
Data Mining and Knowledge Discovery (2024) 38:1958–2031
https://doi.org/10.1007/s10618-024-01022-1

Bake off redux: a review and experimental evaluation
of recent time series classification algorithms

Matthew Middlehurst1 · Patrick Schäfer2 · Anthony Bagnall1,3

Received: 16 January 2024 / Accepted: 29 March 2024 / Published online: 19 April 2024
© The Author(s) 2024

Abstract
In 2017, a research paper (Bagnall et al. Data Mining and Knowledge Discovery
31(3):606-660. 2017) compared 18 Time Series Classification (TSC) algorithms on
85 datasets from the University of California, Riverside (UCR) archive. This study,
commonly referred to as a ‘bake off’, identified that only nine algorithms performed
significantly better than the Dynamic Time Warping (DTW) and Rotation Forest
benchmarks that were used. The study categorised each algorithm by the type of
feature they extract from time series data, forming a taxonomy of five main algorithm
types. This categorisation of algorithms alongside the provision of code and acces-
sible results for reproducibility has helped fuel an increase in popularity of the TSC
field. Over six years have passed since this bake off, the UCR archive has expanded
to 112 datasets and there have been a large number of new algorithms proposed. We
revisit the bake off, seeing how each of the proposed categories have advanced since
the original publication, and evaluate the performance of newer algorithms against the
previous best-of-category using an expanded UCR archive. We extend the taxonomy
to include three new categories to reflect recent developments. Alongside the origi-
nally proposed distance, interval, shapelet, dictionary and hybrid based algorithms,
we compare newer convolution and feature based algorithms as well as deep learn-
ing approaches. We introduce 30 classification datasets either recently donated to the
archive or reformatted to the TSC format, and use these to further evaluate the best
performing algorithm from each category. Overall, we find that two recently proposed
algorithms, MultiROCKET+Hydra (Dempster et al. 2022) and HIVE-COTEv2 (Mid-
dlehurst et al. Mach Learn 110:3211-3243. 2021), perform significantly better than
other approaches on both the current and new TSC problems.

Responsible editor: Eamonn Keogh

B Anthony Bagnall
a.j.bagnall@soton.ac.uk

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10618-024-01022-1&domain=pdf

Bake off redux: a review and experimental evaluation... 1959

Keywords Time series classification · Bake off · HIVE-COTE · ROCKET · UCR
Archive

1 Introduction

Time series classification (TSC) involves fitting a model from a continuous, ordered
sequence of real valued observations (a time series) to a discrete response variable.
Time series can be univariate (a single variable observed at each time point) or mul-
tivariate (multiple variables observed at each time point). For example, we could
treat raw audio signals as a univariate time series in a problem such as classifying
whale species from their calls and motion tracking co-ordinate data could be a three-
dimensional multivariate time series in a human activity recognition (HAR) task.
Where relevant, we distinguish between univariate time series classification (UTSC)
and multivariate time series classification (MTSC). The ordering of the series does
not have to be in time: we could transform audio into the frequency domain using a
discrete Fourier transform or map one dimensional image outlines onto a one dimen-
sional series using radial or linear scanning. Hence, some researchers refer to TSC as
data series classification. We retain the term TSC for continuity with past research.

TSC problems arise in a wide variety of domains. Popular TSC archives1 con-
tain classification problems using: electroencephalograms; electrocardiograms; HAR
and other motion data; image outlines; spectrograms; light curves; audio; traffic and
pedestrian levels; electricity usage; electrical penetration graph; lightning tracking;
hemodynamics; and simulated data. The huge variation in problem domains char-
acterises TSC research. The initial question when comparing algorithms for TSC is
whether we can draw any indicative conclusions on performance across a wide range
of problems without any prior knowledge as to the underlying common structure of
the data. An experimental evaluation of time series classification algorithms, whichwe
henceforth refer to as the bake off, was conducted in 2016 and published in 2017 (Bag-
nall et al. 2017). This bake off, coupled with a relaunch of time series classification
archives (Dau et al. 2019), has helped increase the interest in TSC algorithms and
applications. Our aim is to summarise the significant developments since 2017. A new
MTSC archive (Ruiz et al. 2021) has helped promote research in this field. A vari-
ety of new algorithms using different representations, including deep learners (Fawaz
et al. 2019), convolution based algorithms (Dempster et al. 2020) and hierarchical
meta ensembles (Lines et al. 2018), have been proposed for TSC. Furthermore, the
growth in popularity of TSC open source toolkits such as aeon2 and tslearn3 have
made comparison and reproduction easier. We extend and encompass recent exper-
imental evaluations (e.g. Ruiz et al. 2021; Bagnall et al. 2020a; Middlehurst et al.
2021; Fawaz et al. 2019) to provide insights into the current state of the art in the field
and highlight future directions. Our target audience is both researchers interested in

1 https://timeseriesclassification.com
2 https://www.aeon-toolkit.org
3 https://tslearn.readthedocs.io/

123

https://timeseriesclassification.com
https://www.aeon-toolkit.org
https://tslearn.readthedocs.io/

1960 M. Middlehurst et al.

extending TSC research and practitioners who have TSC problems. Our contributions
can be summarised as follows:

1. We describe a range of new algorithms for TSC and place them in the context of
those described in the bake off.

2. We compare performance of the new algorithms on the current UCR archive
datasets in a univariate classification bake off redux.

3. We release 30 new univariate datasets donated by various researchers through the
TSC GitHub repository and compare the best in category on these new datasets.

4. We analyse the factors that drive performance and discuss the merits of different
approaches.

To select algorithms, we use the same criteria as the bake off. Firstly, the algorithm
must have been published post bake off in a high quality conference or journal (or be
an extension of such an algorithm). Secondly, it must have been evaluated on one of
the UCR/UEA dataset releases, or on a subset thereof, with reasoning provided for any
datasets that are missing. Thirdly, source code must be available and easily adaptable
to the time series machine learning tools we use (i.e. usable or easily wrappable in
a Java or Python environment). Further explanation on our tools and reproducing
our experiments is available in Appendix A. We describe many algorithms which
inevitably leads tomany acronyms andpossible naming confusion.Wedirect the reader
toTable 21 for a summaryof the algorithmsused and the associated reference. Section2
describes the core terminology relating to TSC. Section 3 summarises howwe conduct
experimental evaluations of classifiers.We describe the latest TSC algorithms included
in this bake off in Section 4. This section also describes the first set of experiments
that link to the previous bake off: for each category of algorithms we compare the
latest classifiers with the best in class from Bagnall et al. (2017). Section 5 extends the
experimental evaluation to include the new datasets. Section 6 investigates variation
in performance in more detail. Finally, we conclude and discuss future direction in
Section 7.

2 Definitions and terminology

We define the number of time series in a collection as n, the number of channels/di-
mensions of any observation as d and length of a series as m.

Definition 1 (Time Series (TS)) A time series A = (a1, a2, . . . , am) is an ordered
sequence of m data points. We denote the i-th value of A by ai .

In the above definition, if every point in ai ∈ A in the time series represents a single
value (ai ∈ R), the series is a univariate time series (UTS). If each point represents the
observation of multiple variables at the same time point (e.g., temperature, humidity,
pressure, etc.) then each point itself is a vector ai ∈ R

d of length d, and we call it a
multivariate time series (MTS):

Definition 2 (Multivariate Time Series (MTS)) A multivariate time series A =
(a1, . . . , am) ∈ R

(d×m) is a list of m vectors with each ai being a vector of d channels

123

Bake off redux: a review and experimental evaluation... 1961

(sometimes referred to as dimensions). We denote the i-th observation of the k − th
channel by the scalar ak,i ∈ R.

Note that it is also possible to view aMTS as a set of d time series, since in practice
that is often how they are treated. However, the vector model makes it explicit that
we assume that the dimensions are aligned, i.e. we assume that all observations in ai

are observed at the same point in time or space. In the context of supervised learning
tasks such as classification, a dataset associates each time series with a label from a
predefined set of classes.

Definition 3 (Dataset) A dataset D = (X , Y) = (
A(i), y(i)

)
i∈[1,...,n] is a collection of

n time series and a predefined set of discrete class labels C . We denote the size of D
by n, and the i th instance by series and its label by y(i) ∈ C .

Many time series classification algorithms make use of subseries of the data.

Definition 4 (Subseries) A subseries Ai,l of a time series A = (a1, . . . , am), with
1 ≤ i < i + l ≤ m, is a series of length l, consisting of the l contiguous points from
A starting at offset i: Ai,l = (ai , ai+1, . . . , ai+l−1), i.e. all indices in the right-open
interval [i, i + l).

We may extract subseries from a time series by the use of a sliding window.

Definition 5 (Sliding Window) A time series A of length m has (m − l + 1) sliding
windows of length l (when increment is 1) given by:

sliding_windows(A) = {A1,l , . . . , A(m−l+1),l}

A common operation is the convolution operation. A kernel (filter) is convolved
with a time series through a sliding dot product.

Definition 6 (Convolution (cross-correlation)) The result of applying a kernel ω of
length l to a given time series A at position i is given by:

Mi = (Ai,l ∗ ω) =
l−1∑

j=0

Ai+ j · w j

The result of the operation is an activation map M . Figure 1 shows the convolution
for an input time series and kernel ω = [−1, 0, 1]. The first entry of the activation
map M is the result of a dot-product between A1:3 ∗ ω = A1:3 · ω = 0 + 0 + 3 = 3.
Each convolution creates a series to series transform from time series to activation
map. Activation maps are used to create summary features.

The dilation technique is a method that enables a filter, such as a sliding window
or kernel, to cover a larger portion of the time series data by creating empty spaces
between the entries in the filter. These spaces enable the filter to widen its receptive
field while maintaining the total number of values constant. To illustrate, a dilation
of d = 2 would introduce a gap of 1 between each pair of values. This effectively
doubles the receptive field’s size and enables the filter to analyse the data at various
scales, akin to a down-sampling operation.

123

1962 M. Middlehurst et al.

Fig. 1 The convolution operation as a sliding dot-product. The kernel ω = [−1, 0, 1] is convolved with the
input series, producing an activation map. Max-pooling extracts the maximum from this activation map

Definition 7 (Dilated Subseries) A dilated subseries, denoted by Ai,l,d , is a sequence
extracted from a time series A = (a1, . . . , an), with 1 ≤ i < i + l × d ≤ m. This
subseries has length l and dilation factor d, and it includes l non-contiguous points
from A starting at offset i and taking every d-th value as follows:

Ai,l,d = (ai , ai+d×1, . . . , ai+d×(l−1))

The dilation technique is used in convolution-based, shapelet-based and dictionary-
based models.

In real-world applications, series of D are often unequal length. This is often treated
as a preprocessing task, i.e. by appending tailing zeros, although some algorithms have
the capability to internally handle this. We further typically assume that all time series
of D have the same sampling frequency, i.e., every i th data point of every series was
measured at the same temporal distance from its predecessor.

3 Experimental procedure

The bake off conducted experiments with the 85 UTSC datasets that were in the UCR
archive relaunch of 2015. Each dataset was resampled 100 times for training and
testing, and test accuracy was averaged over resamples. The evaluation began with 11
standard classifiers (such as Random Forest (Breiman 2001)), then classifiers in each
category were compared, including an evaluation of reproducibility. Finally, the best
in class were compared to hybrids (combinations of categories).

We adapt this approach for the bake off redux to reflect the progression of the
field. First, we take the previously used benchmark of Dynamic Time Warping using
a one nearest neighbour classifier (1-NN DTW) and, if appropriate, the best of each
category from the bake off and compare them to new algorithms of that type. We do
this stage of experimentation with the 112 equal length problems in the 2019 version
of the UCR archive (Dau et al. 2019). Performance on these datasets, or some subset
thereof, has been used to support every proposed approach, so this allows us to make a

123

Bake off redux: a review and experimental evaluation... 1963

fair comparison of algorithms.We have regenerated all results for classifiers described
both in the original bake off and this comparison.

Only a subset of the algorithms considered have been adapted for MTSC by their
inventors. Furthermore, many algorithms have been proposed solely for MTSC, par-
ticularly in the deep learning field. Because of this and the considerable computational
cost of including multivariate data, we restrict our attention to univariate classification
only in this work.

We resample each pair of train/test data 30 times for the redux, stratifying to retain
the same class distribution. We do not adopt the bake off strategy of 100 resamples.
We have found 30 resamples is sufficient to mitigate small changes in test accuracy
over influencing ranks, and it is more computationally feasible. Resampling is seeded
with the resample ID to aid with reproducibility. Resample 0 uses the original train
and test split from the UCR archive.

