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Abstract
We introduce the Hadamard decomposition problem in the context of data analysis. 
The problem is to represent exactly or approximately a given matrix as the Had-
amard (or element-wise) product of two or more low-rank matrices. The motivation 
for this problem comes from situations where the input matrix has a multiplicative 
structure. The Hadamard decomposition has potential for giving more succint but 
equally accurate representations of matrices when compared with the gold-standard 
of singular value decomposition (svd). Namely, the Hadamard product of two rank-h 
matrices can have rank as high as h2 . We study the computational properties of the 
Hadamard decomposition problem and give gradient-based algorithms for solving it 
approximately. We also introduce a mixed model that combines svd and Hadamard 
decomposition. We present extensive empirical results comparing the approxima-
tion accuracy of the Hadamard decomposition with that of the svd using the same 
number of basis vectors. The results demonstrate that the Hadamard decomposition 
is competitive with the svd and, for some datasets, it yields a clearly higher approxi-
mation accuracy, indicating the presence of multiplicative structure in the data.
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1 Introduction

Matrix decomposition (or matrix factorization) methods aim to obtain simpler or 
more succinct exact or approximate representations of an input matrix.1 There are 
many different decomposition methods, and most of them aim at representing an 
input matrix D ∈ ℝ

n×m as the matrix product of two or more matrices which are in 
some sense simpler than the matrix D.

For example, the singular value decomposition (svd), a frequently-used decompo-
sition method, represents the input matrix as D = U�V

T , a product of an orthonor-
mal matrix, a diagonal matrix, and (the transpose of) another orthonormal matrix.2 
There are many other decomposition methods of the same type (Bernstein 2018; Bro 
and Smilde 2014; Gillis 2020).

An alternative interpretation of svd is that it provides a way of representing the 
matrix D as the sum of simpler building-block matrices. For svd, the simpler build-
ing blocks are rank-1 matrices, i.e., matrices defined as the outer product of row 
and column vectors. If D has rank r , then the representation of D as a sum of rank-1 
matrices has r terms. If the k < r terms corresponding to the largest diagonal values 
in � are used to represent D , a rank-k approximate representation of D is obtained, 
which in fact is the optimal rank-k approximation of D with respect to Frobenius 
norm (Golub and Van Loan 2013).

In this paper, we consider a more complex type of matrix decomposition, which 
relies on the Hadamard matrix product to introduce a multiplicative layer. The Had-
amard (or element-wise) matrix product D1 ⊙ D2 of two matrices D1 and D2 of the 
same dimensions has a very simple definition: each entry in D1 ⊙ D2 is the product 
of the corresponding entries in D1 and D2.

The main question considered in this paper is the following.

1.1  Problem (informal)

Given a matrix D , find a good representation of D as the Hadamard product D1 ⊙ D2 
of two low-rank matrices D1 and D2.

The decomposition D = D1 ⊙ D2 is referred to as Hadamard decomposition.
Note that taking logarithms, when possible, would change the Hadamard product 

to an element-wise sum, but it would also destroy the low-rank property of the argu-
ments D1 and D2 , as log(D1) can have an arbitrarily high rank even if D1 has low 
rank.

1.2  Intuition behind the Hadamard decomposition model

We next describe the basic intuition behind the proposed model: why are we inter-
ested in Hadamard decompositions and decompositions to low-rank matrices?

1 We work with real-valued matrices, unless otherwise indicated.
2 In the svd representation D = U�V

T we can assume that the matrices U , � , V have dimensions n × r , 
r × r , and r × m , respectively, for an input matrix D of dimensions n × m.
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First, why Hadamard decompositions? The answer is that many natural phenom-
ena are multiplicative or conjunctive in nature. In medicine, the theme of additive 
and multiplicative risks has been discussed quite intensively (Breslow et al. 1983; Qi 
et al. 2009; Lee 2001). Similarly, in genetics, genotypes and environment may inter-
act multiplicatively (Roberto Cruz 1992).

For a more detailed example, in ecology and paleontology, the suitability of a 
location for a particular species typically depends on several factors (Thompson 
1999; Thompson et al. 2018). To give a very simplified example, a species can live 
in a certain area if the temperature is high enough and if there is enough water avail-
able. Note that this condition is conjunctive in nature, and thus, corresponds to mul-
tiplication of 0–1 variables.

More concretely, consider  a paleontological dataset (Fortelius et al. 2006; Forte-
lius 2008) where the rows correspond to locations in which fossils have been found, 
and the columns correspond to taxa (in this case, genera of land mammals). The 
data is binary, with the 1’s corresponding to occurrences of the genus in that loca-
tion. The data is not perfect, and especially a 0-entry is not a strong indication of the 
nonexistence of the genus.

For such a dataset it is quite natural to search for a decomposition of the occur-
rences of genera, i.e., for the entries equal to 1, by a multiplicative model. The fas-
cinating paleontological question is then to search for an ecological interpretation of 
the factors in the multiplicative model. The study of the ecological interpretation of 
the retrieved multiplicative factors is beyond the scope of this paper.

Given the prevalence of multiplicative phenomena in the real world, it is not sur-
prising that multiplicative models are widely employed across various domains of 
data analysis, including regression, time series and network analysis (Cox 1984; 
Ursu and Duchesne 2009; Hoff 2021). Nonetheless, prior to this work, the potential 
for data analysis of a matrix decomposition model based on element-wise multipli-
cation has not been thoroughly explored.

Finally, one can ask the question of why restricting the Hadamard decomposition 
to low-rank matrices? The first answer is that low rank is an indication of simplicity: 
low-rank matrices are easier to interpret than general matrices. Also, the insightful 
paper of Udell and Townsend (Udell and Townsend 2019) argues that datasets stem-
ming from simple generative models have low rank.

1.3  Hadamard decomposition and singular value decomposition

Assume that the matrix D has dimensions n × m and the matrices D1 and D2 (with 
the same dimensions) have rank h.3 Then, we can write D1 = A1B1 and D2 = A2B2 
for matrices Ai with dimensions n × h and Bi with dimensions h × m , for i = 1, 2.

The Hadamard decomposition of D into the rank-h matrices D1 and D2 , if it 
exists, can be written as a Hadamard product of two sums of inner products:

3 We always assume an input matrix D of dimensions n × m , unless otherwise indicated.
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Since D1 and D2 have rank h , their Hadamard product has rank at most h2 , as can be 
easily shown from Eq. (1) by using the distributive law. Namely, we have:

and this is a sum of h2 terms. Furthermore, this bound is tight, as can be seen, e.g., 
from the example in Fig. 1, which shows how to represent the rank-9 identity matrix 
as the Hadamard product of two rank-3 matrices.

The above observation implies that there are cases where the Hadamard 
decomposition is more efficient than svd: using two rank-h matrices, the Had-
amard decomposition can represent matrices of rank h2 , while the svd with the 
same number of vectors (or parameters) can represent exactly only matrices up to 
rank 2h.

An example of the advantages given by the Hadamard decomposition over the svd 
is provided in Fig. 1. We consider the expressive power of the Hadamard decompo-
sition by looking at identity matrices. Figure 1 (top) shows how we can represent the 
9 × 9 identity matrix as the Hadamard decomposition of two rank-3 matrices, i.e., 
with 6 vectors of length 9. If instead we use the svd with the same number of vec-
tors, we get the result shown in Fig. 1 (bottom), suggesting that we cannot represent 
the 9 × 9 identity matrix.

We turn to real data. For instance, for the task of image compression, the Had-
amard decomposition leads to a more accurate reconstruction of an input image, 
compared to the svd using the same number of parameters for reconstruction. Such 
an example for image compression is shown in Fig. 2.

(1)Di,j = D1i,j
D2i,j

=

(
h∑

u=1

A1i,u
B1u,j

)(
h∑

u=1

A2i,u
B2u,j

)
.

(2)Di,j =

h∑

u=1

h∑

v=1

A1i,u
B1u,j

A2i,v
B2v,j

=

h∑

u=1

h∑

v=1

(A1i,u
A2i,v

)(B1u,j
B2v,j

),

Fig. 1  Example: Hadamard decomposition and svd of the identity matrix. Top: the identity matrix repre-
sented as a Hadamard product of two rank-3 matrices. Bottom: the identity matrix represented via rank-6 
svd. Black squares represent 1-entries. The Hadamard decomposition uses two sets of 6 basis vectors to 
reconstruct the identity matrix with no error, whereas the svd with the same number of basis vectors can-
not reconstruct the identity matrix exactly
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While the Hadamard decomposition can be more efficient than the svd, the svd 
can represent all matrices of rank 2h as the sum of two rank-h matrices. On the other 
hand, an arbitrary matrix of rank h2 matrix does not necessarily have a representa-
tion as the Hadamard product of two rank-h matrices. This can be seen from a sim-
ple dimensionality argument. Consider a matrix D of dimensions h2 × h2 and rank 
h2 . The Hadamard decomposition D = D1 ⊙ D2 , where D1 and D2 are rank-h fac-
tors, encodes a system of nonlinear equations where the entries of D are viewed as 
constants and the entries of D1 and D2 are viewed as variables. This system includes 
h2h2 = h4 equations (one per entry of D ) and, because of the low-rank constraint on 
the two Hadamard factors D1 and D2 , only (h2h + hh2) = 2h3 variables. Thus, for 
h > 2 , there are more equations than variables. Intuitively, this implies that all the 
equations will be simultaneously satisfied only in special cases. For instance, one 
can show that if the matrix D includes a row or a column with all but a single entry 
being 0, then not all the equations in the system under consideration can be satisfied.

As a consequence, we do not pursue the goal of retrieving an exact Hadamard 
decomposition. Rather, we seek to find a Hadamard decomposition that offers a 
good approximation of the input matrix.

1.4  (Non)uniqueness

It is obvious that the above problem does not have a unique answer: if D1 ⊙ D2 is 
a good representation of D , then for any nonzero scalar c also (cD1)⊙ (1∕c)D2 is 
another representation of D with the same accuracy. There are other sources of non-
uniqueness in the Hadamard decomposition. While some of them are trivial (e.g., 
reordering the factors), as we show in Sect. 6, even for simple matrices, there can be 
several clearly different Hadamard decompositions.

