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Abstract
Label propagation is frequently encountered in machine learning and data mining 
applications on graphs, either as a standalone problem or as part of node classifica-
tion. Many label propagation algorithms utilize random walks (or network propaga-
tion), which provide limited ability to take into account negatively-labeled nodes 
(i.e., nodes that are known to be not associated with the label of interest). Special-
ized algorithms to incorporate negatively-labeled nodes generally focus on learning 
or readjusting the edge weights to drive walks away from negatively-labeled nodes 
and toward positively-labeled nodes. This approach has several disadvantages, as it 
increases the number of parameters to be learned, and does not necessarily drive the 
walk away from regions of the network that are rich in negatively-labeled nodes. 
We reformulate random walk with restarts and network propagation to enable “vari-
able restarts", that is the increased likelihood of restarting at a positively-labeled 
node when a negatively-labeled node is encountered. Based on this reformulation, 
we develop CusTaRd, an algorithm that effectively combines variable restart prob-
abilities and edge re-weighting to avoid negatively-labeled nodes. To assess the per-
formance of CusTaRd, we perform comprehensive experiments on network datasets 
commonly used in benchmarking label propagation and node classification algo-
rithms. Our results show that CusTaRd consistently outperforms competing algo-
rithms that learn edge weights or restart profiles, and that negatives close to positive 
examples are generally more informative than more distant negatives.
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1 Introduction

Label propagation is a commonly encountered problem in data mining and machine 
learning applications on network and graph-structured data  (Garza and Schaeffer 
2019; Wagner et al. 2018). The problem entails assigning labels to nodes of a graph 
based on knowledge of the labels of a set of “seed" nodes, such that nodes that are 
proximate to seed nodes are assigned similar labels. The seed nodes have known 
labels, and are thus true positives, or “positively-labeled examples”. Label propaga-
tion can be considered a special case of the node classification problem, in which 
only graph topology is used in predicting the labels of the nodes. In contrast, in the 
general setting for node classification, additional features are available (Wang et al. 
2021).

Label propagation and machine learning on graphs: While many machine 
learning algorithms have been developed for semi-supervised node classification 
in the last few years, label propagation is often encountered as part of node clas-
sification (Klicpera et al. 2019). In many cases, the set of training samples can be 
too small for effective learning, thus label propagation is applied prior to training 
more sophisticated learning algorithms (Li et al. 2018). In addition, emerging evi-
dence suggests that combination of label propagation with simple models often out-
performs more sophisticated models, such as graph neural networks  (Huang et al. 
2021). Despite the ubiquity of label propagation in supervised learning, efforts on 
effectively utilizing negatively-labeled examples (nodes that are labeled a priori as 
true negatives in relation to the label of interest) in label propagation have been rela-
tively scarce.

Existing approaches to negative-example-informed label propagation: Many 
label propagation algorithms utilize random walks and their variants (Fu et al. 2014; 
Hwang and Kuang 2010; Zhou et al. 2004; Xie et al. 2021; Liao et al. 2016). While 
classical random walks work with only positively-labeled examples, it has been 
shown that the utilization of negatively-labeled examples in training improves the 
accuracy of label propagation (Zoidi et al. 2018). Existing approaches to informing 
random walks with negative examples use optimization to learn edge weights (Back-
strom and Leskovec 2011; Li et  al. 2016) or restart probabilities  (Jin et  al. 2019; 
Berberidis et al. 2018) that minimize flow into negatively-labeled nodes. Since the 
number of edges in a network is much larger than the number of nodes, the number 
of parameters that need to be learned is usually very large, making learning-based 
approaches vulnerable to over-fitting. In addition, the optimization problems are 
often non-convex and prone to getting stuck at local optima.

Our contributions: We make two contributions to negative-example-informed 
label propagation. Firstly, we propose a new method that combines re-weighting 
of edges with variable restart probabilities during label propagation. For this pur-
pose, we reformulate random walks to model restarts as part of the network topol-
ogy, i.e., as directed edges from any node to the positively-labeled nodes. We then 
use this formulation to readjust edge weights such that the flow into negatively-
labeled nodes is redirected as restarts to positively-labeled nodes. The resulting 
algorithm, CusTaRd, utilizes negatively-labeled nodes within the random-walk/
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network-propagation framework and a parameter controlling the aggressiveness of 
redirection to reduce the flow into negatively-labeled nodes, without requiring train-
ing or optimization of a large number of parameters.

