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Abstract
The opacity inherent in machine learning models presents a significant hindrance 
to their widespread incorporation into decision-making processes. To address this 
challenge and foster trust among stakeholders while ensuring decision fairness, 
the data mining community has been actively advancing the explainable artificial 
intelligence paradigm. This paper contributes to the evolving field by focusing on 
counterfactual generation for time series classification models, a domain where 
research is relatively scarce. We develop, a post-hoc, model agnostic counterfactual 
explanation algorithm that leverages the Matrix Profile to map time series discords 
to their nearest neighbors in a target sequence and use this mapping to generate new 
counterfactual instances. To our knowledge, this is the first effort towards the use of 
time series discords for counterfactual explanations. We evaluate our algorithm on 
the University of California Riverside and University of East Anglia archives and 
compare it to three state-of-the-art univariate and multivariate methods.
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1 Introduction

Counterfactual explanation models have recently emerged as a major player in 
facilitating explainable artificial intelligence’s (XAI) mission to enhance the 
transparency of machine learning decision systems. In particular, a counterfactual 
explanation helps stakeholders understand the decision of a complex black-box 
model and provides actionable insights to alter it by indicating the smallest 
amount of change required in the input. For example, instead of plainly refusing 
a mortgage application, a bank could give a justification in the form of a 
counterfactual explanation, such as: “if your yearly salary was $25,000 higher, 
the mortgage would have been approved”. Counterfactual explanations are post 
hoc, i.e. generated after training the black-box classifier, and are inferred by 
constructing a synthetic data point that leads to a different model output, called a 
counterfactual instance.

Despite their popularity in the image and tabular data domains, counterfactual 
explanation models have had limited success when it comes to time series. 
Factors such as the lack of cured datasets, the non-intuitive nature of time series 
data, and its increased complexity are all responsible for this latency (Rojat et al. 
2021; Guidotti 2022). The methods available in the literature follow two general 
approaches. Some of them attempt to generate a counterfactual instance from the 
original input by introducing features from existing training data. Others introduce 
new perturbations by solving the problem as an optimization task with different 
desired properties as parameters. While the first group of approaches generally 
succeeds in creating realistic counterfactual explanations, the changes they 
require are usually significantly larger than the optimized perturbations (Guidotti 
2022). This trade-off between realistic, plausible and actionable explanations and 
small perturbations is one of the main challenges in the counterfactual generation 
process. However, by overly prioritizing its achievement, counterfactual 
algorithms overlook other fundamental criteria. For example, we show that two 
of the most popular time series counterfactual generation methods are more likely 
to fail in finding a valid counterfactual instance given a target class label, i.e. their 
success rate in terms of “flipping the label” of the original time series instance is 
lower than 50%. Both methods end up defaulting to an existent instance from the 
training set, which essentially amounts to a nearest neighbor problem.

We propose DiscoX, a Discord-based counterfactual eXplanation algorithm for 
time series classification that aims to generate realistic counterfactual instances by 
using high-level time series shape descriptors to guide the perturbations. DiscoX 
replaces time series discords in the original time series by their nearest neighbors 
from the target class. In contrast to other approaches in the literature, DiscoX 
does not restrict the source of the introduced perturbations to a single training 
instance, nor does it limit them to their original time steps locations. This allows 
it to perform better in terms of validity and ensures plausibility since it creates 
counterfactual instances that are close to the entire space of time series from the 
target class, not just to a single instance. In addition, by constraining perturbations 
to the discords’ nearest neighbors, it guarantees that the counterfactual instances 
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remain within a small distance of the original time series. DiscoX is a model 
agnostic algorithm, meaning that it can be used to explain all types of machine 
learning models. Moreover, it works for both univariate and multivariate time 
series.

In addition to validity, there is a crucial need for more user testing of proposed 
methods (Keane et  al. 2021). Delaney et  al. (2023) discussed the importance of 
involving users in the evaluation of counterfactual explanation models. They 
pointed out the fact that most existing counterfactual approaches have a “class-
discrimination” goal, meaning that they primarily aim to find the minimum changes 
required to alter the class of the original instance. On the other hand, the authors 
found that people tend to have a “class-distribution” goal where the counterfactual 
explanations aim to achieve a better understanding of the data domain by 
highlighting high-level features that are most important for model decisions, 
regardless of whether the changes are minimal. According to the authors, one way 
to resolve this “divergence between human and machine counterfactuals” is to shift 
the focus from the “class-discrimination” by formulating more natural, task-specific 
goals. Given that the explanation process of DiscoX relies on the use of time 
series discords as high-level shape descriptors, it represents a step towards “class-
distribution” algorithms. Since this paper aims to prove the utility of the method on 
benchmark datasets, discords are selected based on their MP values. However, by 
involving users or domain experts in the procedure, specific discords can be selected 
depending on the explanation goals. We leave this as an avenue for future work.

The rest of this paper is organized as follows. First, we discuss counterfactual 
generation methods in the literature. Second, we define the counterfactual generation 
problem and provide important background. Finally, we assess the performance 
of DiscoX on datasets from the University of California Riverside (UCR) (Dau 
et al. 2018) and University of East Anglia (UEA) (Hoang et al. 2018) archives and 
compare it to state-of-the-art algorithms using two different black-box classifiers. 
The results show that DiscoX achieves better results in terms of validity, sparsity, 
and proximity without compromising on plausibility. In addition, we show that the 
perturbations introduced by DiscoX are more meaningful through two different case 
studies.