Our primary performance measure is classification accuracy on the test set. We also
compare predictive power with the balanced test set accuracy, to identify whether class
imbalance is a problem for an algorithm. The quality of the probability estimates is
measured with the negative log likelihood (NLL), also known as log loss. The ability
to rank predictions is estimated by the area under the receiver operator characteristic
curve (AUROC). For problemswith twoclasses,we treat theminority class as a positive
outcome. For multiclass problems, we calculate the AUROC for each class and weight
it by the class frequency in the train data, as recommended in Provost and Domingos
(2003). We present results with diagrams derived from the critical difference plots
proposed by Demšar (2006). We average ranks over all datasets and plot them on a
line and group classifiers into cliques, within which there is no significant difference in
rank. We replace the post-hoc Nemenyi test used to form cliques described in Demšar
(2006) with a mechanism built on pairwise tests. We perform pairwise one-sided
Wilcoxon signed-rank tests and form cliques using the Holm correction for multiple
testing as described in García and Herrera (2008); Benavoli et al. (2016).

Critical difference diagrams can be deceptive: they do not display the effective
amount of differences, and the linear nature of clique finding can mask relationships
between results. If, for example, three classifiers A, B, C are ordered by rank A >

B > C , and the test indicates A is significantly better than B, and B is significantly
better than C , then we will form no cliques. However, it is entirely possible that A is
not significantly different to C , and the diagram cannot display this. Because of this,
we expand our results to include pairwise plots, violin plots of accuracy distributions
against a base line, tables of test accuracies and heatmap diagrams which include
unadjusted p-values (Ismail-Fawaz et al. 2023a).

3.1 New datasets

The 112 equal length TSC problems in the archive constitute a relatively large corpus
of problems for comparing classifiers. However, they have been extensively used in
algorithm development, and there is always the risk of an implicit overfitting resulting
in conclusions that do not generalise well to new problems. Hence, we have gathered
new datasets which we use to perform our final comparison of algorithms. These

123

1964 M. Middlehurst et al.

data come from direct donation to the TSC GitHub repository4, discretised regression
datasets5, a project on audio classification (Flynn and Bagnall 2019) and reformatting
current datasets with unequal length or missing values. Submissions of new datasets
to the associated repository are welcomed.

In total, we have gathered 30 new datasets, summarised in Table 1 and visualised in
Fig. 2. Datasetswith the suffix _eq are unequal length seriesmade equal length through
padding with the series mean perturbed by low level Gaussian noise. 11 of these
problems (AllGestureWiimote versions, GestureMidAirD1, GesturePebbleZ, Pick-
upGestureWiimoteZ, PLAID and ShakeGestureWiimoteZ) are already in the archive
so need no further explanation.

Four problems with the suffix _nmv (no missing values) are datasets where the
original containsmissing values. These are also from the current archive.We have used
the simplest method for processing the data, and removed any cases which contain
missing values for these problems (DodgerLoop variants and MelbournePedestrian).
The number of cases removed per dataset amounts to 5-15% of the original size for
all four datasets which we deemed acceptable. While there have been imputation
methods proposed for time series, the amount of missing values present and their
pattern varies. The DodgerLoop datasets have large strings of missing values, while
MelbournePedestrian has singular values or small groupings of missing data.

The four datasets ending with _disc are taken from the TSER archive (Tan et al.
2021). The continuous response variable was discretised manually for each dataset,
the original continuous labels and new class values for each dataset are shown in
Fig. 3. Both Covid3Month and FloodModeling2 had a minimum label value with
many cases. For both of these, this minimum label value has been converted into its
own class label. For problems where there are no obvious places where the label can
be separated into classes by value (including Covid3Month where the value is greater
than 0), a split point was manually selected taking into account the average label value
and the number of cases in each class for a splitting point.

This leaves 11 datasets that are completely new to the archive. The two Aconi-
tyMINIPrinter data sets are described in Mahato et al. (2020) and donated by the
authors of that paper. The data comes from the AconityMINI 3D printer during the
manufacturing of stainless steel blocks with a designed cavity. The problem is to pre-
dict whether there is a void in the output of the printer. The time series are temperature
data that comes from pyrometers that monitor melt pool temperature. The pyrometers
track the scan of the laser to provide a time-series sampled at 100 Hz. The data is
sampled from the mid-section of these blocks and is organized into two datasets (large
and small). The large dataset covers cubes with large pores (0.4 mm, 0.5 mm, and 0.6
mm) and the small dataset covers cubes with small pores (0.05 mm and 0.1 mm).

The three Asphalt datasets were originally described in Souza (2018) and donated
by the author of that paper. Accelerometer datawas collected on a smartphone installed
inside a vehicle using a flexible suction holder near the dashboard. The acceleration
forces are given by the accelerometer sensor of the device and are the data used for

4 https://github.com/time-series-machine-learning/tsml-repo
5 http://tseregression.org/

123

https://github.com/time-series-machine-learning/tsml-repo
http://tseregression.org/

Bake off redux: a review and experimental evaluation... 1965

Table 1 A summary of the 30 new univariate datasets used in our experiments with suffix: _eq, _nmv, _disc

Dataset Train size Test size Series length No. Classes Category

AconityMINIPrinterLarge_eq 2403 1184 300 2 Sensor

AconityMINIPrinterSmall_eq 589 292 300 2 Sensor

AllGestureWiimoteX_eq 300 700 500 10 Motion

AllGestureWiimoteY_eq 300 700 500 10 Motion

AllGestureWiimoteZ_eq 300 700 500 10 Motion

AsphaltObstaclesUni_eq 390 391 736 4 Sensor

AsphaltPavementTypeUni_eq 1055 1056 2371 3 Sensor

AsphaltRegularityUni_eq 751 751 4201 2 Sensor

Colposcopy 99 101 180 6 Image

Covid3Month_disc 140 140 84 3 Other

DodgerLoopDay_nmv 67 77 288 7 Sensor

DodgerLoopGame_nmv 17 127 288 2 Sensor

DodgerLoopWeekend_nmv 18 126 288 2 Sensor

ElectricDeviceDetection 624 3768 256 2 Image

FloodModeling1_disc 471 471 266 2 Simulated

FloodModeling2_disc 466 466 266 2 Simulated

FloodModeling3_disc 429 429 266 2 Simulated

GestureMidAirD1_eq 208 130 360 26 Motion

GestureMidAirD2_eq 208 130 360 26 Motion

GestureMidAirD3_eq 208 130 360 26 Motion

GesturePebbleZ1_eq 132 172 455 6 Motion

GesturePebbleZ2_eq 146 158 455 6 Motion

KeplerLightCurves 920 399 4767 7 Sensor

MelbournePedestrian_nmv 1138 2319 24 10 Sensor

PhoneHeartbeatSound 424 182 3053 5 Other

PickupGestureWiimoteZ_eq 50 50 361 10 Motion

PLAID_eq 537 537 1345 11 Device

ShakeGestureWiimoteZ_eq 50 50 385 10 Motion

SharePriceIncrease 965 966 60 2 Other

Tools 310 134 2926 5 Other

the classification task. The class values for AsphaltObstacles classes are four com-
mon obstacles in the region of data collection: raised cross walk (160 cases); raised
markers (187 cases); speed bump (212 cases); and vertical patch (222 cases); flexi-
ble pavement (816 cases); cobblestone street (527 cases); and dirt road (768 cases).
AsphaltRegularity is a two class problem: Regular (762 cases), where the asphalt is
even and the driver’s comfort changes little over time; and Deteriorated (740 cases),
where irregularities and unevenness in a damaged road surface are responsible for
transmitting vibrations to the interior of the vehicle and affecting the driver’s comfort.

123

1966 M. Middlehurst et al.

AconityMINIPrinterLargeEq AconityMINIPrinterSmallEq AllGestureWiimoteXEq AllGestureWiimoteYEq AllGestureWiimoteZEq

AsphaltObstaclesUniEq AsphaltPavementTypeUniEq AsphaltRegularityUniEq Colposcopy Covid3MonthDiscrete

DodgerLoopDayNmv DodgerLoopGameNmv DodgerLoopWeekendNmv ElectricDeviceDetection FloodModeling1Discrete

FloodModeling2Discrete FloodModeling3Discrete GestureMidAirD1Eq GestureMidAirD2Eq GestureMidAirD3Eq

GesturePebbleZ1Eq GesturePebbleZ2Eq KeplerLightCurves MelbournePedestrianNmv PhoneHeartbeatSound

PickupGestureWiimoteZEq PLAIDEq ShakeGestureWiimoteZEq SharePriceIncrease Tools

Fig. 2 The 30 new univariate datasets showing one representative series for each class

The Colposcopy data is described in Gutiérrez-Fragoso et al. (2017) and was
donated to the repository by the authors6. The task is to classify the nature of a
diagnosis from a colposcopy. The time series represent the change in intensity values
of a pixel region through a sequence of digital colposcopic images obtained during
the colposcopy test that was performed on each patient included in the study.

6 https://github.com/KarinaGF/ColposcopyData

123

https://github.com/KarinaGF/ColposcopyData

Bake off redux: a review and experimental evaluation... 1967

Fig. 3 The sorted original label values for all discretised regression datasets. Each point is a label for a
case, and its colour is the class it is part of for the new classification version

The ElectricDeviceDetection data set (Bagnall et al. 2020b) contains formatted
image data for the problem of detecting whether a segment of a 3-D X-Ray contains
an electric device or not. The data originates from an unsupervised segmentation of
3-D X-Rays. The data are histograms of intensities, not time series.

KeplerLightCurves was described in Barbara et al. (2022) and donated by the
authors. Each case is a light curve (brightness of an object sampled over time) from
NASA’s Kepler mission (3-month-long series, sampled every 30min). There are seven
classes relating to the nature of the observed star.

The SharePriceIncrease data was formatted by Vladislavs Pazenuks as part of
their 2018 undergraduate student project. The problem is to predict whether a share
price will show an exceptional rise after quarterly announcement of the Earning Per
Share based on the price movement of that share price on the preceding 60 days. Daily
price data on NASDAQ 100 companies was extracted from a Kaggle data set7. Each
data represents the percentage change of the closing price from the day before. Each
case is a series of 60 days data. The target class is defined as 0 if the price did not
increase after company report release by more than five percent or 1 else-wise.

PhoneHeartbeatSound and Tools are audio datasets. Tools contains the sound of
a chainsaw, drill, hammer, horn and sword, with the task being to match which tool the
audio belongs to. PhoneHeartbeatSound contains sounds of the heartbeats recorded

7 https://www.kaggle.com/code/jacksoncrow/download-nasdaq-historical-data

123

https://www.kaggle.com/code/jacksoncrow/download-nasdaq-historical-data

1968 M. Middlehurst et al.

on a phone using a digital stethoscope gathered for the 2011 PASCAL classifying
heart sounds challenge8. The time series represent the change in amplitude over time
during an examination of patients suffering from common arrhythmias. The classes
are Artifact (40 cases), ExtraStole (46 cases),Murmur (129 cases), Normal (351 cases)
and ExtraHLS (40 cases).

Figure 4 shows the characteristics of the 30 new datasets when compared to the
existing 112 UCR UTSC datasets, across different dimensions including length, train
set size, number of classes, and data type. Findings reveal that the new datasets exhibit
a broader range of lengths compared to old ones, while showing similar train set size
and similar number of classes. It is worth noting that there seems to be a slight bias
towards datasets derived from sensor and motion data in the new collection, whereas
the majority of older datasets are sourced from the domain of image outlines.

3.2 Reproducibility

The majority of the classifiers described are available in the aeon time series machine
learning toolkit (see Footnote 2) and all datasets are available for download (see
Footnote 1). Appendix A gives detailed code examples on how to reproduce these
experiments, including parameters used, if they differ from the default. All results are
available from the TSC website and can be directly loaded from there using aeon.
Further guidance on reproducibility, parameterisation of the algorithms used in our
experiments and our results files are available in an accompanying webpage9. With
the exception of three algorithms which only meet our usage criteria with a Java
implementation, all the algorithms used in our experiments are runnable using the
Python software and guides linked in the webpage.

4 Time series classification algorithms

The bake off introduced a taxonomy of algorithms based on the representation of the
data at the heart of the algorithm. TSC algorithms were classified as either whole
series, interval based, shapelet based, dictionary based, combinations or model based.
We extend and refine this taxonomy to reflect recent developments.

1. Distance based: classification is based on some time series specific distance mea-
sure between whole series (Section 4.1).

2. Feature based: global features are extracted and passed to a standard classifier in
a simple pipeline (Section 4.2).

3. Interval based: features are derived from selected phase dependent intervals in an
ensemble of pipelines (Section 4.3).

4. Shapelet based: phase independent discriminatory subseries form the basis for
classification (Section 4.4).

5. Dictionary based: histograms of counts of repeating patterns are the features for a
classifier (Section 4.5).

8 http://www.peterjbentley.com/heartchallenge/index.html
9 https://tsml-eval.readthedocs.io/en/latest/publications/2023/tsc_bakeoff/tsc_bakeoff_2023.html

123

http://www.peterjbentley.com/heartchallenge/index.html
https://tsml-eval.readthedocs.io/en/latest/publications/2023/tsc_bakeoff/tsc_bakeoff_2023.html

Bake off redux: a review and experimental evaluation... 1969

Fig. 4 Comparison of distribution of the 30 newly acquired to the existing 112 UCR UTSC datasets across
dimensions including length, train set size, number of classes, and data type

6. Convolution based: convolutions and pooling operations create the feature space
for classification (Section 4.6).

7. Deep learning based: neural network based classification (Section 4.7).
8. Hybrid approaches combine two or more of the above approaches (Section 4.8).