Secondly, we characterize how the proximity of negative examples to positives 
affects the accuracy of predictions. We observe that using negative examples from 
the close neighborhood of positive examples leads to higher classifier accuracy than 
when using more distant negative examples. As negative examples close to positive 
examples generally score higher than more distant negatives during random walk 
based rankings, this finding supports the notion that hard negatives are more inform-
ative to training than lower scoring negatives(Shi et al. 2023).

Organization of the paper: In the next section, we define the label propagation 
problem and discuss related works involving label propagation with negatively-
labeled examples. Subsequently, we reformulate random walks to enable variable 
restarts, and show how this reformulation allows readjustment of edge weights into 
restart probabilities. We then describe our approach to characterizing how nega-
tively-labeled node proximity to positively-labeled nodes affects prediction accu-
racy. In Sect. 3, we start by describing the datasets we use for validation, compet-
ing algorithms, and our experimental setup. We then present the comparison of the 
predictive accuracy of CusTaRd and competing algorithms as well as their robust-
ness to scarcity of training examples, characterize the effect of the redirection factor 
on CusTaRd’s performance, and comprehensively investigate the effect of negative 
example proximity on the performance of all algorithms considered. We conclude 
our discussion and outline future avenues for research in Sect. 4.

2  Methods

2.1  Problem definition and existing approaches

Let G = (V ,E) denote a graph/network with node set V and edge set E. The nodes in 
V are associated with categorical “labels”, where the nodes in subset Si ⊂ V  are asso-
ciated with label i. There may be multiple labels available, and S = {S1, S2, ..., Sk} 
denotes the set of all available label sets. This information is usually incomplete, 
i.e., ∪n

i=1
Si ≠ V  . A common problem is “label prediction” which, given the labels 

in S , is the task of predicting labels for the unlabeled v ∈ V  . This problem is often 
approached using label propagation.

In label propagation, nodes v ∈ Si share their label information with their neigh-
bors, who in turn share with their neighbors etc. to “propagate” node labels across 
the network (Raghavan et al. 2007; Zhou et al. 2004). The algorithms used to propa-
gate labels are similar to the algorithms used for network propagation, where rather 
than discrete valued labels, network propagation focuses on propagating continuous 
values such as flow or probability across a network  (Cowen et al. 2017). Random 
walk with restarts is a commonly utilized network propagation method that simu-
lates a random walk across the network by making frequent restarts at the nodes 
labeled by Si.



 S. Maxwell et al.

Random walk with restarts (RWR): To formulate RWR, let A denote the adja-
cency matrix of G. We use Ai,j to denote matrix entries, Ai,∶ for rows and A∶,j for 
columns. Given Si , were refer to the nodes v ∈ Si as seed nodes, which are our posi-
tively-labeled examples. RWR (Pan et al. 2004) propagates the labels of Si to other 
nodes of G using a column stochastic transition matrix A(cs) derived from A defined 
as A(cs)

i,j
= Ai,j∕

∑
k Ak,j . A restart vector ri is used to localize the random walk 

around the seed nodes, where ri(v) = 1∕|Si| for v ∈ Si and 0 otherwise ( ri(v) denotes 
the vector element corresponding to node v). A restart parameter, � (also called 
damping factor) is used to tune the frequency at which the walker “teleports" back to 
the seed nodes. The RWR-based proximity is defined as the steady state:

where pi(v) denotes the probability of being at node v when the walk continues for a 
sufficiently long time. The steady state vector pi is used to rank nodes for prediction, 
where higher values pi(v) correspond to higher likelihood that node v is labeled the 
same as nodes of Si . This procedure can be repeated for each label set Si, i = 1...n 
and the most likely label (i.e. the pi(v) with highest value) is predicted for node v.