2  Related works

Wachter et  al. (2018) proposed the first counterfactual explanation model in the 
context of XAI. It generates explanations through the minimization of a loss function 
comprising two key components. The first component is a prediction term, which 
aims to guide the generated counterfactual towards the desired target class label. 
The second component is a distance term, designed to ensure that the counterfactual 
instance remains in close proximity to the original instance. Other methods attempt 
to improve the original loss function (Mothilal et al. 2020; Dhurandhar et al. 2018; 
Van Looveren and Klaise 2019). For example, Counterfactual Explanations Guided 
by Prototypes (CEGP) (Van Looveren and Klaise 2019), incorporates a prototype 
term to the loss function to speed-us the search process and ensure plausibility. DICE 
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(Mothilal et  al. 2020) favors the generation of diverse counterfactual instances by 
adding a regularization constraint to the loss function. The contrastive explanation 
method (CEM) (Dhurandhar et  al. 2018) enforces plausibility by keeping the 
counterfactual instances within the target class data manifold using an autoencoder-
based term in the loss function.

In the context of time series classification, only a few counterfactual explanation 
methods are available to this date. A recent survey of XAI methods for time series 
classification Theissler et  al. (2022) identified four approaches in the literature. 
Among them, Native Guide (NG) by Delaney et  al. (2020) achieves good results 
on univariate data. NG works by introducing perturbations to the original data 
instance at its most influential time steps, guided by its nearest unlike neighbor (nun) 
from the target class. Karlsson et  al. (2020) generate counterfactual explanations 
for k-Nearest Neighbors and Random Shapelet Forest Karlsson et  al. (2016) as 
black-box models by either applying a global transformation or a series of local 
transformations with the goal of introducing the least amount of changes to the 
original time series. Labaien et al. (2020) showed that CEM gives good results on 
time series datasets. For multivariate time series, CoMTE (Ates et al. 2021) builds 
the KD-tree of the target class to identify the nun of the original time series. Then, 
it employs a heuristic search method involving hill climbing and a subsequent 
trimming step to identify the smallest necessary set of dimensions to substitute from 
the nun. If this strategy is unsuccessful in generating a valid counterfactual instance, 
a greedy search is carried out instead.

More recently, Looveren et  al. (2021) proposed a general framework based on 
conditional generative models that supports different data modalities including 
time series. Höllig et  al. (2022) introduced TSEvo, a method for univariate and 
multivariate time series based on the Non-Dominated Sorting Genetic Algorithm 
(Deb et  al. 2002) that creates explanations using three different mutations. Filali 
Boubrahimi and Hamdi (2022) extend the approach by Wachter et al. (2018) through 
the introduction of a Dynamic Barycenter Averaging (DBA) (Petitjean et al. 2011) 
loss term and Li et al. (2022a) by guiding the perturbations using a shapelet-based 
term. MG-CF (Li et al. 2022b) and SETS (Bahri et al. 2022a) are two other methods 
that base their perturbation process on time series shapelets. Given that both of these 
methods generate explanations by replacing shapelets in the original time series 
with subsequences from the training data and since it is possible to leverage the MP 
to discover shapelets (Zhu et al. 2020), they are most similar to DiscoX. However, 
none of them uses the MP to mine shapelets. In addition, the method suggested by 
Zhu et al. (2020) only allows identifying shapelet candidates. It does not guarantee 
the extraction of subsequences that are maximally representative of a dataset 
class. The reason is that the MP values are not constrained by the total number of 
occurrences. Therefore, relying on it will result in subsequences that only occur 
twice in the dataset, whereas a shapelet should in theory be present in several dataset 
instances of the same class. Moreover, the MP-based shapelet candidates mining 
procedure cannot be extended to multivariate time series given that a multivariate 
MP is not simply equivalent to a matrix of stacked univariate MPs (Yeh et  al. 
2017a). Finally, Bahri et al. (2022b) proposed TeRCE, a method that mines temporal 
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rules in multivariate time series and generates explanations by replacing them using 
data from a nun.

3  Preliminaries

3.1  Problem formalism

Consider a dataset with N multivariate time series instances D = {T1, T2,… , TN} , 
such that each Ti ∈ ℝ

D×L , where D is the number of dimensions and L is the 
length of the time series (i.e. number of time steps) is mapped to a class from 
the mutually exclusive set C = {C1,C2,… ,CM} . Given a black-box classification 
model with prediction function f ∶ ℝ

D×L
→ C; T ↦ C trained on the dataset 

and an instance T = (T (1), T (2),… , T (D)) ∈ D : T (d) ∈ ℝ
L with class prediction 

f (T) = Cm , a counterfactual explanation is generated by introducing a perturbation 
Δ = (Δ(1),Δ(2),… ,Δ(D)) ∈ ℝ

D×L : Δ(d) ∈ ℝ
L to T to achieve f (T + Δ) = Cm� where 

Cm′ ≠ Cm is the target counterfactual class.

3.2  Counterfactual desired properties

The most important properties that are commonly sought in counterfactual 
explanations throughout the literature are proximity, sparsity, plausibility, and 
validity. Achieving a trade-off between all criteria is the primary concern when 
introducing the perturbation Δ.

• Proximity: The counterfactual instance has to be close to the original time 
series instance. The L1 -, L2 -, and Linf -norms have all been used as proximity 
measures (Delaney et al. 2020; Mothilal et al. 2020; Van Looveren and Klaise 
2019; Filali Boubrahimi and Hamdi 2022; Bahri et  al. 2022b). Formally, 
||Δ||p∈{1,2,∞} has to be minimal.

• Sparsity: The counterfactual instance has to preserve as many features as 
possible from the original time series instance. Therefore, the number of 
features modified by Δ have to be minimized (Delaney et al. 2020; Mothilal 
et  al. 2020; Van Looveren and Klaise 2019; Filali Boubrahimi and Hamdi 
2022; Bahri et al. 2022b; Karimi et al. 2020). Formally, ||Δ||0 which represents 
the sum of non-zero elements of Δ has to be minimal.

