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Abstract
The issue of opinion sharing and formation has received considerable attention in 
the academic literature, and a few models have been proposed to study this problem. 
However, existing models are limited to the interactions among nearest neighbors, 
with those second, third, and higher-order neighbors only considered indirectly, 
despite the fact that higher-order interactions occur frequently in real social net-
works. In this paper, we develop a new model for opinion dynamics by incorporat-
ing long-range interactions based on higher-order random walks that can explicitly 
tune the degree of influence of higher-order neighbor interactions. We prove that the 
model converges to a fixed opinion vector, which may differ greatly from those mod-
els without higher-order interactions. Since direct computation of the equilibrium 
opinion is computationally expensive, which involves the operations of huge-scale 
matrix multiplication and inversion, we design a theoretically convergence-guaran-
teed estimation algorithm that approximates the equilibrium opinion vector nearly 
linearly in both space and time with respect to the number of edges in the graph. We 
conduct extensive experiments on various social networks, demonstrating that the 
new algorithm is both highly efficient and effective.
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1 Introduction

Recent years have witnessed an explosive growth in social media and online 
social networks, which have increasingly become an important part of our 
lives  (Smith and Christakis 2008). For example, online social networks can 
increase the diversity of opinions, ideas, and information available to individu-
als (Kim 2011; Lee et al. 2014). At the same time, people may use online social 
networks to broadcast information on their lives and their opinions about some 
topics or issues to a large audience. It has been reported that social networks and 
social media have resulted in a fundamental change of ways that people share 
and shape opinions  (Das et  al. 2014; Fotakis et  al. 2016; Auletta et  al. 2018). 
Recently, there have been a concerted effort to model opinion dynamics in social 
networks, in order to understand the effects of various factors on the formation 
dynamics of opinions (Jia et al. 2015; Dong et al. 2018; Anderson and Ye 2019).

One of the popular opinion dynamics models is the Friedkin-Johnsen (FJ) 
model (Friedkin and Johnsen 1990). Although simple and succinct, the FJ model 
can capture complex behavior of real social groups by incorporating French’s 
“theory of social power”  (French 1956), and thus has been extensively stud-
ied. A sufficient condition for the stability of this standard model was obtained 
in (Ravazzi et al. 2015), the average innate opinion was estimated in (Das et al. 
2013), and the unique equilibrium expressed opinion vector was derived in (Das 
et  al. 2013; Bindel et  al. 2015). Some explanations of this natural model were 
consequently explored from different perspectives  (Ghaderi and Srikant 2014; 
Bindel et al. 2015). In addition, based on the FJ opinion dynamics model, some 
social phenomena have been quantified and studied Xu et  al. (2021), including 
polarization (Matakos et al. 2017; Musco et al. 2018), disagreement (Musco et al. 
2018), conflict (Chen et al. 2018), and controversy (Chen et al. 2018). Moreover, 
some optimization problems (Abebe et al. 2018) for the FJ model were also inves-
tigated, such as opinion maximization (Gionis et al. 2013).

Other than studying the properties, interpretations and related quantities of the 
FJ model, many extensions or variants of this popular model have been devel-
oped (Jia et al. 2015). In (Abebe et al. 2018), the impact of susceptibility to per-
suasion on opinion dynamics was analyzed by introducing a resistance parameter 
to modify the FJ model. In (Semonsen et al. 2019), a varying peer-pressure coef-
ficient was introduced to the FJ model, aiming to explore the role of increasing 
peer pressure on opinion formation. In  (Chitra and Musco 2020), the FJ model 
was augmented to include algorithmic filtering, to analyze the effect of filter 
bubbles on polarization. Some multidimensional extensions were developed for 
the FJ model  (Friedkin 2015; Parsegov et al. 2015, 2017; Friedkin et al. 2016), 
extending the scalar opinion to vector-valued opinions corresponding to several 
settings, either independent  (Friedkin 2015) or interdependent  (Parsegov et  al. 
2015, 2017; Friedkin et al. 2016).

The above related works for opinion dynamic models provide deep insights 
into the understanding of opinion formulation, since they grasped various 
important aspects affecting opinion shaping, including individual’s attributes, 
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interactions among individuals, and opinion update mechanisms. However, exist-
ing models consider only the interactions among the nearest neighbors, allow-
ing interactions with higher-order neighbors only indirectly via their immediate 
neighbors, in spite of the fact that this situation is commonly encountered in real 
natural  (Schunack et  al. 2002) and social  (Ghasemiesfeh et  al. 2013; Lyu et  al. 
2022) networks. In a real natural example (Schunack et al. 2002), it is shown as 
the long-jump spanning multiple lattice spacings, which plays a dominating role 
in the diffusion of these molecules. In a social network example  (Ghasemiesfeh 
et  al. 2013; Lyu et  al. 2022), an individual can make use of the local, partial, 
or global knowledge corresponding to his direct, second-order, and even higher-
order neighbors to search for opinions about a concerned issue or to diffuse infor-
mation and opinions in an efficient way. It has been suggested by many existing 
theories and models that long ties are more likely to persist than other social ties, 
and that many of them constantly function as social bridges (Lyu et  al. 2022). 
Schawe and Hernández (2022) defined a higher-order Deffuant model  (Deffuant 
et  al. 2000), generalizing the original pairwise interaction model for bounded-
confidence opinion-dynamics to interactions involving a group of agents. To date, 
there is still a lack a comprehensive higher-order FJ opinion dynamics model on 
social networks, although it has been observed that long-range non-nearest-neigh-
bor interactions could play a fundamental role in opinion dynamics.

In this paper, we make a natural extension of the classical FJ opinion dynamics 
model to explicitly incorporate the higher-order interactions between individuals and 
their non-nearest neighbors by leveraging higher-order random walks. We prove that 
the higher-order model converges to a unique equilibrium opinion vector, provided 
that each individual has a non-zero resistance parameter measuring his susceptibility 
to persuasion. We show that the equilibrium opinions of the higher-order FJ model 
differ greatly from those of the classical FJ model, demonstrating that higher-order 
interactions have a significant impact on opinion dynamics.