Random walks with symmetric degree normalization: While the above for-
mulation of RWR is intuitive, a different normalization technique is often used to 
scale the transition probabilities by the in- and out-degree of nodes (Xie et al. 2016). 
This “symmetric" normalization technique uses transition matrix A(sym) , where 
A(sym) = D−1∕2AD−1∕2 and Di,i =

∑
k Ai,k . Since A(sym) is not a stochastic matrix, a 

re-normalization step is introduced to the RWR formulation to produce the prob-
ability vector p:

Other normalization methods have been proposed for label propagation with random 
walks, such as the node core normalization methods explored by NetCore (Barel and 
Herwig 2020). These and other normalization methods can be easily incorporated 
into the random walk by substituting their resulting matrix for A(sym) into Eq. 2.

Label propagation with negatively-labeled examples: In some applications, a 
set of negatively-labeled nodes Ni (i.e., labels that specify nodes that are true nega-
tives, or definitely not labeled the same as the positive examples) is provided. When 
such information is not available, it is also potentially useful to sample negatively-
labeled nodes from nodes that are not positively labeled (e.g. selecting Ni as a subset 
of ∪i≠jSi ) and use them to inform label propagation. The objective of label propaga-
tion with negative examples is to improve the performance of predictions by lever-
aging examples of both true positives and true negatives.

Related Work: Many existing methods for label propagation utilize nega-
tive examples by formulating an optimization problem where the objective func-
tion penalizes predicting positive labels for negatively labeled nodes  (Backstrom 
and Leskovec 2011; Berberidis et al. 2018; Jin et al. 2019; Li et al. 2016). Super-
vised Random Walk (sRW), one of the earliest algorithms that considers negative 

(1)pi = (1 − �)A(cs)pi + ��
�

(2)
p̂ = (1 − 𝛼)A(sym)p + 𝛼r

p = p̂∕|p̂|
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examples, learns a function to optimize edge weights such that positive examples 
are ranked higher than negative examples  (Backstrom and Leskovec 2011). This 
is accomplished by embedding the restart vector r into the transition matrix A and 
explicitly restricting updates that would alter the matrix elements corresponding to 
r . A more recent work on query-specific optimal networks (QuINT) takes a simi-
lar approach to adjusting the weight – or existence – of edges defined by A , but 
it formulates the problem in terms of a single positive example (i.e. |Si| = 1 ) and 
does not modify the restart profile of the walker(Li et al. 2016). The teleportation 
tuning method of Berberidis et al. learns a weighted restart vector ri for each label 
Si that optimizes within-class predictions (Berberidis et  al. 2018), but this results 
in a model where all nodes restart to a given node with the same probability. More 
recently, random walk with extended restarts (RWER) attempts to learn an optimal 
restart probability for each node v ∈ V(Jin et al. 2019) for a specific Si . However, 
the method scales the strength of all edges incident to a node uniformly in relation 
to the restart probability, resulting in no discrepancy between positive and negative 
neighbors.

2.2  Proposed approach: combining edge re‑weighting and restart tuning

We propose to combine the ideas of edge re-weighting and restart tuning such that: 
(1) the walker restarts with higher probability ( > 𝛼 ) when it encounters an edge 
leading to a negatively labeled node, but (2) continues walking with the default 
probability ( 1 − � ) when it encounters an edge leading to an unlabeled or positively 
labeled node. This has several benefits: (1) It does not artificially inflate the rank 
of nodes by redirecting the walker to a smaller group of neighbors. (2) It does not 
reduce the rank of unlabeled neighbor nodes by avoiding them in an effort to avoid 
the negatively labeled node.

Here, we develop a framework to realize this approach by reformulating RWR in 
an intuitive way that creates a single transition matrix composed of “restart edges" 
and “transition edges". We then adjust the entries of these matrices based on the 
given set of positive ( Si ) and negative ( Ni ) examples.

Reformulation of random walks to unify transition and teleport: Consider-
ing the classical RWR formulation, the first term on the right-hand-side of Eq.  1 
captures the transition of the random walker from the current node to adjacent 
nodes, and the second term captures the random walker “teleporting” to seed nodes. 
Observing that |p| = 1 by definition, we can express �r as:

where 1T is a row vector of all 1’s of compatible dimension to r such that 
�r1T = R ∈ R

|V|×|V| . Noting that Rp = �r and setting Q(cs) = (1 − �)A(cs) , we can 
rearrange Eq. 1 as an ordinary eigenvector equation:

�r = �r1Tp

(3)p = (Q(cs) + R)p,
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where Q(cs) captures the transition of the random walker to adjacent nodes and R 
captures the random walker teleporting to seed nodes. The intuition behind this for-
mulation is illustrated in Fig. 1, where the reformulation effectively adds an edge 
from every v ∈ V  to every u ∈ S with transition probability � . Similarly, for random 
walks with symmetric normalization, Eq. 2 can be reformulated as:

where Q(sym) = (1 − �)A(sym) . In our implementation, we use this reformulation of 
symmetric random walk.

