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Abstract
Many algorithms have been proposed to learn local graphical structures around tar-
get variables of interest from observational data, focusing on two sets of variables. 
The first one, called Parent–Children (PC) set, contains all the variables that are 
direct causes or consequences of the target while the second one, known as Markov 
boundary (MB), is the minimal set of variables with optimal prediction perfor-
mances of the target. In this paper we introduce two novel algorithms for the PC 
and MB discovery tasks with rigorous guarantees on the Family-Wise Error Rate 
(FWER), that is, the probability of reporting any false positive in output. Our algo-
rithms use Rademacher averages, a key concept from statistical learning theory, to 
properly account for the multiple-hypothesis testing problem arising in such tasks. 
Our evaluation on simulated data shows that our algorithms properly control for the 
FWER, while widely used algorithms do not provide guarantees on false discoveries 
even when correcting for multiple-hypothesis testing. Our experiments also show 
that our algorithms identify meaningful relations in real-world data.

Keywords  Local causal discovery · Markov boundary · Rademacher averages · 
FWER

1  Introduction

One of the most fundamental and challenging problems in science is the discov-
ery of causal relations from observational data (Pearl 2009). Bayesian networks are 
graphical models that are widely used to represent causal relations and have been the 
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focus of a large amount of research in data mining and machine learning. Bayesian 
networks represent random variables or events as vertices of graphical models, and 
encode conditional-independence relationships according to the (directed) Markov 
property among the variables or events as directed acyclic graphs (DAGs). They 
are a fundamental tool to represent causality relations among variables and events, 
and have been used to analyze data from several domains, including biology (Pe’er 
2005; Sachs et al. 2005), medicine (Velikova et al. 2014), and others (Yusuf et al. 
2021; Kusner and Loftus 2020).

One of the core tasks in learning Bayesian networks from observational data 
is the identification of local causal structures around a target variable T. In this 
work we focus on two related local structures. The first one is the set of parents 
and children (i.e., the neighbours) of T in the DAG, denoted as the parent–children 
set PC(T). PC(T) has a natural causal interpretation as the set of direct causes and 
effects of T (Spirtes et al. 2000), and the accurate identification of PC(T) is a cru-
cial step for the inference of Bayesian networks. The second structure is the Markov 
boundary of T, denoted as MB(T). MB(T) is a minimal set of variables that makes 
T conditionally independent of all the other variables, and comprises the elements 
of PC(T) and the other parents of the children of T. Thus, MB(T) includes all direct 
causes, effects, and causes of direct effects of T. Moreover, under certain assump-
tions, the Markov boundary is the solution of the variable selection problem (Tsa-
mardinos and Aliferis 2003), that is, it is the minimal set of variables with optimal 
predictive performance for T.

In several real-world applications, such as biology (Sachs et al. 2005) and neu-
roscience  (Bielza and Larranaga 2014), the elements in PC(T) and MB(T) identi-
fied from observational data provide candidate causal relations explored in follow-
up studies and experiments, which often require significant resources (e.g., time or 
chemical reagents). In other areas, such as algorithmic fairness  (Mhasawade and 
Chunara 2021; Kusner and Loftus 2020), local causal discovery can help in identify-
ing discriminatory relationships in data. In these scenarios, it is crucial to identify 
reliable causal relations between variables, ideally avoiding any false discovery.

While the stochastic nature of random sampling implies that false discoveries 
cannot be avoided with absolute certainty (when at least a relation is reported), a 
common approach from statistics to limit false discoveries is to develop methods 
that rigorously bound the Family-Wise Error Rate (FWER), that is, the probability 
of reporting one or more false discoveries. However, current approaches for local 
causal discovery do not provide guarantees on false discoveries in terms of FWER, 
and the study of causal discovery with false positive guarantees has received scant 
attention in general (see Sect. 3).

1.1 � Our contributions

In this paper we introduce two novel algorithms that exploit Rademacher Averages 
for Local structure discovery (RAveL) providing rigorous guarantees on the FWER: 
RAveL-MB for the MB discovery task and RAveL-PC for the PC identification 
task. To the best of our knowledge, our algorithms are the first ones to allow the 
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discovery of the PC set and the MB of a target variable while providing provable 
guarantees on false discoveries in terms of the FWER. Our algorithms crucially rely 
on Rademacher averages, a key concept from statistical learning theory (Bartlett and 
Mendelson 2002), to properly account for the multiple-hypothesis testing problem 
arising in local causal discovery, where a large number of statistical test for condi-
tional independence are performed. To the best of our knowledge, this work is the 
first one to introduce the use of Rademacher averages in (local) causal discovery. 
We prove, both analytically and experimentally, that currently used approaches to 
discover the PC set and the MB of a target variable cannot be adapted to control 
the FWER simply by correcting for multiple-hypothesis testing. This is due to their 
additional requirement of conditional dependencies being correctly identified, which 
is an unreasonable assumption due to the stochastic nature of random sampling and 
finite sample sizes. We then introduce two test statistics to be used in independence 
testing with Rademacher averages, assuming that the expectation and maximum of 
each variable is known. Our experimental evaluation shows that our algorithms do 
control the FWER while allowing for the discovery of elements in the PC set and in 
the MB of a target variable, even when empirical estimates of the quantities of inter-
est are used. On real data, our algorithms return a subset of variables that causally 
influences the target in agreement with prior knowledge.

The rest of the paper is organized as follows. Section 2 introduces the preliminary 
concepts used in the rest of the paper. Section 3 describes previous works related 
to our contribution. Section 4 describes our algorithms and their analysis, and the 
assumptions required by previously proposed algorithms in order to provide rigor-
ous results in terms of the FWER. For clarity, we describe our algorithms focusing 
on the case of continuous variables, but our algorithms can be easily adapted to dis-
crete and categorical variables. Section 5 describes our experimental evaluation on 
synthetic and real data. Finally, Sect. 6 offers some concluding remarks.

2 � Preliminaries

In this section, we introduce basic notions and preliminary concepts used in the rest 
of the paper. More specifically, in Sect. 2.1 we formally define Bayesian networks 
(BNs) and the sets PC(T) and MB(T) for a target variable T. In Sect. 2.2 we describe 
the statistical testing procedure commonly used by algorithms for the identification 
of PC(T) and MB(T). In Sect. 2.3 we introduce the multiple hypotheses testing prob-
lem and the FWER. Finally, in Sect. 2.4 we introduce the concept of Rademacher 
averages for supremum deviation estimation.

2.1 � Bayesian networks

Bayesian Networks (BNs) are convenient ways to model the influence among a set 
of variables V . BNs represent interactions using a Direct Acyclic Graph (DAG), and 
employ probability distributions to define the strength of the relations. More for-
mally, they are defined as follows.
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Definition 1  (Bayesian network (Neapolitan et al. 2004)) Let p be a joint probability 
distribution over V . Let G = (W,A) be a DAG where the vertices W of G are in a 
one-to-one correspondence with members of V , and such that ∀X ∈ V , X is condi-
tionally independent of all non-descendants of X, given the parents of X (i.e., the 
Markov condition holds). A Bayesian Network (BN) is defined as a triplet ⟨V,G, p⟩.

A common assumption for the study of BNs is faithfulness, defined as follows.