Basically, the equilibrium opinions of the higher-order FJ model on a graph are 
the same as those of the standard FJ model on a corresponding dense graph with a 
loop at each node. That is, at each time step, every individual updates his opinion 
according to his innate opinion, as well as the currently expressed opinions of his 
nearest neighbors on the dense graph. Since the transition matrix of the dense graph 
is a combination of the powers of that on the original graph, direct construction of 
the transition matrix for the dense graph is computationally expensive. To reduce 
the computation cost, we construct a sparse matrix, which is spectrally close to the 
dense matrix, nearly linearly in both space and time with respect to the number of 
edges on the original graph. This sparsified matrix maintains the information of the 
dense graph, such that the difference between the equilibrium opinions on the dense 
graph and the sparsified graph is negligible.

Based on the obtained sparsifed matrix, we further introduce an iteration algo-
rithm, which has a theoretical convergence and can approximate the equilibrium 
opinions of the higher-order FJ model quickly. Finally, we perform extensive experi-
ments on different networks of various scales, and show that the new algorithm 
achieves high efficiency and effectiveness. Particularly, this algorithm is scalable, 
which can approximate the equilibrium opinions of the second-order FJ on large 
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graphs with millions of nodes. It is expected that the new model sheds light on fur-
ther understanding of opinion formation, and that the new algorithm can be helpful 
for various applications, such as the computations of polarization and disagreement 
in opinion dynamics.

A preliminary version of our work has been published in  (Zhang et  al. 2020). 
In this paper, we extend our preliminary results in several directions. First, we pre-
sent proof details previously omitted in  (Zhang et  al. 2020) for several important 
theorems, including the convergence analysis and approximation error bound of the 
proposed algorithm. Second, we add an illustrative example in Sect. 3.2, in order to 
better understand and demonstrate the difference between the traditional FJ model 
and the higher-order model. Finally, we provide additional experimental results for 
different innate opinion distributions and provide a thorough parameter analysis in 
Sect. 6.

2  Preliminaries

In this section, some basic concepts in graph and matrix theories, as well as the 
Friedkin–Johnsen (FJ) opinion dynamics model are briefly reviewed.

2.1  Graphs and related matrices

Consider a simple, connected, undirected social network (graph) G = (V, E) , where 
V = {1, 2,… , n} is the set of n agents and E = {(i, j)|i, j ∈ V} is the set of m edges 
describing relations among nearest neighbors. The topological and weighted 
properties of G are encoded in its adjacency matrix A = (aij)n×n , where aij = aji = we 
if i and j are linked by an edge e = (i, j) ∈ E with weight we , and aij = 0 otherwise. 
Let Ni = {j|(i, j) ∈ E} denote the set of neighbors of node i and di =

∑
j∈Ni

aij 
denote the degree of i. The diagonal degree matrix of graph G is defined to be 
D = diag(d1, d2,… , dn) , and the Laplacian matrix of G is L = D − A . Let ei denote 
the i-th standard basis vector of appropriate dimension. Let 1 ( 0 ) be the vector with 
all entries being ones (zeros). Then, it can be verified that L1 = 0 . The random walk 
transition matrix for G is defined as P = D−1A , which is row-stochastic (i.e., each 
row-sum equals 1).

2.2  Norms of a vector or matrix

For a non-negative vector x , xmax and xmin denote the maximum and minimum 
entry, respectively. For an n × n matrix A , �i(A), i = 1, 2,… , n denote its singular 
values. Given a vector x , its 2-norm is defined as ‖x‖2 = 2

√∑
i �xi�2 and the ∞-norm 

is defined as ‖x‖∞ = maxi �xi� . It is easy to verify that ‖x‖∞ ≤ ‖x‖2 ≤
√
n‖x‖∞ 

for any n-dimensional vector x . For a matrix A , its 2-norm is defined to be 
‖A‖2 = maxx ‖Ax‖2∕‖x‖2 . By definition, ‖Ax‖2 ≤ ‖A‖2‖x‖2 . It is known that the 
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2-norm of the matrix A is equal to its maximum singular value �max , satisfying 
‖x⊤Ay‖2 ≤ 𝜎max‖x‖2‖y‖2 for any vectors x and y (Golub and Van Loan 2012).

2.3  Friedkin‑Johnsen opinion dynamics model

The Friedkin-Johnsen (FJ) model is a classic opinion dynamics model (Friedkin 
and Johnsen 1990). For a specific topic, the FJ model assumes that each agent 
i ∈ V is associated with an innate opinion si ∈ [0, 1] , where higher values signify 
more favorable opinions, and a resistance parameter �i ∈ (0, 1] quantifying the 
agent’s stubbornness, with a higher value corresponding to a lower tendency 
to conform with his neighbors’ opinions. Let x(t) denote the opinion vector of 
all agents at time t, with element x(t)

i
 representing the opinion of agent i at that 

time. At every timestep, each agent updates his opinion by taking a convex 
combination of his innate opinion and the average of the expressed opinion of 
his neighbors in the previous timestep. Mathematically, the opinion of agent i 
evolves according to the following rule:

The evolution rule can be rewritten in matrix form as

where � denotes the diagonal matrix diag(�1, �2,… , �n) , and I is the identity matrix.
It has been proved (Das et al. 2013) that the above opinion formation process 

converges to a unique equilibrium z when 𝛼i > 0 for all i ∈ V . The equilibrium 
vector z can be obtained as the unique fixed point of equation (2), i.e.,

The ith entry zi of z is the expressed opinion of agent i.
A straightforward way to calculate the equilibrium vector z requires inverting 

a matrix, which is expensive and intractable for large networks. In (Chan et al. 
2019), the iteration process of the opinion dynamics model is used to obtain an 
approximation of vector z , which has a theoretical guarantee of convergence. 
The method is very efficient, scalable to networks with millions of nodes.