1.5  Algorithms

The algorithmic problem of finding a Hadamard decomposition is easy to formu-
late as a multivariate optimization problem: given D , find matrices A1 , B1 , A2 and 

Fig. 2  Example: Hadamard decomposition and svd in the task of image compression. Both the Had-
amard decomposition and the svd use 20 basis vectors for compression. Although the Hadamard decom-
position and the svd rely on the same total number of vectors to represent the input image, the recon-
struction provided by the Hadamard decomposition is of higher quality. In particular, the Hadamard 
decomposition incurs a total sum of squared errors lower than the svd by 43%
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B2 minimizing some norm of D − ((A1B1)⊙ (A2B2)) . However, finding a combi-
natorial algorithm for this problem is challenging. Instead, we use gradient-descent 
methods (Ruder 2016), which are effective for our purposes. More specifically, we 
devise alternating gradient-descent algorithms that, in practice, exhibit good conver-
gence properties and find a Hadamard decomposition which can outperform the svd 
when the goal is to represent the input matrix D as concisely as possible.

1.6  Contributions

The contributions of this paper are as follows.

• We introduce a novel matrix decomposition problem based on the Hadamard 
product of low-rank factors.

• We analyze the Hadamard decomposition model, its relationship with the singu-
lar value decomposition, and its uniqueness properties.

• We also investigate a mixed Hadamard decomposition model that combines the 
svd and the Hadamard decomposition.

• We give simple gradient-descent algorithms for computing the Hadamard 
decomposition and the mixed Hadamard decomposition.

• We describe extensive experiments in synthetic and real-world data to investigate 
the performance of the Hadamard decomposition.

1.7  Structure of the paper

The rest of this paper is organized as follows. In Sect.  2 we describe the related 
work, and in Sect. 3 we introduce the necessary notation and some basic concepts. 
In Sect. 4 we present the Hadamard decomposition model and give a more formal 
definition of the Hadamard decomposition problem. Section 5 presents the mixed 
Hadamard decomposition model which combines Hadamard decomposition and 
svd. The issue of (non)uniqueness of the Hadamard decomposition is considered 
in Sect. 6, while Sect. 7 describes the algorithms for computing the (mixed) Had-
amard decomposition. Section 8 presents our thorough experimental evaluation, and 
finally, Sect. 9 presents our conclusions.

2  Related work

There is an extensive body of literature on matrix decomposition techniques.
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2.1  Singular value decomposition

As discussed in Sect.  1, the singular value decomposition (svd) (Klema and Laub 
1980) is a very widely used matrix decomposition method. The rank-k svd enjoys a 
desirable property that plays an important role in numerous applications: it provides 
the best possible approximation of D among all matrices of rank k in terms of (squared) 
Frobenius and spectral norm of the approximation error (the Eckart-Young-Mirsky 
theorem (Stewart 1993)). The svd, which is formally defined in Sect. 3, is used as a 
point of comparison when investigating the approximation accuracy of the Hadamard 
decompositon.

2.2  Other matrix decomposition techniques

Besides svd, any n × m matrix D of rank r admits other decompositions of the form 
XY , with X ∈ ℝ

n×r and Y ∈ ℝ
r×m (Banerjee and Roy 2014). There are several related 

decomposition methods posing different conditions for the matrices X and Y . Exam-
ples include the QR, Cholesky, and LU decompositions; see, e.g., Bernstein (2018) for 
many additional references.

The svd is supported by good theoretical properties and finds application in many 
different contexts. However, it has its drawbacks: for instance, given a non-negative 
input matrix, the svd may yield negative values, which can be difficult to interpret. 
To address this drawback, methods for non-negative matrix factorization (nmf) (Gil-
lis 2020) have been widely studied. Similarly, Boolean matrix decomposition looks for 
factors with Boolean values and using the Boolean operators ‘or’ and ‘and’ (see, e.g., 
DeSantis et al. 2022; Miettinen et al. 2008; Miettinen and Vreeken 2014). There have 
also been studies in matrix decomposition from the probabilistic point of view (Mnih 
and Salakhutdinov 2007; Salakhutdinov and Mnih 2008). More recently, deep matrix 
factorization has attracted attention (De Handschutter et al. 2021). In deep matrix fac-
torization, the input matrix is decomposed into the product of multiple factors.

2.3  Non‑standard matrix products

In addition to the standard matrix product, alternative product operators for matrices 
have been studied. Van Loan and Pitsianis (1993) investigate the problem of approxi-
mating an input matrix as the Kronecker product of two matrices. While the Hadamard 
product and the Kronecker product are related, the problem studied by Van Loan and 
Pitsianis (1993) admits a closed-form solution in terms of the svd of the input matrix, 
whereas the problem we study does not admit a similar closed-form solution.

2.4  Hadamard product and decompositions

While the Hadamard product is a non-conventional operator in linear algebra, its 
fundamental properties have been thoroughly investigated (Horn 1990; Visick 2000; 
Horn and Yang 2020).
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Furthermore, several recent works leverage the Hadamard product. In the field of 
deep learning, it has been used to improve performance in a computer-vision task 
(Kim et al. 2016) and to improve convolutional neural networks (Wu 2018).

The Hadamard product is also relevant in multivariate statistics (Styan 1973), for 
example for probabilistic models such as restricted Boltzmann machines (Montúfar 
2018) and in the context of regression, where Hoff (2017) considers parametriza-
tions based on the Hadamard product, and shows that such parametrizations can be 
used to express Lq penalties, with q ≤ 1 , as sums of L2 penalties.

In signal processing, Yang et al. (2019) introduce a smoothed covariance matrix 
defined as a Hadamard product of two matrices.

To address the task of image dehazing, Liu et al. (2020) develop a novel method 
which is based on the Hadamard product of matrices of pixels.

In 2021, a factorization analogous to the one considered in our work has been 
explored in connection with federated learning (Hyeon-Woo et al. 2021), where it is 
used as a reparametrization for neural network architectures with the aim of reduc-
ing the communication cost in federated learning. The similarities with our work are 
limited to the basic expression of the Hadamard-product-based decomposition.

In the algebraic geometry literature, Friedenberg et  al. (2017) study Hadamard 
products of algebraic varieties and introduce a notion of Hadamard decomposition 
that is equivalent to the definition of Hadamard decomposition adopted in our work. 
The similarities between our paper and the work of Fiedenberg et  al. are limited 
to the basic formulation of the Hadamard decomposition model. Further, while we 
focus on the decomposition with two Hadamard factors, they focus on the decom-
position with any number of Hadamard factors and they prove insightful bounds on 
the minimum number of Hadamard factors needed to reconstruct all n × m matrices 
using Hadamard factors of rank up to h.

Finally, in 2023, Oneto and Vannieuwenhoven (2023) study, from the point of 
view of algebraic geometry, the Hadamard-Hitchcock decomposition, which decom-
poses a tensor as a Hadamard product of several tensor rank decompositions. They 
establish generic identifiability for the Hadamard-Hitchcock decomposition and 
propose an algorithm to compute it. The identifiability of the Hadamard-Hitch-
cock decomposition hinges upon classic results on the identifiability of tensor rank 
decompositions, which do not transfer to the setting studied in this work. Nonethe-
less, the techniques and methods of Oneto and Vannieuwenhoven (2023) might be 
useful in addressing one of our main questions left open: understanding the forms of 
nonuniqueness in Hadamard decompositions.

2.5  Alternating gradient descent for matrix decomposition

The algorithms we propose to compute Hadamard decompositions are based on 
alternating gradient descent. Such technique has been widely used for matrix 
decomposition and recently convergence of alternating gradient descent for standard 
matrix decompositions D = XY has been studied (Li and Liang 2017; Ye and Du 
2021). To improve the performance of the proposed gradient-descent algorithms, we 
also leverage a scaling factor proposed in recent work (Tong et al. 2021).
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3  Preliminaries

Before we introduce the main ideas behind the proposed methods, we introduce the 
notation and preliminary notions that are used throughout the paper.

3.1  Notation and basic definitions

Matrices are denoted by upper-case boldface letters, e.g., D . The Frobenius norm of 
a matrix is denoted by ‖D‖F . The i-th row and j-th column of a matrix D are denoted 
by Di,∶ and D∶,j , respectively. Other vectors are denoted by lower-case boldface let-
ters, e.g., u . Finally, sets are denoted by upper-case roman letters, and scalars by 
lower-case roman letters.

Given two matrices A and B of dimensions n × p and p × m , respectively, their 
standard matrix product is a matrix P = AB of dimensions n × m where Pi,j is 
obtained as the dot product between the i-th row of A and j-th column of B.

Furthermore, given two matrices D1 and D2 both of dimensions n × m , we define 
their Hadamard (or element-wise) product as the matrix D = D1 ⊙ D2 of dimensions 
n × m , where entry Di,j is obtained as the (scalar) product [D1]i,j[D2]i,j.

We next state the simple bounds on the rank of a Hadamard product and on 
expressing a low-rank matrix as a Hadamard product.

Proposition 1 (See, e.g., Styan 1973; Horn 1990.) If D1 and D2 are rank-h matrices, 
then their Hadamard product D1 ⊙ D2 has rank at most h2 . On the other hand, if D 
is a rank-h matrix, then D can be represented as a Hadamard product of a rank-h 
matrix and a rank-1 matrix.

The first part follows immediately from Eq. 2. The second part follows since any 
D can be represented as a Hadamard product D⊙ 1 , where 1 is the identity matrix 
with respect to the Hadamard product, i.e., the matrix whose entries are all 1.

3.2  Singular value decomposition

The svd decomposes a matrix D ∈ ℝ
n×m of rank r ≤ min{m, n} into three matrices: 

D = U�V
T . Here, U is an orthonormal matrix whose columns ui are the so-called 

left singular vectors, � is a diagonal matrix whose diagonal entries are the singular 
values �i (conventionally assumed to be in non-increasing order) and V is an ortho-
normal matrix whose columns vi are the so-called right singular vectors. Alterna-
tively, the svd can be expressed as a sum of rank-1 matrices, as follows:

The truncated svd of rank k < r (or simply rank-k svd) is obtained by setting to 0 all 
but the highest k singular values (i.e., diagonal entries) in � . Hence, the truncated 

(3)D =

r∑

i=1

�iuiv
T
i
.
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svd of rank k represents D concisely using two sets of k singular vectors (scaled by 
singular values), and provides a low-rank approximation of the matrix D.