Variable restarts: Consider a more flexible model where rather than the 
walker restarting with a fixed probability � at every node, the walker is free to 
restart with a unique probability depending on the current location in the net-
work. This flexibility can be directly incorporated into the above formulation, 
since each entry of R represents a directed edge from a given node to a seed node. 
The immediate benefit to such a model is it allows the walker to restart to a seed 
whenever it encounters an edge leading to a negative example. i.e, given a node 
u ∈ Ni , the values Qu,v for all v ∈ Adj(u) can be reduced, and the difference dis-
tributed among the restart edges Rw,v for w ∈ Si.

Adjusting restart and transition edges based on negative examples: Let 
u ∈ Ni be a negatively-labeled example for label i. For each v adjacent to u, we 
reduce transition probability from v to u and redistribute these probabilities to the 
seed vertices Si as follows:

where � is a “redirection” parameter used to tune the degree of aggressiveness in 
steering the walk away from negatively-labeled nodes. In the next section, we com-
prehensively characterize the effect of � on predictive accuracy. Observe that this 
adjustment retains the sum of the vth column of Q + R.

2.3  Label propagation via CusTaRd

The matrix Q(sym) is independent of the label that is to be propagated, thus we 
first construct Q(sym) based on the input graph G(V, E). Then, for each label i with 
set Si of positively-labeled nodes, we first construct the matrix R . If negatively-
labeled nodes are not available, we sample negatively-labeled nodes from Sj≠i (i.e. 
we sample from within the nodes that we know have another label) to obtain Ni , 
using the methodology described in the next subsection. Subsequently, we adjust 
R and Q(sym) based on Ni , using Eq. 5. We then compute pi using Eq. 4 and rank 
the nodes in V ⧵ (Si ∪ Ni) according to this vector to prioritize the assignment of 
label i.

(4)
p̂ = (Q(sym) + R)p

p = p̂∕|p̂|

(5)
Rs,v = Rs,v +

�Qu,v

|Si|
if v ∈ Adj(u) and s ∈ Si

Qu,v = (1 − �)Qu,v if v ∈ Adj(u)
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Fig. 1  Reformulation of random walks using transition and teleport matrices to allow variable restarts. The 
seed node (positive) is shown in red and the negative example node in blue. The transition edges are labeled 
by Q , the teleport edges are labeled by R . a A reformulated random walk with restarts that is equivalent to 
the classical formulation with � = 0.5 where columns of Q are column normalized. Note that the row Ra,∶ 
that corresponds to the seed node a contains all uniform entries. b The random walk modified to avoid nega-
tive node b using a redirection factor � = 0.5 , where re-weighted edges have been highlighted in bold and the 
updated matrices �′ and �′ are shown below. The edges that lead to the negative node have been re-weighted as 
Q�

b,∶
= (1 − �)Qb,∶ . The restart edges leaving nodes v ∈ Adj(b) have been updated as ��

a,v = Ra,v + �Qb,v to 
direct the walker back to the seed rather than transitioning to the negative node. This formulation allows restart-
ing with different probabilities depending on the current node visited by the walk
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2.4  Sampling negatively labeled nodes

If a set of negatively-labeled nodes is not available, it is necessary to sample neg-
atively-labeled nodes from the set of nodes that are not positively-labeled. In the 
literature, negative sampling methods have been proposed based on prioritizing con-
fident false predictions (Zoidi et al. 2018), also known as hard sampling(Shi et al. 
2023). It follows that confident false positives in random walk based rankings are 
nodes that are close to one or more seed nodes. For this reason, it can be a good 
strategy to select negatively-labeled examples from the set of nodes that are in the 
neighborhood of positively-labeled nodes. To investigate how the proximity of the 
sampled negatively-labeled nodes to seeds affects predictive performance, we sam-
ple negatives from the nodes uniquely reachable in exactly k-hops from each seed 
node. For this purpose, to generate a pool of candidate negatively-labeled nodes, we 
use breadth-first search and identify nodes that (1) are at depth of k hops from the 
seeds, and (2) do not have the same label as the seed. From this pool, we draw uni-
formly at random a sample that is of size at most (if possible, equal to) the number 
of seeds (positively-labeled nodes). This ensures that the sets of positively and nega-
tively labeled nodes are as balanced as possible.