3  Higher‑order opinion dynamics model

The classical FJ model has many advantages; for example, it captures some 
complex human behavior in social networks. However, this model considers 
only the interactions among nearest neighbors, without explicitly considering 
the higher-order interactions existing in social networks and social media. To 
fix this deficiency, in this section, we generalize the FJ model to a higher-order 

(1)x
(t+1)

i
= �isi + (1 − �i)

∑
j∈Ni

aij ⋅ x
(t)

j

di
.

(2)x(t+1) = �s + (I −�)Px(t),

(3)z = (I − (I −�)P)−1�s.
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setting by using the random walk matrix polynomials describing higher-order 
random walks.

3.1  Random walk matrix polynomial

For a network G , its random walk matrix polynomial is defined as follows (Cheng 
et al. 2015):

Definition 1 Let A and D be, respectively, the adjacency matrix and diagonal 
degree matrix of a graph G . For a non-negative vector � = (�1, �2,… , �T ) satisfying ∑T

r=1
�r = 1 , the matrix

is a T-degree random walk matrix polynomial of G.

The Laplacian matrix L is a particular case of L�(G) , which can be obtained 
from L�(G) by setting T = 1 and �1 = 1 . In fact, it can be proved that, for any � , 
there always exists a graph G′ with loops, whose Laplacian matrix is L�(G) , as 
characterized by the following theorem.

Theorem 1 (Proposition 25 in Cheng et al. (2015)) The random walk matrix polyno-
mial L�(G) is a Laplacian matrix.

Define matrix LGr
= D − D

(
D−1A

)r , which is a particular case of matrix L�(G) 
corresponding to T = r and �r = 1 . In fact, LGr

 is the Laplacian matrix of graph 
Gr , constructed from graph G by performing r-step random walks on graph G . 
The ij-th element of the adjacency matrix AGr

 for graph Gr is equal to the product 
of the degree di for node i in G and the probability that a walker starts from node 
i and ends at node j after performing r-step random walks in G . Thus, the matrix 
polynomial L�(G) is a combination of matrices LGr

 for r = 1, 2,… , T .
Based on the random walk matrix polynomials, one can define a generalized 

transition matrix P∗ = P∗
�
 for graph G as follows.

Definition 2 Given an undirected weighted graph G and a coefficient vector 
� = (�1, �2,… , �T ) with 

∑T

r=1
�r = 1 , the matrix

is a T-order transition matrix of G with respect to vector �.

Note that the generalized transition matrix P∗ for graph G is actually the tran-
sition matrix for another graph G′.

(4)L�(G) = D −

T∑

r=1

�rD
(
D−1A

)r

(5)P∗
�
=

T∑

r=1

�rP
r = I − D−1L�(G)
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3.2  Higher‑order FJ model

To introduce the higher-order FJ model, first modify the update rule in equa-
tion  (2) by replacing P with P∗ . In other words, the opinion vector evolves as 
follows:

In this way, individuals update their opinions by incorpating those of their higher-
order neighborhoods at each timestep. Moreover, by adjusting the coefficient vector 
� , one can choose different weights for neighbors of different orders.

Note that for the case of P∗ = P , the higher-order FJ model is reduced to the 
classic FJ model. While for the case of P∗

≠ P , the higher-order FJ model can 
lead to very different results, in comparison with the standard FJ model, as shown 
in the following example.

Example. Consider the tree shown in Fig. 1. The nodes from the center to the 
periphery are colored in red, yellow and blue, respectively. Suppose that for the 
red node its (si, �i) are given by (1, 1), implying that the center node has a favora-
ble opinion and is insusceptible to be persuaded by others. And, suppose that the 
yellow and blue nodes have values (0, 0.6) and (0, 0.01), respectively. Then, cal-
culate the equilibrium opinion vector for the following three cases: 

 I. �1 = 1, �2 = 0 . This case corresponds to the classic FJ model. At every 
timestep, the opinion of each node is influenced by the opinions of its nearest 
neighbors. At equilibrium, the expressed opinions of red, yellow and blue 
nodes are 1, 0.181 and 0.179, respectively. This is consistent with the intui-
tion, since the red and yellow nodes are stubborn and thus prone to their innate 
opinions, while the blue nodes are susceptible to their neighboring nodes, the 
yellow ones.

 II. �1 = 0, �2 = 1 . This case is associated with the second-order FJ model. In this 
case, only the influences of the second-order neighbors are considered. The 
equilibrium expressed opinions of the red, yellow and blue nodes are 1, 0 and 
0.971, respectively. This can be explained as follows. Since any yellow node is 
the second-order neighbor of the other two yellow nodes, they are influenced 

(6)
x(t+1) = �s + (I −�)P∗x(t)

= �s + (I −�)
[
�1P + �2P

2 +…+ �TP
T
]
x(t).

Fig. 1  A tree with ten nodes
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by each other, so they all stick to their innate opinions. In contrast, the blue 
nodes are highly affected by the center node.

 III. �1 = �2 = 0.5 . This is in fact a hybrid case of the above two cases, with inter-
actions between a node and both of its first- and second-order neighbors with 
equal weights. For this case, the equilibrium opinions for red, yellow and 
blue nodes are 1, 0.142 and 0.351, respectively. The opinion of each node lies 
between the opinions of the above two cases.

In addition to the expressed opinion of an individual, for the above-considered 
three cases, the sum of their expressed opinions are also significantly different, 
which are equal to 2.617, 6.826 and 3.532, respectively.

This example demonstrates that the interactions between nodes and their 
higher-order neighbors can have substantial impact on network opinions. Moreo-
ver, as will be seen in Sect. 6.2, the higher-order interactions also strongly affect 
the opinion dynamics on real-world social networks.

4  Convergence analysis

In this section, the convergence of the higher-order FJ model is analyzed. It will 
be shown that if all �i are positive, the model has a unique equilibrium and will 
converge to that equilibrium after sufficiently many iterations. The high-level 
ideas of our proof are adapted from Das et al. (2013).

First, recall the Gershgorin Circle Theorem.