3.3  Comparing Hadamard decomposition and SVD: the number of parameters

The number of parameters required by a Hadamard decomposition with two rank-h 
factors is 2(n + m)h . Similarly, the rank-k svd is specified by (n + m)k parameters, 
assuming that � is “absorbed” into U and V . Therefore, it is appropriate to compare 
the rank-2h svd and the Hadamard decomposition with two rank-h factors, which use 
the same number of parameters. Both the rank-2h svd and the Hadamard decomposi-
tion with two rank-h factors include 2h length-n basis vectors of the column space of 
D and 2h length-m basis vectors of the row space of D . Thus, throughout the paper, 
rather than counting the number of parameters, we measure the size of the represen-
tations by using the number of basis vectors for either the row or column space.

4  The Hadamard decomposition problem

In this section, we introduce the problem of Hadamard decomposition for data anal-
ysis. In this problem the objective is to decompose a given data matrix D into the 
Hadamard product of two low-rank matrices. Given matrix D ∈ ℝ

n×m , we consider 
the decomposition

(4)D = D1 ⊙ D2 = (A1B1)⊙ (A2B2),

Fig. 3  Diagram illustrating the Hadamard decomposition

Fig. 4  Example: Hadamard decomposition in the boolean PALEO dataset (Fortelius 2008). Black squares 
represent 1 entries. We show the (estimated) Hadamard factors D

1
 and D

2
 of rank 3 and the Hadamard 

product D , as well as the original dataset approximated with the Hadamard product of two low-rank fac-
tors. The entries of the three matrices are rounded to 0 and 1 using 0.5 as a cutoff
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where A1 ∈ ℝ
n×h1 , B1 ∈ ℝ

h1×m , A2 ∈ ℝ
n×h2 and B2 ∈ ℝ

h2×m . Unless stated other-
wise, we consider a balanced decomposition with h1 = h2 = h . Note that unlike in 
the svd, no orthogonality constraint is imposed in the problem definition.

A schematic illustration of the decomposition is given in Fig. 3, while Fig. 4 
shows an example of Hadamard decomposition in a real-world boolean dataset 
with h = 3 . The first low-rank factor exhibits blocks along both diagonals. The 
second low-rank factor instead has two large blocks along the main diagonal. 
Since the data are boolean, the Hadamard product corresponds to an element-
wise intersection (or logical and). As demonstrated in Sect. 8, for this dataset, an 
equally concise representation obtained via svd is clearly less accurate than the 
representation given in Fig. 4.

However, also the Hadamard decomposition in Fig. 4 only provides an approx-
imation to the input matrix D . In general, we are interested in the Hadamard 
decomposition that best approximates D . Thus, we frame the Hadamard decom-
position problem as an optimization problem.

Problem  1 (Hadamard decomposition). Given a matrix D ∈ ℝ
n×m of rank r , and 

given target ranks h1 and h2 , find matrices D̂1 and D̂2 with ranks at most h1 and h2 , 
respectively, so that Ĥ = D̂1 ⊙ D̂2 , while minimizing the approximation error:

Clearly, for sufficiently large values of h1 and h2 , it is always possible to obtain 
E(D, Ĥ) = 0 : we can have e.g. D̂1 = D and D̂2 = 1.

Proposition 1 states that if D̂1 and D̂2 have rank h1 and h2 , respectively, then the 
Hadamard product of D̂1 and D̂2 has rank at most h1h2 . However, there is no guar-
antee that an arbitrary matrix D of rank h1h2 admits an exact representation as 
Hadamard decomposition with two factors of rank h1 and h2 . Generally speaking, 
finding a globally optimal solution for any choice of h1 and h2 may not be feasible.

As mentioned in Sect. 2, for a fixed rank h , it is known that the svd offers the 
best possible approximation of D in terms of squared Frobenius norm. However, 
the model in Eq. (4) can offer a more accurate description of the input matrix D 
compared to the svd using the same number of basis vectors, since the rank of 
D̂1 ⊙ D̂2 can be larger than h . In particular, the Hadamard decomposition repre-
sents matrices of rank up to h1h2 using h1 + h2 basis vectors. When h1 = h2 = h , 
the Hadamard decomposition can represent exactly some matrices of rank h2 
using 2h basis vectors.

On the other hand, when using the same number of basis vectors, the svd repre-
sents with no error matrices of rank only up to 2h . Hence, the Hadamard decompo-
sition can represent matrices of larger rank than the svd using the same number of 
basis vectors whenever h2 > 2h , i.e., h > 2 . As a consequence, despite the optimal-
ity guarantee associated with the svd, the Hadamard decomposition can outperform 
the svd in the task of approximating a matrix D using the smallest possible amount 
of information.

(5)E(D, Ĥ) = ‖D − Ĥ‖2
F
.
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The experiments presented in Sect. 8 confirm that the representations provided by 
the Hadamard decomposition can achieve a more favorable trade-off between accu-
racy and conciseness compared to the representations provided by svd, particularly 
in cases where the potential Hadamard benefit, introduced shortly, is high.

4.1  Relative potential Hadamard benefit

Simple algebra shows that the the value of the error E(D, Ŝk) = ‖D − Ŝk‖2F incurred 
by the rank-k svd Ŝk in approximating a rank-r matrix D can be expressed as the sum 
of the squares of the singular values from index k + 1 onward: the error is 

∑r

i=k+1
�2
i
 . 

As stated above, the Hadamard decomposition with two rank-h factors can represent 
exactly some matrices of rank up to h2 . Thus, because of the optimality properties of 
the svd, in the best case, such Hadamard decomposition achieves the same approxi-
mation error as the rank-h2 svd, while using as many basis vectors as the rank-2h 
svd.

We define the relative potential Hadamard benefit �(D, h) for the Hadamard 
decomposition with two rank-h factors as:

As a simple example, consider the identity matrix of size 9 and let h = 3 . Then all 
singular values are equal to 1, and hence �(D, h) is 1/3. As the singular values are 
arranged in non-increasing order, constant singular values result in the maximum 
values of �(D, h).

The relative potential Hadamard benefit can be computed easily from the singular 
values of a matrix D . We show in Sect. 8 that it correlates well with the reduction 
in approximation error of the Hadamard decomposition over the svd for the same 
number of basis vectors. In Appendix A, we investigate in more detail the relation-
ship between the Hadamard decomposition and both the singular values and vectors 
of a matrix D.

The nonlinearity of the Hadamard product operator makes a thorough theoreti-
cal analysis of the Hadamard decomposition model quite challenging. Nonetheless, 
studying the relationship between the Hadamard decomposition and the svd pro-
vides valuable insights into the Hadamard decomposition model.

4.2  Generalization to multiple factors

We note that Eq. (4) can be extended to model more than two factors, as in: 
D =

⨀q

i=1
(AiBi) =

⨀q

i=1
Di.

Assuming the i-th Hadamard factor has rank hi , the q-factors model can repre-
sent matrices of rank up to h1 ⋯ hq using 2(h1 +⋯ + hq) basis vectors. Friedenberg 
et al. (2017) prove that the minimum number of Hadamard factors having rank up 
to h necessary to represent (without approximation error) any n × m matrix D is at 

�(D, h) =

∑h2

i=2h+1
�2
i∑r

i=1
�2
i

.
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least ⌈logh min(n,m)⌉ and at most ⌈min(n,m)∕(h − 1)⌉ . For simplicity, we henceforth 
restrict our attention to the two-factor case. A thorough analysis of the model with q 
factors is left to future work.

4.3  Complexity‑theoretic issues

We conclude this section by stating two simple observations regarding the com-
plexity-theoretic status of the Hadamard decomposition problem.

First, consider the variant of Problem 1 where we ask whether the input matrix 
has a Hadamard decomposition with zero error. This problem can be formulated 
as a question on the solvability of a set of polynomial equations, and hence it 
belongs to the complexity class existential theory of the reals (ETR) (Schaefer 
and Štefankovič 2017).

Second, consider the variant where we look at matrices with entries in {0, 1} 
over the Boolean semiring, where + is interpreted as disjunction and × as con-
junction. Then the existence of a 0-error Hadamard decomposition is trivially in 
NP: we just guess the decomposition and verify it.

5  Mixed Hadamard decomposition

A matrix may contain some structure that can be described efficiently by the Had-
amard decomposition and some structure for which the svd suits better.

As an artificial example, consider the matrix I′ obtained from the 9 × 9 identity 
matrix I by concatenating three additional columns with all entries equal to 1; see 
Fig. 5. In this case, the block of 1s in the last three columns of I′ can be modeled 
exactly by a rank-1 svd. On the other hand, the diagonal part of the matrix can be 
captured better by Hadamard decomposition, as we already saw in the example of 
Fig. 1.

We therefore study a mixed model, combining the svd with the Hadamard 
decomposition. Such a model, called mixed Hadamard decomposition, includes 
a Hadamard product structure while preserving the rank-t  svd, for some integer t  , 
and it is appropriate when a given matrix exhibits submatrices that are best mod-
eled by svd (i.e., as a sum of few rank-1 matrices) and other submatrices that are 

Fig. 5  Left: modified identity 
matrix with three additional col-
umns with all entries equal to 1. 
Right: first additive component 
computed by svd (after rounding 
all entries to 0 or 1 using the 
mean as threshold)
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best modeled by Hadamard decomposition (i.e., as an element-wise multiplica-
tion of two low-rank matrices).

The mixed Hadamard decomposition model builds upon the Hadamard decom-
position model D = (A1B1)⊙ (A2B2) to incorporate the rank-t  svd. Formally, the 
mixed Hadamard decomposition model is defined as follows:

where Ũt = U∶,∶t

√
�∶t,∶t , Ṽ

T

t
=
√
�∶t,∶tV

T
∶t,∶

 and 1 denotes the matrix (of suitable 
dimensions) whose entries are all 1.

Another way of describing the mixed Hadamard decomposition model is to say 
that it is obtained from the Hadamard decomposition model by constraining the first 
t columns of A1,A2,B

T
1
 and BT

2
 to match the scaled singular vectors of D (for A1 and 

B
T
1
 ) or to have all entries equal to 1 (for A2 and BT

2
).

A diagram illustrating the mixed Hadamard decomposition is given in Fig. 6.
Let h1 and h2 be the ranks of D′

1
 and D′

2
 , respectively. Then, the larger t is, 

the lower the upper bound on the rank of the Hadamard product D′
1
⊙ D

′
2
 . For 

t = h1 = h2 , the mixed Hadamard decomposition coincides with the svd, while for 
t = 0 , the mixed Hadamard decomposition coincides with the Hadamard decompo-
sition. By default, we consider t = 1 , as empirical evidence suggests that there is 
rarely any advantage in considering t ≥ 2.