• Plausibility: The counterfactual instance have to be realistic. Thus, they must 
lie within the data manifold of the training data. The use of autoencoders 
and outlier detection methods such as the local outlier factor (Breunig et  al. 
2000; Kanamori et al. 2020), isolation forests (Liu et al. 2008), and one-class 
support vector machine (Schölkopf et al. 2001) have occurred in the literature 
(Van Looveren and Klaise 2019; Delaney et al. 2020; Bahri et al. 2022b)

• Validity: Since the counterfactual generation processes is not guaranteed to 
succeed for most methods in the literature, a common evaluation criteria is 
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to consider the ability to generate a valid counterfactual explanation for the 
original time series To given a target class Cm′ , i.e. the ability to “flip the label” 
(Mothilal et al. 2020).

3.3  Matrix profile

The Matrix Profile (MP) time series data structure, has been introduced recently 
by Yeh et al. (2017b) and was met with huge success in the time series mining 
community. By considerably reducing the time complexity required for the 
similarity search ( O(L × log L) using the Mass algorithm (Yeh et  al. 2017b)) 
and the all-pairs similarity search for time series subsequences ( O(L2) using 
the STOMP algorithm (Zhu et al. 2018)), the MP has been quickly leveraged to 
solve a plethora of problems. For example, it has been used for motif discovery 
(Yeh et al. 2017b), anomaly detection (Lu et al. 2022), and clustering (Gharghabi 
et al. 2018). However, to the extent of our knowledge, the MP has not been used 
yet in the context of XAI. DiscoX leverages the MP to 1) find discords from 
the original instance in regard to the target class instances and 2) match these 
discords to their closest subsequences.

The MP is classically defined for univariate time series. While there have 
been efforts to extend the structure to multivariate time series (Yeh et al. 2017b), 
it is not relevant for the purpose of this work. Therefore, this section assumes 
D = 1 . Let T be a univariate time series vector of length L: T = (t1, t2,… , tL) and 
T ′ a univariate time series vector of length L′ : T � = (t�

1
, t�
2
,… , t�

L�
) . If T is the 

query time series and T ′ is the reference time series, the aim of the MP is to 
provide fast access to the nearest neighbor of each subsequence of T of length m 
defined as subT

i,m
= (ti, ti+1,… , ti+m) from the set of T ′ subsequences subT ′

j,m
 of the 

same length m. We summarize the main steps as follows: 

1. First, for each query subsequence subt
i,m

 , the distance profile vector 
Di = (di,0, di,1,… , di,L−m+1) is computed using a sliding window: for each subt

i,m
 

in T, the distance dist(z(subt
i,m
), z(subt

�

j,m
)) where z is the z-normalization function 

and dist is the Euclidean distance is computed and stored in di,j . Using the dis-
tance profile Di , finding the distance of the query subt

i,m
 to its nearest neighbor 

simply amounts to finding the smallest value di,j in Di . In which case, the nearest 
neighbor is the subsequence (t�

j
, t�
j+1

,… , t�
j+m

).
  In case the query time series is the same as the reference one T = T � , subt

i,m
 will 

also be a subsequence of T ′ . Therefore, an exclusion zone is first set up around its 
position i in Di to avoid trivial matches, i.e. to avoid returning the query itself or 
an overlapping neighboring subsequence. Traditionally, the exclusion zone is set 
to m/2 on both sides of i.

2. Using the distance profiles Di of each subi,m , the matrix profile vector 
MP(T , T �) = (mp1,mp2,… ,mpL−m+1) is created such that mpi = min(Di) . 
Therefore, MP(T , T �) provides direct access to the distance separating each query 
subsequence subt

i,m
 from its nearest neighbor in T ′.
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3. Finally, the matrix profile index vector MPI(T , T �) = (mpi1,mpi2,… ,mpiL−m+1) is 
created to keep track of the locations of the nearest neighbors of each subsequence, 
by recording the index of the minimum distance in each Di : mpii = ������(Di).

3.4  Time series discords

A time series discord is defined as the subsequence that has the maximum distance 
to its nearest neighbor. Therefore, discords in T with regard to reference T ′ represent 
shape descriptors that characterize T but do not occur in T ′.

3.4.1  Univariate time series discords

The MP facilitates the extraction of discords in the same way it does for motifs; they 
occur at its peaks. Given T and T ′ , the most important discord can be simply 
extracted as the subsequence with the highest value in MP(T , T �) , i.e. subT

i,m
 : 

i = ������(MP(T , T �)) and its nearest neighbor as subT ′

j
 : j = MPI(T , T �)i.

3.4.2  Multivariate time series discords

In this section, we describe the process of finding discords in a multivariate time 
series setting. Given query T and reference T ′ with T , T � ∈ ℝ

D×L , the most intuitive 
way is to compute MPd(T , T �) at each dimension d ∈ D , aggregate the results by 
summing up the values at each time step to form an aggregate vector 

M̂P(T , T �) =
D∑
k=d

MP(T (d), T �(d)) , and retrieve the most important discord as the high-

est value. However, this approach is bound to fail in detecting meaningful discords 
in real-life datasets. The reason is that in the presence of a high number of dimen-
sions, discords tend to appear in a subset of D only, in which case the rest of the 
dimensions that do not contribute to the discord will curtail the sum value in 
M̂P(T , T �).

Tafazoli and Keogh (2023) discuss this issue and propose the TSADIS (Time 
Series Anomaly Detection through Incremental Search) algorithm to overcome it. 
We provide an outline of TSADIS in the next paragraph (we highly encourage read-
ing the original paper for a more detailed and illustrated walkthrough). The algo-
rithm was developed for anomaly detection using a discord-based approach. To 
remain relevant with our paper, we substitute the word “anomaly” in the terminol-
ogy of the original paper with “discord”. In addition, we adapt the algorithm to the 
outer-join setting of the current work (i.e. T ≠ T ′ ), whereas the original paper con-
siders self-joins only (i.e. T = T � ). 