Lemma 1 (Gershgorin Circle Theorem  Bell (1965)) Given a square matrix 
A ∈ ℝ

n×n , let Ri =
∑

j≠i �aij� be the sum of the absolute values of the non-diagonal 
entries in the i-th row and D(aii,Ri) ∈ ℂ be a closed disc centered at aii with radius 
Ri . Then, every eigenvalue of A lies in at least one of the discs D(aii,Ri).

Now, the following main result is established.

Theorem 2 The higher-order FJ model defined in  (6) has a unique equilibrium if 
𝛼i > 0 for all i ∈ V.

Proof Any equilibrium z∗ ∈ ℝ
n of  (6) must be a solution of the following linear 

system:

Let M = I − (I −�)P∗ . It suffices to show that M is non-singular. First, it is obvious 
that every diagonal entry of M is non-negative and every non-diagonal entry is non-
positive, since every entry of P∗ lies in the interval [0, 1]. Thus, for any row i of M , 
the sum of absolute values of its non-diagonal elements is

(7)
(
I − (I −�)P∗

)
z∗ = �s.
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where Mij denotes the (i,  j)th element of M . Then, according to Lemma  1, every 
eigenvalue � of M lies within the discs {z ∶ |z −Mii| ≤ Mii − �i} . Since 𝛼i > 0 , the 
set of all eigenvalues for M excludes 0. Therefore, matrix M is invertible, and thus 
the equilibrium is unique.   ◻

Hence, z∗ =
(
I − (I −�)P∗

)−1
�s is the unique equilibrium of the opinion 

dynamics model defined by (6). Next, it will be proved that after sufficiently many 
iterations, the new higher-order FJ model will converge to this equilibrium.

Theorem 3 If 𝛼i > 0 for all i ∈ V , then the higher-order FJ model converges to its 
unique equilibrium z∗ =

(
I − (I −�)P∗

)−1
�s.

Proof Define the error vector �(t) at the t-th iteration as �(t) = x(t) − z∗ . It can be 
proved that as t approaches infinity, the error term �(t) tends to zero. Substituting (6) 
into the formula of �(t) , one obtains �(t+1) = (I −�)P∗�(t) . In addition, because the 
sum of all the entries in each row of P∗ is one and (1 − �i) ∈ [0, 1] , the elements of 
�(t) become smaller as t grows. This can be explained as follows. Let �(t+1)max  be the ele-
ment of vector �(t+1) that has the largest absolute value. Then,

which completes the proof of the theorem.   ◻

5  Fast estimation of equilibrium opinion vector

To compute the equilibrium expressed opinion vector z∗ requires calculating matrix 
P∗ and inverting a matrix, both of which are time consuming. In general, for a net-
work G , sparse or dense, its r-step random walk graph Gr could be very dense. Par-
ticularly, for a small-world network with a moderately large r, its r-step random 
walk graph Gr is a weighted and almost complete graph. This makes it infeasible to 
compute the generalized transition matrix P∗ for huge networks.

In this section, the spectral graph sparsification technique is utilized to obtain 
an approximation of matrix P∗ . Then, a fast convergent algorithm is developed to 

Ri =
∑

j≠i

|Mij| = −e⊤
i
M1 +Mii = Mii − 𝛼i > 0,

|||𝜖
(t+1)
max

||| = max
i=1,2,…,n

{
(1 − 𝛼i)

||||||

n∑

j=1

P∗
ij
𝜖
(t)

j

||||||

}

≤ max
i=1,2,…,n

{
(1 − 𝛼i)

n∑

j=1

P∗
ij

|||𝜖
(t)
max

|||

}

= max
i=1,2,…,n

{
(1 − 𝛼i)

|||𝜖
(t)
max

|||
}
<
|||𝜖

(t)
max

|||,
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approximate the expressed opinion vector z∗ , which avoids matrix inverse operation. 
The pseudocode of this new algorithm is shown in Algorithm 1.

5.1  Random‑walk matrix polynomial sparsification

First, we introduce the concept of spectral similarity and the technique of random-
walk matrix polynomial sparsification.

Definition 3 (Spectral Similarity of Graphs Spielman and Srivastava (2011)) Con-
sider two weighted undirected networks G = (V, E) and G̃ = (V, Ẽ) . Let L and L̃ 
denote, respectively, their Laplacian matrices. Graphs G and G̃ are (1 + �)-spectrally 
similar if

Next, recall the sparsification algorithm Cheng et al. (2015). For a given graph 
G = (V, E) , start from an empty graph G̃ with the same node set V and an empty 
edge set. Then add M edges into the sparsifier G̃ iteratively by a sampling technique. 
At each iteration, randomly pick an edge e = (u, v) from E as an intermediate edge 
and an integer r from {1, 2,… , T} as the length of the random-walk path. To this 
end, run the PathSamPling(e, r) algorithm Cheng et  al. (2015) to sample an edge 
by performing r-step random walks, and add the sample edge, together with its 
corresponding weight, into the sparsifier G̃ . Note that multiple edges will be merged 
into a single edge by summing up their weights together. Finally, the algorithm 
generates a sparsifier G̃ for the original graph G with no more than M edges.

In Cheng et  al. (2015), an algorithm is designed to obtain a sparsifier G̃ with 
O(n�−2 log n) edges for L�(G) , which consists of two steps: The first step uses 
random walk path sampling to get an initial sparsifier with O(Tm�−2 log n) edges. 
The second step utilizes the standard spectral sparsification algorithm proposed in 
Spielman and Srivastava (2011) to further reduce the edge number to O(n�−2 log n) . 
Since a sparsifier with O(Tm�−2 log n) edges is sparse enough for the present 
purposes, only the first step will be taken, while skipping the second step, to avoid 
unnecessary computations.