6  Uniqueness and nonuniqueness

A fundamental question for any matrix decomposition approach is whether there is a 
unique decomposition.

For the case of Hadamard decomposition it is obvious that the decomposition is 
not unique since we have D1 ⊙ D2 = (𝛼D1)⊙ (1∕𝛼D2) for arbitrary nonzero � . This 
can be generalized to any rank-1 matrix X with nonzero entries. Denote by X⊙−1 the 
Hadamard (element-wise) inverse of the matrix X . Then if D = D1 ⊙ D2 , we also 
have D = (D1 ⊙ X)⊙ (X⊙−1 ⊙ D2) = D

∗
1
⊙ D

∗
2
 where D∗

1
 and D∗

2
 have the same rank 

as D1 and D2 , respectively.
We also have the trivial nonuniqueness from the commutativity of the Hadamard 

product: D = D1 ⊙ D2 = D2 ⊙ D1.
This type of “top-level” nonuniqueness aside, we also have a source for nonu-

niqueness in the second level of the representation: the decomposition D1 = AiBi 
of the factors of the Hadamard product is not necessarily unique (Piziak and Odell 

(6)D = D
�
1
⊙ D

�
2
=

(
[Ũt ;A1]

[
Ṽ

T

t

B1

])
⊙

(
[1 ;A2]

[
1
T

B2

])
,

Fig. 6  Diagram illustrating the proposed mixed Hadamard decomposition
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1999; Banerjee and Roy 2014). Intuitively, in the factorization Di = AiBi , the col-
umns of Ai form a basis for the column space of Di and Bi contains the coefficients 
that express each column of Di as a linear combination of the columns of Ai . There-
fore, for any basis of the column space of Di , we have a rank decomposition of the 
form Di = AiBi.

An example of nonuniqueness is illustrated in Fig. 7, where we can see that nonu-
niqueness is an issue even when considering boolean matrices. The three decompo-
sitions in Fig. 7 share a common factor. The factors that differ in the top and middle 
decompositions in Fig. 7 do not share the same number of 1s.

This observation suggests that introducing in the objective of Problem 1 a regu-
larization (or penalty) term in the form:

where Ĥ = D̂1 ⊙ D̂2 , may be an effective way to enforce uniqueness. Unfortunately, 
it is easy to show that such regularization terms are not sufficient for giving unique 
solutions. This can be seen by considering the top and bottom decompositions in 
Fig. 7 where all factors have the same number of 1s.

Other penalty terms could be used to reduce the degree of nonuniqueness. For 
instance, we could include a penalty to favour orthogonality of the Hadamard factors 
or even impose constraints to ensure that the Hadamard factors are orthogonal. On 
the one hand, solutions with orthogonal factors are not only more uniquely defined, 
but they are (at least sometimes) also more interpretable, since e.g. the columns of 
an Hadamard factor are uncorrelated among each other and each column tends to be 
more strongly associated with some columns of the input matrix. On the other hand, 

(7)‖D − Ĥ‖2
F
+ 𝜆1‖D̂1‖2F + 𝜆2‖D̂2‖2F,

Fig. 7  Example: lack of unique Hadamard decomposition. Three ways of decomposing the 9 × 9 identity 
matrix as a Hadamard product of two boolean matrices formed by matrix products with factors of dimen-
sions 9 × 3 and 3 × 9
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favoring or imposing orthogonality of the Hadamard factors does not guarantee 
uniqueness and often leads to higher approximation error E(D, Ĥ) , as we observed 
in preliminary experiments not reported in this paper. Thus, a more comprehensive 
examination of the orthogonality-constrained Hadamard decomposition is left to 
future work.

The example in Fig. 7 uses only boolean factors. Figure 8 gives an example of 
lack of uniqueness for real-valued factors. There is no obvious way of characterizing 
the nonuniqueness.

7  Algorithms for the Hadamard decomposition

In this section, we present our method for computing the Hadamard decomposition. 
Our approach relies on gradient-based optimization.

7.1  Gradient descent for the Hadamard decomposition

For computing the factors in Eq. (4), we give an alternating gradient-descent algo-
rithm where each factor X ∈ {A1,B1,A2,B2} is optimized in turn while fixing the 
other terms. The pseudo-code of the gradient-descent algorithm is given in Algo-
rithm 1. The matrices A1 B1 A2 and B2 are initialized using the svd of random matri-
ces; by default, we generate for initialization matrices with independent and identi-
cally distributed entries drawn from a uniform distribution in [0, 1].

In each iteration (or epoch), matrices A1 , B1 , A2 , and B2 are updated sequen-
tially by making a step towards the opposite direction of the gradient of 
E(D, Ĥ) = ‖(A1B1)⊙ (A2B2) − D)‖2

F
 , computed in matrix form (Petersen et  al. 

2008). For example, to update matrix A1 , we compute the gradient of the approxi-
mation error E(D, Ĥ) with respect to A1 . A straightforward application of the chain 
rule shows that such gradient is (((A1B1)⊙ (A2B2) − D)⊙ (A2B2))B

T
1
 . The gradi-

ents of E(D, Ĥ) with respect to B1 , A2 and B2 are obtained analogously.
The magnitude of the steps in the direction dictated by the gradients of E(D, Ĥ) is 

controlled by the learning rate �.
The gradients of E(D, Ĥ) are also multiplied by a h × h matrix called scaling fac-

tor as proposed by Tong et al. (2021); e.g., the scaling factor used when updating 
A1 is (B1B

T
1
)−1 . Such scaling factor is not necessary, but it often leads to faster (and 

more robust) convergence. When scalability is a primary concern, the scaling fac-
tor can be omitted since its computation can be significantly time-consuming. Fur-
thermore, the common component of all gradients, i.e., Δ = ((A1B1)⊙ (A2B2) − D) 
is computed once at the beginning of each iteration. In practice, updating Δ prior 
to each individual matrix update (i.e., four times per iteration) is generally found 
to increase the runtime and yield only marginal improvements in reconstruction 
accuracy.
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It is possible that the gradient-descent algorithm fails to converge. In such case, it 
is appropriate to re-run the algorithm using a smaller learning rate. Our experiments 
demonstrate that, for a small enough learning rate, the approximation error mono-
tonically decreases. Furthermore, our experiments reveal that by normalizing all the 
gradients to be of unit norm before each update, divergence becomes unlikely, even 
for large learning rates. Therefore, by default, we scale gradients to unit norm before 
each update.

Algorithm 1 is our preferred approach to compute the Hadamard decomposition, 
and it is used in the experiments presented in Sect. 8. Appendix B discusses briefly 
some possible alternative algorithms as well as gradient-based algorithms for differ-
ent (penalized) objective functions and simple extensions of the Hadamard decom-
position model in Eq. (4).

Algorithm 1  Scaled gradient descent for Hadamard decomposition

7.2  Gradient descent for mixed Hadamard decomposition

We use alternating gradient descent also for computing the mixed Hadamard decom-
position. The pseudo-code is given in Algorithm 2. Instead of initializing the matri-
ces randomly, we initialize A1 and B1 using the svd of D and we initialize A2 and B2 
randomly, but setting all the entries of the first t columns of A2 and rows of B2 to 1. 
Subsequently, Algorithm 2 proceeds as in Algorithm 1. However, the entries of the 
first t columns of A1 and A2 and the entries of the first t rows of B1 and B2 are held 
constant during the iterations of the gradient-descent procedure. This ensures that 
the structure of the rank-t svd is kept intact.
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Algorithm 2  Scaled gradient descent for mixed Hadamard decomposition

7.3  Complexity

The time complexity of the gradient-descent algorithms without the scaling factor 
for each gradient is O(nmmin(n,m) + ninhm) . Similarly, assuming that an h × h 
matrix is inverted in time O(h3) , the time complexity of the scaled gradient-descent 
algorithm is O(nmmin(n,m) + ninhm + nih

3 + ni max(n,m)h2).
The above time-complexity expressions assume that we use methods for matrix 

multiplication and matrix inversion that require cubic time. In principle, one can 
resort to algorithms which, given an n × n matrix, achieve time complexity O(n�) , 
with 2 < 𝜔 < 3 (Bürgisser et  al. 2013). Furthermore, the scaling factors can be 
computed efficiently, e.g. by leveraging the svd, since both the inverse of (XXT ) for 
X ∈ {B1,B2} and (XT

X) for X ∈ {A1,A2} can be readily obtained from the svd of X.
One can also use stochastic gradient descent which generally reduces the running 

time of the algorithms. See Appendix B for details.
Finally, the space complexity of the proposed gradient-descent algorithms is 

O(nm) , i.e., linear with respect to the size of the input.

8  Experiments

In this section we give experimental results for the Hadamard decomposition 
approach. Our goal is to assess the performance of the Hadamard decomposition 
in providing a concise and accurate representation of an input matrix D . We first 
describe our experimental settings and then our results.
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8.1  Experimental setting

We describe the datasets we use, the baselines, the performance-evaluation met-
rics, and the parameter choices.

8.1.1  Datasets

We consider both synthetic and real-world datasets. Synthetic matrices help us 
to understand better how different data characteristics impact the performance of 
the Hadamard decomposition method, while the real-world datasets are chosen 
to reflect data characteristics arising in different application domains. The syn-
thetic matrices all are of dimensions 250 × 250 . They include full-rank random 
matrices with entries drawn from uniform ( U(FR) ) and Gaussian ( G(FR) ) dis-
tributions, random matrices generated as the Hadamard product of two low-rank 
random uniform ( UH(h )) and Gaussian ( GH(h )) factors, orthonormal matrices 
( ORTHONORMAL ), low-rank matrices obtained from the truncated svd of a Guas-
sian matrix ( GSVD(h)), banded matrices ( BANDED )  (Garriga et  al. 2008), upper 
triangular matrices ( UT ) and lower triangular matrices ( LT ). A brief description 
of the synthetic datasets is given in Table 1.

For real-world datasets, we consider matrices from different domains: 
CAMERAMAN , LENA , CAT , DOG , OLIVETTI , and DIGITS are images; 
LESMISERABLES and FOOTBALL are graph adjacency matrices; MOVIETWEETINGS , 
MOVIELENS-100K , and YELP are ratings data; and the remaining datasets, PALEO , 
GENES , ARRHYTHMIA and SPECTROMETER , contain matrices from other domains.