As well as the type of feature extracted, another defining characteristic is the design
of the TSC algorithm. The simplest design pattern involves single pipelines where
transformation of the series into discriminatory features is followed by the applica-
tion of a standard machine learning classifier. These algorithms tend to involve an
over-production and selection strategy: a large number of features are created, and
the classifier determines which features are most useful. The transform can remove
time dependency, e.g. by calculating summary features. We call this type series-to-
vector transformations. Alternatively, they may be series-to-series, transforming into
an alternative time series representation where we hope the task becomes more easily
tractable, e.g. transforming to the frequency domain of the series.

The second transformation based design pattern involves ensembles of pipelines,
where each base pipeline consists of making repeated, different, transforms and using
a homogeneous base classifier. TSC ensembles can also be heterogeneous, collating
the classifications from transformation pipelines and ensembles of differing represen-
tations of the time series.

123

1970 M. Middlehurst et al.

The third common pattern involves transformations embedded inside a classifier
structure. For example, a decision tree where the data is transformed at each node fits
this pattern.

A common theme to all categories of algorithm is ensembling. Another popular
method seen in multiple classifiers are transformation pipelines ending with a linear
classifier. The most accurate classifiers we find all form homogeneous or heteroge-
neous ensembles, or extract features prior to a linear ridge classifier.

To try and capture the commonality and differences between algorithms we provide
a Table in the Appendix B (Table 22) that groups algorithms by whether they employ
the following design characteristics: dilation; discretisation; differences/derivatives;
frequency domain; ensemble; and linear classification.

We review each category of algorithms by providing an overview of the approach,
review selected classifiers and describe the pattern they use, starting with the best of
class from the bake off. We perform a comparison of performance within category on
the 112 equal length UTSC problems currently in the UCR archive using 1-NN DTW
as a benchmark. More detailed evaluation is delayed until Section 5.

4.1 Distance based

Distance based classifiers use a distance function to measure the similarity between
whole time series. Historically, distance functions have been mostly used with nearest
neighbour (NN) classifiers. Alternative uses of time series distances are described
in Abanda et al. (2019). Prior to the bake off, 1-NNwith DTWwas considered state of
the art for TSC (Rakthanmanon et al. 2013). Figure 5 shows an example of how DTW
attempts to align two series, depicted in red and green, to minimise their distance.

In addition to DTW, a wide range of alternative elastic distance measures (dis-
tance measures that compensate for possible misalignment between series) have been
proposed. These use combinations of warping and editing on series and the deriva-
tives of series. See Holder et al. (2022) for an overview of elastic distances. Previous
studies (Lines and Bagnall 2014) have shown there is little difference in performance
between 1-NN classifiers with different elastic distances.

Fig. 5 An example of how DTW compensates for phase shift by realigning two series (in red at the bottom
and in green at the top)

123

Bake off redux: a review and experimental evaluation... 1971

The flowchart in Fig. 6 visualises the distance based algorithms described in this
section and the relation between them. Algorithms following another are not nec-
essarily better than the predecessor, but are either direct extensions or heavily draw
inspiration from it.

4.1.1 Elastic Ensemble (EE)

The first algorithm to significantly outperform 1-NN DTW on the UCR data was the
Elastic Ensemble (EE) (Lines and Bagnall 2015). EE is a weighted ensemble of 11
1-NN classifiers with a range of elastic distance measures. It was the best performing
distance based classifier in the bake off. Elastic distances can be slow, and EE requires
cross validation to find the weights of each classifier in the ensemble. A caching
mechanism was proposed to help speed up fitting the classifier (Tan et al. 2020) and
alternative speed ups were described in Oastler and Lines (2019). The latter speed up
is the version of EE we use in our experiments.

4.1.2 Proximity Forest (PF)

Proximity Forest (PF) (Lucas et al. 2019) is an ensemble of Proximity Tree based
classifiers. PF uses the same 11 distance functions used by EE, but is more accurate
and more scalable than the original EE algorithm. At every node of a tree, one of the
11 distances is selected to be applied with a fixed hyperparameter value. An exemplar
single series is selected randomly for each class label. At every node, r combinations
of distance function, parameter value and class exemplars are randomly selected, and
the combinationwith the highest Gini index split measure is selected. Series are passed
down the branch with the exemplar that has the lowest distance to it, and the tree grows
recursively until a node is pure.

DTW

EE

 PF

ShapeDTW
WDTW
DD DTW
MSM
TWE

 Grail

Fig. 6 An overview of distance based classifiers and the relationship between them. Filled algorithms were
released after the 2017 bake off (Bagnall et al. 2017) and algorithms with a thin border are not included in
our experiments

123

1972 M. Middlehurst et al.

4.1.3 ShapeDTW

Shape basedDTW(ShapeDTW) (Zhao and Itti 2019)works by extracting a set of shape
descriptors over slidingwindows of each series. The descriptors include slope, wavelet
transforms and piecewise approximations. Based on the results presented (Zhao and
Itti 2019) we use the raw and derivative subsequences. The output data of these series-
to-series transformations is then used with a 1-NN classifier with DTW.

4.1.4 Generic RepresentAtIon Learning (GRAIL)

TheGeneric RepresentAtIon Learning (GRAIL) (Paparrizos and Franklin 2019) paper
focuses on efficient learning of time series representations that uphold bespoke dis-
tance function constraints. GRAIL harnesses kernelmethods, particularly theNyström
method, to learn precise representations within these constraints. The construction of
representations involves expressing each time series as a linear combination of expres-
sive landmarks, identified through cluster centroids. This approach gives rise to the
Shift-Invariant Kernel (SINK) kernel function, which employs the Fast Fourier Trans-
form to compare time series under shift invariance.GRAIL can be used tomultiple time
series related tasks, but for classification GRAIL and the SINK kernel are evaluated
using a linear SVM.

4.1.5 Comparison of distance based approaches

Figure 7 shows the relative rank test accuracies of the five distance based classifiers we
discuss here, and Table 2 summarises four performance measures over these datasets.
The results broadly validate previous findings. EE is significantly better than 1-NN
DTW and PF is significantly better than EE. GRAIL performs slightly worse than
expected. We have used the authors implementation10 but have made some modifi-
cations to prevent the test set from being visible during the initial clustering, as it is
incompatible with our experimental procedure. This would introduce bias, and may
explain the discrepancy with published results alongside the different datasets and
data resampling used.

Table 2 shows PF is over 2.5% better in test accuracy and balanced test accuracy,
has higher AUROC and lower NLL. Hence, we take PF as best of the distance based
category.

4.2 Feature based

Feature based classifiers are a popular recent theme. These extract descriptive statistics
as features from time series to be used in classifiers. Typically, these features sum-
marise the whole series, so we characterise these as series-to-vector transforms. Most
commonly, these features are used in a simple pipeline of transformation followed by
a classifier (see Fig. 8). Several toolkits exist for extracting features.

10 https://github.com/TheDatumOrg/grail-python

123

https://github.com/TheDatumOrg/grail-python

Bake off redux: a review and experimental evaluation... 1973

Fig. 7 Ranked test accuracy of four distance based classifiers on 112 UCR UTSC problems. Accuracies
are averaged over 30 resamples of train and test splits

The flowchart in Fig. 9 displays the feature based algorithms described in this
section and related algorithms.

4.2.1 The canonical time series characteristics (Catch22)

The highly comparative time-series analysis (hctsa) (Fulcher and Jones 2017) toolbox
can create over 7700 features for exploratory time series analysis. The canonical time
series characteristics (Catch22) (Lubba et al. 2019) are 22 hctsa features determined
to be the most discriminatory of the full set. The Catch22 features were chosen by an
evaluation on the UCR datasets. The hctsa features were initially pruned, removing
those which are sensitive to the series mean and variance and those that could not be
calculated on over 80% of the UCR datasets. A feature evaluation was then performed
based on predictive performance. Any features which performed below a threshold
were removed. For the remaining features, a hierarchical clustering was performed on
the correlation matrix to remove redundancy. From each of the 22 clusters formed,
a single feature was selected, taking into account balanced accuracy, computational
efficiency and interpretability. The Catch22 features cover a wide range of concepts
such as basic statistics of time series values, linear correlations, and entropy. Reported
results for Catch22 are based on training a decision tree classifier after applying the
transform to each time series (Lubba et al. 2019), the implementation we use builds a
Random Forest classifier.

Table 2 Summary performance measures for distance based classifiers on 30 resamples of 112 UTSC
problems. Best in bold

ACC BALACC AUROC NLL F1

PF 0.837 (1) 0.819 (1) 0.942 (1) 0.692 (1) 0.833 (1)

EE 0.811 (2) 0.793 (2) 0.918 (2) 1.97 (3) 0.806 (2)

GRAIL 0.727 (5) 0.699 (5) 0.864 (3) 0.788 (2) 0.706 (5)

1NN-DTW 0.756 (3) 0.739 (3) 0.820 (4) 8.812 (4) 0.752 (3)

ShapeDTW 0.742 (4) 0.726 (4) 0.812 (5) 9.282 (5) 0.739 (4)

123

1974 M. Middlehurst et al.

Fig. 8 Visualisation of a pipeline classifier involving feature extraction followed by classification

4.2.2 Time Series Feature Extraction based on Scalable Hypothesis Tests (TSFresh)

TSFresh (Christ et al. 2018) is a collection of just under 800 features extracted from
time series. While the features can be used on their own, a feature selection method
called FRESH is provided to remove irrelevant features. FRESH considered each
feature using multiple hypotheses tests, including Fisher’s exact test (Fisher 1922),
the Kolmogorov-Smirnov (Massey Jr 1951) test and the Kendal rank test (Kendall
1938. The Benjamini-Yekutieli procedure (Benjamini and Yekutieli 2001) is then
used to control the false discovery rate caused by comparing multiple hypotheses and
features simultaneously.

Results for the base features and after using the FRESH algorithm are reported
using both a Random Forest and AdaBoost (Freund and Schapire 1996) classifier. A
comparison of alternative pipelines of feature extractor and classifier found that the
most effective approach was the full set of TSFresh features with no feature selection
applied, and combined with a Rotation Forest classifier (Rodriguez et al. 2006). This
pipeline was called the FreshPRINCE (Middlehurst and Bagnall 2022). We include

TSFresh Signatureshctsa

Catch22 FreshPRINCE

Fig. 9 An overview of feature based classifiers and the relationship between them. Filled algorithms were
released after the 2017 bake off (Bagnall et al. 2017) and algorithms with a thin border are not included in
our experiments

123

Bake off redux: a review and experimental evaluation... 1975

both TSFresh with feature selection using a Random Forest and the FreshPRINCE
classifier in our comparison.

4.2.3 Generalised signatures

Generalised signatures are a set of feature extraction techniques based on rough path
theory. The generalised signature method (Morrill et al. 2020) and the accompanying
canonical signature pipeline can be used as a transformation for classification. Sig-
natures are collections of ordered cross-moments. The pipeline begins by applying
two augmentations. The basepoint augmentation simply adds a zero at the beginning
of the time series, making the signature sensitive to translations of the time series.
The time augmentation adds the series timestamps as an extra coordinate to guarantee
that each signature is unique and obtain information about the parameterisation of
the time series. A hierarchical window is run over the two augmented series, with the
signature transform being applied to each window. The output for each window is then
concatenated into a feature vector. The features are used to build a Random Forest
classifier. The transformation was primarily developed for MTSC, but can be applied
to univariate series.

4.2.4 Comparison of feature based approaches

Figure 10 shows the relative rank performance, and Table 3 summarises the overall
performance statistics. All four pipelines are significantly more accurate than 1-NN
DTW. Excluding feature extraction and using Rotation Forest rather than Random
Forest with TSFresh increases accuracy by over 0.05. This reinforces the findings
that Rotation Forest is the most effective classifier for problems with continuous fea-
tures (Bagnall et al. 2018).

4.3 Interval based

Interval based classifiers (Deng et al. 2013) extract phase dependent intervals of fixed
offsets and compute (summary) statistics on these intervals. A majority of approaches
include some form of random selection for choosing intervals, where the same random

Fig. 10 Ranked test accuracy of four feature based classifiers and the benchmark 1NN-DTW on 112 UCR
UTSC problems. Accuracies are averaged over 30 resamples of train and test splits

123

1976 M. Middlehurst et al.

Table 3 Summary performance measures for feature based classifiers on 30 resamples of 112 UTSC
problems. Best in bold

ACC BALACC AUROC NLL F1

FreshPRINCE 0.855 (1) 0.834 (1) 0.958 (1) 0.501 (1) 0.850 (1)

TSFresh 0.799 (2) 0.772 (2) 0.902 (4) 2.350 (4) 0.778 (4)

Signatures 0.787 (4) 0.763 (4) 0.92 (3) 0.730 (3) 0.780 (3)

Catch22 0.795 (3) 0.771 (3) 0.929 (2) 0.658 (2) 0.788 (2)

interval locations are used across every series. Many of the interval based classifiers
combine features from multiple random intervals. The motivation for taking intervals
is to mitigate for confounding noise. Figure 11 shows an example problem where
taking intervals will be better than using features derived from the whole series.