(8)(1 − 𝜖) ⋅ x⊤L̃x ≤ x⊤Lx ≤ (1 + 𝜖) ⋅ x⊤L̃x, ∀x ∈ ℝ
n.
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Algorithm 1  hODynamic(G,M, s, �, t)

To sample an edge by performing r-step random walks, the procedure of 
PathSamPling algorithm Cheng et  al. (2015) is characterized in Lines 5–9 of 
Algorithm 1. To sample an edge, first draw a random integer k from {1, 2,… , r} 
and then perform, respectively, (k − 1)-step and (r − k)-step walks starting from 
two end nodes of the edge e = (u, v) . This process samples a length-r path 
p = (u0, u1,… , ur) . At the same time, compute

The algorithm returns the two endpoints of path p as the sample edge (u0, ur) and the 
quantity Z(p) for the calculation of weight.

Theorem 4 (Spectral Sparsifiers of Random-Walk Matrix Polynomials Cheng et al. 
(2015)) For a graph G with random-walk matrix polynomial

where 
∑T

r=1
�r = 1 and �r are non-negative, one can construct, in time 

O(T2m�−2 log2 n) , a (1 + �)-spectral sparsifier, L̃ , with O(n�−2 log n) non-zeros.

(9)Z(p) =

r∑

i=1

2

aui−1,ui

.

(10)L�(G) = D −

T∑

r=1

�rD
(
D−1A

)r
,
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Now one can approximate the generalized transition matrix using the Laplacian 
L̃(G̃) of the sparse graph G̃:

Complexity Analysis Regarding the time and space complexity of sparsification pro-
cess of Algorithm 1, the main time cost of sparsification (Lines 2–9) is the M calls 
of the PathSamPling routine. In PathSamPling, it requires O(log n) time to sample 
a neighbor from the weighted network, and thus takes O(r log n) time to sample a 
length-r path. Totally, the time complexity of Algorithm 1 is O(MT log n) . As for 
space complexity, it takes O(n + m) space to store the original graph G and addi-
tional O(M) space to store the sparisifier G̃ . Thus, for appropriate size M, the sparsi-
fier is computable.

5.2  Approximating the equilibrium opinion vector via the iteration method

With the spectral graph sparsification technique, it is possible to approximate P∗ 
with a sparse matrix. Nevertheless, directly computing the equilibrium still involves 
the matrix inverse operation, which is computationally expensive for large networks, 
such as those with millions of nodes. To approximate the equilibrium vector z∗ using 
the recurrence defined in  (6) and multiple iterations, in this section, we develop a 
convergent approximation algorithm. For this purpose, an important lemma is first 
introduced.

Lemma 2 (Lemma 4 in Qiu et al. (2019)) Let L = D−1∕2LD−1∕2 , L̃ = D−1∕2L̃D−1∕2 
and 𝜖 < 0.5 . Then all the singular values of L̃ −L satisfy that for all 
i ∈ {1, 2,… , n} , 𝜎i(L̃ −L) < 4𝜖.

Now, we are in position to introduce a new iteration method for approximating 
the equilibrium vector z∗ . First, set x̃(0) = x(0) = s . Then, in every timestep, 
update the opinion vector with the approximate transition matrix P̃

∗
 , i.e., 

x̃
(t+1) = 𝜦s + (I −𝜦)P̃

∗
x̃
(t) . Let �min be the smallest value among all i ∈ V.

Lemma 3 For every t ≥ 0,

Proof Inequality  (12) is proved by induction. The case of j = 0 is trivial, since 
x̃
(0) = x(0) = s . Assume that  (12) holds for some integer t. Then, it needs to show 

that (12) also holds for t + 1 . To this end, split ‖x̃(t+1) − x(t+1)‖∞ into two terms by 
using triangle inequality:

(11)P∗ = I − D−1L�(G) ≈ I − D−1L̃(G̃) = P̃
∗
.

(12)‖‖‖x̃
(t) − x(t)

‖‖‖∞ ≤

4�

√
ndmaxd

−1
min

⋅

(
1 − �min

)[
1 −

(
1 − �min

)t]

�min

.
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For every coordinate of the first term in  (14), an upper bound can be derived as 
follows:

where the second inequality is obtained by using the inequality that 
x⊤Ay ≤ 𝜎max(A)‖x‖2‖y‖2 for any matrix A,the third one follows 
‖D−1

�
L𝜷 − L̃𝜷

�
‖2 ≤ ‖D−1∕2‖2‖D1∕2‖2‖L𝜷 − L̃𝜷‖2 and the last inequality follows 

from the fact that x(t)
i

≤ 1 for all i ∈ {1, 2,… , n}.
Next, consider the second term in (14). One has

where the equality is due to the fact that ‖I − D−1L̃𝜷‖∞ = 1 , which can be 
understood as follows. Since every entry of I − D−1L̃𝜷 is non-negative and L̃𝜷1 = 0 , 
one has

Substituting (15) and (16) into (14), one obtains

(13)
‖‖‖x̃

(t+1) − x(t+1)
‖‖‖∞

(14)
≤
‖‖‖‖
(I −𝜦)D−1

(
L𝜷 − L̃𝜷

)
x(t)

‖‖‖‖∞

+
‖‖‖‖
(I −𝜦)

(
I − D−1L̃𝜷

)(
x̃
(t) − x(t)

)‖‖‖‖∞
.

(15)

���e
⊤

i
(I −𝜦)D−1

�
L𝜷 − L̃𝜷

�
x(t)

���

≤(1 − 𝛼min) ⋅
����
e⊤
i
D−1

�
L𝜷 − L̃𝜷

�
x(t)

����
≤(1 − 𝛼min) ⋅ 𝜎max

�
D−1

�
L𝜷 − L̃𝜷

����ei��2
���x

(t)���2
≤(1 − 𝛼min) ⋅ 𝜎max(D

−1∕2) ⋅ 𝜎max(D
1∕2) ⋅ 𝜎max

�
L𝜷 − L̃𝜷

�
��ei��2

���x
(t)���2

≤
4𝜖(1 − 𝛼min)d

1∕2
max

d
1∕2

min

√
n,

(16)

����
(I −𝜦)

�
I − D−1L̃𝜷

��
x̃
(t) − x(t)

�����∞
≤‖I −𝜦‖∞

���I − D−1L̃𝜷
���∞

���x̃
(t) − x(t)

���∞
=
�
1 − �min

�
⋅

���x̃
(t) − x(t)

���∞,

‖‖‖I − D−1L̃𝜷
‖‖‖∞ =

‖‖‖‖

(
I − D−1L̃𝜷

)
1
‖‖‖‖∞

= 1.
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as required.   ◻

In order to show the convergence of this method, it needs to prove that, after 
sufficiently many iterations, the error between x(t) and z∗ will be sufficiently small, 
as characterized by the following lemma.

