R.M. Greenwood, “A suite of daml+oil ontologies
to describe bioinformatics Web services and data,” International Journal on Cooperative Information
Systems, vol. 12, no. 2, pp. 197–224, 2003.

54. L. Zeng, B. Benatallah, A.H.H. Ngu, M. Dumas, J. Kalagnanam, and H. Chang, “QoS-aware middleware
for Web services composition,” IEEE Trans. Software Eng., vol. 30, no. 5, pp. 311–327, 2004.

Springer

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