Most recent interval based classifiers adopt a random forest ensemble model, where
each base classifier is a pipeline of transformation and a tree classifier (visualised in
Fig. 12). Diversity is injected through randomising the intervals for each tree. The
relation flowchart for interval based algorithms is shown in Fig. 13.

4.3.1 Time Series Forest (TSF)

The Time Series Forest (TSF) (Deng et al. 2013) is the simplest interval based tree
based ensemble. For each tree,

√
m (following the notation fromChapter 2, wherem is

the length of the series and d is the number of dimensions) intervals are selected with
a random position and length. The same interval offsets are applied to all series. For
each interval, three summary statistics (the mean, variance and slope) are extracted
and concatenated into a feature vector. This feature vector is used to build the tree, and

Fig. 11 An example of a problem where interval based approaches may be superior. Each series is a
spectrogram from a bottle of alcohol with a different concentration of ethanol. The discriminatory features
are in the near infrared interval (green box to the right). However, the confounding factors such as bottle
shape, labelling and colouring cause variation in the visible range (red box to the left). Using intervals
containing just the near infrared features is likely to make classification easier. Image taken from Bagnall
et al. (2017) with permission

123

Bake off redux: a review and experimental evaluation... 1977

Fig. 12 Visualisation of an ensemble of pipeline classifiers, as used in interval classifiers

features extracted from the same intervals are used to make predictions. The ensemble
makes the prediction using a majority vote of base classifiers. The TSF base classifier
is a modified decision tree classifier referred to as a time series tree, which considers
all attributes at each node and uses a metric called margin gain to break ties.

4.3.2 Random Interval Spectral Ensemble (RISE)

First developed for the HIVE-COTE ensemble (described in Section 4.8), the Random
Interval SpectralEnsemble (RISE) (Flynn et al. 2019) is an interval based tree ensemble
that uses spectral features. Unlike TSF, RISE selects a single random interval for each
base classifier. The periodogram and auto-regression function are calculated over each
randomly selected interval, and these features are concatenated into a feature vector,
from which a tree is built. RISE was primarily designed for use with audio problems,
where spectral features are more likely to be discriminatory.

123

1978 M. Middlehurst et al.

TSFQuant

RISE STSF

r-STSFDrCIF

CIF TSBF
LPS

Fig. 13 An overview of interval based classifiers and the relationship between them. Filled algorithms were
released after the 2017 bake off (Bagnall et al. 2017) and algorithms with a thin border are not included in
our experiments

4.3.3 STSF and R-STSF

Supervised Time Series Forest (STSF) (Cabello et al. 2020) is an interval based
tree ensemble that includes a supervised method for extracting intervals. Intervals are
found and extracted for a periodogram and the first order differences representation
as well as the base series. STSF introduces bagging for each tree and extracts seven
simple summary statistics from each interval. For each tree, an initial split point for
the series is randomly selected. For both of these splits, the remaining subseries is cut
in half, and the half with the higher Fisher score is retained as an interval. This process
is then run recursively using higher scored intervals until the series is smaller than a
threshold. This is repeated for each of the seven summary statistic features, with the
extracted statistic being used to calculate the Fisher score.

Randomised STSF (RSTSF) (Cabello et al. 2021) is an extension of STSF, altering
its components with more randomised elements. The split points for interval selection
are selected randomly instead of splitting each candidate in half after the first. Intervals
extracted from an autoregressive representation are included alongside the previous
additions. Features are extracted multiple times from each representation into a single
pool. Rather than extract different features for each tree in an ensemble, the features
are used in a pipeline to build an Extra Trees (Geurts et al. 2006) classifier.

4.3.4 CIF and DrCIF

The Canonical Interval Forest (CIF) (Middlehurst et al. 2020a) is another exten-
sion of TSF, that improves accuracy by integrating more informative features and by
increasing diversity. Like other interval approaches, CIF is an ensemble of decision tree
classifiers built on features extracted from phase dependent intervals. Alongside the
mean, standard deviation and slope, CIF also extracts theCatch22 features described in

123

Bake off redux: a review and experimental evaluation... 1979

Section 4.2. Intervals remain randomly generated,with each tree selecting k = √
m

√
d

intervals. To add additional diversity to the ensemble, a attributes out of the pool of
25 are randomly selected for each tree. The extracted features are concatenated into
a k · a length vector for each time series and used to build the tree. For multivariate
data, CIF randomly selects the dimension used for each interval.

The Diverse Representation Canonical Interval Forest (DrCIF) (Middlehurst
et al. 2021) incorporates two new series representations: the periodograms (also used
by RISE and STSF) and first order differences (also used by STSF). For each of
the three representations, (4 + √

r
√

d)/3 phase dependent intervals are randomly
selected and concatenated into a feature vector, where r is the length of the series for
a representation.

4.3.5 QUANT

QUANT (Dempster et al. 2023) employs a singular feature type, quantiles, to encap-
sulate the distribution of a given time series. The method combines four distinct
representations, namely raw time series, first-order differences, Fourier coefficients,
and second-order differences. The extraction process involves fixed, dyadic intervals
derived from the time series. These disjoint intervals are constructed through a pyra-
mid structure, where each level successively halves the interval length. At depths
greater than one, an identical set of intervals, shifted by half the interval length, is also
included. The total count of intervals is calculated as 2(d−1) × 4−2− d for a depth of
d = min(6, log2 n + 1). Each representation can have up to 120 intervals, resulting in
a total of 480 intervals across all four representations. The concatenated feature vector
is used to build an Extra Trees classifier.

4.3.6 Comparison of interval based approaches

Figure 14 shows the relative ranks of seven interval classifiers, with summary perfor-
mance measures presented in Table 4.

There is no significant difference betweenQUANT,DrCIF andRSTSF nor between
their precursors CIF and STSF. All are significantly better than TSF, the best in class

Fig. 14 Ranked test accuracy of seven interval based classifiers on 112 UCR UTSC problems. Accuracies
are averaged over 30 resamples of train and test splits

123

1980 M. Middlehurst et al.

Table 4 Summary performance measures for interval based classifiers on 30 resamples of 112 UTSC
problems. Best in bold

ACC BALACC AUROC NLL F1

QUANT 0.867 (1) 0.845 (1) 0.962 (1) 0.496 (3) 0.862 (1)

DrCIF 0.864 (2) 0.841 (3) 0.962 (1) 0.489 (1) 0.858 (2)

R-STSF 0.864 (2) 0.842 (2) 0.961 (3) 0.493 (2) 0.858 (2)

CIF 0.848 (4) 0.824 (5) 0.954 (5) 0.539 (4) 0.842 (4)

STSF 0.846 (5) 0.827 (4) 0.955 (4) 0.555 (5) 0.841 (5)

RISE 0.806 (6) 0.777 (7) 0.937 (6) 0.758 (7) 0.796 (6)

TSF 0.802 (7) 0.780 (6) 0.930 (7) 0.615 (6) 0.796 (6)

in the bake off. Figure 15(a) shows the scatter plot of QUANT vs DrCIF. QUANT
wins on 63, draws 5 and loses 44. Overall, the two algorithms produce very similar
results (the test accuracies have a correlation of 98.1%).

We choose QUANT as the best in class because it is significantly faster than DrCIF
andRSTSF. Figure 15(b) showsQUANTagainst TSF in order to confirm that QUANT,
DrCIF and RSTSF represent genuine improvements to this type of algorithm over the
previous best. Table 4 confirms that on average over 112 problems, the accuracy of
the top clique is over 0.06 higher than TSF.

4.4 Shapelet based

Shapelets are subseries from the training data that are independent of the phase and
can be used to discriminate between classes of time series based on their presence or

Fig. 15 Scatter plot of test accuracies of DrCIF against RSTSF and TSF. TSF is better than DrCIF on just
6 of the 112 datasets

123

Bake off redux: a review and experimental evaluation... 1981

absence. To evaluate a shapelet, the subseries is slid across the time series, and the
z-normalised Euclidean distance between the shapelet and the underlying window is
calculated. The distance between a shapelet and any series, s Dist(), is the minimum
distance over all suchwindows. Figure 16 shows a visualisation of the s Dist() process.
The shapelet S is shifted along the time series A, and the most similar offset and
distance in A are recorded. The distance between a shapelet and the training series is
then used as a feature to evaluate the quality of the shapelet.

Shapelets were first proposed as a primitive in Ye and Keogh (2011), and were
embedded in a decision tree classifier. There have been four important themes in
shapelet research post bake off: The first has concentrated onfinding the bestway to use
shapelets to maximise classification accuracy. The second has focused on overcoming
the shortcomings of the original shapelet discovery which required full enumeration of
the search space and has cubic complexity in the time series length; the third theme is
the progress toward unifying research with convolutions and shapelets; and the fourth
theme is the balance between optimisation, randomisation and interpretability when
finding shapelets. The relation flowchart for shapelet based algorithms is shown in
Fig. 17.

4.4.1 The Shapelet Transform Classifier (STC)

The Shapelet Transform Classifier (STC) (Hills et al. 2014) is a pipeline classifier
which searches the training data for shapelets, transforms series to vectors of s Dist()
distances to a filtered set of selected shapelets based on information gain, then builds a
classifier on the latter. This is in contrast to the decision tree based approaches, which
search for the best shapelet at each tree node. The first version of STC performed a full
enumeration of all shapelets from all train cases before selecting the top k. The base
classifier used was HESCA (later renamed CAWPE, Large et al. (2019b)) ensemble
of classifiers, a weighted heterogeneous ensemble of 8 classifiers including a diverse
set of linear, tree based and Bayesian classifiers. Due to its full enumeration and large
pool of base classifiers requiring weights, the algorithm does not scale well. We call
the original full enumeration version ST-HESCA to differentiate it from the version
described below which we simply call STC. It was the best performing shapelet based
classifier in the bake off.

The following incremental changes have been made to the STC pipeline, described
in Bostrom et al. (2016); Bostrom and Bagnall (2017):

Fig. 16 Visualisation of the shapelet distance operation s Dist() between a shapelet S and a series A, which
finds the closest distances to the shapelet from all possible subseries of the same length

123

1982 M. Middlehurst et al.

ST-HESCA

Shapelet
Tree

FS
LSRSF

STC

MrSQM

MrSEQL

RDST

Fig. 17 An overview of shapelet based classifiers and the relationship between them. Filled algorithmswere
released after the 2017 bake off (Bagnall et al. 2017) and algorithms with a thin border are not included in
our experiments

1. Searchhas been randomised, and the number of shapelets sampled is nowaparame-
ter, which defaults to 10,000. This does not lead to significantlyworse performance
on the UCR datasets.

2. Shapelets are now binary, in that they represent the class of the origin series and
are evaluated against all other classes as a single class using one hot encoding. This
facilitates greater use of the early abandon of the order line creation (described
in Ye and Keogh 2011), and makes evaluation of split points faster.

3. The heterogeneous ensemble of base classifiers in HESCA has been replaced with
a single Rotation Forest (Rodriguez et al. 2006) classifier, making STC a simple
pipeline classifier.

4.4.2 The Generalised Random Shapelet Forest (RSF)

The Random Shapelet Forest (RSF) (Karlsson et al. 2016) is a bagging based tree
ensemble that attempts to improve the computational efficiency and predictive accu-
racy of the Shapelet Tree through randomisation and ensembling. At each node of
each tree r univariate shapelets are selected from the training set at random. Each
shapelet has a randomly selected length between predefined upper and lower limits.
The quality of a shapelets is measured in the standard way with s Dist() and infor-
mation gain, and the best is selected. The data is split, and a tree is recursively built
until a stopping condition is met. New samples are predicted by a majority vote on the
tree’s predictions and multiple trees are ensembled.

123

Bake off redux: a review and experimental evaluation... 1983

4.4.3 MrSEQL andMrSQM

TheMultiple Representation Sequence Learner (MrSEQL) (Nguyen et al. 2019), is an
ensemble classifier that extends previous adaptations of the SEQL classifier (Nguyen
et al. 2017). MrSEQL looks for the presence or absence of a pattern (shapelet) in
the data. Rather than using a distance based approach to measure the presence or
not of a shapelet, MrSEQL discretises subseries into words. Words are generated
through two symbolic representations, using SAX (Lin et al. 2007) for time domain
and SFA (Schäfer and Högqvist 2012) for frequency domain. A set of discriminative
words is selected through Sequence Learner (SEQL) and the output of training is a
logistic regression model, which in concept is a vector of relevant subseries and their
weights. Diversification is achieved through the two different symbolic representations
and varying the window size.

MrSQM (Nguyen and Ifrim 2022) extends MrSEQL. It also combines two sym-
bolic transformations to create words from subseries and trains a logistic regression
classifier.What sets it apart is its innovative strategy for selecting features (substrings).

To begin with, MrSQM uses SFA and SAX to discretise time series subseries
into words. It then utilizes a trie to store and rank frequent substrings, and applies
either (a) a supervised chi-squared test to identify discriminative words or (b) an
unsupervised random substring sampling method to prevent overestimating highly
correlated substrings that are likely to be redundant. MrSQM establishes the number
of learned representations (SFA or SAX) based on the length of the time series and
utilizes an exponential scale for the window size parameter.