Definition 2  (Faithfulness (Spirtes et al. 2000)) A directed acyclic graph G is faith-
ful to a joint probability distribution p over variable set V if and only if every inde-
pendence present in p is entailed by G and the Markov Condition. A distribution p is 
faithful if and only if there exists a DAG G such that G is faithful to p.

The dependencies between variables in a faithful BN can be analyzed through 
the study of paths, which are sequences of consecutive edges of any directional-
ity (i.e. X → Y  or X ← Y  , that is, ignoring their orientation) in G. In particular, 
the directional separation, or d-separation (Pearl 2009), criterion can be used to 
study the dependence between two subsets X and Y of variables conditioning on 
another set Z of variables, such that X,Y,Z ⊆ V are disjoint. Informally, the cri-
terion marks a path between any variable in X and any variable in Y as blocked by 
Z if the flow of dependency between the two sets is interrupted and therefore the 
two sets are independent conditioning on Z , written X ⟂⟂ Y ∣ Z . Viceversa, if the 
two sets X and Y are conditionally dependent given Z , denoted with X  ⟂⟂ Y ∣ Z , 
the path is marked as open. More formally, the definition of d-separated path is 
the following.

Definition 3  (d-separation  (Pearl 2009)) A path q is d-separated, or blocked, by a 
set of nodes Z if and only if: 

1.	 q contains a chain I → M → J or a fork I ← M → J such that M ∈ Z , or
2.	 q contains an inverted fork (or collider) I → M ← J such that M ∉ Z and no 

descendant of M is in Z.

A set Z is said to d-separate X from Y if and only if Z blocks every path from a 
node in X to a node in Y.

A causal Bayesian network is a Bayesian network with causally relevant edge 
semantics (Pearl 2009; Ma and Tourani 2020).

2.1.1 � Local causal discovery

The task of inferring the local region of a causal BN related to a target variable T 
from data is called local causal discovery. Two sets of variables are of major impor-
tance in local causal discovery. The first set is the parent–children set PC(T), which 
contains the variables that are direct cause of T or that are its direct consequence.
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Definition 4  (Parent–children set of T (Ma and Tourani 2020)) The parent–children 
set of T, or PC(T), is the set of all parents and all children of T, i.e., the elements 
directly connected to T, in the DAG G.

The elements in PC(T) are the only variables that cannot be d-separated from T, 
that is, by the Markov property, for each X in PC(T) ∶ X ̸⟂⟂ T ∣ Z,∀Z ⊆ V⧵{X, T} . 
The second set is the Markov boundary MB(T) of a target variable T, defined as 
follows.

Definition 5  (Markov boundary of T  (Pearl 2009; Tsamardinos et  al. 2003)) 
The Markov boundary of T or MB(T) is the smallest set of variables in 
V⧵{T} conditioned on which all other variables are independent of T, that is 
∀Y ∈ V⧵MB(T), Y ≠ T , T ⟂⟂ Y ∣ MB(T).

Given its definition and the d-separation criteria, in a faithful BN MB(T) is com-
posed of all parents, children, and spouses (i.e., parents of children) of T (Ma and 
Tourani 2020), that are those variables X ∈ V⧵{T} for which ∃Y ∈ PC(T) such that 
X ⟂⟂ T ∣ Z and X  ⟂⟂ T ∣ Z ∪ {Y} for all Z ⊆ V⧵{X, T} . MB(T) is the minimal subset 
S ⊆ V for which p(T ∣ S) is estimated accurately (Ma and Tourani 2020; Tsamardi-
nos et al. 2003), therefore is the optimal solution for feature selection tasks.

2.2 � Statistical testing for independence

The identification of PC(T) and MB(T) is based on the definitions of conditional 
dependence and independence between two variables X and Y. In practice, given a 
dataset, the conditional dependencies between variables are assessed using statisti-
cal hypothesis testing. Since a universal independence test does not exist (Shah and 
Peters 2020), a commonly used approach is to compute the Pearson’s linear correla-
tion coefficient r between two vectors x and y of k elements:

where xi and yi are the i-th element x and y , respectively, x̄ and ȳ are the sample 
mean of x and y , respectively, and sx and sy are the sample standard deviations.

The vectors x and y correspond to the observations of X and Y in the data, but 
their definition depends on whether the test is unconditional, or conditional on a set 
Z of variables. In the first case, x and y are the vectors of observations for variables 
X and Y, respectively. In the second case, x and y represent the residuals of the linear 
regression of the observations of the variables in Z on the ones in X (respectively, 
for y , the ones in Y). For sake of simplicity, in what follows we will use rX,Y ,Z to 
denote the value of rx,y when x and y are obtained conditioning on the set Z , poten-
tially with Z = � (i.e., for unconditional testing), as we just described.

Under the null hypothesis of independence between X and Y conditional on Z 
(including the case Z = � ), the expected value of rX,Y ,Z is 0, and the statistic 

(1)rx,y =

∑k

i=1
xiyi − kx̄ȳ

(k − 1)sxsy
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t =
rX,Y ,Z√

(1−r2
X,Y ,Z

)∕(k−2)
 follows a Student’s t distribution with and k − 2 degrees of free-

dom. The dependence between X and Y is then usually assessed by computing (with 
Student’s t distribution) the p-value for the test statistic t, that is the probability that 
the statistic is greater or equal than t under the null hypothesis of independence. In 
practice, algorithms for local causal discovery (e.g., Tsamardinos et al. 2003; Pearl 
et al. 2007) consider X and Y as independent (unconditionally or conditional on Z ) if 
the p-value is greater than a threshold � (common values for � are 0.01 or 0.05), 
while X and Y are considered as dependent otherwise.

2.3 � Multiple hypotheses testing

As described above, in testing for the independence of two variables X and Y, they 
are considered dependent if the p-value of the corresponding test is below a thresh-
old � . It is easy to see that such procedure guarantees that if X and Y are independ-
ent, then the probability of a false discovery, that is falsely rejecting their independ-
ence, is at most � . The situation is drastically different when a large number N of 
hypotheses are tested, as in the case of local causal discovery. In this case, if the 
same threshold � is used for every test, the expected number of false discoveries 
can be as large as �N . Therefore, it is necessary to correct for multiple hypothesis 
testing (MHT), with the goal of providing guarantees on false discoveries. A com-
monly used guarantee is provided by the Family-Wise Error Rate (FWER), which is 
the probability of having at least one false discovery among all the tests. A common 
approach to control the FWER is the so called Bonferroni correction  (Bonferroni 
1936), which performs each test with a corrected threshold �test = �∕N (a simple 
union bound shows that the resulting FWER is at most �).

2.4 � Supremum deviation and Rademacher averages

While Bonferroni correction does control the FWER, it conservatively assumes the 
worst-case scenario (of independence) between all null hypotheses. This often leads 
to a high number of false negatives (i.e. false null hypotheses that are not rejected). 
We now describe Rademacher averages (Bartlett and Mendelson 2002; Koltchinskii 
and Panchenko 2000), which allow to compute data-dependent confidence intervals 
for all hypotheses simultaneously, leading to improved tests for MHT scenarios (Pel-
legrina et  al. 2022). Rademacher averages are a concept from statistical learning 
theory commonly used to measure the complexity of a family of functions and that, 
in general, also provide a way to probabilistically bound the deviation of the empiri-
cal means of the functions in the family from their expected values.