0. TSADIS defines a K-dimensional-discord (KDD) as a discord that appears on at 
least K dimensions. kDD is a natural discord if k corresponds to its number of 
natural dimensions, i.e. to the maximum number of dimensions that contribute 
to it.
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1. TSADIS star ts by computing the all-matr ix-prof iles structure 
MPs(T , T

�) = (MP(1),MP(2),… ,MP(D)) : MP(d) = MP(T (d), T �(d)).
2. Then, it constructs the K-dimensional-discord-score (KS) lists, where each kS list 

contains all possible combinations of discord-score sets (S) of size k. A discord-
score set is any combination of discord scores ( MP(d) ) from MPs(T , T �) . For T 
and T ′ , the kS lists are formally represented as follows: 

3. Every possible kDD will manifest in the corresponding kS set. To facilitate their 
extraction, TSADIS aggregates each discord-score set S by taking the minimum 
value of its MP(d) elements at each time step. This results in the creation of a Min 
Matrix Profile (MMP) for each S: MMP = (min(S1), min(S2),… , min(SL−m+1)) 
where min(Sl) = min

d∈K
(MP

(d)

l
) . The min operator ensures that high values MMP 

values represent timesteps where all the MP(d) are high.
4. An MMP’s peaks indicate the locations of the KDDs that occur in its 

corresponding dimensions. To represent all the possible KDDs in a given KS, 
TSADIS creates a KD-Profile vector (KDP) that aggregates its MPP discord score 
values by taking their maximum value at each time step. Formally, 
KDP = (max(MMP1), max(MMP2),… , max(MMPL−m+1))  w h e r e 
max(MMPl) = max

d
(MMP

(d)

l
) . In addition, a KD-Profile Index vector (KDPI) 

keeps track of the dimensions that contribute to the KDP at each time step. 
Finally, TSADIS gathers all KDPs into an All-KD-Profiles (KDPs) matrix and all 
KDPIs into an All-KD-Profile Index (KDPIs) matrix.

5. The final discord score of a potential kDD at timestep i can be computed by 
aggregating its corresponding scores from KDPs (in this work, we use a mean 
strategy to penalize each KDD by the number of dimensions on which it occurs, 

i.e. �����(KDD) = 1

k

k∑
d=0

KDPs
(d)

i
 ), and the k dimensions that contribute to it can 

be extracted from KDPIs(k)
i

 . The most important kDD is characterized by the 
highest score.

While being necessary to understand the algorithm, this naive version of TSADIS 
is highly time consuming. Thus, the authors presented a simple strategy to speed it 
up. Given that the dicords scores are independent at each time step, the KDPs can 
be obtained by computing all the MPs, sorting their values at each time step i, and 
assigning the k-largest value at each i to kDPi . Following this approach, the KDPs 
can be computed in O(D logD).

1S = ({MP(1)}, {MP(2)},… , {MP(D)})

2S = ({MP(1),MP(2)}, {MP(1),MP(3)}, {MP(2),MP(3)},… , {MP(D−1),MP(D−1)})

⋯

DS = ({MP(1),MP(2),… ,MP(D−1),MP(D)})
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4  Proposed approach

4.1  Rationale

The proximity and sparsity properties constrain the magnitude of the perturbation Δ . 
However, for a counterfactual explanation with target class Cm′ to be plausible, it has 
to be similar to other dataset instances from the same class Dm� = {∀Ti|Ti ∈ Cm� } . In 
this section, we introduce DiscoX, a novel model agnostic counterfactual explanation 
model for univariate and multivariate time series that generates a counterfactual 
instance by removing the shape descriptors in the original time series T which set it 
apart from the elements of Dm′ and replacing them with their closest subsequences 
from Dm′ . This simple mechanism ensures that the counterfactual instance resembles 
the target class elements and that the perturbation Δ remains small in magnitude. 
Moreover, by considering all elements of Dm′ in the perturbation process, DiscoX 
generates instances that are close to the entire target class Cm′ space, increasing its 
chances to find valid counterfactual explanations.

4.2  Counterfactual explanation generation

Algorithm 1 describes the DiscoX counterfactual explanation generation process for 
both univariate and multivariate time series. Note that if T is univariate, k and ds 
will always be equal to 0. The only hyperparameter in DiscoX is the window size m.

First, DiscoX starts by constructing the reference time series Tm′ by concatenating 
all the target class instances {Ti|Ti ∈ Cm� } with the introduction of a null separator 
(null array of size D in the multivariate case) between every two instances to prevent 
the introduction of fabricated patterns that do not exist in the original dataset 
(Algorithm  1, lines 2–5). Then, it computes all dicords scores and all discords 
indices matrices DS and DI as described in Algorithm 2. If T is univariate, DS is 
set to MP(T , Tm� ) and DI to MPI(T , Tm� ) (Algorithm  2, line 2). Otherwise, KDPs 
and KDPIs are computed using TSADIS and used to compute DI and DS in such a 
way that each DId,i element indicates the dimensions that contribute to the discord 
at position (d, i) and each DISd,i element stores the score of the discord at position 
(d, i) (Algorithm 2, lines 4–9). Next, DiscoX creates the target time series instance 
and initializes it to the original time series (Algorithm 1, line 9). Then, it performs 
the following steps until a counterfactual explanation is found, i.e. f (Tcf ) = Cm� , or 
until all T subsequences have been completely changed into Tm′ subsequences1:

1 While not all subsequences are discords, replacing those with low DS values will not have a significant 
impact since they are highly similar to their nearest neighbors in T

m′ ; we chose to follow this strategy 
instead of introducing a discord threshold hyperparameter value.
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Algorithm 1  DISCOX 

 

1. The dimensions and time steps indices ds and i of the discord with the highest 
score and its nearest neighbor subsequence location nn_i in Tm′ are extracted as 
described in Algorithm 3. If T is univariate, DS = MP and DI = MPI . Therefore, i 
is the location of the highest value in DS: i = ������(DS) and nn_i can be directly 
extracted from DI (Algorithm 3, lines 3–4). In case T is multivariate, the i and d 
indices can also be extracted directly from DS and DI (Algorithm 3, lines 6–7). 
However, extracting nn_i requires an extra step. Using the Mass similarity search 
algorithm (the cornerstone of the MP) introduced by Yeh et al. (2017b), DiscoX 
computes the DP vectors of subT

m,i
 and Tm′ at each dimension in ds, sums them up 

at each time step, and extracts nn_i as the time step index with the highest value 
(Algorithm 3, lines 8–13). Finally, the DS value corresponding to the current 
discord is set to −∞ to exclude it from the next iterations.