Lemma 4 For every t ≥ 0,

Proof Expanding with the series 
�
I − (I −�)P∗

�−1
=

∞∑
j=0

�
(I −�)P∗

�j leads to

Below, by induction, it will be shown that for any x ∈ [0, 1]n , the relation 
‖
�
(I −�)P∗

�j
x‖∞ ≤ (1 − �min)

j holds for all j ≥ 0 . Since every coordinate of x lies 
in the interval [0, 1], it is obvious that the above relation is true for the case of j = 0 . 
Suppose that, for some j > 0 , every coordinate of y =

(
(I −�)P∗

)j
x has magnitude 

at most (1 − �min)
j . Since P∗ is row-stochastic, it follows that ‖‖P

∗y‖‖∞ ≤ (1 − �min)
j . 

In addition, because �i ≥ �min for all i ∈ V , one has ‖‖(I −�)P∗y‖‖∞ ≤ (1 − �min)
j+1 , 

completing the induction proof.
Finally, since both 

∑∞

j=t

�
(I −�)P∗

�j
�s and 

(
(I −�)P∗

)t
s have non-negative 

coordinates, one has

as claimed by the lemma.   ◻

Combining Lemmas 3 and 4, a convergent approximate iteration method can 
be summarized as stated in the following theorem.

���x̃
(t+1) − x(t+1)

���∞

≤
4�(1 − �min)d

1∕2
max

d
1∕2

min

√
n +

�
1 − �min

�
⋅

���x̃
(t) − x(t)

���∞

≤

4�

�
ndmaxd

−1
min

⋅

�
1 − �min

��
1 −

�
1 − �min

�t+1�

�min

,

(17)‖‖‖x
(t) − z∗

‖‖‖∞ ≤
(1 − �min)

t

�min

.

(18)z∗ − x(t) =

∞∑

j=t

(
(I −�)P∗

)j
�s −

(
(I −�)P∗

)t
s.

‖‖‖x
(t) − z∗

‖‖‖∞ ≤ max

{‖‖‖‖‖‖

∞∑

j=t

(
(I −�)P∗

)j
�s

‖‖‖‖‖‖∞
,
‖‖‖
(
(I −�)P∗

)t
s
‖‖‖∞

}

≤

∞∑

j=t

(1 − �min)
j =

(1 − �min)
t

�min

,
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Theorem 5 (Approximation Error) For every t ≥ 0,

In the sequel, this approximate iteration algorithm is referred to as aPPrOx. It 
should be mentioned that Theorem 5 provides only a rough upper bound. The exper-
iments in Sect. 6.3 show that aPPrOx works well in practice, leading to very accurate 
results for real networks.

6  Experiments on real networks

In this section, we conduct extensive experiments on real-world social networks to 
evaluate the performance of the algorithm aPPrOx.

6.1  Setup

Machine Configuration and Reproducibility. Our extensive experiments run on 
a Linux box with 16-core 3.00GHz Intel Xeon E5-2690 CPU and 64GB of main 
memory. All algorithms are programmed in Julia v1.3.1. The source code is pub-
licly available at https:// github. com/ HODyn amic/ HODyn amic.

Datasets. We test the algorithm on a large set of realistic networks, all of which 
are collected from the Koblenz Network Collection  (Kunegis 2013) and Network 
Repository (Rossi and Ahmed 2015). For those networks that are disconnected orig-
inally, we perform experiments on their largest connected components. The statistics 
of these networks are summarized in the first three columns of Table 1, where we 
use n′ and m′ to denote, respectively, the numbers of nodes and edges in their larg-
est connected components. The smallest network consists of 4, 991 nodes, while the 
largest network has more than one million nodes. In Table 1, the networks are listed 
in an increasing order of the number of nodes in their largest connected components.

Input Generation. For each dataset, we use the network structure to generate the 
input parameters in the following way. The innate opinions are generated according 
to three different distributions, that is, uniform distribution, exponential distribution, 
and power-law distribution, where the latter two are generated by the randht.py file 
in  (Clauset et  al. 2009). For the uniform distribution, we generated the opinion si 
of node i at random in the range of [0, 1]. For the exponential distribution, we use 
the probability density exmine−x to generate n′ positive real numbers x with minimum 
value xmin > 0 . Then, we normalize these n′ numbers to be within the range [0, 1] by 
dividing each x with the maximum observed value. Similarly, for the power-law dis-
tribution, we choose the probability density (� − 1)x�−1

min
x−� with � = 2.5 to generate 

n′ positive real numbers, and then normalize them to be within the interval [0, 1] as 
the innate opinions. In practice, we set xmin = 1 for both the exponential and power-
law distribution. We note that there is always a node with innate opinion 1 due to the 

���x̃
(t) − z∗

���∞ ≤

4�
√
n ⋅

�
1 − �min

��
1 −

�
1 − �min

�t�
+ (1 − �min)

t

�min

.

https://github.com/HODynamic/HODynamic
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normalization operation for the latter two distributions. We generate the resistance 
parameters uniformly to be within the interval (0, 1).

6.2  Comparison between standard FJ model and second‑order FJ model

To show the impact of higher-order interactions on the opinion dynamics, we com-
pare the equilibrium expressed opinions between the second-order FJ model and the 
standard FJ model on four real networks: PagesTVshow, PagesCompany, Gplus, and 
GemsecRO. For both models, we generate innate opinions and resistance parameters 
for each node according to the uniform distribution. We set �1 = 1, �2 = 0 for the 
standard FJ model, and �1 = 0, �2 = 1 for the second-order FJ model.