Table 1  Overview of the 250 × 250 synthetic matrices used in the experiments

Name Description

U(FR) Full-rank matrix with entries sampled from a uniform distribution in [0, 1]
G(FR) Full-rank matrix with entries sampled from a standard Gaussian distribution
ORTHONORMAL Full-rank matrix obtained from the QR decomposition of G(FR)  (Bernstein 2018)
U

H
 (h) Hadamard product of two rank-h matrices with entries sampled as in U(FR)

G
H
 (h) Hadamard product of two rank-h matrices with entries sampled as in G(FR)

G
SVD

 (h) Matrix obtained from the rank-h truncated svd of G(FR)

UT Matrix obtained from the upper triangular entries of G(FR)

LT Matrix obtained from the lower triangular entries of G(FR)

BD Block diagonal matrix with nonzero entries sampled as in U(FR)

BANDED Boolean matrix exhibiting a banded structure (Garriga et al. 2008)
RECTANGLES Matrix obtained by generating rectangles of uniformly sampled entries
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Summary characteristics and references for all the real-world datasets used in 
our experimental analysis are given in Table 2. Furthermore, more details on both 
the real and the synthetic datasets used in our experiments are given in Appendix 
C.

8.1.2  Metrics

Let D̂ represent the output of any algorithm A for input D . Unless specified other-
wise, we measure the performance of algorithm A using the approximation error:

8.1.3  Baselines

Since we are evaluating our methods using the approximation error, and since the 
svd can be analytically shown to minimize the approximation error in Eq. (8) for 
a given rank (Golub and Van Loan 2013), we compare our method only against 
svd.

(8)E(D, D̂) = ‖D − D̂‖2
F
.

Table 2  Summary characteristics and references for the real-world datasets used in the experiments

Name Rows Columns Density Data type References

LESMISERABLES 77 77 0.086 Boolean Knuth (1993)
FOOTBALL 115 115 0.093 Boolean Girvan and Newman  (2002)
PALEO 124 139 0.115 Boolean Fortelius  (2008)
SPECTROMETER 531 101 0.997 Real Center  (1988)
ARRHYTHMIA 452 120 0.675 Real Guvenir et al. (1997)
LENA 256 256 1.000 Integer Rodriguez-Aragon and 

Zhigljavsky (2010)
CAMERAMAN 256 256 1.000 Integer Lee et al. (2005)
YELP 1 449 135 0.048 Boolean Sajnani et al. (2012)
DOG 399 600 0.988 Integer Ozbulak (2017)
CAT 400 600 0.987 Integer Ozbulak (2017)
GENES 7 129 38 0.997 Integer Brunet et al. (2004)
DIGITS 2 000 240 0.607 Integer Alpaydin and Kaynak (1998)
MOVIETWEETINGS 1 000 1 000 0.002 Integer Dooms et al. (2013)
MOVIELENS-100K 943 1 609 0.039 Integer Harper and Konstan (2015)
OLIVETTI 400 4 096 0.999 Real Chung et al. (1999)
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8.1.4  Parameters

We consider balanced Hadamard decompositions with two factors D1 and D2 
of rank h , which are compared with the svd of rank 2h . The value h is varied 
in {4, 6, 9, 13, 20, 30, 40} , except in the two real-world datasets of smallest rank 
where only smaller values of h are appropriate. Finally, the parameter t  in the 
mixed Hadamard decomposition is always set to 1.

8.1.5  Implementation

Our Python implementation is available online.4 The numba library (Lam et  al. 
2015) is used for optimization. Experiments are performed on a computer with 
2×10 core Xeon E5 processor and 256 GB memory. All reported results are aver-
ages over 10 runs.

8.2  Results

We first present results on three example matrices, which highlight important 
aspects of the Hadamard decomposition, and then we present more extensive results 
comparing the Hadamard decomposition and the svd on both synthetic and real-
world datasets.

Illustrative example of results in synthetic datasets: the full-rank uniform, Gauss-
ian and orthonormal matrices. The properties of the Hadamard decomposition over 
the svd vary greatly over matrices with different characteristics; the relative potential 
Hadamard benefit � is a useful tool in understanding when and why the Hadamard 
approach works well. We illustrate this by considering the 250 × 250 full-rank syn-
thetic uniform ( U(FR) ), Gaussian ( G(FR) ) and orthonormal ( ORTHONORMAL ) 
matrices.

Figure 9 shows the decay of singular values in such matrices, and gives the rela-
tive potential Hadamard benefit � for a balanced Hadamard decomposition with both 
factors of rank h = 25.

Fig. 9  Singular values and relative potential Hadamard benefit � in synthetic synthetic datasets of dimen-
sions 250 × 250 . The blue line shows all the singular values �

i
 , from the largest to the smallest. For each 

dataset, the relative potential Hadamard benefit � for a balanced Hadamard decomposition with factors of 
rank h = 25 is reported. For reference, a red dashed vertical line is added in correspondence of 2h = 50 . 
The value of � is obtained as the ratio of the sum of squared singular values to the right of the red dashed 
line to the sum of all squared singular values

4 https:// github. com/ maciap/ Hadam ardDe compo sition.

https://github.com/maciap/HadamardDecomposition
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For the uniform random matrix U(FR) the singular values decay steeply. There-
fore the value of � is small, and the potential usefulness of the Hadamard decom-
position is limited. On the contrary, any orthonormal matrix has constant singular 
values. This is the scenario where the Hadamard decomposition achieves the highest 
potential benefit. Finally, the random standard Gaussian matrix G(FR) represents an 
intermediate scenario.

Figure 10 shows the approximation error achieved by svd, Hadamard decomposi-
tion and mixed Hadamard decomposition on the U(FR) , G(FR) and ORTHONORMAL 
matrices as a function of the number of basis vectors used for reconstruction. The 
results show that the empirical benefits of the Hadamard decomposition are indeed 
predicted by the potential Hadamard benefit.

8.2.1  Results on other synthetic datasets

Figure 11 gives the results analogous to those shown in Fig. 10 for the other syn-
thetic matrices used in our experiments.

First, consider the GSVD (15) matrix. This matrix is the rank-15 truncated svd of 
G(FR) , and it serves as an example of a matrix where the svd produces better results 
than the Hadamard decomposition. In this scenario, by definition, the svd only needs 
15 basis vectors to achieve 0 approximation error. All but the first 15 singular values 
of the GSVD (15) matrix are 0, and hence the relative potential Hadamard benefit � 
rapidly decreases to 0 as h approaches 8. Thus, we again see that the distribution of 
the singular values provides important information about the usefulness of the Had-
amard decomposition.

When looking at results for the UH (10), UH (25) and UH (50) matrices, which 
are obtained as Hadamard products of two rank-constrained uniform matrices, we 
note that the advantage of the Hadamard decomposition over the svd is limited. The 
reason is that, again, the singular values of these matrices decay steeply and thus 
the potential Hadamard benefit is small. For instance, the relative potential Had-
amard benefit � in the UH (25) matrix is of the order of 10−5 , whereas in the full-rank 
U(FR) matrix � is of the order of 10−1.

The GH (10), GH (25) and GH (50) matrices, produced as the Hadamard product 
of two rank-constrained standard Gaussian matrices, depict a different scenario: as 

Fig. 10  Experiments on the full-rank uniform, Gaussian and orthonormal matrices. Approximation error 
E(D, D̂) incurred by the rank-2h svd as well as by the Hadamard decomposition and the mixed Hadamard 
decomposition, both with two rank-h factors, as a function of 2h , i.e., the number of basis vectors
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the number of basis vectors used for reconstruction increases, the advantage of the 
Hadamard decomposition over the svd becomes clear.

Clear advantages of the Hadamard decomposition over the svd are also observed 
in the remaining synthetic datasets: the upper ( UT ) and lower ( LT ) triangular matri-
ces, the block-diagonal matrix ( BD ), the banded matrix ( BANDED ) and the matrix 
with rectangles of nonzero entries ( RECTANGLES).

Finally, the performance of the mixed Hadamard decomposition is often in 
between that of the Hadamard decomposition and the svd. In some cases, however, 
the mixed Hadamard decomposition achieves lower approximation error than both 
Hadamard decomposition and svd.

8.2.2  Results on real‑world datasets

Figure 12 summarizes the results on the real-world datasets. While the experiments 
on real data generally lead to similar findings as the experiments on synthetic data, 
they also provide new insights.

Fig. 11  Experiments on synthetic data. Approximation error E(D, D̂) incurred by the rank-2h svd as well 
as by the Hadamard decomposition and the mixed Hadamard decomposition, both with two rank-h fac-
tors, as a function of 2h , i.e., the number of basis vectors
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For instance, in the PALEO dataset, which is a binary matrix with approximately 
banded structure (Fortelius 2008), the Hadamard decomposition results in even 
higher benefits than in the synthetic banded matrix (Fig.  11). The benefits of the 
Hadamard decomposition over the svd are also evident in the MOVIELENS-100K , 
MOVIETWEETINGS and YELP datasets, pointing towards possible advantages of the 
Hadamard decomposition in generating recommendations. We address this theme in 
more detail in Sect. 8.3. Similarly, advantages of the Hadamard decomposition over 
the svd are also significant in image datasets, indicating that the Hadamard decom-
position can provide a more accurate image compression than the svd at parity com-
pression ratio.

Fig. 12  Experiments on real data. Approximation error E(D, D̂) incurred by the rank-2h svd as well as by 
the Hadamard decomposition and the mixed Hadamard decomposition, both with two rank-h factors, as a 
function of 2h , i.e., the number of basis vectors
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8.2.3  Variability in the results

We conclude the present section with a note on the variability in the results.
In the experiments with synthetic data, there are two sources of randomness: 

the data generation and the initialization of the gradient-descent algorithm. For the 
experiments with real data, only the the initialization of the gradient descent injects 
randomness in the results.

Similarly, there are two forms of variability in the results: either only the approxi-
mation accuracy can vary between runs, or both the approximation accuracy and the 
retrieved Hadamard decomposition.