2.5  Complexity

The space complexity to store the transition matrix scales as a factor of the seed set 
size |S| , where the initial edge set E is expanded by the addition of restart edges from 
each node v ∈ V  of the network to every seed s ∈ S . Thus, the space complexity of 
the transition matrix is Θ(|E| + |S||V|) with worst case O(|V|2) when the full vertex 
set is used as a seed set.

The time complexity involves the construction of the transition matrix and the 
convergence of the random walk. Adding the restart edges to a single seed requires 
|V| operations, so the full operation requires Θ(|S||V|) time with worst case O(|V|2) 
when the full vertex set is used as the seed set. The random walk converges after a 
finite number of steps c, where each step requires multiplying a vector of size |V| 
by the sparse transition matrix with runtime Θ(c|V|(|E| + |S||V|)) . The overall time 
complexity is dominated by the propagation which has asymptotic runtime O(|V|3) 
when S = V  . However, in practice |S| ≪ |V| so the expected runtime would be much 
lower than the worst case.

3  Results

3.1  Experimental setup

Data Sets: We evaluate the predictive performance of CusTaRd against exist-
ing methods using multiple network datasets that are often used to benchmark 
label propagation and node classification algorithms. These datasets include the 
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CORA dataset  (Sen et al. 2008), a CiteSeer dataset  (Getoor 2005), the Political 
Blogosphere dataset (Adamic and Glance 2005), a Facebook dataset (Rozember-
czki et al. 2019) and the arXiv dataset from OGB (Wang et al. 2020). The char-
acteristics are summarized in Table 1. For consistency, we convert networks with 
directed edges to undirected networks, and remove nodes that are isolated from 
the rest of the network.

Competing methods: We compare the predictive performance of Cus-
TaRd against classical RWR with symmetric normalization  (Pan et  al. 2004), 
QuINT  (Li et al. 2016), and RWER  (Jin et al. 2019). QUINT learns an optimal 
transition matrix, and RWER learns an optimal restart profile, and both meth-
ods use gradient based optimization for learning. For QuINT, the authors provide 
several variations and we select their first order Taylor polynomial approxima-
tion as all three variations show equivalent performance in the benchmark experi-
ments reported by the authors (Li et al. 2016).

In CusTaRd, the positively labeled training nodes and the seed set are identi-
cal. This is not the case for QuINT and RWER. For both algorithms, the setting 
involves sets of positive and negative example nodes, as well as a single query 
(seed) node (i.e. |si| = 1 ). The methods then learn optimal networks or restart pro-
files that rank the positive nodes higher than the negative nodes while propagat-
ing the label only from the single query node. This makes direct comparison to 
our set-based method problematic, so we create a modified version of our method 
that also works with a single query node. The modified CusTaRd sq accepts the 
same inputs as QuINT and RWER, but adds edges to G between the query node 
and the positively-labeled training nodes before applying the edge-weight redis-
tribution for negatively-labeled training nodes. This allows us to propagate the 
label from a single query node, but leverage the positive nodes in a way that is 
similar to treating them as additional seed nodes.