Figure 2 illustrates the distribution for the difference of the final expressed opin-
ions for each node between the classic and second-order FJ models on four consid-
ered real networks. It can be observed that for each of these four networks, there are 
more than half nodes, for which the difference of expressed opinions between the 
two models is larger than 0.01. Particularly, there are over 10% agents, for which 

Table 1  Statistics of real networks used in experiments and comparison of running time (seconds, s) 
between Exact and aPPrOx for three innate opinion distributions (uniform distribution, exponential dis-
tribution, and power-law distribution)

Running time (s) for Exact and aPPrOx algorithms

Network n
′

m
′ Uniform distribu-

tion
Exponential distri-
bution

Power-law distri-
bution

Exact aPPrOx Exact aPPrOx Exact aPPrOx

HamstersterFriends 1788 12476 0.174 0.974 0.158 0.876 0.176 0.866
HamstersterFull 2000 16098 0.303 1.540 0.316 1.568 0.317 1.547
PagesTVshow 3892 17239 1.204 1.530 1.126 1.367 1.083 1.367
Facebook (NIPS) 4039 88234 1.492 6.274 1.473 6.331 1.556 6.243
PagesGovernment 7057 89429 5.857 7.679 5.682 7.316 5.682 7.353
Anybeat 12645 49132 31.448 4.730 31.843 5.462 31.575 4.739
PagesCompany 14113 52126 39.348 4.269 37.690 3.905 37.477 3.877
Gplus 23613 39182 163.525 4.329 171.166 4.295 165.470 4.307
GemsecRO 41773 125826 885.069 15.758 888.009 15.519 873.696 16.079
GemsecHU 47538 222887 946.399 28.592 937.540 30.562 919.438 29.174
PagesArtist 50515 819090 1160.469 139.565 1183.787 138.507 1167.293 148.941
Brightkite 56739 212945 1913.246 27.351 1901.307 29.203 1895.432 28.361
Livemocha* 104103 2193083 – 538.730 – 542.467 – 542.708
Douban* 154908 327162 – 44.166 – 43.292 – 43.350
Gowalla* 196591 950327 – 138.222 – 142.690 – 143.669
TwitterFollows* 404719 713319 – 96.850 – 97.319 – 96.748
Delicious* 536108 1365961 – 209.371 – 206.960 – 206.739
YoutubeSnap* 1134890 2987624 – 663.090 – 667.921 – 667.770
Hyves* 1402673 2777419 – 648.906 – 633.172 – 636.219
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the difference of equilibrium opinions is greater than 0.1. This possibly makes them 
stand on the opposite sides for different models. Thus, the opinion dynamics for the 
second-order FJ model differs largely from the classic FJ model, indicating that the 
effects of higher-order interactions are not negligible.

6.3  Performance evaluation

To evaluate the performance of the new algorithm aPPrOx, we implement it on 
various real networks and compare the running time and accuracy of aPPrOx with 
those corresponding to the standard Exact algorithm. For the Exact, it computes 
the equilibrium vector by calculating the random-walk matrix polynomials via 
matrix multiplication and directly inverting the matrix I − (I −�)P∗ . Here, we use 
the second-order random-walk matrix polynomial to simulate the opinion dynam-
ics with �1 = �2 = 0.5 . For aPPrOx, we set the number M of samples as 10 × T × m 
and approximate the equilibrium vector with 100 iterations. By using the maximum 
iterations as the stopping criterion, we can avoid the numeric errors and instabil-
ity caused by other stopping criteria and thus make the efficiency comparison more 
stable. To objectively evaluate the running time, we enforce the program to run on a 
single thread for both Exact and aPPrOx on all considered networks, except the last 
seven marked with asterisks, for which we cannot run Exact due to the very high 
cost for space and time.

Efficiency. We present the running time of algorithms aPPrOx and Exact for all 
networks in Table  1. For the last seven networks, we only run algorithm aPPrOx 
since Exact would take extremely long time. For each of the three innate opinion 
distributions in different networks, we record the running time of aPPrOx and Exact. 
From Table 1, we observe that for small networks with less than 10,000 nodes, the 
running time of aPPrOx is a little longer than that of Exact. Thus, aPPrOx shows 
no superiority for small networks. However, for those networks having more than 
twenty thousand nodes, aPPrOx significantly improves the computation efficiency 
compared with Exact. For example, for the moderately large network Gemse-
cRO with 41,773 nodes, aPPrOx is 60× faster than Exact. Finally, for large graphs 

Fig. 2  Distribution for differ-
ence of equilibrium expressed 
opinions between the standard 
FJ model and the second-order 
FJ model on four real networks
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aPPrOx shows a very obvious efficiency advantage. Table 1 indicates that for those 
networks with over 100 thousand nodes, aPPrOx completes running within 12 min-
utes, whereas Exact fails to run. We note that for large networks, the running time 
of aPPrOx grows nearly linearly with respect to m′ , consistent with the above com-
plexity analysis, while the running time of Exact grows as a cube power of n′.

Accuracy. In addition to the high efficiency, the new algorithm aPPrOx provides 
a good approximation for the equilibrium opinion z∗ = (z∗

1
, z∗

2
,… , z∗

n
)⊤ in practice. 

To show this, we compare the approximate results of aPPrOx for second-order FJ 
model with exact results obtained by Exact, for all the examined networks shown in 
Table 1, except the last seven which are too big for Exact to handle. For each of the 
three distributions of the innate opinions, Table 2 reports the mean absolute error 
� =

∑n�

i=1
�z∗

i
− z̃

∗
i
�∕n� , where z̃∗ = (z̃∗

1
, z̃∗

2
,… , z̃∗

n
)⊤ is the estimated vector obtained 

by aPPrOx. From Table  2, we observe that the actual mean absolute errors � are 
all less than 0.008, thus ignorable. Furthermore, for all networks we tested, the 
mean absolute errors � are smaller than the theoretical ones provided by Theorem 5. 
Therefore, the new algorithm aPPrOx provides a very desirable approximation for 
the equilibrium opinion vector in applications.