Let F  be a family of functions from a domain D to [a, b] ⊂ ℝ and let S be a sam-
ple of m i.i.d. observations from an unknown data generative distribution W over D . 
We define the empirical sample mean �̂S[f ] of a function f ∈ F  and its expectation 
�[f ] as
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Note that �[f ] = �W[f ] , that is, the expected value of the empirical mean corre-
sponds to the expectation according to distribution W . A measure of the maximum 
deviation of the empirical mean from the (unknown) expectation for every function 
f ∈ F  is given by the supremum deviation (SD) D(F,S) that is defined as

Computing D(F,S) exactly is not possible given the unknown nature of W , there-
fore bounds are commonly used. An important quantity to estimate tight bounds on 
the SD is the Empirical Rademacher Average (ERA) R̂(F,S) of F  on S , defined as

where � is a vector of m i.i.d. Rademacher random variables, i.e. for which each 
element �i equals 1 or -1 with equal probability. ERA is an alternative of VC dimen-
sion for computing the expressiveness of a set S over class function F  , whose main 
advantage is that it provides tight data-dependent bounds while the VC dimension 
provides distribution-free bounds that are usually fairly conservative (Mitzenmacher 
and Upfal 2017, chap. 14).

Computing the exact value of R̂(F,S) is often infeasible since the expectation 
is taken over 2m elements. A common approach is then to estimate R̂(F,S) using a 
Monte-Carlo approach with n samples of � . The n-samples Monte-Carlo Empirical 
Rademacher Average (n-MCERA) R̂n

m
(F,S,�) is defined as

with � being a m × n matrix of i.i.d. Rademacher random variables. n-MCERA is 
useful to derive probabilistic upper bounds to the SD, as the following.

Theorem 1  (Th. 3.1 of Pellegrina et al. (2022)) Let � ∈ (0, 1) . For ease of notation 
let

With a probability of at least 1 − � over the choice of S and � , it holds

(2)�̂S[f ]=̇
1

m

∑

si∈S

f (si) and �[f ]=̇�W

[
1

m

∑

si∈S

f (si)

]
.

(3)D(F,S) = sup
f∈F

|�̂S[f ] − �[f ]|.

(4)R̂(F,S)=̇�
�

[
sup
f∈F

1

m

m∑

i=1

𝜎if (si)

]

(5)R̂n
m
(F,S,�)=̇

1

n

n∑

j=1

sup
f∈F

1

m

∑

si∈S

𝜎j,if (si)

(6)R̃ = R̂n
m
(F,S,�) + 2z

√
ln

4

𝛿

2nm
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where z = max{a, b} and c = b − a.

Theorem 1 allows us to obtain confidence intervals around the empirical mean 
containing the expectation with probability at least 1 − � for all functions in F  
simultaneously.

3 � Related work

Given a target variable T, the task of finding MB(T) is strictly related to the discov-
ery of PC(T). A common approach for MB discovery consists of creating a candi-
date set of elements in MB(T) by running a PC discovery algorithm twice (first on 
T, and then on all the elements reported as member of PC(T)) to find the elements 
at distance at most 2 from T, and then to eliminate false positives, which are those 
elements that are not parents, children, or spouses of T. Various algorithms follow 
this general scheme (Tsamardinos et al. 2003; Aliferis et al. 2003; Pearl et al. 2007; 
Aliferis et al. 2010), each one with a different variant that aims at minimizing the 
number of independence tests actually performed and their degrees of freedom to 
reduce the amount of data required. However, as described in Sect. 4.3, this does not 
decrease the number of statistical tests to be considered for MHT correction, since a 
priori all tests could potentially be performed. Among such algorithms, Pearl et al. 
(2007) proposed PCMB and proved its correctness under the assumption of all sta-
tistical tests being correct, that is, not returning any false positive or false negative. 
PCMB discovers MB(T) by exploiting an auxiliary function GetPC, which returns 
PC(T), and that in turn uses another function GetPCD returning a set containing all 
parents, all children, and some descendants of T. PCMB at first discovers the vari-
ables in PC(T) by calling GetPC(T) and then builds a set S of candidate spouses by 
repeating the PC discovery on each element just retrieved. Lastly, a filtering oper-
ation is performed to remove false positives from S and to select only the actual 
spouses of T that are then returned in output together with PC(T). (See Algorithm 1, 
Algorithm 2, and Algorithm 3 of Sect. 4.1 for the pseudocode of GetPCD, GetPC, 
and PCMB.)

A different approach has been proposed for IAMB (Tsamardinos et al. 2003) that 
incrementally grows a candidate set of elements in MB(T) without searching for 
PC(T), and then performs a false positive removal phase. IAMB starts with defining 
an empty set E of candidate elements in MB(T) and, in the growing phase, it adds 
one variable Y ∈ V to E if it is dependent to the T conditioning on E , otherwise it 
removes Y from the analysis. At the end of the growing phase, the set E will be a 
Markov blanket of T (i.e. a set of elements condition upon which T is independent 
of the rest of the variables) but it might not be MB(T), that is also defined as the 
minimal Markov blanket of T. In order to return MB(T), IAMB therefore performs a 
clean-up procedure that removes the elements Y ∈ E from E if they are independent 

(7)D(F,S) ≤ 2R̃ +

√
c(4mR̃ + c ln

4

𝛿
) ln

4

𝛿

m
+

c ln
4

𝛿

m
+ c

√
ln

4

𝛿

2m



Bounding the family-wise error rate in local causal...

of T conditioning on E⧵{Y} . (See Algorithm 4 of Sect. 4.1 for the pseudocode of 
IAMB.)

Both PCMB and IAMB do not report false positives only under the assumption of 
not having any false positive and any false negative. Such assumptions are unrealis-
tic in real-world scenarios due to noise in the data, finite sample sizes, and probabil-
istic guarantees of statistical tests, especially in multiple hypotheses scenarios. Our 
algorithms RAveL-PC and RAveL-MB do not require such assumptions to identify 
PC(T) and MB(T) with guarantees on the FWER.

To the best of our knowledge, the study of local causal discovery with guarantees 
on false discoveries has received scant attention. Tsamardinos et  al. (2008) intro-
duced the problem of MHT in the context of local causal discovery, and proposed 
to use the Benjamini-Hochberg correction (Benjamini and Hochberg 1995) to esti-
mate the False Discovery Rate (FDR) of elements retrieved by PC(T) discovery 
algorithms. However, such work does not provide an algorithm with guarantees for 
MB(T). To the best of our knowledge, no method has focused on local causal dis-
covery while bounding the FWER, which is extremely important in domains where 
false positives are critical or where follow-up studies require significant resources 
(e.g., biology and medicine).

Additional works focused on the more general task of BN inference. In Armen 
and Tsamardinos (2014), the authors extended the analysis of  Tsamardinos et  al. 
(2008) from the local discovery task to the BN inference while (Li and Wang 2009; 
Liu et al. 2012; Strobl et al. 2019) re-implemented the PC algorithm for BN struc-
ture discovery using the Benjamini and Yekutieli (2001) correction for the FDR, the 
former focusing on the skeleton retrieving and the latter deriving bounds on edge 
orientation as well. Our work instead focuses on local causal discovery tasks.