Sampling of training and validation sets: In our experiments, we consider 
the case where training data is scarce, i.e., most of the labels in the network are 
unknown. Namely, from each set of labeled nodes Si ∈ S for a given network, 
we sample, uniformly at random, 50 positive training (seed) sets s1, s2, ..., s50 of 
fraction � of the nodes in Si , e.g. sj ⊂ Si and |sj| = � ∗ |Si| . For each seed set sj , we 
draw up-to the same number of negative training sets nj at distances k = [1, 2, 3] 
from the seeds using the strategies outlined in Sect. 2.4. Due to network topology 
and the location of the nodes in sj , there are cases where |nj| < |sj| , we perform 
the experiment as long as |nj| > 0 . If |nj| = 0 , we sample a new seed set sj until 

Table 1  Network datasets with 
node labels used to evaluate 
label prediction performance

Name # Nodes # Edges # Labels

CiteSeer 3312 4660 6
CORA 2708 10,556 7
Polblogs 1224 16,718 2
Facebook 22,470 171,002 4
OGB arXiv 169,343 1,166,243 40
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at least one negatively labeled node at distance k can be found. We use the set 
Tj = {sj ∪ nj} for training, leaving V∖Tj for validation.

Parameter settings: We determined through an initial parameter sweep that the 
RWR based methods performed optimally with a restart probability � = 0.05 , thus 
we use this value in all experiments. During our baseline accuracy assessment, we 
set CusTaRd’s redirection  parameter to � = 0.9 based on initial experiments that 
showed higher values of this parameter provide better predictive performance. We 
perform two additional experiments to characterize the effects of the redirection fac-
tor � and the training set size � . We varied � over the values [0.2, 0.4, 0.6, 0.8, 1.0] 
and � over the values [0.02, 0.05, 0.1].

Evaluation of predictive performance. We use each method to propagate the 
labels of sample sj and then rank the nodes by confidence of predictions. The node 
rankings are then evaluated from most confident to least confident, assigning “true 
positive” or “false positive” to each prediction. The Area Under ROC Curve (AUC) 
and Precision@100 are computed by combining the TP/FP counts at each rank for 
all sj across all labeled sets Si to generalize the performance for each dataset. We 
report the mean and standard deviation of these values across the 50 validation 
instances.

3.2  Predictive performance

The predictive performance of all algorithms on all datasets are shown in Fig. 2 as a 
function of training set size. The average and standard deviation of the performance 
metrics for training size 2% are also shown in Table 2.

CusTaRd consistently achieves highest scores for Precision@100, and for AUC 
the best performance is achieved by either CusTaRd or CusTaRd sq . We observe that 
the CITESEER and OGBNARXIV networks are the most difficult datasets for all 
methods to deliver accurate predictions. For CITESEER, the Precision@100 shows 
significant improvement for most methods as the training set size increases, but for 
OGBNARXIV the change is less pronounced. The minimum variance in prediction 
accuracy for the smallest training set size is displayed by CusTaRd for most data-
sets and metrics, with the exception of the CITESEER and OGBNARXIV networks, 
where the conventional RWR and QUINT display lower variance than CusTaRd.

3.3  Effect of sampling of negative examples

Figure  3 plots the different performance metrics versus the k-hop proximity of 
negative examples. For RWR, CusTaRd and CusTaRdsq the AUC appears either 
unchanged or inversely correlated to k, but optimal precision was always achieved 
at k = 1 . QUINT shows a less consistent correlation to k with AUC, but with the 
exception of the CITESEER network it always achieved highest precision at k = 1 
(data point for OGBNARXIV not shown because it was less than 0.5). The AUC for 
RWER achieves the maximum value for k = 3 on all datasets except POLBLOGS, 
while optimal precision was achieved at k-hop distance 2 or 3. Based on the results, 
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it would be reasonable to sample negatives as close to the seeds as possible because 
doing so results in superior precision across most methods and datasets. This behav-
ior has the nice property of limiting the neighborhood of nodes that must be evalu-
ated in the search to manually annotate negatives.

3.4  Effect of redirection factor

Figure  4 plots the performance metrics for CusTaRd versus the redirection  fac-
tor � for sample sizes 2% and fixed negative node k-hop distance 1. The curves are 
quite different between networks. The AUC curves for most networks show slight 

Fig. 2  Predictive performance of label propagation algorithms as a function of training set size. Positive 
training sets are sampled of sizes 2%, 5% and 10% of available positive examples (seed nodes) for each 
label. Negative examples are sampled to be of equal size as positives at a k-hop distance of 1 to positive 
examples. The reported values are averages across 50 validation instances
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increases in performance as � increases, while the POLBLOGS result shows signifi-
cant jumps as � increases through certain ranges. The gain in performance for Preci-
sion@100 increases with higher values of � except at the highest values on CORA 
where it interestingly showed lower accuracy than at slightly lower values.