It turns out that the variance in the approximation accuracy across multiple runs 
is rather small. In experiments on both synthetic and on real data, we find that the 
gradient descent is quite stable and randomness does not have a significant impact 
on the accuracy of the results of the gradient descent. For instance, across all the 
reported experimental results with U(FR) and G(FR) , the average coefficient of 
variation5 of the approximation error E(D, D̂) for the Hadamard decomposition 
is approximately 0.005. Therefore, in all the presented experiments, we decide to 
report averages over 10 repetitions and we do not show the (minimal) variability in 
the results.

The variation in the resulting basis vectors is harder to quantify. As discussed in 
Sect. 6, there are many possible forms of nonuniqueness for the Hadamard decom-
position and there may exist several highly different Hadamard decompositions with 
approximately the same accuracy.

8.3  Case study—application to recommender systems

In recommender systems (Hallinan and Striphas 2016; Ramlatchan et  al. 2018) 
the objective is to suggest items to users based on their preferences. A widely used 
approach to build recommender systems is collaborative filtering (Ramlatchan et al. 
2018), which seeks to predict the preferences of a user by leveraging information 
from a group of users with similar tastes. Matrix decomposition techniques, such as 
the svd, are highly popular in (model-based) collaborative filtering.

Specifically, in collaborative filtering, a modified svd is computed which is able 
to account for missing ratings as well as for the tendency of some users to rate items 
higher than others, or the tendency of some items to be rated higher than others 
(Funk 2006). The resulting algorithm, henceforth svd-CF, is learned via an highly 
scalable stochastic gradient-descent algorithm. This algorithm can be adapted to the 
Hadamard decomposition in order to learn the Hadamard-CF. The details of the svd-
CF and the Hadamard-CF algorithms are described in Appendix D.1.

svd-CF and Hadamard-CF only account for explicit ratings (i.e., numerical rat-
ings). The extension of svd-CF to also account for implicit ratings, known in the 
literature as svd++, provides more competitive performance in model-based col-
laborative filtering (Wang et al. 2020). While Hadamard-CF can also be extended 
to account for implicit ratings, in this section our interest lies in comparing the 

5 Ratio of the standard deviation to the mean.
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performance of svd-CF and Hadamard-CF, and we leave extensions accounting for 
implicit ratings to future work.

Table 3 presents a comparison of svd-CF and Hadamard-CF, demonstrating the 
advantages of a matrix decomposition based on the Hadamard product in the context 
of recommender systems. The comparison is based on the test set root mean squared 
error, a popular metric used to assess the performance of recommender systems. 
Definitions and more details concerning the experiments to evaluate Hadamard-CF 
against svd-CF are given in Appendix D.2.

9  Conclusions and open problems

We have introduced the Hadamard decomposition problem in data analysis, where 
the task is to find an approximate representation of the input matrix as a Hadamard 
product of two (or more) low-rank matrices. The motivation for the problem comes 
from situations where the input data can be assumed to have some type of multipli-
cative structure.

We have shown that this decomposition method has the potential for expressing 
some matrices more succinctly than the svd. While the Hadamard decomposition is 
not unique, our experiments show that a gradient-descent method generally yields 
good results, giving competitive or better approximations of matrices than the svd 
with the same number of basis vectors. In particular, for several real-world data-
sets we consider, the Hadamard decomposition achieves comparable approximation 
accuracy with the svd, but in some other datasets, the Hadamard decomposition 
offers a clearly more accurate approximation, hinting at underlying multiplicative 
structure on those datasets. To determine when the proposed Hadamard decomposi-
tion should be preferred to the svd, we have introduced the relative potential Had-
amard benefit, a simple measure which can be obtained from the singular values of a 
matrix. If for a matrix the relative potential Hadamard benefit is high, the Hadamard 
decomposition is anticipated to lead to a considerably higher approximation accu-
racy than the svd with the same number of basis vectors.

We have also described a mixed decomposition model which combines the Had-
amard decomposition with the svd. This model is designed for decomposing matri-
ces where the top-level structure is an svd-like additive one, and then there is a Had-
amard product of low-rank matrices.

Table 3  Experiments with recommender systems. Root mean squared error in the test set in three data-
sets ( MOVIELENS-100K , MOVIELENS-1M and NETFLIX ) for svd-CF and Hadamard-CF

Algorithm Dataset

Netflix MovieLens-1 M MovieLens-100k

SVD-CF 0.308 0.287 0.296
Hadamard-CF 0.247 0.228 0.237
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There are many open problems in the study of the Hadamard decomposition. 
Among them, it would be valuable to obtain a better understanding of the forms 
of nonuniqueness of the decomposition. The experiments show that the Hadamard 
decomposition often produces smaller approximation error than the svd. On the 
other hand, svd has the advantage that it normally produces a unique answer and 
that it is faster to compute. Having some characterization of the nonuniqueness 
would alleviate the first issue.

For the algorithmic part, the proposed method is a straightforward application of 
gradient descent, and it would be very interesting to develop a faster algorithm or a 
combinatorial algorithm which ideally would always find an optimal solution when 
one exists. Furthermore, it would be interesting to study the extension of the Had-
amard decomposition to other types of matrices, such as non-negative and Boolean. 
The formal computational complexity of the Hadamard decomposition problem is 
also open.

With respect to applications, it would be valuable to investigate the benefits of 
the Hadamard decomposition for different machine-learning and data-mining tasks, 
beyond collaborative filtering. For instance, the Hadamard decomposition could be 
used as a pre-processing step for classification and clustering tasks (Singh and Leav-
line 2019). Further, since matrix decomposition and clustering are closely related 
(Ding et  al. 2005; Li and Ding 2013), extending the principles of the Hadamard 
decomposition to the clustering setting is an interesting direction for future research.

Finally, because of the nonlinearity and lack of uniqueness of the Hadamard 
decomposition, the results of the method are not necessarily easy to interpret. Still, 
the results of the Hadamard decomposition on the paleontological dataset (Fortelius 
et al. 2006; Fortelius 2008) are very promising, as they seem to capture important 
parts of the underlying phenomenon. It is therefore an interesting question to inter-
pret the multiplicative structure visible in the results, and to assess the effect of the 
nonuniqueness of the results on interpretability.

Appendix A. Relationship with the SVD

In this section, we present some connections between svd and the Hadamard decom-
position. These results do not lead to an algorithm to compute the Hadamard decom-
position. However, they provide valuable insights into the Hadamard decomposition.

First, we describe simple error bounds for the Hadamard decomposition that fol-
low from the properties of the svd. Then, we discuss other interesting connections 
between svd and the Hadamard decomposition.

A.1. Error bounds

 As discussed in Sect. 4 the analysis of the spectrum of singular values of a matrix 
D leads to the notion of relative potential Hadamard benefit, a useful measure for 
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predicting the gain that can be achieved by adopting the Hadamard decomposition in 
place of the svd. A similar measure, the unnormalized potential Hadamard benefit is 
given by the numerator of the relative potential Hadamard benefit �(D, h) . More spe-
cifically, the potential Hadamard benefit Γ(D, h) when using Hadamard decomposi-
tion with two rank-h factors is the sum of squared singular values �2

i
 , for i = 2h + 1 

to h2:

From the definition of potential Hadamard benefit and the optimality properties 
of svd, we have the following.

Proposition 2 Given a matrix D , let Ĥh be the estimate of D given by an optimal 
Hadamard decomposition with both factors of rank up to h , and let Ŝk be the esti-
mate of D given by the truncated svd of rank k. Denote E(D, Ĥh) = ‖D − Ĥh‖2F the 
approximation error incurred by the Hadamard decomposition with two rank-h fac-
tors and denote E(D, Ŝk) = ‖D − Ŝk‖2F the approximation error incurred by the svd 
truncated to k basis vectors. Then we have:

Proof As regards inequality (i), note that the Hadamard decomposition reconstructs 
matrices of rank up to h2 . As explained in Sect. 4, the lowest possible approxima-
tion error incurred by any matrix of rank h2 is achieved by the truncated svd of rank 
h2 (Stewart 1993), from which inequality (i) follows. Instead, inequality (ii) directly 
follows from the definition of potential Hadamard benefit.   ◻

It is also interesting to notice that a loose upper bound on E(D, Ĥ) , independ-
ent of the singular values, is given by: E(D, Ĥh) ≤ E(D, Ŝh) , which is trivially 
obtained by taking D1 to be the rank-h svd and D2 to be the rank-1 matrix whose 
entries are all equal to 1. As demonstrated in our experiments, this trivial upper 
bound is remarkably loose, as in practice the Hadamard decomposition with two 
rank-h factors often outperforms the rank-2h svd. On the other hand, it is possi-
ble to demonstrate that the lower bound (i) in Proposition 2 can be achieved. For 
instance, as shown in Sect. 1, the Hadamard decomposition with two factors of 
rank 3 reconstructs exactly the 9 × 9 identity matrix using 6 basis vectors, so that 
E(D, Ĥh) = 0 . To achieve the same error, the svd needs 9 basis vectors. Thus, in 
this example, it holds that E(D, Ĥh) = E(D, Ŝh2).

It is important to highlight that, as the proposed gradient-based algorithms are 
not guaranteed to produce optimal results, the bounds presented above, although 
insightful, may not apply in practice.

Γ(D, h) =

h2∑

i=2h+1

�2
i
.

(i) E(D, Ĥh) ≥ E(D, Ŝh2 ) and (ii) E(D, Ŝ2h) − E(D, Ĥh) ≤ Γ(D, h).
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A.2. Use of svd  in finding a Hadamard decomposition

For the results presented in the remainder of this section, we introduce some 
additional matrix-product operators.

Given two matrices A and B of dimensions nA × mA and nB × mB , respec-
tively, their Kronecker product A⊗ B is defined as a block matrix of dimensions 
nAnB × mAmB , consisting of nA × mA blocks, each of dimensions nB × mB , so that 
its block indexed by i and j is [A]i,jB . We also define the row-wise and column-
wise Kronecker product operators  (Khatri and Rao 1968). For matrices A and 
B with dimensions nA × m and nB × m , their column-wise Kronecker product 
A ⋆ B is a nAnB × m-matrix whose rows are the Hadamard (element-wise) prod-
ucts of each pair of rows aT and bT , such that aT is a row of A and bT is a row of 
B . The row-wise Kronecker product is defined similarly. For matrices A and B 
with dimensions n × mA and n × mB , their row-wise Kronecker product A ∙ B is 
an (n × mAmB)-matrix whose columns are the Hadamard products of each pair of 
columns a and b , such that a is a column of A and b is a column of B.