Rademacher averages have been successfully used to speed-up data mining tasks 
(e.g., pattern mining Riondato and Upfal 2015; Riondato and Upfal 2018; Pellegrina 
et  al. 2022; Santoro et  al. 2020; Pellegrina and Vandin 2023). To the best of our 
knowledge, ours is the first work to introduce their use in (local) causal discovery.

4 � Algorithms for local causal discoveries with FWER guarantees

In this section we describe algorithms to obtain PC(T) and MB(T) with guaran-
tees on the FWER. First, we discuss in Sect.  4.1 the requirements for previously 
proposed algorithms PCMB and IAMB to obtain guarantees on the FWER. In par-
ticular, we show that they require unrealistic assumptions that are not met in prac-
tice, as confirmed by our experimental evaluation (see Sect. 5). We then present in 
Sect. 4.2 our algorithms RAveL-PC and RAveL-MB for the computation of PC(T) 
and MB(T) with guarantees on the FWER. Finally, in Sect. 4.3 we describe how our 
algorithms perform effective independence testing by combining a novel test statis-
tic with Rademacher averages.
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4.1 � Analysis and limitations of PCMB and IAMB

The algorithms presented in Sect. 3 are correct under the assumption that the inde-
pendence tests result in no false positive and no false negative  (Pearl et  al. 2007; 
Tsamardinos et al. 2003). In this section we determine milder sufficient conditions 
that allow GetPC (Pearl et  al. 2007) to control the FWER for the PC discovery 
task, and PCMB (Pearl et  al. 2007) and IAMB (Tsamardinos et  al. 2003) to con-
trol the FWER for the MB discovery task. In all cases, a first requirement is that 
the independence tests performed by the algorithms must account for MHT in order 
to bound the FWER. However, we also show that an additional requirement on the 
ability to identify dependent variables (i.e., on the power of the tests) is needed. 
In particular, we refer to the situation where all tests on dependent variables cor-
rectly reject the null hypothesis of independence as the infinite power assumption. In 
some cases, we consider the infinite power assumption only for independence tests 
between pairs of variables that are directly connected in the underlying DAG. We 
refer to such situation as the local infinite power assumption.

4.1.1 � PCMB

Both GetPC and PCMB make use of a subroutine called GetPCD (Pearl et al. 2007) 
whose aim is to return a set containing the elements in PC(T) and eventually some 
elements of the set Descendants(T), that is, the set of descendants of T by applying a 
sequence of independence tests. In this section we will study under which conditions 
each method does not output any false positive, and how each subroutine result may 
affect the output of other algorithms.

We first start by studying under which conditions GetPCD  (Pearl et  al. 2007) 
returns a false positive in output.

Theorem  2  (Study of false positives in GetPCD) An element 
X ∉ PC(T) ∪ Descendants(T) is returned from GetPCD only if not all the parents of 
T are detected or the null hypotheses of some independence tests is wrongly rejected.

Proof  Let us recall that an element X ∈ V returned by GetPCD(T ,V) is a false nega-
tive if and only if X ∉ PC(T) ∪ Descendants(T) , that is X is either not connected to 
T in G or X is connected to T but it is not its parent, children or descendant (e.g. X is 
parent of a parent of T).

It is easy see that an element is returned by GetPCD only if it is not removed at 
lines 9 and 19 of Algorithm 1, which means that the null hypothesis of tests at lines 
8 and 18 gets always rejected.1 The independence test rejects the null hypothesis of 
independence of T from X conditioning on Z = sep[X] only if the two variables are 

1  The conditions in the “if” clause do not evaluate to true since an element may be added and then sub-
sequently removed leading to the end of the repeat cycle because PCD did not change, but there still are 
elements in canPCD i.e. unremoved elements.
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truly conditionally dependent (which means that conditioning on Z = sep[X] there is 
an open path between X and T), or if the null hypothesis gets wrongly rejected.

Let us now study the two topological cases of X being disconnected to T and of X 
being connected to T.

Disconnected case. Let X be disconnected from T. Since there are no paths from 
X to T (therefore no open paths from X to T), X cannot be conditional dependent 
from T conditioning on any set Z . Therefore X may be returned by GetPCD only if 
independence tests at lines 8 and 18 always wrongly reject the null hypothesis.

Connected case. Let X ∉ PC(T) ∪ Descendants(T) be connected to T. X is 
returned in output only if in any iteration of the cycle the null hypothesis on tests 
at lines 8 and 18 is wrongly rejected or if T  ⟂⟂ X ∣ Sep[X] , meaning there is an open 
path conditioning on Sep[X].

By assuming of not having wrong rejections of the null hypotheses, 
Z = Parents(T) d-separates X and T by definition of parents since X is not a descend-
ant of T. This implies that if some parent of T is undetected, then it may not be pos-
sible to d-separate X from T. � ◻

Algorithm 1   GetPCD(T ,V) (Pearl et al. 2007)

We can then determine under which conditions GetPCD is able to control the 
FWER.
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Theorem 3  GetPCD(T ,V) outputs a set of elements in PC(T) or a descendant of T 
with FWER lower than � if the FWER of the set of all the independence tests per-
formed by GetPCD is below � and the local infinite power assumption holds.

Proof  By analyzing GetPCD structure as in Theorem 2, an element is returned only 
if both independence tests at lines 8 and 18 of Algorithm 1 reject the null hypoth-
esis. Therefore the algorithm outputs a false positive if under infinite power assump-
tion for elements directly connected at least one independence test returns a false 
positive. Let us define the events E = “GetPCD(T ,V ) outputs a false positive” and 
Ei = “the i-th independence test returns a false positive”. We then have

by definition of FWER. 	�  ◻

We now provide sufficient conditions for bounding the FWER of the elements 
returned by GetPC (Pearl et al. 2007).

Theorem 4  GetPC(T ,V) outputs a set of elements in PC(T) with FWER ≤ � if the 
independence tests performed by GetPC have FWER ≤ � and the local infinite 
power assumption holds.

Proof  GetPC outputs a false positive only if at least one call to GetPCD at lines 2–3 
of Algorithm  2 outputs a false positive and, under the infinite power assumption 
while testing the independence of elements directly connected, this happens only if 
at least one independence test outputs a false positive. Let us define the events E =

“GetPC(T ,V) outputs a false positive” and Ei =“the i-th independence test returns a 
false positive”. We then have

by definition of FWER. � ◻

Algorithm 2   GetPC(T ,V) (Pearl et al. 2007)

FWER = P(E) ≤ P
(
∪iEi

)
≤ �

FWER = P(E) ≤ P
(
∪iEi

)
≤ �



Bounding the family-wise error rate in local causal...

The following proves that similar requirements are needed for PCMB (Pearl et al. 
2007) to have guarantees on the FWER.

Theorem 5  PCMB(T ,V) outputs a set of elements in MB(T) with FWER ≤ � if the 
independence tests performed by PCMB have FWER ≤ � and the infinite power 
assumption holds.

Proof  PCMB outputs a false positive only if there is a false positive in any inde-
pendence test performed by GetPC calls at lines 2 and 6 of Algorithm 3, or if tests 
at lines 8 and 9 return a false negative or a false positive, respectively. Given the 
infinite power assumption and Theorem 4, PCMB outputs a false positive only if at 
least one independence test outputs a false positive and by defining the events E = 
“ PCMB(T ,V) outputs a false positive” and Ei =“the i-th independence test returns a 
false positive” we have

by definition of FWER. � ◻

Algorithm 3   PCMB(T ,V) (Pearl et al. 2007)

4.1.2 � IAMB

The following result proves analogous requirements of Sect. 4.1.1 for IAMB.