2. The subsequence of Ttg that is located at the same time steps of the current discord 
sub

Ttg

i,m
 is replaced by the discord’s nearest neighbor subsequence from the target 

class instances subTm′nni,m
 at each dimension in ds (Algorithm 1, line 14).

3. The counterfactual explanation Tcf  is constructed using simple weighted linear 
interpolation of T and Ttg . First, DiscoX assigns a higher weight to T. Then, 
it keeps reducing it as long as f (Tcf ) ≠ Cm� , until the current and previously 
discovered discords are completely replaced by their closest subsequences 
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from Tm′ (Algorithm 1, lines 15–17). In this paper, we use weight increments of 
winc = 10−2 . Smaller increments could result in even smaller Δ , but at the expense 
of higher computational time.

While it is not the most intuitive way to keep track of discovered discords and of 
their nearest neighbor subsequences, using Ttg allows DiscoX to speed-up the pertur-
bation step (line 16) from O(n) where n is the number of matched discords to O(1) , 
by interpolating all discovered discords simultaneously.

4.3  Time complexity

The time complexity of the inner loop in Algorithm 1, line 15 is O(1∕winc) The com-
plexity of the outer loop in Algorithm 1, line 10 is smaller than O(L) ( O(L) means 
that an entire iteration is spent to match each single time step).

Let S be the length of Tm′ . If class Cm′ contains Nm′ time series instances, 
S = Nm� × (L� + 1) − 1.

4.3.1  Univariate time series ( D = 0)

The worst case time complexity of ���_�����() is O(S2) , the complexity of STOMP. 
The time complexity of ���_�������_��() is O(L) , the complexity of argmax. 
Therefore, the complexity of the entire perturbation procedure (lines 10–19) –and 
thus of DiscoX– is smaller than O(LS2).

4.3.2  Multivariate time series ( D > 0)

The worst case time complexity of ���_�����() is O(D logD) , the complexity of 
TSADIS. Since the complexity of the Mass algorithm is O(SlogS) , the time com-
plexity of ���_�������_��() is O(DSlog(Lm� )) . Therefore, the complexity of the 
entire perturbation procedure (lines 10–19) –and thus of DiscoX– is smaller than 
O(DLSlog(S)) . Note here that the loop in Algorithm 3, line 9 is embarrassingly par-
allel. Therefore, the time complexity can be reduced to O(LSlog(S)) in the presence 
of sufficient computational cores.
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Algorithm 2  GET_SCORES() 

Algorithm 3  GET_DISCORD_NN() 
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5  Experimental setup

5.1  Black‑box classification models

We conduct our experiments using two different time series black-box classification 
models: Residual Network (ResNet) (Wang et al. 2017) and RandOm Convolutional 
KErnel Transform (MrSQM) (Nguyen and Ifrim 2023). The former is a classic deep 
learning architecture for time series classification that achieved good results on the 
UCR archive in a recent benchmark (Ismail Fawaz et al. 2019). The latter is a symbolic 
representation based model that achieves state-of-the art results with a very short 
runtime. We keep default parameter configurations for both architectures and train 
ResNet for 1500 epochs, similarly to Ismail Fawaz et al. (2019).

5.2  Datasets

We evaluate the counterfactual instances generated from the UCR archive (Dau et al. 
2018) of univariate time series datasets and the UEA archive (Hoang et al. 2018) of 
multivariate time series datasets. First, we train ResNet and MrSQM models on the 
proposed training sets of all 117 fixed-length datasets from UCR (we discard the 11 
variable-length ones to avoid preprocessing issues) and all 26 datasets from UEA. 
Then, we test the models’ classification performances on their respective test sets and 
select the datasets with f1-scores of 100% from the UCR archive to ensure that the 
counterfactual explanations are robust, i.e. that the label did flip due to uncertainty on 
the classification model side. For the UEA archive, we lower the f1-score threshold to 

Table 1  Datasets details

Dataset Train Size Test Size Classes Length Dimensions

BME 30 150 3 128 1
CBF 30 900 3 128 1
Coffee 28 28 2 286 1
GunPoint 150 150 2 150 1
GunPointAgeSpan 135 316 2 150 1
ECGFiveDays 23 861 2 136 1
InsectEPGRegularTrain 62 149 3 601 1
Meat 60 60 3 448 1
Plane 105 105 7 144 1
ShapeletSim 20 180 2 500 1
Trace 100 100 4 275 1
ArticularyWordRecognition 275 300 25 144 9
BasicMotions 40 40 4 100 6
Cricket 108 72 1197 12 6
Epilepsy 137 138 4 206 3
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95% since none of the datasets yielded a 100% value. This results in 8 and 7 datasets 
from UCR for ResNet and MrSQM respectively, and 4 datasets from UEA for both 
models (see Table 1 for details of the datasets).

5.3  Baselines and implementation details

We compare the DiscoX counterfactual explanations to those generated by three 
baseline methods. 

1. CEGP: (Van Looveren and Klaise 2019) an optimization based algorithm that 
improves the one by Wachter et al. (Wachter et al. 2018). CEGP was originally 
proposed for tabular and image data. However, it can be easily adapted for 
time series. We use it as the representative algorithm for optimization-based 
explanation models instead of CEM (Dhurandhar et al. 2018) since the latter 
requires training autoencoders models for each dataset, while CEGP provides the 
option of replacing them by KD-tree class prototypes.