Several problems in linear algebra admit a solution based on the svd. For 
instance, the solution to the problem of finding the nearest orthogonal matrix to 
a given matrix D = U�V is given by UVT (Schönemann 1966). As another exam-
ple, the problem of finding the (rank-unconstrained) Kronecker product X⊗ Y 
that is the closest to an input matrix D  (Van Loan and Pitsianis 1993) admits a 
closed-form solution in terms of the svd of a permuted version of D . Thus, it is 
natural to ask whether a solution to Problem 1 could also be found using an svd-
based approach. In the remainder of this section, we present some possible ideas 
in this direction; however, while they shed light on the properties of the Had-
amard decomposition, they do not lead to algorithms that would improve on the 
gradient-descent methods.

First, we provide an alternative formulation for the Hadamard decomposition, 
which exposes more clearly the connection between Hadamard decomposition and 
svd. In particular, as also shown in Fig. 13, we can re-write D = (A1B1)⊙ (A2B2) 
as the (standard) matrix product of two factors, as follows:

Equation (9) is a consequence of known properties connecting the different product 
operators (Slyusar 1999), namely:

(9)D = (A1B1)⊙ (A2B2) = (A1 ∙ A2)(B1 ⋆ B2) = AB.

(10)(AC)⊙ (CD) = (A ∙ B)(C ⋆ D).

Fig. 13  Example: alternative formulation of the Hadamard decomposition using the row-wise and col-
umn-wise Kronecker products. Black squares represent 1 entries
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If the dimensions of A1 and A2 are n × h , and the dimensions of B1 and B2 are 
h × m , then the dimensions of A and B are n × h2 and h2 × m . The singular value 
decomposition D = U�V

T also provides a similar decomposition D = AsvdBsvd , 
with Asvd = U

√
� and Bsvd =

√
�V

T . Although in special cases it may hold that 
A = Asvd and B = Bsvd , in general, this is not the case. For instance, the columns of 
A and B are typically not orthogonal, unlike the columns of Asvd and Bsvd . However, 
the following result holds in general.

Proposition 3 Let D be a rank-h2 matrix obtained as the Hadamard product of two 
rank-h factors. Using the above notation, we have the following. 

 (i) B and Bsvd span the same row space.
 (ii) A and Asvd span the same column space.

Proof To prove that B and Bsvd span the same row space and A and Asvd span the 
same column space, we show that the rows of Bsvd are linear combinations of the 
rows of B and similarly for the columns of Asvd and A . Since we consider the usual 
balanced Hadamard decomposition with two rank-h factors, we have A,Asvd ∈ ℝ

n×h2 
and B,Bsvd ∈ ℝ

h2×m . Thus, A and Asvd both contain h2 linearly independent columns 
and likewise B and Bsvd both contain h2 linearly independent rows. We have:

Multiplying each entry of a matrix by a constant does not affect the rank of the 
matrix (Bernstein 2018). Hence, the rank of 2D is equivalent to the rank of D , which 
is h2 . Furthermore, linear algebra shows that we also have the following factoriza-
tion of 2D:

where [A;Asvd] denotes column-wise concatenation and 
[

B

Bsvd

]
 denotes row-wise 

concatenation. We conclude that, since 2D has rank h2 , [A ;Asvd] can have up to h2 

linearly independent columns and 
[

B

Bsvd

]
 can have up to h2 linearly independent 

rows, and because both A and Asvd have h2 linearly independent columns and simi-
larly both B and Bsvd have h2 linearly independent rows, the claim follows.   ◻

Proposition 3 exposes the theoretical underpinnings of the Hadamard decom-
position, suggesting that columns of A1 and A2 , like the left singular vectors, 
lead to a basis for the column space of D and B1 and B2 , like the right singu-
lar vectors, lead to a basis for the row space of D . Unlike the svd, the bases 
identified by the Hadamard decomposition are not orthogonal. However, A is 

AB + AsvdBsvd = D + D = 2D.

2D = AB + AsvdBsvd = [A ;Asvd]

[
B

Bsvd

]
,
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related to Asvd through a simple change of basis. Analogously, B is related to 
Bsvd through a simple change of basis.

This also suggests that the building blocks of the Hadamard decomposition, 
A1 , B1 , A2 and B2 , are to be searched within the span of the left and right singu-
lar vectors of D . In practice, however, the Hadamard decomposition model may 
not hold exactly and it is not convenient to restrict the search carried out via gra-
dient descent to the span of the left and right singular vectors.

A.3. svd of a Hadamard product

In the previous paragraph, we have considered using the svd as a starting point 
for finding the Hadamard decomposition of a matrix D . Another possibility is to 
consider the relationship between the svd of a Hadamard product and the svds 
of its factors, and how this could lead to an efficient algorithm for estimating the 
Hadamard decomposition. Let D = D1 ⊙ D2 , D1 = U1�1V

T
1
 and D2 = U2�2V

T
2
 . 

The following equality holds:

To prove Eq. (11), we again rely on the properties of the different product operators 
considered in this section. In particular, we have:

where we have used Eq. (10) as well as another known equality (Rao 1970):

The decomposition in Eq. (11) does not correspond to the svd of D in any obvi-
ous way. Further, it does not correspond to the singular value decomposition of any 
matrix since e.g. (U1 ∙ U2) and (VT

1
⋆ V

T
2
 ) are not orthogonal matrices. The lack of a 

standard relationship between the svd of an Hadamard product and that of its factors 
motivates the search of a solution to the Hadamard decomposition problem using 
gradient-based methods rather than methods based on linear algebra or combinato-
rial algorithms.

Appendix B. Alternative approaches for Hadamard decomposition

In this section, we discuss alternative gradient-based approaches for the Had-
amard decomposition problem, as well as simple modifications of the proposed 
gradient-descent algorithm to accommodate basic extensions of the Hadamard 
decomposition model.

(11)D = (U1 ∙ U2)(�1 ⊗ �
�
)(VT

1
⋆ V

T
2
).

D = D1 ⊙ D2

= (U1�1V
T
1
)⊙ (U2�2V

T
2
)

= (U1 ∙ U2)(�1V
T
1
⋆ �2V

T
2
)

= (U1 ∙ U2)(�1 ⊗ �2)(V
T
1
⋆ V

T
2
),

(12)(A⊗ B)(C ⋆ D) = (AC) ⋆ (BD).
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B.1. Stochastic gradient descent

 The proposed gradient-descent algorithms compute, at each iteration, the gradi-
ent of the approximation error with respect to the matrices A1 , B1 , A2 , and B2 . 
Since computing gradients involves multiple matrix multiplications, the proposed 
gradient-descent methods become slow as the matrix dimensions n, m and the 
ranks of the Hadamard factors h1 and h2 grow.

It is possible to modify the proposed gradient-descent algorithms so that a subset 
of rows of suitable size 1 ≤ b < n is considered to take a step. For b = 1 , the result-
ing algorithms are referred to as stochastic gradient descent, while for 1 < b < n the 
resulting algorithms are referred to as mini-batch stochastic gradient descent.

To implement (mini-batch) stochastic gradient descent, it is sufficient to modify 
the proposed algorithms (e.g., Algorithm 1) so that only up to b rows of D , A1 and 
A2 are considered for each update. This avoids all multiplications of large matrices, 
thus greatly reducing the computational burden.

To demonstrate the efficiency gain obtained by mini-batch stochastic gradient 
descent for computing the Hadamard decomposition, Fig. 14 illustrates the approxi-
mation error E(D, D̂) incurred by both Algorithm 1 and its mini-batch stochastic-
gradient-descent variant as a function of runtime for the PALEO dataset. Here, both 
Hadamard factors have rank 40 and the mini-batch size b for mini-batch stochastic 
gradient descent is set to 16. Figure 14 suggests that even in a dataset of moderate 
size, mini-batch stochastic gradient descent can lead to convergence much earlier 
than Algorithm 1, although, as indicated by the confidence intervals, the decay of 
E(D, D̂) for mini-batch stochastic gradient descent exhibits significant fluctuations 
over time.

B.2. Coordinate descent

 Stochastic gradient descent computes gradients associated with subsets of the entries 
of a matrix. It is also possible to take this idea further and design a gradient-descent 

Fig. 14  PALEO dataset. Approximation error E(D, D̂) as a function of runtime (in seconds) for gradient 
descent (GD) and mini-batch stochastic gradient descent (mini-batch SGD) to compute the Hadamard 
decomposition. The figure displays the average E(D, D̂) across 30 repetitions as well as shaded regions 
corresponding to 95% confidence intervals
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algorithm where each entry of each matrix Xi,j , with X ∈ {A1,A2,B1,B2} , is 
updated in turn.

Calculating gradients with respect to each specific entry in every matrix is sim-
ple, and it is also feasible to derive formulas for closed-form updates by setting gra-
dients to 0. For instance, the formula for updating the entry indexed by i and j of A1 , 
obtained by setting to 0 the associated gradient, is:

and similarly for the other entries and the other matrices involved in the gradient-
descent algorithm.

The ensuing algorithm, dubbed coordinate descent, at each iteration, updates all 
entries of each matrix in sequence. Alternatively, it is straightforward to convert the 
coordinate-descent algorithm into the more scalable stochastic coordinate-descent 
algorithm, which updates a randomly drawn entry at each iteration.

B.3. Penalized gradient descent

 As mentioned in Sect.  6, including a penalty term in the objective function 
to be minimized via gradient descent can lead to a decrease in the degree of 
nonuniqueness.

For instance, a small modification to the update steps in Algorithm 1 suffices to 
minimize the following regularized objective function:

The gradient involved in the update of A1 is modified as follows:

and similarly for A2 , B1 and B2 . The same scaling factor as in Algorithm 1 (e.g., 
(B1B

T
1
)−1 in the update of A1 ) can also be used.

Moreover, frameworks for automatic differentiation, such as PyTorch  (Paszke 
et al. 2017), allow to easily perform gradient descent while incorporating arbitrary 
penalty terms in the objective function, even in cases where the gradients are not 
analytically computable.

B.4. Gradient descent for more general functions

 In some cases, we may be interested in a model of the form:

[A1]i,j ←

m∑

p=1

([B1]j,p[D2]i,p([D]i,p −

h∑

s=1,s≠j

([A1]i,s[B1]s,p[D2]i,p)))∕

m∑

p=1

([B1]j,p[D2]i,p)
2,

(13)‖D − Ĥ‖2
F
+ 𝜆1‖D̂1‖2F + 𝜆2‖D̂2‖2F.