4.4.4 Random Dilated Shapelet Transform (RDST)

TheRandomDilatedShapelet Transform (RDST) (Guillaume et al. 2022) is a shapelet-
based algorithm that adopts many of the techniques of convolution approaches
described in Section 4.6. While traditional shapelet algorithms search for the best
shapelets from the train dataset, RDST takes a different approach by randomly select-
ing a large number of shapelets from the train data, typically ranging from thousands
to tens of thousands, then training a linear Ridge classifier on features derived from
these shapelets.

RDST employs dilation with shapelets. Dilation is a form of down sampling, in that
it defines spaces between time points. Hence, a shapelet with dilation d is compared to
time points d steps apart when calculating the distance. RDST also uses two features
in addition to s Dist(): it encodes the position of the minimum distance, and records a
measure of the frequency of occurrences of the shapelet based on a threshold. Hence
the transformed data has 3k features for k shapelets.

4.4.5 Comparison of shapelet based approaches

Table 5 highlights the key differences between the shapelet-based approaches.
Figure 18 shows the relative ranks of the four shapelet classifiers. RDST is the clear

winner. Table 6 shows it is, on average more than 1% more accurate than MrSQM,
the second-best algorithm. The shapelet based algorithms are more fundamentally

123

1984 M. Middlehurst et al.

Table 5 Key differences in shapelet based TSC algorithms

STC RDST RSF MrSQM

Shapelet Discovery Random Sub-
squences

Random Sub-
squences

Random sub-
series

Frequent Sub-
strings

Supervised shapelets yes no yes no

Dilation no yes no no

Discretisation no no no yes
(SAX/SFA)

Classification Rotation For-
est

Ridge Classi-
fier CV

Random Tree
Ensemble

Ridge Classi-
fier CV

different in design than, for example, interval classifiers. This is demonstrated by the
spread of test accuracies shown in Fig. 19 of the top three algorithms. The grouping
may become redundant: RDST is more similar to convolution based algorithms (Sec-
tion 4.6) in design than STC, and MrSQM has structure in common with dictionary
based classifiers (Section 4.5). However, they still retain the key characteristics that,
unlike convolutions, they use the training data to find subseries and, unlike dictionary
based algorithms, their features include the presence or absence of a pattern.

4.5 Dictionary based

Similar to shapelet based algorithms,dictionary approaches extract phase-independent
subseries. However, instead of measuring the distance to a subseries, each window is
converted into a short sequence of discrete symbols, commonly known as a word.
Dictionary methods differentiate based on word frequency and are often referred to as
bag-of-words approaches. Figure 20 illustrates the process that algorithms following
the dictionary model take to create a classifier. This process can be summarized as:

1. Extracting subseries, or windows, from a time series;
2. Transforming each window of real values into a discrete-valued word (a sequence

of symbols over a fixed alphabet);
3. Building a sparse feature vector of histograms of word counts, and

Fig. 18 Ranked test accuracy of four shapelet based classifiers and the benchmark 1NN-DTW on 112 UCR
UTSC problems. Accuracies are averaged over 30 resamples of train and test splits

123

Bake off redux: a review and experimental evaluation... 1985

Table 6 Summary performance measures for shapelet based classifiers on 30 resamples of 112 UTSC
problems. Best in bold

ACC BALACC AUROC NLL F1

RDST 0.876 (1) 0.856 (1) 0.907 (4) 4.457 (4) 0.872 (1)

MrSQM 0.863 (3) 0.841 (3) 0.959 (1) 0.446 (1) 0.857 (3)

STC 0.864 (2) 0.842 (2) 0.958 (2) 0.485 (2) 0.859 (2)

RSF 0.801 (4) 0.774 (4) 0.927 (3) 0.724 (3) 0.792 (4)

4. Finally, using a classification method from the machine learning repertoire on
these feature vectors.

Dictionary-based methods differ in the way they transform a window of real-valued
measurements into discrete words. For example, the basis of the BOSSmodel (Schäfer
2015) is a representation called Symbolic Fourier Approximation (SFA) (Schäfer and
Högqvist 2012). SFA works as follows:

1. Values in each window of length w are normalized to have standard deviation of
1 to obtain amplitude invariance.

2. Each normalized window of length w is subjected to dimensionality reduction by
the use of the truncated Fourier transform, keeping only the first l < w coefficients
for further analysis. This step acts as a low pass filter, as higher order Fourier
coefficients typically represent rapid changes like dropouts or noise.

3. Discretisation bins are derived through Multiple Coefficient Binning (MCB). It
separately records the l distributions of the real and imaginary values of the Fourier
transform. These distributions are then subjected to either equi-depth or equi-width
binning. The resulting output consists of l sets of bins, corresponding to the target
word length of l.

Fig. 19 Scatter plot of test accuracies of shapelet based classifiers

123

1986 M. Middlehurst et al.

Fig. 20 Transformation of a TS into the dictionary-based model (following Schäfer and Leser 2017) using
overlapping windows (second to top), discretisation of windows to words (second from bottom), and word
counts (bottom)

4. Each coefficient is discretized to a symbol of an alphabet of fixed size α to achieve
further robustness against noise.

Figure 21 exemplifies this process from a window of length 128 to its DFT rep-
resentation, and finally the word DAAC. The relation flowchart for dictionary based
algorithms is shown in Fig. 22.

4.5.1 Bag-of-SFA-Symbols (BOSS)

Bag-of-SFA-Symbols (BOSS) (Schäfer 2015) was among the top-performing algo-
rithms in the initial bake-off study and led to significant further investigation into
dictionary-based classifiers. An individual BOSS classifier undergoes the same pro-
cess described earlier, whereby each sliding window is transformed into a word using
SFA. Subsequently, a feature vector is generated by counting the occurrences of each
word over all windows. A non-symmetric distance function is then employed with a
1-NN classifier to categorize new instances. Experiments have shown that when pre-
sented with a query and a sample time series, disregarding words that exist solely in
the sample time series using, the non-symmetric distance function leads to improved
performance compared to using the Euclidean distance metric (Schäfer 2015).

The complete BOSS classifier is an ensemble of individual BOSS classifiers. This
ensemble is created by exploring a range of parameters, assessing each base classifier
through cross-validation, and keeping all base classifiers with an estimated accuracy
within 92% of the best classifier. For new instances, the final prediction is obtained
through a majority vote of the base classifiers.

123

Bake off redux: a review and experimental evaluation... 1987

Fig. 21 The Symbolic Fourier Approximation (SFA) (from Schäfer and Leser 2017): A time series (top
left) is approximated using the Fourier transform (top right) and discretised to the word DAAC (bottom left)
using data adaptive bins (bottom right)

BOSS BOP
SAXVSM

S-BOSS WEASEL v1cBOSS

WEASEL v2TDE

Fig. 22 An overview of dictionary based classifiers and the relationship between them. Filled algorithms
were released after the 2017 bake off (Bagnall et al. 2017) and algorithms with a thin border are not included
in our experiments

123

1988 M. Middlehurst et al.

4.5.2 Word Extraction for Time Series Classification (WEASEL v1.0)

Word Extraction for Time Series Classification (WEASEL v1.0) (Schäfer and Leser
2017) is a pipeline classifier that revolves around identifying words whose frequency
count distinguishes between classes and discarding words that lack discriminatory
power. The classifier generates histograms of word counts over a broad spectrum
of window sizes and word lengths parameters, including bigram words produced
from non-overlapping windows. A Chi-squared test is then applied to determine the
discriminatory power of each word, and those that fall below a particular threshold
are discarded through feature selection. Finally, a linear Ridge classifier is trained
on the remaining feature space. WEASEL utilizes a supervised variation of SFA to
create discriminative words, and it leverages an information-gain based methodology
for identifying breakpoints that separate the classes.

4.5.3 WEASEL v2.0 (with dilation)

The dictionary-basedWEASEL v2.0 (Schäfer and Leser 2023) is a complete overhaul
of the WEASEL v1.0 classifier (Schäfer and Leser 2017). It addresses the problem
of the extensive memory footprint of WEASEL by controlling the search space using
randomly parameterized SFA transformations. It also significantly improves accuracy.
Notably, the most prominent modification is the inclusion of dilation to the sliding
window approach. Table 7 presents a comprehensive summary of its alterations.

Table 7 Key differences in dictionary based TSC algorithms

BOSS TDE WEASEL v1.0 WEASEL v2.0

word length {8,10,12,14,16} {8,10,12,14,16} {4, 6} {7, 8}

alphabet-size 4 4 4 2

FFT Features First First Anova-F-Test Variance

Binning equi-depth equi-depth,
IG

IG equi-depth,
equi-width

Bigrams No Yes Yes No

Pyramids No Yes No No

Feature Selection None None Chi-squared optional
(default:
None)

Window Sizes variable
(Ensemble)

variable
(Ensemble)

variable (con-
catenate)

variable (con-
catenate)

1st order dif. no no no yes

Dilation no no no yes

Classifier 1-NN 1-NN Ridge Regres-
sion

Ridge Regres-
sion CV

Feature Vector Size data depen-
dent

data depen-
dent

data dependent 30 to 70k

123

Bake off redux: a review and experimental evaluation... 1989

To extract subserieswith non-consecutive values from a time series, a dilated sliding
window approach is employed, where the dilation parameter maintains a fixed gap
between each value. These dilated subseries undergo a Fourier transform, and a word
is generated by discretising them using SFA. The unsupervised learning of bins is
achieved using equi-depth and equi-width with an alphabet size of 2. To improve
performance, a feature selection strategy based on variance is introduced,which retains
only the real and imaginary Fourier values with the highest variance.

Each of the 50 to 150 SFA transformations is randomly initialized subject to:

1. Window length w: Randomly chosen from interval [w_min, . . . , w_max].
2. Dilation d: Randomly chosen from interval [1, . . . , 2log(n−1

w−1)]. The formula is
inherited from the convolution-based ROCKET group of classifiers (Dempster
et al. 2020, 2021; Tan et al. 2022).

3. Word length l: Randomly chosen from {7, 8}.
4. Binning strategy: Randomly chosen from {“equi-depth”, “equi-width”}.
5. First order differences: To extract words from both, the raw time series, and its

first order difference, effectively doubling the feature space.

Whenusing an alphabet size of 2 and a length of 8, eachSFA transformation creates a
dictionary containing only 256 uniquewords of a fixed size. These dictionaries are then
combined to produce a feature vector containing approximately 30k to 70k features.
No feature selection is implemented by default. The resulting features serve as input
for training a linear Ridge classifier.

4.5.4 Contractable BOSS (cBOSS)

The size of the parameter grid searched by BOSS is data dependent, and BOSS uses a
method of retaining ensemble members using a threshold of accuracy estimated from
the train data. This makes its time and memory complexity unpredictable. BOSS was
one of the slower algorithms tested in the bake off and could not be evaluated on the
larger datasets in reasonable time. Contractable BOSS (cBOSS) (Middlehurst et al.
2019) revises the ensemble structure of BOSS to solve these scalability issues, using
the same base transformations as the BOSS ensemble. cBOSS randomly selects k
parameter sets of hyper-parameters (w, l and α) for BOSS base classifiers. It retains
the best s classifiers (based on a cross validation estimate of accuracy) are retained for
the final ensemble. cBOSS allows the k parameter to be replaced by a train time limit t
through contraction, allowing theuser to better control the training timeof the classifier.
A subsample of the train data is randomly selected without replacement for each
ensemble member and an exponential weighting scheme used in the CAWPE (Large
et al. 2019b) ensemble is introduced. The cBOSS alterations to the BOSS ensemble
structure showed an order of magnitude improvement in train times with no reduction
in accuracy.

4.5.5 SpatialBOSS

BOSS intentionally ignores the locations of words in series, classifying based on the
frequency of patterns rather than their location. Spatial Boss (Large et al. 2019a)

123

1990 M. Middlehurst et al.

introduced location information into the design of a BOSS classifier. Spatial pyra-
mids (Lazebnik et al. 2006) are a technique used in computer vision to retain some
temporal information back into the bag-of-words paradigm. The core idea, illustrated
in Fig. 23 is to split the series into different resolutions, segmenting the series based
on depth and position, then building independent histograms on the splits. The his-
tograms for each level are concatenated into a single feature vector which is used with
a 1-NN classifier. While more accurate than BOSS, the increase in parameter search
space and bag size makes it very difficult to run in practice.