Theorem 6  IAMB(T ,V) outputs a set of elements in MB(T) with FWER ≤ � if the 
independence tests performed by IAMB have FWER ≤ � and the infinite power 
assumption holds.

FWER = P(E) ≤ P
(
∪iEi

)
≤ �
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Proof  IAMB outputs a false positive only if an element X ∉ MB(T) gets added to 
MB at lines 5–6, and it does not get removed from MB at lines 10–11 of Algo-
rithm 4. Under the infinite power assumption, all elements in PC(T) get added at 
lines 5–6 by definition of PC, therefore X gets returned by IAMB only if independ-
ence tests at lines 10–11 output a false positive. Then, by defining the events E = 
“ GetPC(T ,V) outputs a false positive” and Ei =“the i-th independence test returns a 
false positive”, we have

by definition of FWER. � ◻

Algorithm 4   IAMB(T ,V) (Tsamardinos et al. 2003)

4.1.3 � Relaxation of the infinite power assumption

Note that the results above require the (local) infinite power assumption to hold in 
order to have guarantees on the FWER of the output of previously proposed algo-
rithms. In fact, if the (local) infinite power assumption does not hold, such algo-
rithms may output false positives even when all independence tests do not return 
a single false positive. We now present three such examples by considering the 
subgraph of Fig.  1 in Sect.  5 between variables V = {C1,A2,B2,C2} with edges 
E = {C1 → A2,C1 → B2,A2 → C2,B2 → C2} . Moreover, our experimental evalua-
tion in Sect. 5 shows that these situations do happen in practice.

Scenario 1: The infinite power assumption holds only for directly con-
nected elements. Let us study the subgraph previously described under only 
local infinite power assumption. Let us suppose to run PCMB(C1,V) and that 
the call at line 2 correctly returned GetPC(C1,V) = {A2,B2} . Let us further sup-
pose that GetPC(A2,V) = {C1,C2} and that a false negative arises when testing the 

FWER = P(E) ≤ P
(
∪iEi

)
≤ �
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unconditional dependence between C1 and C2 , leading to the choice of Z = � on line 
8. If the conditional independence test at line 9 correctly assesses the conditional 
dependence of C1 and C2 conditioning on A2 , then C2 is wrongly considered a spouse 
of C1.

Scenario 2: No infinite power assumption. Consider as an example the cal-
culus of GetPC(C2,V) in the subgraph previously described. Let us suppose that 
a false negative occurs when testing the unconditional independencies between C2 
and A2 and between C1 and A2 . Let us further suppose Z = {A2,B2} to be the only 
set for which the null hypothesis of independence between C1 and C2 is not rejected. 
Then GetPCD(C2,V) will contain C1 (because the independence conditioning on 
Z = {A2,B2} is never tested), and similarly GetPCD(C1,V) will contain C2 leading 
C1 to be returned by GetPC(C2,V).

Scenario 3: No infinite power assumption and GetPC  does not return false 
positives. Let us finally consider a situation in which the infinite power assumption 
does not hold and GetPC does not return any false positive, as this may be the case 
of a modification of the algorithms proposed by Pearl et al. (2007) using Bonferroni 
correction. Let us suppose GetPC(C1,V) = {A2} , and GetPC(C2,V) = {A2} . Let us 
suppose line 8 to return Z = � , and the conditional independence test at line 9 to 
correctly assess the conditional dependence of C1 and C2 conditioning on A2 . Under 
these assumptions, C2 is wrongly considered a spouse of C1 . Note that this scenario 
differs from the first because the local infinite power assumption does not hold, lead-
ing to a partial discovery of the variables in PC(C1) whose elements are not enough 
to d-separate C1 and C2.

4.2 � Algorithms RAveL‑PC and RAveL‑MB

As shown in Sect. 4.1, controlling the FWER of every independence test is not suf-
ficient for bounding the FWER of the variables returned by current state-of-the-
art algorithms for PC and MB discovery. In addition, infinite statistical power is a 
strong assumption which is impossible to test and ensure in real-world scenarios. 
Motivated by these observations, we developed RAveL-PC and RAveL-MB, two 
algorithms for the discovery of elements in PC and MB, respectively, that control 
the FWER of their outputs without making any assumption on statistical power.

Fig. 1   Bayesian Network used for synthetic data generation, parametrized by two values �2 and n
ext

 . 
After drawing all the observations x for a particular variable X, x is normalized such that mean(x) = 0 
and var(x) = 1 , then the values for the descendants of X are sampled
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RAveL-MB follows the same overall approach used by previously proposed algo-
rithms (e.g., PCMB, see Sect. 3): it first identifies elements in PC(T) and adds them 
to MB(T), and then tests the spouse condition on elements at distance 2 from T, 
that are variables Y ∈ PC(X) with X ∈ PC(T) and Y ∉ PC(T) . The pseudocode of 
RAveL-MB is shown in Algorithm 5. RAveL-MB initializes MB to the output of 
the function RAveL-PC(T,V,� ) (line 1), which returns a subset of PC(T). For each 
element X ∈ MB (line 2), RAveL-MB computes RAveL-PC(X,V,� ) and, for every 
returned element Y that is not already in MB (line 3), an independence test of T on 
Y conditioning on V⧵{Y , T} using function test_indep(T,Y,V⧵{Y , T},� ) is per-
formed to test whether Y is a spouse of T with respect to X (line 4). If such test deter-
mines the conditional dependence between T and Y, then Y is added to MB (line 5). 
Finally, after analyzing all variables originally in MB, RAveL-MB outputs the set of 
elements in the Markov Boundary (line 6).

Note that the spouse condition is tested by conditioning only on the set V⧵{Y , T} . 
This is sufficient, since it is a set conditioned on which T and Y are d-connected if 
and only if Y is directly connected or is a spouse of T. In fact, if Y does not belong 
to any of these elements, then Y is connected to T through paths that contain chains 
or forks whose middle element is in V⧵{Y , T} . That is, Y is connected to T only 
through d-blocked paths.

Algorithm 5   RAveL-MB(T,V,�)

RAveL-MB uses algorithm RAveL-PC(X,V,� ) (shown in Algorithm 6) for the 
discovery of variables of a set V that are in PC(X). The parameter � controls the 
overall FWER of the procedure. RAveL-PC(X,V,� ) identifies PC(X) by using the 
definition of parent–children set, that is, Y ∈ PC(X) gets returned if only if all inde-
pendence tests between X and Y reject the null hypothesis.
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Algorithm 6   RAveL-PC(T,V,�)

Both algorithms RAveL-MB and RAveL-PC employ a function, denoted as 
test_indep(X,Y,Z,� ), that performs the independence test between X, Y ∈ V 
conditioning on Z ⊆ V while controlling the FWER of all testable hypotheses with 
threshold � , and returns true only if the null hypothesis gets rejected. Practical 
details on our implementation of test_indep(X,Y,Z,� ) are provided in Sect. 4.3.

The following results prove that RAveL-PC and RAveL-MB control the FWER 
of PC and MB, respectively.

Theorem 7  RAveL-PC(T,V,� ) outputs a set of elements in PC(T) with FWER ≤ �.