Δ⊙ (A2B2)B
T
1
+ 𝜆1(A1B1)B

T
1
,

(14)D = f (D1 ⊙ D2),
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where f is an arbitrary element-wise function. For example, if D is a matrix with 
values ranging from 0 to 1, setting f to be the sigmoid function (i.e., f = (1 + e−x)−1 ) 
guarantees that the approximation f (D1 ⊙ D2) consists of values in the same range 
as D and can improve the quality of the approximation.

It is simple to extend the proposed gradient-descent algorithms to the model in 
Eq. (14) where f is the sigmoid function. For example, using the chain rule, the gra-
dient involved in the update of A1 is modified as follows:

and similarly for A2 , B1 and B2.
As for penalized gradient descent, automatic-differentiation tools allow to easily 

carry out gradient descent for arbitrary functions f without the need for manually 
deriving analytical gradients.

Appendix C. Detailed description of datasets

In this section, we provide a detailed description of the datasets used in our experi-
mental evaluation.

C.1. Synthetic datasets

 We consider 15 synthetic types of matrices. All synthetic matrices have 250 rows 
and columns. The data-generating mechanism associated with each synthetic matrix 
is described next.

• U(FR) : full-rank matrix with i.i.d. entries drawn from a uniform distribution in 
[0, 1].

• G(FR) : full-rank matrix with i.i.d. entries drawn from a standard Gaussian distri-
bution.

• ORTHONORMAL : full-rank matrix obtained from the QR decomposition of 
G(FR)  (Bernstein 2018).

• UH(h): low-rank matrix obtained as the Hadamard product of two rank-h matri-
ces (i.e., according to the Hadamard decomposition) with independent and iden-
tically distributed (i.i.d.) entries drawn from a uniform distribution in [0, 1]. We 
show results for h ∈ {10, 25, 50}.

• GH(h): low-rank matrix obtained as the Hadamard product of two rank-h matri-
ces (i.e., according to the Hadamard decomposition) with i.i.d. entries drawn 
from a standard Gaussian distribution. We show results for h ∈ {10, 25, 50}.

• GSVD(h): low-rank matrix obtained as the rank-h truncated svd of a matrix with 
i.i.d. entries drawn from a standard Gaussian distribution. In other words, this 

e−(A1B1)⊙(A2B2)

(e−(A1B1)⊙(A2B2) + 1)2
(D −

1

1 + e−(A1B1)⊙(A2B2)
)⊙ (A2B2)B

T
1
,
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matrix is obtained from the svd of G(FR) by setting to 0 all but the highest h sin-
gular values.

• UT : full-rank triangular matrix obtained from the upper triangular entries of 
G(FR).

• LT : full-rank triangular matrix obtained from the lower triangular entries of 
G(FR).

• BD : block diagonal matrix with w = 200 blocks of random size along the main 
diagonal with i.i.d entries drawn from a uniform distribution in [0, 1].

• BANDED : boolean matrix (with entries in {0, 1} ), exhibiting a banded struc-
ture (Garriga et al. 2008), which is obtained by starting with a matrix of all 0s 
and setting to 1 the j-th entry in the i-th row if |i − j| ≤ w , where we set w = 50.

• RECTANGLES : matrix with w = 50 blocks (tiles) of i.i.d. entries drawn from a 
uniform in [0,  100]. The starting point of each block is sampled uniformly at 
random among all entries and the support in the rows and the columns is sam-
pled according to a uniform distribution in [0, 12]. In addition, we add a large 
rectangle with constant entries accounting for a fixed proportion of entries ( 30% 
by default).

C.2. Real‑world datasets

 In addition to 15 synthetic datasets, we consider 15 heterogeneous real-world data-
sets. Real-world datasets include graph adjancency matrices ( LESMISERABLES and 
FOOTBALL ), images ( CAMERAMAN , LENA , CAT , DOG , OLIVETTI , and DIGITS ) 
and ratings ( MOVIETWEETINGS , MOVIELENS-100K , and YELP ). In addition, the 
PALEO dataset contains information about locality and species of mammal fossils. 
The SPECTROMETER dataset contains a number of spectrometer measurements. The 
ARRHYTHMIA dataset pertains to the medical domain and contains several attrib-
utes useful to distinguish between the presence and absence of cardiac arrhythmia. 
Finally, the biological GENES dataset is used for molecular classification of cancer 
by gene expression monitoring.

Appendix D. Details of application to recommender systems

In Sect. 8.3 we briefly describe an application of the ideas underlying the Hadamard 
decomposition to recommender systems. Here, we provide more details related to 
such application. Specifically, we first describe the details of the svd-CF and Had-
amard-CF algorithms and then we discuss the details of the experiments performed 
to assess the performance of svd-CF and Hadamard-CF.

D.1. Algorithms

Recommender systems are ubiquitous nowadays. For instance, they are used by 
E-commerce platforms, online social media and streaming services  (Hallinan and 
Striphas 2016; Ramlatchan et al. 2018).
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The goal of recommender systems is to predict the ratings that a set of users will 
give to a set of items (or products).

The impact of the svd in the field of recommender systems is best introduced 
starting from a famous case study. In 2006, Netflix, an american company offering 
on-demand video streaming service, promised a one-milion-dollar prize to anyone 
who could improve over the current recommender systems by at least 10% in root 
mean squared error (RSME)  (Bennett et  al. 2007), a popular performance metric 
defined later in this section.

The winning approach for the Netflix prize was based on svd-CF and since the 
Netflix price, svd-CF has experienced a notable increase in popularity in the field 
of research studying recommender systems (Guan et al. 2017; Zhou et al. 2015).

In applications to recommender systems, the svd generates a number of latent 
factors representing users and items.

In practice, not all users rate all items. The svd as described in Sect. 3 is not 
able to account for missing ratings. Thus, in the context of recommender systems, 
the svd is computed while taking into account only the ratings that are available. 
More specifically, the available rating ru,i for user u and item i is modelled as 
follows:

where qi is a vector representing the affinity of the i-th item for each of the latent fac-
tors, and similarly, pu is a vector representing the affinity of the u-th user for each of 
the latent factors. The vectors qi and pu for all i and u can be learned by applying 
stochastic gradient descent to minimize: 

∑
ru,i∈Rtrain

(ru,i − qT
i
pu)

2 , where Rtrain is the 
set of available ratings. This approach has an important drawback. Some users tend 
to give significantly higher ratings than others. Similarly, some products may gener-
ally be rated higher than others. Thus, more accurate recommendations are obtained 
via the following model:

where � is the global average of all the ratings, whereas bu and bi are biases given by 
the user-specific and item-specific average ratings, respectively.

Moreover, it is often the case that the latent factors have to generalize to unseen 
data Rtest . Therefore, it is found to be effective to include a regularization term, so 
that the objective function to be minimized becomes as follows:

where � controls the amount of regularization.
All the parameters (i.e., biases � , bu and bi as well as vectors qi and pu for all i and 

u) can be learned via stochastic gradient descent. Stochastic gradient descent iterates 
through each available rating in Rtrain and updates all the involved parameters in the 
directions of the negative gradients of the regularized squared error in Eq. (17).

(15)r̂u,i = qT
i
pu,

(16)r̂u,i = 𝜇 + bu + bi + qT
i
pu,

(17)
�

ru,i∈Rtrain

(ru,i − � − bu − bi − qT
i
pu)

2 + �(b2
u
+ b2

i
+ ‖qi‖2 + ‖pu‖2),
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The model assumed by Eq. (17), learned via stochastic gradient descent, is 
referred to as svd-CF.

svd-CF represents ratings as (translated) dot products computed in the latent 
space identified by the svd. Assume that items represent movies. Further, imagine 
that one latent factor represents, say, the level of action, while another latent factor 
represents the popularity of the actors. Some users may be interested exclusively in 
movies that have a high level of action and also have a popular cast of actors, but 
they may not be interested at all in movies that have a high level of action and no 
popular actors.

The dot product in the latent space computed in the svd-CF model fails to accu-
rately capture the preferences of similar users and, for those users, it may predict 
a significant rating for a movie that has a high level of action but does not have a 
popular cast of actors.

On the other hand hand, the product of two latent-space dot products can capture 
more naturally the preferences of users who are solely interested in movies that have 
both a high level of action and popular actors.

Thus, svd-CF can be extended using the Hadamard product, resulting in the Had-
amard-CF model, which minimizes the following objective function:

Also the parameters of the Hadamard-CF model are learned via stochastic gradient 
descent. For the same reason why the Hadamard decomposition may outperform the 
svd in reconstruction accuracy while using the same number of parameters, Had-
amard-CF may outperform svd-CF.

D.2. Experiments

In Sect.  8.3, we present experiments demonstrating that the Hadamard-CF algo-
rithm can generate more accurate recommendations than svd-CF. We consider the 
popular MOVIELENS-100K  (Harper and Konstan 2015), MOVIELENS-1M  (Harper 
and Konstan 2015) and NETFLIX   (Bennett et  al. 2007) benchmark datasets. 
MOVIELENS-100K contains 100,  000 ratings, whereas MOVIELENS-1M and 
NETFLIX contain 1 milion ratings. Ratings in all datasets are normalized in the range 
[0, 1]. The 75% of the rating data is used as a train set Rtrain and the remaining data 
Rtest are dedicated to testing.

In order to compare the biased svd model (svd-CF) and the Hadamard-product-
based biased Hadamard decomposition model (Hadamard-CF), we apply weak 
regularization, setting � = 10−3 , and we investigate performance, measured by the 
standard root mean squared error measure, computed in the test set, while ensuring 
the two approaches under comparison rely on the same amount of parameters (both 
biases and latent factors). The test set RMSE is defined by:

(18)

�

ru,i∈Rtrain

(ru,i − � − bu − bi − (qT
i1
pu1)(q

T
i2
pu2 ))

2

+ �(b2
u
+ b2

i
+ ‖qi1‖

2 + ‖pu1‖
2 + ‖qi2‖

2 + ‖pu2‖
2).
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where nr is the total number of ratings in Rtest and r̂u,i represents the prediction for 
rating ru,i.

The user-specified number of latent factors is varied in [80, 160, 200, 320, 480]. 
For each number of factors, we run 10 experiments and Table 3 in Sect. 8.3 reports 
the average RMSE over all runs.
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