  CEGP is originally designed for neural network black-box classifiers, as it 
needs the f prediction function to be differentiable to compute its gradients. The 
authors also proposed an algorithm to compute the gradients for other types of 
models. However, the runtime is so slow that they chose not to include it in their 
experiments. Since our experiments using MrSQM proved similar, we only use 
CEGP to explain ResNet predictions.

2. Native Guide (NG): (Delaney et  al. 2020) in case the black-box model is 
differentiable, NG introduces perturbations at the most important time steps of 
the original instance, extracted from the Class Activation Map (Zhou et al. 2015) 
of the black-box neural network model, by injecting values from the target class 
nun at the same time steps. Otherwise, it uses DBA (Petitjean et al. 2011) with 
incremental weights to generate the counterfactual instance by interpolating the 
original time series and the reference nun.

3. CoMTE: (Ates et  al. 2021) is the first counterfactual explanation method 
designed specifically for multivariate time series. It works by selecting a nun 
from the target class and replacing entire dimensions in the original time series 
with dimensions from the nun.

The source code for DiscoX is available in our project website.2 The only 
hyperparameter of DiscoX is the window size m. Ideally, it should be defined by 
domain experts for each different dataset. In the following experiments, we set it 
to m = 0.1 × L . Since NG and CoMTE default to the nun in case they fail to find a 
counterfactual instance, we follow the same approach for the sake of proximity and 
sparsity evaluation only. However, since the nuns belong to the original data it does 
not make sense to include them in the plausibility evaluation.

2 https:// sites. google. com/ view/ DiscoX/ home.

https://sites.google.com/view/DiscoX/home
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6  Experimental results

We generate counterfactual explanation instances using DiscoX, NG, CEGP, 
and CoMTE to explain the predictions of the ResNet and MrSQM classification 
models trained on the selected datasets. For each time series instance T from the 
test set with class prediction f (T) = Cm , we produce a counterfactual explana-
tion with each of the other dataset classes set as the target class Cm� ∈ C − Cm . 

Table 2  Comparing proximity scores for counterfactual explanations generated from univariate UCR 
datasets using ResNet as the black-box classifier

For each dataset, the bold highlights the method with the best performance

L1 L2

Dataset NG CEGP DiscoX NG CEGP DiscoX

BME 25.79 27.06 25.97 3.61 4.32 3.80
Coffee 12.92 14.58 8.66 1.10 1.93 1.26
GunPoint 15.24 4.96 6.03 1.87 0.91 1.08
InsectEPGRegularTrain 631.67 1,335.12 541.74 26.57 66.41 29.51
Meat 6.70 16.80 6.46 0.46 1.42 0.55
Plane 72.94 43.21 31.78 8.04 5.04 4.72
ShapeletSim 276.96 18.33 114.87 15.86 2.12 10.02
Trace 165.46 326.38 36.36 13.92 25.97 5.56
Average Rank 2.25 2.38 1.38 1.88 2.38 1.75

Table 3  Comparing proximity 
scores for counterfactual 
explanations generated from 
univariate UCR datasets using 
MrSQM as the black-box 
classifier

For each dataset, the bold highlights the method with the best 
performance

L1 L2

Dataset NG DiscoX NG DiscoX

CBF 67.69 32.23 7.85 4.89
Coffee 15.36 11.37 1.32 1.41
GunPointAgeSpan 5366.00 1143.38 635.93 120.52
ECGFiveDays 7.96 7.50 1.23 1.47
Plane 59.65 38.33 6.53 5.44
ShapeletSim 353.31 212.88 21.42 14.19
Trace 111.70 65.24 9.66 7.81
Average Rank 2 1 1.86 1.14
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Therefore, for a dataset with N time series instances and M number of classes, 
we attempt to create N ×M counterfactual explanations.

6.1  Proximity

We adopt the L1 - and L2–norms as proximity measures to compare how small are 
the perturbations Δ introduced by each method. We compute ||Δ||1 and ||Δ||2 for the 
explanations of each dataset and display the results in addition to the average ranks 
over all datasets in Tables 2 and 3 for the UCR datasets and Tables 4 and 5 for the 
UEA datasets. The results show that DiscoX ranks consistently better compared to 
the other baselines using both metrics. This means that DiscoX generates counter-
factual instances that are closer to the original time series.

6.2  Plausibility

We use the local outlier factor (LOF) novelty detection algorithm Breunig et al. 
(2000); Kanamori et  al. (2020), which computes the local density variation for 
each instance in relation to its neighbors and identifies instances with lower 

Table 4  Comparing proximity 
scores for counterfactual 
explanations generated from 
multivariate UEA datasets 
using ResNet as the black-box 
classifier

For each dataset, the bold highlights the method with the best 
performance

L1 L2

Dataset COMTE DiscoX COMTE DiscoX

Articulary-
WordRecognition

1,474.69 652.15 50.69 28.09

BasicMotions 2,229.03 1178.75 133.51 89.35
Cricket 7,819.35 3814.10 119.59 75.27
Epilepsy 507.21 351.90 25.83 21.02
Average Rank 2 1 2 1

Table 5  Comparing proximity 
scores for counterfactual 
explanations generated from 
multivariate UEA datasets 
using MrSQM as the black-box 
classifier

For each dataset, the bold highlights the method with the best 
performance

L1 L2

Dataset COMTE DiscoX COMTE DiscoX

Articulary-
WordRecognition

1475.39 1125.33 50.69 40.26

BasicMotions 2204.98 1542.49 132.13 100.31
Cricket 7821.33 4957.36 119.58 86.08
Epilepsy 552.07 331.08 28.07 19.10
Average Rank 2 1 2 1
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Table 6  Comparing plausibility, sparsity, and validity scores for counterfactual explanations generated 
from univariate UCR datasets using ResNet as the black-box classifier