4.5.6 Temporal Dictionary Ensemble (TDE)

The Temporal Dictionary Ensemble (TDE) (Middlehurst et al. 2020b) combines
the best improvements introduced in WEASEL, SpatialBOSS and cBOSS and also
includes several novel features. TDE is an ensemble of 1-NN classifiers which trans-
forms each series into a histogram of word counts using SFA (Schäfer and Högqvist
2012). FromWEASEL, TDE takes the method for finding supervised breakpoints for
discretisation, and captures frequencies of bigrams found from non-overlapping win-
dows. The locality information derived from the spatial pyramids used in SpatialBOSS
are incorporated.Word counts are found for each spatial subseries independently, with
the resulting histograms being concatenated. Bigrams are only found for the full series.
The cBOSS ensemble structure is applied with a modified parameter space sampling
algorithm. It first randomly samples a small number of parameter sets, then constructs
a Gaussian processes regressor on the historic accuracy for unseen parameter sets. The
regressor is used to estimate the parameter set for the next candidate, and the model
is then updated before the process is repeated. TDE has two additional parameters for
its candidate models: the number of levels for the spatial pyramid and the method of
generating breakpoints.

4.5.7 Comparison of dictionary based approaches

Table 7 shows the key design differences between the dictionary based approaches.
Figure 24 shows the ranked test accuracy of five dictionary classifiers we have

described, with 1-NN DTW as a benchmark. SpatialBOSS is not included due to its
significant runtime and memory requirements which would require the exclusion of

Fig. 23 An example of using a spatial pyramid to form 7 distinct word count histograms

123

Bake off redux: a review and experimental evaluation... 1991

Fig. 24 Ranked test accuracy of five dictionary based classifiers with the benchmark 1-NN DTW on 112
UCR UTSC problems. Accuracies are averaged over 30 resamples of train and test splits

multiple datasets. We believe that comparing more recent advances on the full archive
is more valuable than its inclusion, and suggest those interested in SpatialBOSS view
the results presented in Middlehurst et al. (2020b) which show it is comparable to
WEASEL 1.0 in performance. WEASEL 1.0 and TDE are significantly more accurate
than BOSS, but WEASEL 2.0 is the most accurate overall. Figure 25(a) illustrates
the improvement of WEASEL 2.0 over BOSS, and Fig. 25(b) shows the improvement
dilation provides overWEASEL. Table 8 summarises the performance of the four new
dictionary algorithms. WEASEL 2.0 is on average 4% more accurate than BOSS and
improves balanced accuracy by almost the same amount.

4.6 Convolution based

Kernel/Convolution classifiers use convolutions with kernels, which can be seen as
subseries used to derive discriminatory features. Each kernel is convolved with a time
series through a sliding dot product creating an activation map. Technically, each
convolution creates a series to series transform from time series to the activation map

Fig. 25 Scatter plot of test accuracies of BOSS vs WEASEL 2.0

123

1992 M. Middlehurst et al.

Table 8 Averaged performance statistics for dictionary based classifiers on 30 resamples of 112 UTSC
problems. Best in bold

ACC BALACC AUROC NLL F1

WEASEL v2.0 0.874 (1) 0.853 (1) 0.945 (2) 4.547 (5) 0.869 (1)

TDE 0.861 (2) 0.836 (2) 0.954 (1) 0.646 (1) 0.854 (2)

WEASEL v1.0 0.845 (3) 0.824 (3) 0.905 (5) 0.891 (3) 0.841 (3)

cBOSS 0.833 (5) 0.806 (5) 0.945 (2) 0.732 (2) 0.824 (5)

BOSS 0.834 (4) 0.813 (4) 0.938 (4) 1.385 (4) 0.828 (4)

(see Definition 6). Activation maps are used to create summary features. Convolutions
and shapelets share a close methodological relationship. Shapelets can be realised
through a convolution operation, followed by a min-pooling operation on the array
of windowed Euclidean distances. This was first observed by Grabocka et al. (2014).
However, despite this methodological connection, there is significant difference in the
results obtained by convolution based and shapelet based approach, as illustrated in the
Appendix C, Figure 50. For example, the ROCKET results are negatively correlated
with shapelet based approaches such as STC or RDST. The main difference between
convolutions and shapelets is that shapelets are subseries from the trainingdatawhereas
convolutions are found from the entire space of possible real-values.

Convolution based TSC algorithms follow a standard pipeline pattern depicted in
Fig. 26. The activation map is formed for each convolution, followed by pooling
operations to extract one relevant feature for each operation. The resulting features
are then concatenated to form a single feature vector. Finally, a Ridge classifier is
trained on the output to classify the data. The relation flowchart for convolution based
algorithms is shown in Fig. 27.

4.6.1 Random Convolutional Kernel Transform (ROCKET)

The most well known convolutional approach is the Random Convolutional Kernel
Transform (ROCKET) (Dempster et al. 2020). ROCKET is a pipeline classifier. It
generates a large number of randomly parameterised convolutional kernels (typically

Fig. 26 Pipeline of convolution based approaches such as ROCKET, MiniROCKET or MultiROCKET

123

Bake off redux: a review and experimental evaluation... 1993

ROCKET

MiniROCKET

MultiROCKET

MultiROCKET
-Hydra

ArsenalHydra

Fig. 27 An overview of convolution based classifiers and the relationship between them

in the range of thousands to tens of thousands), then uses these to transform the data
through two pooling operations: the max value and the proportion of positive values
(PPV). These two features are concatenated into a feature vector for all kernels. For k
kernels, the transformed data has 2k features.

In ROCKET, each kernel is randomly initialised with respect to the following
parameters:

1. the kernel length l, randomly selected from {7, 9, 11};
2. the kernel weights w, randomly initialised from a normal distribution;
3. a bias term b added to the result of the convolution operation;
4. the dilation d to define the spread of the kernel weights over the input instance,

which allows for detecting patterns at different frequencies and scales. The dilation
is randomly drawn from an exponential function; and

5. padding p the input series at the start and the end (typically with zeros), such that
the activation map has the same length as the input;

123

1994 M. Middlehurst et al.

The result of applying a kernel ω with dilation d to a time series T at offset i is
defined by:

Ti :(i+l) ∗ ω =
l−1∑

j=0

Ti−(�m/2�)×d)+(j×d) × w j

The feature vectors are then used to train a Ridge classifier using cross-validation to
train the L2-regularisation parameter α. A Logistic Regression classifier is suggested
as a replacement for larger datasets. The combination of ROCKET with Logistic
(RIDGE) Regression is conceptually the same as a single-layer Convolutional Neural
Network with randomly initialised kernels and softmax loss.

4.6.2 Mini-ROCKET andMulti-ROCKET

ROCKET has two extensions. The first extension is MiniROCKET (Dempster et al.
2021), which speeds up ROCKET by over an order of magnitude with no significant
difference in accuracy. MiniROCKET removes many of the random components of
ROCKET, making the classifier almost deterministic. The kernel length is fixed to 9,
only two weight values are used, and the bias value is drawn from the convolution
output.Only thePPV is extracted, discarding themax.These changes alongsidegeneral
optimisations taking advantage of the new fixed values provide a considerable speed-
up to the algorithm. MiniROCKET generates a total of 10k features from 10k kernels
and PPV pooling.

MultiROCKET (Tan et al. 2022) further extends the MiniROCKET improvements,
extracting features from first order differences and adding three new pooling opera-
tions extracted from each kernel: mean of positive values (MPV), mean of indices of
positive values (MIPV) and longest stretch of positive values (LSPV). MultiROCKET
generates a total of 50k features from 10k kernels and 5 pooling operations.

4.6.3 Hydra andMultiROCKET-Hydra

HYbrid Dictionary-ROCKET Architecture (Hydra) (Dempster et al. 2022) is a
model that combines dictionary-based and convolution-based models. It begins by
utilizing random convolutional kernels to calculate the activation of time series. These
kernels, unlike ROCKET, are arranged into g groups of k kernels each. In each group
of k kernels, the activation of a kernel with the input time series is calculated, and
we record how frequently this kernel is the best match (counts the highest activation).
This results in a k-dimensional count vector for each of the g groups, resulting in a
total of g × k features.

To implement Hydra, the time series is convolved with the kernels, and the resulting
activation maps are organized into g groups. Next, an (arg)max operation is performed
to count the number of best matches, and the counts for each group’s dictionary are
increased. The main hyperparameters to consider are the number of groups and the
number of kernels per group, with default values of g = 64 and k = 8. Hydra
is applied to both the time series and its first-order differences. The best results in
Dempster et al. (2022) come from concatenating features from Hydra with features

123

Bake off redux: a review and experimental evaluation... 1995

Table 9 Key Differences in approaches from ROCKET to MiniROCKET to MultiROCKET

ROCKET MiniR MultiR Hydra

kernel length {7, 9, 11} 9 9 9

kernel weights N (0, 1) −1, 2 −1, 2 N (0, 1)

bias U (−1, 1) from output from output none

dilation random fixed (relative to
input)

fixed (relative to
input)

random

padding random fixed fixed always

pooling operators MAX, PPV PPV PPV, MPV,
MIPV, LSPV

Response per
Kernel/Group

1st order difference no no yes yes

feature vector size 20k 10k 50k relative to input

from MultiROCKET to form its pipeline. We call this classifier MultiROCKET-
Hydra.

4.6.4 Comparison of convolution based approaches

Table 9 highlights the key differences between the convolution based approaches.
Figure 28 shows the average ranks of the convolution based classifiers. MultiRO-

CKET-Hydra is the top performer, and is significantly better ranked than the next best,
Multi-ROCKET. Table 10 and Fig. 29(a) show that the actual difference between the
algorithms is small. Progress in the field is demonstrated by Fig. 29(b). MR-Hydra is
nearly 2% better on average than ROCKET, which itself was considered state of the
art as recently as 2020 (Bagnall et al. 2020a).

4.7 Deep learning

Deep learning has been the most active area of TSC research since the bake off in
terms of the number of publications. It was thought by many that the impact deep
learning had on fields such as vision and speech would be replicated in TSC research.

Fig. 28 Ranked test accuracy of six convolution based classifiers and the benchmark 1NN-DTW on 112
UCR UTSC problems. Accuracies are averaged over 30 resamples of train and test splits

123

1996 M. Middlehurst et al.

Table 10 Summary performance measures for convolution based classifiers on 30 resamples of 112 UTSC
problems. Best in bold

ACC BALACC AUROC NLL F1

MR-Hydra 0.884 (1) 0.866 (1) 0.913 (2) 4.181 (2) 0.880 (1)

Multi-Rocket 0.881 (2) 0.863 (2) 0.911 (3) 4.273 (3) 0.878 (2)

Mini-Rocket 0.874 (3) 0.856 (3) 0.906 (4) 4.526 (4) 0.871 (3)

Hydra 0.870 (4) 0.850 (4) 0.903 (5) 4.681 (5) 0.866 (4)

ROCKET 0.868 (5) 0.850 (4) 0.903 (5) 4.748 (6) 0.864 (5)

Arsenal 0.866 (6) 0.846 (6) 0.925 (1) 3.317 (1) 0.861 (6)

In a paper with “Finding AlexNet for time series classification” in the title, Fawaz et al.
(2020) discuss the impact AlexNet had on computer vision and observe that this lesson
indicates that “given the similarities in the data, it is easy to suggest that there is much
potential improvement for deep learning in TSC.”. A highly cited survey paper (Fawaz
et al. 2019) found that up to that point, ResNet (Wang et al. 2017) was the most accu-
rate TSC deep learner. Subsequently, the same group proposed InceptionTime (Fawaz
et al. 2020), which was not significantly different to top perfming hybrid algorithms in
terms of accuracy (Bagnall et al. 2020a). Since InceptionTime there have been a huge
number of deep learning papers proposing TSC algorithms: a recent survey (Foumani
et al. 2023) references 246 papers, most of which have been published in the last
three years. Table 11 summarises some recently proposed deep learning classification
algorithms. Without giving specific examples, there are several concerning trends in
the deep learning TSC research thread. Most seriously, there is a tendency to perform
model selection on test data, i.e. maximize the test accuracy over multiple epochs.
This is obviously biased, yet seems to happen even with publications in highly selec-
tive venues. Secondly, many papers do not make their source code available. Given

Fig. 29 Scatter plot of test accuracies of convolution based classifiers

123

Bake off redux: a review and experimental evaluation... 1997

Table 11 Overview of recently proposed deep learning classifiers

Name Year Code Uni/Mul Benchmark

Disjoint-CNN 2021 y M MTCS-26

Inception-FCN 2021 y U UTCS-85

KDCTime 2022 n U UTCS-113

Multi-Stage-Att 2020 n M own

CT_CAM 2020 n M 15 MTCS

CA-SFCN 2020 y M 14

RTFN 2021 n U/M UTCS-85, MTCS-30

LAXCAT 2021 n M 4

MACNN 2021 y U UTCS-85

T2 2021 y M own

GTN 2021 y M MTCS-13

TRANS 2021 n M own

FMLA 2022 n U UTCS-85

AutoTransformer 2022 n U UTCS-85

BENDER 2021 y M 5 EEG

TST 2021 y M MTCS-11

TARNET 2022 y M MTCS/UCI-34

all these algorithms are based on standard tools like TensorFlow and PyTorch, this
seem inexcusable. Thirdly, they often evaluate on subsets of the archive without any
clear rationale as to why. Most are evaluated only on the multivariate archive. Whilst
cherry-picking data is questionable, using just MTSC data is not, since deep learning
classifiers are usually proposed specifically for MTSC. However, it puts them beyond
the scope of this paper. Fourthly, they frequently only compare against other deep
learning classifiers, often set up as weak straw men. Finally, they often do not seem
to offer any advance on previous research. We have not seen any algorithm that can
realistically claim to outperform InceptionTime (Fawaz et al. 2020), nor its successor
H-InceptionTime (Ismail-Fawaz et al. 2022). Because of this, we restrict our attention
to five deep learning algorithms.We include a standard Convolutional Neural Network
(CNN) implementation as a baseline. We use the same CNN structure as used in the
deep learning bake off (Fawaz et al. 2019). We evaluate ResNet since it was best per-
forming in Fawaz et al. (2019). InceptionTime (Fawaz et al. 2020) is included since
it is, to the best our knowledge, best in category for deep learning. We also evaluate
two recent extensions of InceptionTime: H-InceptionTime (Ismail-Fawaz et al. 2022)
and LiteTime (Ismail-Fawaz et al. 2023b). The relation flowchart for deep learning
algorithms is shown in Fig. 30.