Proof  Note that the number of false positives of RAveL-PC(T,V,� ) is greater than 
0 if and only if there is at least one variable X of V⧵{T} that is not in PC(T) and 
is in the set PC reported by RAveL-PC(T,V,� ). A variable X is returned in PC if 
and only if all independence tests between T and X (conditioning on the various 
sets Z ⊆ V⧵{X, T} ) reject the null hypothesis. Therefore RAveL-PC(T,V,� ) reports 
a false positive only if at least one independence test returns a false positive, which 
happens with probability at most � by definition of test_indep(T,X,Z,� ). 	�  ◻

Theorem 8  RAveL-MB(T,V,� ) outputs a set of elements in MB(T) with FWER ≤ �.

Proof  The set of RAveL-MB(T,V,� ) output elements is the union of the set O1 of 
variables returned by RAveL-PC(T,V,� ), and the set O2 of candidate spouses Y for 
which test_indep(T,Y,V⧵{Y , T},� ) rejects the null hypothesis. Then, a neces-
sary condition to return a false positive is that at least one between sets O1 and O2 
contains a false positive. The last event happens if and only if all calls to test_
indep(T,X,Z ) returns at least a false positive, which happens with probability at 
most � . 	�  ◻

The choice of V⧵{Y ,T} as conditioning set for testing the spouse condition is a 
consequence of RAveL-PC returning, with probability at least 1 − � , a subset of 
PC(T), and of any superset of PC(T) allowing the discovery of spouses by RAveL-
MB. We note that prior knowledge may be incorporated in the algorithm, if avail-
able, by conditioning on smaller set of variables, therefore increasing the precision 
of independence tests.
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4.3 � Rademacher averages for independence testing

Note that our algorithms RAveL-PC and RAveL-MB both rely on the availabil-
ity of function test_indep(X,Y,Z,� ), which assesses the independence between 
X, Y ∈ V conditioning on Z ⊆ V and returns true only if the null hypothesis gets 
rejected, while controlling the FWER of all testable hypotheses below a threshold �.

The naïve implementation of test_indep(X,Y,Z,� ) would be to perform a 
standard statistical test (see Sect. 2.2) and use Bonferroni correction (see Sect. 2.3) 
to correct for multiple hypothesis testing. In particular, this requires to use a modi-
fied threshold �∕N for every hypothesis, where N is the maximum number of 
hypotheses that could be tested. Therefore, N is the maximum number of conditional 
independencies2 between the variables in V , that is N = V(V − 1)2V−3 . Note that the 
value of N grows exponentially with V , leading to a Bonferroni correction which 
is very conservative and, therefore, to a high number of false negatives (independ-
ence tests between dependent variables for which the null hypothesis does not get 
rejected).

The high number of tests is not a feature of our algorithms only, but it is, in 
essence, shared by other widely used algorithms such as IAMB and PCMB (see 
Sect.  3). In fact, for both algorithms, the potential number of independence tests 
they perform can be as high as N = V(V − 1)2V−3 , even if a smaller number of tests 
may be considered in practice, depending on the output of the tests in previous steps, 
and a proper MHT correction depends on the maximum number of tests that could 
be performed.

Our solution to make our algorithms RAveL-PC and RAveL-MB practical is to 
implement test_indep(X,Y,Z,� ) exploiting Rademacher averages to obtain data-
dependent bounds and confidence intervals. The key idea is to estimate confidence 
intervals around the empirical test statistics so that they contain the true values 
simultaneously with probability 1 − � . In this way, testing for independence corre-
sponds to check whether a confidence interval contains the expected value of the test 
statistic under the null hypothesis of independence.

To implement the idea described above, we express Eq. 1 as an additive function 
on the samples as follows. Let us assume that the observations x of each variable X 
follow a probability distribution X  taking values in [−1, 1] and with mean 0. (Alter-
natively, we assume the knowledge of the mean of X  , i.e. �X , and its maximum 
absolute value maxX,3 and that all variables have been centered around 0 (i.e. by 
subtracting �X ) and then normalized by dividing for maxX −�X .) The assumption 
on the mean being 0 is not necessary, as one could obtain analogous bounds also 
for other values of the mean. However, considering the mean to be 0, potentially 
after rescaling, leads to tight bounds on the SD (as the values for z in Theorem 1 are 

3  Such knowledge may either come from knowledge about the generative process, or from previous esti-
mates for such feature. In the latter case, we assume that those estimates are reliable representations of 
�X and maxX.

2  N counts, in fact, the total number of possible conditional independencies between any couple of vari-
ables by considering the symmetry property of independence tests, that is testing the (conditional) inde-
pendence of X from Y is equivalent to testing the one of Y from X.
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lower for functions centered around 0). The assumption on the boundedness of each 
function is instead required by the analytical tools we use.

Let s1, s2,… , sk be the samples in the dataset S = {s1, s2,… , sk} , where each si is 
a collection of observations si = {vi

1
, vi

2
,…} of variables in V , where vi

j
 is the obser-

vation of the j-th variable Vj ∈ V in sample si . Given two variables X, Y ∈ V , and a 
set of variables Z ⊂ V , we define the following function r̃X,Y ,Z(si) on a sample si as

where the conditioning set Z does not explicitly appear in the term k xiyi

k−1
 but it is used 

in the definition of the values in x and y as in Sect. 2.2.
We then define the following modified version r̃ of Pearson’s r coefficient, 

which we refer to as the modified r statistic (or ModR):

By considering the family F  of functions defined by r̃X,Y ,Z for each pair X, Y of vari-
ables and each set Z ⊆ V⧵{X, Y} , we have that the n-MCERA (Eq. 5) is

After the n-MCERA has been computed as above, we compute a bound B to the 
supremum deviation D(F,S) according to Theorem  1, which allows us to obtain 
confidence intervals around the empirical r̃X,Y ,Z as

with the guarantee that, simultaneously for all r̃X,Y ,Z ∈ F  , CIX,Y ,Z contains the 
expected value of r̃X,Y ,Z with probability at least 1 − � . Then, for a pair X, Y of varia-
bles and a set Z ⊆ V⧵{X, Y} , we reject the null hypothesis of independence between 
X, Y conditioning on Z (i.e., test_indep(X,Y,Z,� ) returns true) if CIX,Y ,Z does 
not contain the value 0. In practice, we replace the unknown quantities �X and maxX 
with their empirical estimates, that is, we replace �X with the empirical sample 
mean x̄ and maxX with maxx.

We finally propose another test statistic on a sample si , which we refer to as the 
r-centered statistic (or r̃c ), defined as

where x and y are defined as previously (see Sect. 2.2) and are assumed to be cen-
tered around 0. The same independence testing procedure described for r̃X,Y ,Z applies 
for the empirical average of r̃c

X,Y ,Z
=

1

k

∑k

i=1
r̃c
X,Y ,Z

(si) , since its expectation is zero 
under independence assumption and data centered around zero as follows.

(8)r̃X,Y ,Z(si) = k
xiyi

k − 1
,

(9)r̃X,Y ,Z =
1

k

k∑

i=1

r̃X,Y ,Z(si).

(10)R̂n
k
(F,S,�)=̇

1

n

n∑

j=1

sup
r̃X,Y ,Z∈F

1

k

k∑

i=1

𝜎j,ir̃X,Y ,Z(si).