For each dataset, the bold highlights the method with the best performance

LOF Sparsity Failure Rate

Dataset NG CEGP DiscoX NG CEGP DiscoX NG CEGP DiscoX

BME 0.01 0.43 0.23 0.67 1.00 0.78 0.67 0.33 0.50
Coffee 0.31 0.9 0.08 0.54 1.00 0.28 0.54 0.21 0.00
GunPoint 0.5 0.22 0.3 0.51 1.00 0.32 0.51 0.14 0.01
InsectEPGRegularTrain 1 1 1 0.48 1.00 0.67 0.68 0.12 0.00
Meat 0.88 0.87 0.34 0.68 1.00 0.58 0.67 0.33 0.03
Plane 0.92 0.96 0.98 0.67 1.00 0.57 0.86 0.32 0.05
ShapeletSim 0 0 0 0.86 1.00 0.56 0.50 0.00 0.02
Trace 0.62 0.81 0.7 0.50 1.00 0.45 0.75 0.23 0.06
Average Rank 1.63 2 1.63 1.78 3.00 1.22 3 1.75 1.25

Table 7  Comparing plausibility, 
sparsity, and validity scores 
for counterfactual explanations 
generated from univariate UCR 
datasets using MrSQM as the 
black-box classifier

For each dataset, the bold highlights the method with the best 
performance

LOF Sparsity Failure Rate

Dataset NG DiscoX NG DiscoX NG DiscoX

CBF 0 0.18 0.67 0.44 0.67 0.06
Coffee 12.92 8.66 0.89 0.38 0.25 0
GunPointAgeSpan 0.57 0.53 0.51 0.36 0.51 0.21
ECGFiveDays 0.08 0.15 0.51 0.46 0.50 0
Plane 0.92 0.98 0.97 0.63 0.41 0.07
ShapeletSim 0 0 0.85 0.59 0.32 0.21
Trace 0.61 0.69 0.99 0.51 0.08 0.15
Average Rank 1.29 1.71 2 1 1.71 1.29

Table 8  Comparing plausibility, sparsity, and validity scores for counterfactual explanations generated 
from multivariate UEA datasets using ResNet as the black-box classifier

For each dataset, the bold highlights the method with the best performance

LOF Sparsity Failure Rate

Dataset COMTE DiscoX COMTE DiscoX COMTE DiscoX

Articulary-
WordRecognition

0.96 0.72 1.00 0.66 1.00 0.14

BasicMotions 0.5 0.4 1.00 0.62 1.00 0.07
Cricket 0.59 0.35 1.00 0.58 1.00 0.07
Epilepsy 0.36 0.31 0.99 0.73 1.00 0.14
Average Rank 2 1 2 1 2 1
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densities as outliers, to evaluate the plausibility of each counterfactual method 
explanations. In Tables  6 and 7, we display the outlier factor values (ratio of 
counterfactual explanations detected as outliers compared to their target class 
instances) of each method over for the UCR datasets. in addition to the average 
ranks. The results for the UEA datasets are displayed in Tables 8 and 9. Using 
ResNet as the black-box classifier, the univariate explanations generated by Dis-
coX and NG had the same proportion of outliers. On the other hand, NG generate 
significantly fewer outliers with MrSQM as the black-box classifier. Therefore, 
the DBA version of NG does better in this regard compared to the original CAM 
version. CEGP and CoMTE generated more outliers in all cases.

6.3  Sparsity

We measure sparsity as the total number of time steps that have been modified in the 
original time series to create the counterfactual instance, i.e. the sum of non-zero 
elements in the perturbation vector ||Δ||0 . DiscoX is the clear winner when it comes 
to this criteria, with a little competition from NG for the UCR datasets using ResNet 
only. With MrSQSM as the black-box model, NG introduces perturbations at almost 
every time step as expected results from its DBA version (the values are not equal 
to 1.0 since some nun time steps are similar to the original ones). As to CEGP and 
CoMTE, they both modifiy every single time step for all datasets.

6.4  Validity

Finally, we assess the validity of each method by comparing the failure rate on 
each dataset, i.e. the ratio of the total number of times where the method failed 
to find a counterfactual explanation over the total number of attempts ( N ×M ). 
Once more, DiscoX was the most successful in finding explanations, this time 
followed by CEGP. NG had a significantly higher failure rate, particularly using 

Table 9  Comparing plausibility, sparsity, and validity scores for counterfactual explanations generated 
from multivariate UEA datasets using MrSQM as the black-box classifier

For each dataset, the bold highlights the method with the best performance

LOF Sparsity Failure Rate

Dataset CoMTE DiscoX CoMTE DiscoX CoMTE DiscoX

Articulary-
WordRecognition

0.96 0.55 1.00 0.95 1.00 0.85

BasicMotions 0.5 0.42 1.00 0.76 1.00 0.5
Cricket 0.59 0.11 1.00 0.83 1.00 0.72
Epilepsy 0.36 0.32 1.00 0.77 1.00 0.55
Average Rank 2 1 2 1 2 1
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the prioritized CAM version where it did not go below 50% . As to CoMTE, it 
appears that it has defaulted to the nun for all instances.

6.5  Visual analysis

In this section, we evaluate the counterfactual instances by comparing their plots 
to the original data and by projecting their distributions on a 2-D space. For this 
purpose, we select two food spectrography datasets from Table 1, namely Coffee 
and Meat, as they both contain well separated and visually intelligible classes. 
The Coffee dataset was first introduced by Briandet et  al. (1996) for the task 
of distinguishing between Arabica and Robusta coffee beans. The Meat dataset 
first appeared in a paper by Al-Jowder et al. (1997). It contains spectrographs of 
three types of meat: Chicken, Turkey, and Pork. We consider the explanations 
generated using the ResNet model, as both NG and CEGP favor neural network 
classifiers. We limit this study to univariate datasets since (1) they are easier to 
visualize and (2) CoMTE, the only multivariate specific algortihm defaulted to 
the nuns for all datasets instances.