4.7.1 Convolution Neural Networks (CNN)

Convolution Neural Networks (CNN), were first introduced in Fukushima (1980),
and have gained widespread use in image recognition. Their popularity has increased

123

1998 M. Middlehurst et al.

Fig. 30 An overview of deep
learning classifiers and the
relationship between them.
Filled algorithms were released
after the 2017 bake off (Bagnall
et al. 2017)

CNN

ResNet

Inception
Time

H-Inception
Time LITE Time

significantly since AlexNet won the ImageNet competition in 2012. CNNs comprise
three types of layers: convolutional, pooling, and fully connected. The convolutional
layer slides a filter over a time series, extracting features that are unique to the input.
Convolving a one-dimensional filter with the input produces an activation or feature
map.

The result of applying one filter ω to a time series T at offset t is defined by:

Ct = f
(
ω ∗ Tt :(t+l) + b

) ∀t ∈ [1 . . . n − l + 1]

Where the filter ω is of length l, the bias parameter is b, and f is a non-linear acti-
vation function such as ReLu applied to the result of the convolution. One significant
advantage of CNNs is that the filter weights are shared across each convolution, reduc-
ing the number of weights that must be learned when compared to fully connected
neural networks. But instead of manually setting filter weights, these are learned by
the CNN directly from the training data.

As multiple learned filters are applied to the input, each resulting in one activation
map of roughly the same size as the input, a pooling layer is used in-between every two
convolution layers. A pooling layer, such as Max or Min-pooling, reduces the number
of features in each map to i.e. the maximum value, thus providing phase-invariance.
After several blocks of convolutional and pooling layers, one or more fully connected
layers follow. Finally, a softmax layer with one output neuron per class is used in the
final layer.

123

Bake off redux: a review and experimental evaluation... 1999

4.7.2 Residual Network (ResNet)

The Residual Network (ResNet) (Wang et al. 2017), is a deep learning architecture
that has been successfully adapted for time series analysis. ResNet is composed of
three residual blocks, each comprising two main components: (a) three convolutional
layers that extract features from the input data followed by batch normalization and
a ReLu non-linear activation function, and (b) a shortcut connection that allows the
direct propagation of information from earlier layers to later ones. Figure 31 illustrates
the structure.

The shortcut connection is designed to mitigate the vanishing gradients problem for
deep neural networks, and the convolutional layers extract features from time series
data. At the end of the model, the features are passed through one Global Average
Pooling (GAP) and one fully-connected softmax layer is used with the number of
neurons equal to the number of classes.

4.7.3 InceptionTime

InceptionTime is a deep learning model proposed by Fawaz et al. (2020). It is an
ensemble of five deep learning classifiers, each with the same architecture built on
cascading Inception modules (Szegedy et al. 2015). Diversity is achieved through
randomising initial weight values in each of the five models.

The network, illustrated in Fig. 32, is composed of two consecutive residual blocks.
Where each residual block is composed of three inception modules. The input of the
residual block is connected via a shortcut connection to the block’s output, to address
the vanishing gradient problem. A Global Average Pooling (GAP) layer follows the
two residual blocks. Finally, a fully-connected softmax output layer is used with the
number of neurons equal to the number of classes. An inception module first applies
a bottleneck layer, to transform an input multivariate TS to a lower dimensional TS. It
then applies multiple convolutional filters of varying kernel sizes, termedmultiplexing
convolution, to capture temporal features at different scales.

Key design differences to ResNet are ensembling of models, the use of bottleneck
layers, multiplexing convolution using varying kernel sizes, and the use of only two
residual blocks, as opposed to three in ResNet.

Fig. 31 Overview of the ResNet structure, image taken from Ismail-Fawaz et al. (2022) with permission

123

2000 M. Middlehurst et al.

Fig. 32 Overview of the InceptionTime structure, image taken from Ismail-Fawaz et al. (2022) with per-
mission

4.7.4 H-InceptionTime

Ismail-Fawaz et al. (2022) proposed an extension of InceptionTime that included
hand-craft one-dimensional convolution filters to detect very specific patterns in a time
series: increasing trends, decreasing trends and peaks. Hybrid Inception (H-Inception)
uses the hand-crafted filters in parallel with the first module of the Inception network.
Like InceptionTime,H-InceptionTime is an ensemble of five basemodels. To avoid the
need to find the best length of hand-crafted filters, H-InceptionTime chooses different
lengths for each hand-crafted filter and used all of them. They found H-InceptionTime
provided a small, but significant, improvement over InceptionTime on the 112 UCR
datasets.

4.7.5 LITETime

Both ResNet and Inception have approximately 500k trainable parameters and are
computationally intensive. In 2023, Ismail-Fawaz et al. (2023b) proposed a smaller
model for InceptionTime, called Light Inception with boosTing tEchniques (LITE).
LITETime uses theDepthWise Separable Convolutions in order to significantly reduce
the number of parameters while using boosting techniques to balance the trade off
between complexity and performance. These boosting techniques are multiplexing
convolution, dilated convolution and hand-crafted-filters. Multiplexing convolution is
the approach of applyingmultiple convolution layers in parallel of different kernel size,
motivated from Inception. The usage of dilated convolution is motivated from the fact
of it boosting many TSC models in the literature, such as ROCKET. The LITETime
ensemble of five base models is not significantly worse than full InceptionTime, but
much faster.

4.7.6 Comparison of deep learning based approaches

Figure 33 shows the relative performance of the five deep learning algorithms and
1NN-DTW. Averaged statistics are shown in Table 12. The results confirm our prior

123

Bake off redux: a review and experimental evaluation... 2001

Fig. 33 Ranked test accuracy of five deep learning based classifiers and the benchmark 1NN-DTW on 112
UCR UTSC problems. Accuracies are averaged over 30 resamples of train and test splits

belief: CNN is no better than 1NN-DTW, ResNet is significantly better than CNN, and
InceptionTime is significantly better than ResNet. They also confirm recent findings
in Ismail-Fawaz et al. (2022) and Ismail-Fawaz et al. (2023b): H-InceptionTime gives
a small, but significant improvement over InceptionTime and LiteTime is as accurate
as InceptionTime but takes a fraction of the time. We choose H-InceptionTime as our
best in class.

4.8 Hybrid

The nature of the data and the problem dictate which category of algorithm is most
appropriate. The most accurate algorithms on average, with no apriori knowledge of
the best approach, combine multiple transformation types in a hybrid algorithm. We
define a hybrid algorithm as one which by design encompasses or ensembles multiple
of the discriminatory representations we have previously described. Some algorithms
will naturally include multiple transformation characteristics, but are not classified
as hybrid approaches. For example, many interval approaches extract unsupervised
summary statistics from the intervals they select, but as the focus of the algorithm is
on generating features from intervals we would not consider it a hybrid.

The overall best performing approach in the bake off by a significant margin was the
Collective of Transformation Ensembles (COTE)Bagnall et al. (2015), which at the
time was the only algorithm that explicitly ensembles over different representations.
It has been subsequently renamed Flat-COTE due to its structure: it is an ensemble
of 35 time series classifiers built in the time, auto-correlation, power spectrum and

Table 12 Summary performance measures for deep learning classifiers on 30 resamples of 112 UTSC
problems. Best in bold

ACC BALACC AUROC NLL F1

H-InceptionTime 0.876 (1) 0.861 (1) 0.959 (1) 0.526 (3) 0.873 (1)

InceptionTime 0.874 (2) 0.859 (2) 0.959 (1) 0.515 (2) 0.872 (2)

LiteTime 0.869 (3) 0.854 (3) 0.958 (3) 0.476 (1) 0.866 (3)

ResNet 0.833 (4) 0.818 (4) 0.940 (4) 1.112 (4) 0.827 (4)

CNN 0.727 (5) 0.704 (5) 0.857 (5) 2.129 (5) 0.717 (5)

123

2002 M. Middlehurst et al.

shapelet domains. The components of the ST-HESCAHills et al. (2014) and EE Lines
and Bagnall (2015) ensembles are pooled with classifiers built on autocorrelation
(ACF) and power spectrum (PS) representation. All together, this includes the eight
classifiers built on the shapelet transform from ST-HESCA, the 11 elastic distance
1-NN classifiers from EE and the eight HESCA classifiers built on ACF and PS
transformed series. A weighed vote is used to label new cases, with each classifier
being weighted using its train set cross-validation accuracy.

The COTE family of classifiers has evolved since Flat-COTE, and new hybrid
algorithms have been produced following the success shown by ensembling multiple
representations. The relation flowchart for hybrid based algorithms is shown in Fig. 34

4.8.1 HIVE-COTE (HC˛)

The Hierarchical Vote Collective of Transformation Ensembles (HIVE-COTE)
(Lines et al. 2018) was proposed to overcome some of the problems with Flat-COTE.
This first version of HIVE-COTE, subsequently called HIVE-COTEα (HCα), is a het-
erogeneous ensemble containing fivemodules each from a different representation: EE
from the distance based representation; TSF from interval based methods; BOSS from
dictionary based approaches and ST-HESCA from shapelet based techniques and the
spectral basedRISE. The fivemodules are ensembled using theCross-validationAccu-
racyWeighted Probabilistic Ensemble (CAWPE, known at the time as HESCA, Large
et al. (2019b)). CAWPE employs a tilted probability distribution using exponential
weighing of probabilities estimated for each module found through cross-validation
on the train data. The weighted probabilities from each module are summed and stan-
dardised to produce the HIVE-COTE probability prediction.

Fig. 34 An overview of feature based classifiers and the relationship between them. Filled algorithms were
released after the 2017 bake off (Bagnall et al. 2017) and algorithms with a thin border are not included in
our experiments

123

Bake off redux: a review and experimental evaluation... 2003

4.8.2 HIVE-COTE version 1 (HC1)

Whilst state-of-the-art in terms of accuracy, HCα scales poorly. A range of improve-
ments to make HIVE-COTE more usable were introduced in HIVE-COTE v1.0
(HC1) (Bagnall et al., 2020a). HC1 has four modules instead of the five used in HIVE-
COTEα: it drops the computationally intensive EE algorithmwithout loss of accuracy.
BOSS is replaced by the more configurable cBOSS (Middlehurst et al. 2019). The
improved randomised version of STC (Bostrom and Bagnall 2017) is included with
a default limit on the search and the Rotation Forest classifier. TSF and RISE had
usability improvements. HC1 is designed to be contractable, in that you can specify a
maximum train time.

4.8.3 HIVE-COTE version 2 (HC2)

In 2021, HIVE-COTE was again updated to further address scalability issues and
reflect recent innovations to individual TSC representations and HIVE-COTE v2.0
(HC2) (Middlehurst et al. 2021) was proposed. In HC2, RISE, TSF and cBOSS are
replaced, with only STC retained. TDE (Middlehurst et al. 2020b) replaces cBOSS
as the dictionary classifier. DrCIF replaces both TSF and RISE for the interval and
frequency representations. An ensemble of ROCKET classifiers called the Arsenal is
introduced as a new convolutional based approach. Estimation of test accuracy via
cross-validation is replaced by an adapted form of out-of-bag error, although the final
model is still built using all training data. Unlike previous versions, HC2 is capable of
classifying multivariate time series. Figure 35 illustrates the structure of HC2, while
Fig. 36 visualises the ensemble members of HIVE-COTE over its evolution.

4.8.4 TS-CHIEF

The Time Series Combination of Heterogeneous and Integrated Embedding Forest
(TS-CHIEF) (Shifaz et al. 2020) is a homogeneous ensemble where hybrid features
are embedded in tree nodes rather than modularised through separate classifiers. The
TS-CHIEF comprises an ensemble of trees that embed distance, dictionary, and spec-
tral base features. At each node, a number of splitting criteria from each of these
representations are considered. These splits use randomly initialised parameters to
help maintain diversity in the ensemble. The dictionary based splits are based on
BOSS, distance splits based on EE and interval splits based on RISE. The goal of
TS-CHIEF was to obtain the benefits of multiple representations without the massive
processing requirement of the original HIVE-COTE.