(11)CIX,Y ,Z =
[
r̃X,Y ,Z − B, r̃X,Y ,Z + B

]

(12)r̃c
X,Y ,Z

(si) =
xiyi

(max{xi, yi})
2
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Theorem 9  Let W be the joint distribution of the variables X, Y, and Z . If X and Y 
are independent, then �W[r̃c

X,Y ,Z
] = 0.

Proof  We have that

which is proportional to 𝔼W[𝔼̂S[XY]] (see Sect.  2.4 for defini-
tions of �W and 𝔼̂S ). Under the independence assumption, we have 
𝔼W[𝔼̂S[XY]] = 𝔼W[𝔼̂S[X]] × 𝔼W[𝔼̂S[Y]] , and the result follows since 
�W[�̂S[X]] = �X[�̂S[X]] = 0 . 	�  ◻

5 � Experimental evaluation

This section describes the experimental evaluation performed to empirically assess 
our algorithms. In Sect. 5.1 we compare RAveL-PC and RAveL-MB performances 
with other state-of-the-art methods on synthetic data. Section 5.2 present the anal-
ysis on two real world datasets (see the Appendix for details). We implemented4 
RAveL-PC, RAveL-MB, and the other algorithms considered in this section in 
Python  3. On each run we assumed no prior knowledge of the data distributions 
values for each variable X therefore we empirically normalized and centralized our 
observations using the empirical mean and maximum.5 While the formal guarantees 
for our methods hold only assuming the knowledge of �X and maxX , the experimen-
tal results in this section show that our methods still control the FWER below the 
desired threshold.

5.1 � Synthetic data

We used synthetic data to evaluate RAveL-PC and RAveL-MB against state-of-the-
art algorithms for the task of PC and MB discovery, respectively. In this scenario, 
each variable is a linear combination of its parents values plus Gaussian noise. The 
related structural model (shown in Fig. 1) is composed of 15 connected variables 
and next external variables, and it is specified by two parameters: �2 which controls 
the amount of noise in the estimations, and next which sets the number of external 
variables.

In these experiments we set the rejection threshold � = 0.05 , which is a common 
value in literature, and we run each algorithm on increasing size datasets. We repeated 

�W

[
r̃c
X,Y ,Z

]
= �W

[
1

k

k∑

i=1

xiyi

(max{xi, yi})
2

]

4  Code available at https://​github.​com/​Vandi​nLab/​RAveL.
5  We empirically normalized each dataset S by dividing it by the highest absolute maximum value found 
among all datasets of the same size as S . This method has been utilized to ensure a reliable estimation of 
the maximum value for each dataset size and reduce sampling variability.

https://github.com/VandinLab/RAveL
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each trial 100 times and used n = 1000 for the n-MCERA. For each dataset, we con-
sidered all variables as target variable T in turn and run the algorithms for each choice 
of T. (Note that the number N of potential hypotheses tested is still the same as defined 
in Sect. 4.3.). Lastly, we limited our algorithms to consider only conditioning sets Z 
of at most 2 variables (except for the independence test at line 6 of RAveL-MB) for 
avoiding the analysis of all the exponential number N of hypotheses. We chose such 
value since each variable X is d-separated by each Y ∉ PC(X) by conditioning on a 
Z of size at most 2, and by running the algorithms on synthetic data allowing higher 
maximum sizes, we observed no differences in results w.r.t. the ones we are presenting.

In the first experiment, we compared different local causal discovery algorithms on 
the BN obtained setting �2 = 1 and next = 15 . For the PC discovery task, we compared 
two versions of GetPC  (Pearl et  al. 2007), the original one (without any correction 
for MHT) and one adaptation that uses Bonferroni correction, with three versions of 
RAveL-PC: one that uses the modified r statistic (or ModR) defined in Eq. 9, another 
that exploits r̃c , and a variant of RAveL-PC that uses Bonferroni correction instead of 
Rademacher averages for MHT. Figure 2a shows the estimated FWER of each method 
(that is, the fraction of trials in which at least a false positive is reported). The results 
confirm our analysis in Sect. 4.2, and we observe that, for the specific BN we consider, 
the adaptation of GetPC that uses Bonferroni correction has FWER below the thresh-
old, even if this is not guaranteed from our theoretical analysis.

For the MB discovery task, we compared two versions of PCMB  (Pearl et  al. 
2007) and of IAMB  (Tsamardinos et al. 2003), the original ones (without any cor-
rection for MHT) and two adaptations that use Bonferroni correction, with three ver-
sions of RAveL-MB: one that uses the modified r statistic defined in Eq. 9, another 
that exploits r̃c , and a variant of RAveL-MB that uses Bonferroni correction instead 
of Rademacher averages for MHT. Figure  2b shows the FWER of each method. 
The results confirms RAveL-MB (with both statistics) and its variant to be the only 
algorithms with guarantees on the FWER at any sample size, that is without infi-
nite power assumption. Moreover, note that PCMB reports false positives with high 
probability even if its PC discovery method GetPC does not. This is due to elements 
at distance 2 from T that are correctly identified as candidate spouses, but for which 
the spouse condition used by PCMB results in a false positive due to false negatives 
in PC(T), as described in Sect. 4.1.3 (scenario 3).

Fig. 2   Empirical FWER of various PC discovery (a) and MB discovery (b) algorithms on synthetic 
data for different sample sizes. FWER is the fraction of 100 trials in which at least one false positive is 
reported. The dashed line represents the bound � = 0.05 to the FWER used in the experiments
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We then assessed the fraction of false negatives for our algorithms, which are the only 
ones with guarantees on the FWER, on datasets with sample sizes up to 250,000 ele-
ments by repeating each trial 100 times. Figure 3 summarizes (with solid lines) these 
results on a scenario with �2 = 1 (in Fig. 3a, b) and another with �2 = 5 (in Fig. 3c, d). 
For each setting, we run the algorithms by considering a different number of variables 
( next = 0 and next = 15 ), and we highlighted the difference in performances between the 
two cases. The results show how the approaches based on Rademacher averages do not 
suffer from the addition of external variables (i.e. their FN% are equivalent), as opposed 
to the versions of RAveL-PC and RAveL-MB that exploit the Bonferroni correction, 
whose performances degrade by increasing the number of variables under analysis. Both 
behaviors are expected as the Bonferroni correction becomes stricter since the num-
ber N of hypotheses to test increases (see Sect. 2.3), while the bound to the supremum 
deviation remains stable as the complexity of the function class F  does not increase.6 
Motivated by these observations, we simulated the performances of RAveL-PC and 
RAveL-MB variants that exploit Bonferroni correction in a high-dimensional scenario 
with 750 total variables, and we reported them as well in Fig. 3 (dashed lines).