6.5.1  Visualizing counterfactual explanations

In Figs. 1 and 2, we compare the original spectrographs to the generated ones. Each 
row contains spectrogaphs from a given class (either belong to it or predicted by 
ResNet). The first column contains the original spectrogaphs from the training sets. 
The second, third, and fourth columns contain the intances generated by DiscoX, 
CEGP, and NG respectively. In each subfigure, we plot all the timeseries instances 
belonging to the particular “class-algorithm” pair (or “class-training set” for the first 
column).

a) 

Arabica

Robusta

c) 

b) d) 

e) 

f) 

g) 

h) 

Fig. 1  Comparing Coffee counterfactual explanation instances generated using DiscoX (c, d), CEGP (e, 
f), and NG (g) to the original training set time series (a, b). Legend provided in (h) (Color figure online)
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Coffee Dataset The original spectrographs in Fig.  1a, b show the existence of 
a main characteristic feature that differentiates Arabica beans from Robusta beans, 
located in the rectangular boxes. For the Arabica class, the three peaks are aligned 
along a descending diagonal line ∖ (framed in red), whereas for the Robusta class, 
the three peaks from a reversed V shape Λ with the highest one in the middle 
(framed in green).

By looking at the DiscoX spectrographs, it is clear that only DiscoX was able 
to transform the diagonal shape ∖ into the reversed V shape Λ when creating coun-
terfactual instances for the Robusta class time series, and vice-versa. On the other 
hand, the counterfactual instances generated by CEGP and NG preserved the charac-
teristic feature of their original classes (Fig. 1e–g). This makes them visually similar 
to the original classes whereas, in theory, they should be similar to the target class. 
For example, the Robusta spectographs in Fig. 1f resemble the original Arabica ones 
in Fig. 1a and the Arabica spectorgraphs in Fig. 1g resemble the original Robusta 
ones in Fig. 1b. In addition, the CEGP optimization process results in noisy, unreal-
istic time series that contain oscillations throughout their length. Moreover, NG was 
unable to generate counterfactuals with Robusta as a target class.

Meat Dataset As pointed to in the original paper (Al-Jowder et  al. 1997), the 
original spectrographs in Fig.  2a–c contain a main characteristic feature that 
differentiates the three types of meats as show in the rectangular boxes. In particular, 
the Chicken spectrographs in that area are defined by a smooth U-curve (framed in 

a) 

b) 

c) 

d) 

e) 

f) 

g) 

h) 

i) 

j) 

k) 

Chicken

Turkey

Pork

Fig. 2  Comparing Meat counterfactual explanation instances generated using DiscoX (d–f), CEGP (g–i), 
and NG (j) to the original training set time series (a–c). Legend provided in (k) (Color figure online)



Discord-based counterfactual explanations for time series…

red), whereas the Turkey and, more noticeably, Pork spectographs contain a small 
bump (framed in green).

Similarly to the Coffee dataset, only DiscoX was able to smoothen the bump 
when generating Chicken counterfactuals for Turkey and Pork instances (Fig. 2d). 
On the other hand, CEGP and NG failed in eliminating this characteristic feature 
as shown in the green boxes in Fig. 2g, j. In addition, the instances generated by 
CEGP suffer from the same oscillations problem and NG only succeeded in finding 
explanations when Chicken is set as a target class.

From the above observations, we conclude that DiscoX introduces meaningful 
perturbations. Therefore, the explanations it provides can be easily interpretable 
and understood by stakeholders. Also, we note that (1) CEGP’s oscillation problem 
explains its low plausibiliy performance in Sect. 6.2 and (2) NG’s success with one 
target class explains its low validity rate in Sect. 6.4.

a) DiscoX b) NG

Arabica

Robusta

Fig. 3  Comparing the distributions (first two PCA components) of Coffee counterfactual explanation 
instances generated using DiscoX (a) and NG (b) to the original training set time series

a) DiscoX b) NG

Chicken

Turkey

Pork

Fig. 4  Comparing the distributions (first two PCA components) of Meat counterfactual explanation 
instances generated using DiscoX (a) and NG (b) to the original training set time series
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6.5.2  Principal component analysis

In this section, we use Principal Component Analysis (PCA) to visualize the 
distributions of the counterfactual explanation samples by projecting them onto 
the 2-D space defined by the first two principal components of the training set. We 
discard the CEGP counterfactuals since they proved to be unrealistic in the previous 
section and visualize the counterfactuals from the classes where NG succeeded only. 
In Figs. 3 and 4, each class is represented by a combination of color and shape, with 
the unfilled shapes representing original training data samples and the filled shapes 
representing the counterfactual data.

Figures 3b and 4b show that most of the counterfactual instances generated by 
NG are in the vicinity of original instances from the opposite class: apart from a few 
exceptions, the Arabica counterfactuals are close to the Robusta original instances 
and the Chicken counterfactuals are spread around the Turkey and Pork original 
instances. This explains the fact that NG preserved the characteristic features of 
the original timeseries when generating counterfactuals in the previous section. On 
the other hand, Fig. 4a, b show that DiscoX generated most of the counterfactual 
instances in the border regions between the different classes, which precisely illus-
trates the proximity-plausibility trade-off.

7  Conclusion and future work

We proposed DiscoX, a posthoc, model agnostic counterfactual explanation 
algorithm for univariate and multivariate time series classification models. DiscoX 
utilizes the Matrix Profile (MP) all-pair similarity search to detect discords in 
the original time series with regards to all the target class data instances and to 
replace them with their closest matches. Using real-life datasets from the UCR and 
UEA archives, we compare the performance of DiscoX to three state-of-the-art 
counterfactual explanation methods. The results show that our algorithm produces 
the best counterfactuals in terms of proximity, sparsity, and validity. Moreover, we 
prove that DiscoX introduces more meaningful perturbations. By visualizing the 
counterfactual explanations created by DiscoX, we show that it is able to introduce 
human-understandable changes to the original data. The next step would be to verify 
these results and to experiment by conducting a user study with domain experts. In 
addition, we would like to test the ability of DiscoX to create explanations according 
to different domain-specific goals. For example, by allowing users to select target 
discords.
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