6.4  Parameter analysis

We finally discuss how the parameters affect the performance and efficiency of 
aPPrOx. We report all the parameter analyses on four networks, namely Hamster-
sterFriends, HamstersterFull, PagesTVshow, and Facebook (NIPS). All experi-
ments here are performed for the second-order FJ opinion dynamics model with 
�1 = �2 = 0.5.

The number of non-zeros M. As shown in Sect.  5.1, M = O(Tm�−2 log n) is 
required to guarantee the approximation error in theory. We first explore how 
the number of non-zeros influences the performance of the algorithm aPPrOx in 

Table 2  Mean absolute error 
( ×10−3 ) for estimated expressed 
opinions of the second-order 
FJ model with respect to three 
innate opinion distributions

Network Uniform Exponential Power-law

HamstersterFriends 3.718 1.738 0.123
HamstersterFull 3.134 1.315 0.311
PagesTVshow 4.552 1.553 0.226
Facebook (NIPS) 1.967 0.689 0.125
PagesGovernment 2.622 0.885 0.047
Anybeat 5.896 2.504 0.019
PagesCompany 4.788 1.575 0.137
Gplus 7.152 1.638 0.071
GemsecRO 4.787 1.165 0.048
GemsecHU 3.611 0.960 0.031
PagesArtist 2.746 0.669 0.113
Brightkite 5.717 1.756 0.057
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implementation. Without loss of generality, we empirically set M to be k × T × m , 
with k being 1,  10,  100,  200,  500,  1000 and 2000, respectively. In Fig.  3, we 
report the mean absolute error of aPPrOx, which drops as we increase the num-
ber of samples M. This is because matrix P∗ is approximated more accurately for 
larger M. On the other hand, although increasing M may have a positive influence 
on the accuracy of aPPrOx, this marginal benefit diminishes gradually. Figure 3 
shows that M = 10 × T × m is in fact a desirable choice, which balances the trade-
off between the effectiveness and efficiency of aPPrOx.

The number of iterations on small networks. In Sect.  5.2, we present an 
approximation convergence for the iteration method aPPrOx, with the accuracy of 
aPPrOx depending on the number of iterations. In Fig. 4, we plot the mean abso-
lute error of aPPrOx as a function of the number of iterations. In all experiments, 
M is set to be 10 × T × m . As demonstrated in Fig. 4, the second-order FJ model 
converges in several iterations for all the four networks tested.

The number of iterations on large networks. We also analyze the influence 
of the number of iterations on large networks. Since we cannot run Exact for 
these four large networks, we instead use the mean absolute error between two 

Fig. 3  Mean absolute error v.s. 
the number of non-zeros M 

Fig. 4  Mean absolute error v.s. 
the number of iterations
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iterations in aPPrOx as an indicator for convergence in Fig. 5. In all experiments, 
M is set to be 10 × T × m . As demonstrated in Fig. 5, the second-order FJ model 
converges in dozens of iterations for all the four networks tested. Therefore, 
one hundred iterations are enough to obtain desirable approximation results for 
networks with millions of nodes. For all the experiments shown in Table 1, the 
difference between opinion vectors of two consecutive iterations for the second-
order FJ model is insignificant after dozens of iterations.

7  Conclusion

In this paper, we presented a significant extension of the classic Friedkin-Johnsen 
(FJ) model by considering not only nearest-neighbor interactions, but also long-
range interactions via leveraging higher-order random walks. We showed that the 
proposed model has a unique equilibrium expressed opinion vector, provided that 
each individual holds an innate opinion. We also demonstrated that the resultant 
expressed opinion vector of the new model may be significantly different from that 
of the FJ model, indicating the important impact of higher-order interactions on 
opinion dynamics.

The expressed opinion vector of the new model can be considered as an expressed 
opinion vector of the FJ model in a dense graph with a loop at every node, whose 
transition matrix is a convex combination of powers of the transition matrix for the 
original graph. However, direct computation of the transition matrix for the dense 
graph is computationally expensive, which involves multiple matrix multiplication 
and inversion operations. As a remedy, we leveraged the state-of-the-art Laplacian 
sparsification technique and the nearly linear-time algorithm in Cheng et al. (2015) 
to obtain a sparse matrix, which is spectrally similar to the original dense matrix 
thereby preserving all basic information. Based on the obtained sparse matrix, 
we further proposed a convergent iteration algorithm, which approximates the 
equilibrium opinion vector in linear space and time. We finally conducted extensive 

Fig. 5  Mean absolute error 
between two iterations v.s. the 
number of iterations
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experiments on diverse social networks, which demonstrate that the new algorithm 
achieves both good efficiency and effectiveness.

It should be mentioned that in this paper, we only focus on the impacts of higher-
order interactions on the sum of expressed opinions. Actually, in addition to the 
opinion sum, there are many other related quantities for opinion dynamics, includ-
ing convergence rate, polarization Dandekar et  al. (2013); Matakos et  al. (2017); 
Musco et  al. (2018), disagreement Musco et  al. (2018); Zhu et  al. (2021), and so 
on. It is expected that higher-order interactions have also important influences on 
these important quantities. Although these subjects are beyond our paper, below we 
provide a heuristic explanation for the reason of higher-order interactions affecting 
polarization. As shown in Theorem 3, the vector of expressed opinions is determined 
simultaneously by three factors: the innate opinion si and resistance parameter �i of 
every agent i, as well as the higher-order interaction encoded in matrix P∗ . Thus, 
higher-order interactions play a significant role in opinion polarization, since this 
quantity is also simultaneously affected by these three factors Musco et al. (2018). 
Finally, it is worth emphasizing that although our model incorporates higher-order 
interactions and thus generates an opinion vector different from that of the classic 
FJ model, it is difficult to judge which opinion vector is superior or more compel-
ling. In fact, these two models are not mutually exclusive. The choice of the models 
depends on the specific aim of applications, such as minimizing polarization Musco 
et  al. (2018), disagreement Zhu et  al. (2021), or conflict Zhu and Zhang (2022); 
Wang and Kleinberg (2023).
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