Figure 3a, b shows differences between the approach that exploits Rademacher 
averages with the modified r statistic defined in Eq. 9 and the one that exploits r̃c , 
with the FN% of the first one decreasing for datasets with more than 10,000 samples 

Fig. 3   Empirical FN% of RAveL-PC (a,c) and RAveL-MB (b,d) on synthetic data for different sam-
ple sizes in two data generative scenarios. We sampled data from Fig. 1 in two scenarios with different 
noise level: �2 = 1 for (a,b), and �2 = 5 for (c,d). FN% is the mean percentage of false negatives out of 
100 trials. In each experiment we compared the approach that uses the Pearson’s R test with Bonfer-
roni correction, and two implementations that exploits Rademacher averages, one using the modified r 
statistic ModR defined in Eq. 9, and another with r̃c . Solid lines represent experiments on datasets with 
n
ext

= 0 and n
ext

= 15 , and performance gaps between the two are highlighted. Dashed lines show simu-
lated results on datasets with n

ext
= 750

6  The most complex statistics in F  are in fact the ones for which there is indepencence between x and y , 
that are the ones with the highest variance.
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and the latter one just at 5000 samples. Such difference is due to the normalization 
procedure applied to the data for using the former test statistic (see Sect. 4.3). Such 
procedure allows us to bound the test statistic (and therefore to use the Rademacher 
averages) but it also lowers the test statistic value as the sample size increases (since 
it will increase the chances of observing more extreme values) degrading the statisti-
cal power and requiring more accurate estimates of the bound B to the supremum 
D(F, S) . Despite lowering the test statistic and degrading the statistical power, how-
ever, such procedure does not lead to any false positive in output, as our algorithms 
are correct without requiring any infinite power assumption. r̃c instead is not affected 
by such issue and shows higher statistical power, highlighting the importance of the 
choice of the test statistic. From Fig. 3a, b we also observe that the use of Bonferroni 
correction leads to a high statistical power, even with a high number of variables, in 
the �2 = 1 scenario. Such trend does not hold when �2 = 5 and the dimensionality is 
high (Fig. 3c, d), for which RAveL-PC and RAveL-MB that exploit r̃c have more 
statistical power than algorithmic variants with Bonferroni correction.

5.2 � Real datasets

We tested our algorithms on the Boston housing dataset  (Harrison and Rubinfeld 
1978), which contains data about house prices in Boston suburbs, considering the 
median price of homes in each suburb as target T. Since the number of variables for 
such dataset is small, we used the Bonferroni variant of our algorithms RAveL-PC 
and RAveL-MB, with � = 0.01 . Given the small number of observations (506 sam-
ples), we limited our analysis to conditioning sets Z of size at most 2 for maintaining 
a high statistical power in the independence testing. Both algorithms reported in out-
put two variables, one related to the number of rooms per house, and the other to the 
median income of the suburb residents, that clearly influence the median price of the 
houses in the neighborhood. The first variable is a common indicator of the price of 
a house, while the second confirms the intuition that between two identical houses, 
the one built in a wealthier neighborhood has a higher price.

We finally tested our algorithms on the Framingham dataset (see Appendix  2), 
that provides information about the development of coronary heart disease (CHD) 
in 10 years for 3656 citizens of the city of Framingham, with 16 features describing 
health status and lifestyle. Given the relatively small number of samples, we limited 
our analysis to conditioning sets Z of size at most 2 for maintaining an high statistical 
power in the independence testing. We preprocessed the dataset by removing sam-
ples with missing data and binary features that were highly unbalanced, for which 
therefore we would not have had enough statistical power to test our assumptions.7 
We tested RAveL-PC and RAveL-MB variants using Bonferroni correction with 
� = 0.05 and got in output, for both discovery tasks, three variables: Age, Systolic 
Blood Pressure, and Glucose. Such results are supported by the World Health Organ-
ization guidelines.8 Overall, our results on real data provide empirical evidence that 
our algorithms identify meaningful causal relations while avoiding false positives.
7  Dataset and preprocessing information on the Appendix.
8  More information available on the official site https://​www.​who.​int/​en/​news-​room/​fact-​sheets/​detail/​
cardi​ovasc​ular-​disea​ses-​(cvds) [Accessed: March 2023].

https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-%28cvds)
https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-%28cvds)
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6 � Conclusions

In this paper we presented two algorithms, RAveL-PC and RAveL-MB, for the 
task of local causal discovery. In contrast to state-of-the-art approaches, our algo-
rithms provide guarantees on false discoveries in terms of bounding the FWER. Our 
algorithms use Rademacher averages to to properly account for multiple hypothesis 
testing, and our experimental evaluation shows that our algorithms properly control 
for false discoveries. Our algorithms can be extended to other (e.g., non-linear) test 
statistics and to other tests. In particular, Rademacher averages provide appealing 
time-effective alternatives for independence testing with test statistics whose distri-
butions are unknown, since in such scenarios a typical solution is to rely on permu-
tation testing, which require to analyze a large number of permuted datasets in order 
to achieve high statistical power. Interesting research directions include the applica-
tion of our framework to recently proposed independence tests (Bellot and van der 
Schaar 2019), improving the efficiency of our algorithms, and exploiting them for 
structure discovery. An additional direction for future research is to relax our frame-
work assumptions. In particular, the assumption on knowledge of the mean of each 
variable may be relaxed by considering empirical centralization (Cousins and Rion-
dato 2020) (i.e., by subtracting the observed mean in the data).

Appendix 1: Variables in Boston housing dataset

Variables description follows from the paper describing the dataset (Harrison and 
Rubinfeld 1978).

Variable name Explanation

CRIM Per capita crime rate by town
ZN Proportion of residential land zoned for lots over 25,000 sq.ft.
INDUS Proportion of non-retail business acres per town.
CHAS Charles River dummy variable (1 if tract bounds river; 0 otherwise)
NOX Nitric oxides concentration (parts per 10 million)
RM Average number of rooms per dwelling
AGE Proportion of owner-occupied units built prior to 1940
DIS Weighted distances to five Boston employment centres
RAD Index of accessibility to radial highways
TAX Full-value property-tax rate per $10,000
PTRATIO Pupil-teacher ratio by town
B 1000(Bk − 0.63)2 where Bk is the proportion of blacks by town
LSTAT​ % lower status of the population
MEDV Median value of owner-occupied homes in $1000’s
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Appendix 2: Framingham dataset

Dataset and variable description are taken from https://​www.​kaggle.​com/​datas​
ets/​dilee​p070/​heart-​disea​se-​predi​ction-​using-​logis​tic-​regre​ssion. Variables “Cur-
rentSmoker”, “PrevalentStroke”, “PrevalentHyp”, and “Diabetes” were removed in 
the data preprocessing phase.

Variable name Explanation

Age Age of the patient (Continuous - Although the recorded ages have been trun-
cated

to whole numbers, the concept of age is continuous)
Current Smoker Whether or not the patient is a current smoker (Nominal)
Cigs Per Day The number of cigarettes that the person smoked on average in one day. (can be

considered continuous as one can have any number of cigarettes, even half a 
cigarette.)

BP Meds Whether or not the patient was on blood pressure medication (Nominal)
Prevalent Stroke Whether or not the patient had previously had a stroke (Nominal)
Prevalent Hyp Whether or not the patient was hypertensive (Nominal)
Diabetes Whether or not the patient had diabetes (Nominal)
Tot Chol Total cholesterol level (Continuous)
Sys BP Systolic blood pressure (Continuous)
Dia BP Siastolic blood pressure (Continuous)
BMI Body Mass Index (Continuous)
Heart Rate Heart rate (Continuous - In medical research, variables such as heart rate 

though in fact
discrete, yet are considered continuous because of large number of possible 

values.)
Glucose Glucose level (Continuous)
10 year risk of coronary Binary: “1”, means “Yes”, “0” means “No”
heart disease CHD
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