3.5  Runtime

Our implementation and testing code were written in Python, while competing meth-
ods used MATLAB, making a direct and systematic runtime comparison somewhat 

Fig. 3  The effects of negative example proximity to seed nodes on predictive performance. As dis-
cussed in Sect. 2.4, we sample negatively-labeled training nodes from the set of nodes that are not pos-
itively labeled, by constructing pools of candidate nodes based on their distance to positively-labeled 
nodes. The curves show the effect of this distance on predictive performance for k-hop distances 1, 2 and 
3 using positive node sample size of 2%
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Table 2  Predictive performance of CusTaRd and competing methods

For each algorithm, dataset, and performance metric, the mean performance metrics ± standard deviation 
is shown across 50 randomly generated validation instances, with 2% of positively-labeled nodes selected 
for training, and negatives sampled at k-hop distance 1

Network RWR CusTaRd CusTaRd 
sq

QUINT RWER

AUC 
CITESEER 0.632±0.129 0.641±0.130 0.635±0.131 0.622±0.130 0.556±0.122
CORA 0.820±0.089 0.832±0.084 0.829±0.084 0.794±0.093 0.682±0.188
POLBLOGS 0.745±0.051 0.810±0.050 0.813±0.057 0.709±0.049 0.698±0.190
FACEBOOK 0.865±0.037 0.890±0.034 0.897±0.035 0.789±0.063 0.613±0.142
OGBNARXIV 0.880±0.145 0.883±0.150 0.891±0.147 0.847±0.154 0.656±0.209
Precision@100
CITESEER 0.658±0.250 0.726±0.272 0.703±0.266 0.623±0.252 0.367±0.392
CORA 0.828±0.145 0.875±0.133 0.850±0.146 0.751±0.149 0.556±0.363
POLBLOGS 0.953±0.029 0.981±0.018 0.976±0.029 0.932±0.051 0.828±0.306
FACEBOOK 0.984±0.020 0.989±0.013 0.975±0.033 0.935±0.082 0.673±0.401
OGBNARXIV 0.585±0.274 0.609±0.284 0.584±0.273 0.480±0.253 0.287±0.363

Fig. 4  Effects of redirection  factor � on predictive performance. Our reformulated random walk 
depends on the redirection factor � as defined in Eq. 5. The plot shows the effects of varying the redirec-
tion factor using training sets of size 2% for each label and negative nodes sampled at a k-hop distance of 
1. The value of � was varied over [0.0, 0.2, 0.4, 0.6, 0.8, 1.0]
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difficult and potentially misleading. For this reason, to get a general idea on the runt-
ime of each method, we perform a more generic comparison on the OGB dataset. 
Our runtime measurements include the time to complete all steps of each method 
(loading the adjacency matrix, training, and output) on the OGB dataset. Our results 
show that for the smallest seed set size, the methods all require around 1 min on 
average on this dataset. As the seed set size increases, CusTaRd and the gradient 
based methods require more time, but the gradient based methods’ runtimes increase 
more quickly. The increase for RWER is not as pronounced as QUINT, but for the 
largest seed set size, both methods on average require more than 1.5x the runtime of 
CusTaRd to complete.

4  Conclusion

In this study, we reformulated random walks to enable variable restarts, which in 
turn gave rise to CusTaRd, an algorithm for effectively utilizing negatively-labeled 
nodes in label propagation. CusTaRd does not “learn" parameters or solve an opti-
mization problem, it uses a single parameter to directly modify the entries of the 
stochastic matrix to redirect flow from negatively-labeled nodes to positively-label 
nodes. In addition to reformulation of random walks, CusTaRd we characterized 
how the proximity of negatively-labeled nodes to positively-labeled nodes affects 
the accuracy of predictions. Our experiments on benchmark networks showed that 
CusTaRd consistently outperforms competing optimization/learning-based algo-
rithms, and its predictions are consistently robust to scarce training samples.

These results lay the foundations for more effective incorporation of label prop-
agation into machine learning frameworks. Integration of the algorithm described 
here with machine learning models that use node features can further improve the 
accuracy and robustness of such models.
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