4.8.5 Randomised Interval-Shapelet Transformation (RIST)

The Randomised Interval-Shapelet Transformation (RIST) pipeline is a simpler
approach than the previously described hybrids. Rather than constructing an ensem-
ble, RIST concatenates the output of multiple transformations to form a pipeline
classifier. RIST uses the transformation portions from the interval based DrCIF

123

2004 M. Middlehurst et al.

STC TDE DrCIF

Performance
Es�mate 82%

Prob Class 1 0.1

Prob Class 2 0.8

Prob Class 3 0.1

Predic�on 2

Prob Class 1 0.8

Prob Class 2 0.1

Prob Class 3 0.1

Predic�on 1

Prob Class 1 0.7

Prob Class 2 0.1

Prob Class 3 0.2

Predic�on 1

CAWPE
Alpha (α) = 4

Prob Class 1 0.824 x 0.1 + 0.594 x 0.8 + 0.74 x 0.3 + 0.584 x 0.7 = 0.29/(0.29+0.53+0.1) = 0.32

Prob Class 2 0.824 x 0.8 + 0.594 x 0.1 + 0.74 x 0.6 + 0.584 x 0.1 = 0.53/(0.29+0.53+0.1) = 0.58

Prob Class 3 0.824 x 0.1 + 0.594 x 0.1 + 0.74 x 0.1 + 0.584 x 0.2 = 0.1 /(0.29+0.53+0.1) = 0.1

Predic�on argmax(0.32, 0.58, 0.1)

Predic�on: Class 2

Performance
Es�mate 59% Performance

Es�mate 58%

Unknown Test Case

Arsenal

Prob Class 1 0.3

Prob Class 2 0.6

Prob Class 3 0.1

Predic�on 2

Performance
Es�mate 70%

Fig. 35 Overview of the HIVE-COTE version 2 ensemble structure

(Middlehurst et al. 2021) and the shapelet based RDST (Guillaume et al. 2022) algo-
rithms. For both of these transformations, features are extracted from both the base
series and multiple series representations. These representations are the first order
differences, the periodogram of the series and the series autoregression coefficients.
After concatenating the output, these features are then used to build an Extra Trees
(Geurts et al. 2006) classifier. The aim of RIST is to provide a simple and relatively

CIF

ST-HESCA

HC 2.0

HC 1.0

TSF

DrCIF

BOSS

S-BOSS

EE

WEASEL v1

TDE

HC α

ROCKET

STC

Arsenal

RISE

cBOSS

Fig. 36 A flowchart displaying the progression of the HIVE-COTE meta ensemble

123

Bake off redux: a review and experimental evaluation... 2005

Fig. 37 Ranked test accuracy of hybrid classifiers and the benchmark 1NN-DTW on 112 UCR UTSC
problems. Accuracies are averaged over 30 resamples of train and test splits

efficient hybrid algorithm which can be applied to both classification and extrinsic
regression tasks.

4.8.6 Comparison of hybrid approaches

Figure 37 shows that HC2 is significantly more accurate than the other three classifiers
in terms of accuracy. This is true of all five metrics shown in Table 13. The scatter
plots in Fig. 38 shows it is consistently better than HC1 and RIST.

5 Results

To keep the analysis tractable, we restrict further analysis of performance to the best
classifier in each of the eight categories. Further results tables and figures are available
in Appendix C, with all results files available on the accompanying website and can be
accessed directly accessible in code withg aeon. Figure 39 shows the ranking of these
classifiers on the 112 UCR data for 30 resamples of train/tests splits. HC2 and MR-
Hydra are the top performing algorithms in terms of accuracy. There is no significant
difference between QUANT, H-IT, RDST andWEASEL 2.0 in terms of test accuracy.
HC2 is best performing with AUROC and NLL measures. H-IT performs better with
balanced accuracy and NLL.

The AUROC and NLL need to be interpreted in context: Weasel 2.0, RDST and
MR-Hydra use classifiers that only produce 0/1 predictions. This means they will
inevitably perform poorly on AUROC and NLL.

Table 13 Summary performance measures for hybrid classifiers on 30 resamples of 112 UTSC problems.
Best in bold

ACC BALACC AUROC NLL F1

HC2 0.891 (1) 0.871 (1) 0.968 (1) 0.365 (1) 0.886 (1)

RIST 0.878 (3) 0.854 (3) 0.966 (2) 0.482 (4) 0.872 (4)

TS-CHIEF 0.878 (3) 0.857 (2) 0.960 (4) 0.439 (2) 0.873 (2)

HC1 0.879 (2) 0.854 (3) 0.964 (3) 0.471 (3) 0.873 (2)

123

2006 M. Middlehurst et al.

Fig. 38 Scatter plot of test accuracies of hybrid classifiers

For context, Figure 40 shows the scatter plot of HC2 against the next best (MR-
Hydra) and the worst performing (PF). It is worth reiterating that PF is significantly
better than both EE and 1-NN DTW, both of which were considered state of the art
until recently.

For convenience, Table 14 summarises the summary statistics presented in Sec-
tion 4. HC2 is on average about 0.5% more accurate than MR-Hydra, over 6% more
accurate than PF and over 12% more accurate than 1NN-DTW.

5.1 Performance on newTSC datasets

HC2performs thebest on the112datasets.However,HIVE-COTEhasbeen indevelop-
ment for over five years, and all advances were judged by evaluation on these datasets.

Fig. 39 Averaged ranked performance statistics for eight best of category algorithms on 112 UCR UTSC
problems. Statistics are averaged over 30 resamples of train and test splits. Names shortened for clarity: FP
is FreshPrince, W 2.0 is Weasel 2.0, MR-H is MR-Hydra and H-IT is H-InceptionTime

123

Bake off redux: a review and experimental evaluation... 2007

Fig. 40 Scatter plot of test accuracies of state of the art classifiers

Table 14 Summary performance measures for best in category classifiers on 30 resamples of 112 UTSC
problems. Best in bold

ACC BALACC AUROC NLL F1

HC2 0.891 (1) 0.871 (1) 0.968 (1) 0.365 (1) 0.886 (1)

MR-Hydra (MR-H) 0.884 (2) 0.866 (2) 0.913 (6) 4.181 (6) 0.880 (2)

RDST 0.876 (3) 0.856 (4) 0.907 (7) 4.457 (7) 0.872 (3)

H-InceptionTime (H-IT) 0.874 (4) 0.859 (3) 0.959 (3) 0.526 (4) 0.872 (3)

WEASEL 2.0 (W 2.0) 0.874 (4) 0.853 (5) 0.905 (8) 4.547 (8) 0.869 (5)

QUANT 0.867 (6) 0.845 (6) 0.962 (2) 0.497 (2) 0.862 (6)

FreshPRINCE (FP) 0.855 (7) 0.834 (7) 0.958 (4) 0.501 (3) 0.850 (7)

Proximity Forest (PF) 0.837 (8) 0.819 (8) 0.942 (5) 0.692 (5) 0.833 (8)

1NN-DTW 0.756 (9) 0.739 (9) 0.820 (9) 8.812 (9) 0.752 (9)

Fig. 41 Averaged ranked performance statistics for eight best of category algorithms on 30 new UTSC
problems. Statistics are averaged over 30 resamples of train and test splits

123

2008 M. Middlehurst et al.

Fig. 42 Averaged ranked performance statistics for eight best of category algorithms on 142 TSC problems.
Statistics are averaged over 30 resamples of train and test splits

As acknowledged in Middlehurst et al. (2021), there is always the risk of the introduc-
tion of subconscious bias in the design decisions that lead to the new algorithms. To
counter this, we have assembled 30 new datasets, as described in Section 3.1. Figure 41
shows the ranks for the eight best of category on these data sets. The top clique for
accuracy contains MR-Hydra, HC2, RDST, QUANT and FreshPRINCE. The results
for balanced accuracy are similar. Figure 42 shows the results for the combined 142
datasets. The performance of HC2 and MR-Hydra is very similar, and they are in a
clique that is significantly better than the other six classifiers.

Ismail-Fawaz et al. (2023a) noted that critical difference diagrams (CD) can be
deceptive and lack stability, with the relative ordering being highly sensitive to the
selection of comparates included in the comparisons. This sensitivity renders them
susceptible to inadvertent manipulation. To circumvent this problem, they propose
a bespoke pairwise comparison tool, called multiple comparative matrix (MCM)11.
It shows pairwise comparisons between all comparates, and includes difference in
average scores, wins/draws/losses, and Wilcoxon p-values. Colors of the heat map
represent mean differences in scores. Red indicates that the comparate in the row wins
by more on average than the comparate in the column. Bold text indicates that the
difference in significant. Figure 43 summarises the performance of the eight classifiers
on 112 datasets using the MCM, with comparisons to the 30 new datasets and 142
datasets available inAppendixC.Anotable observation ariseswhen comparing theCD
on accuracy in Fig. 39 to thisMCMon the 112UCRUTSC. The rankings ofWEASEL
2.0, QUANT, H-IT and RDST are deceptive. Despite WEASEL 2.0 demonstrating
more pairwise wins compared to RDST or QUANT in the MCM, its ranking appears
higher (worse) than both in the CD when all 8 comparates are taken into account. In
addition, H-IT has less pairwise wins than RDST in the MCM, yet shows the lower
(better) rank in the CD.

6 Analysis

Relative performance on test suites is important when evaluating classifiers, but it
does not necessarily generalise to new problems. There will be problem domains and
specific applicationswhere different classifierswill be themost effective. Furthermore,

11 https://github.com/MSD-IRIMAS/Multi_Comparison_Matrix

123

https://github.com/MSD-IRIMAS/Multi_Comparison_Matrix

Bake off redux: a review and experimental evaluation... 2009

Fig. 43 Summary performance statistics for eight classifiers on 112 datasets, generated using the multiple
comparison matrix (MCM). The MCM shows pairwise comparisons. Each cell shows the mean difference
in accuracy, wins/draws/losses, and Wilcoxon p-value for two comparates

characteristics such as the variability in performance and the run time complexity of
algorithms are also of great interest to the practitioner.

We model the approach used in Bagnall et al. (2017) by comparing performance
by data characteristics using all 142 datasets. Tables 15, 16 and 17 break performance
downby series length, train set size and number of classes.HC2 andMR-Hydra are first
or second on average in each category. HC2 seems to do better with longer series. MR-
Hydra performs better with larger train set sizes. Table 18 breaks down performance
by problem type. HC2 and MR-Hydra are the top two ranked in all categories except
MOTION. MR-Hydra does particularly well on image outlines, whereas HC2 excels
at electric devices and spectrograms.

Run time is clearly an important consideration. The speed of QUANT and the
ROCKET family of classifiers is a significant feature. It was stated in the bake off that
“[a]n algorithm that is faster than [the current state of the art] but not significantly
less accurate would be a genuine advance in the field“. ROCKET and the subsequent
refinements fulfil this criteria and represent an important advance. Table 19 shows

Table 15 Average accuracy rank of classifiers on 30 resamples of 142 TSC problems split by series length

1-199 (44) 200-499 (44) 500-999 (27) 1000+ (27)

HC2 3.28 (1) 3.08 (2) 3.09 (1) 2.63 (1)

MR-Hydra (MR-H) 3.43 (2) 2.89 (1) 3.48 (3) 3.56 (2)

RDST 4.72 (5) 3.66 (3) 5.02 (6) 4.22 (4)

QUANT 4.15 (3) 4.94 (6) 4.85 (4) 4.20 (3)

H-InceptionTime 4.86 (6) 4.72 (5) 3.19 (2) 4.80 (5)

WEASEL 2.0 (W 2.0) 4.59 (4) 4.51 (4) 4.98 (5) 5.33 (7)

FreshPrince (FP) 4.90 (7) 6.19 (8) 5.26 (7) 5.19 (6)

Proximity Forest (PF) 6.07 (8) 6.01 (7) 6.13 (8) 6.07 (8)

123

2010 M. Middlehurst et al.

Table 16 Average accuracy rank of classifiers on 30 resamples of 142 TSC problems split by train set size

1-99 (42) 100-299 (32) 300-699 (47) 700+ (21)

HC2 2.70 (1) 2.81 (1) 3.26 (2) 3.71 (2)

MR-Hydra (MR-H) 3.68 (2) 3.39 (2) 3.17 (1) 2.67 (1)

RDST 4.33 (3) 3.45 (3) 4.79 (5) 4.79 (6)

QUANT 4.58 (5) 4.80 (5) 4.50 (4) 4.14 (4)

H-InceptionTime 5.20 (6) 4.20 (4) 4.32 (3) 3.86 (3)

WEASEL 2.0 (W 2.0) 4.35 (4) 4.81 (6) 4.86 (6) 5.43 (7)

FreshPrince (FP) 5.48 (7) 6.28 (8) 5.15 (7) 4.62 (5)

Proximity Forest (PF) 5.68 (8) 6.25 (7) 5.96 (8) 6.79 (8)

the total train time for classifiers on the 142 problems and Fig. 44 shows the plot
of rank against train time (on a logarithmic scale). We do not include H-IT in these
measurements because it was run on two different types of GPU, whereas the other
algorithms were all trained on the same CPU (Intel Xeon Gold 5220R 2.2GHz). HC2
is clearly much slower than MR-Hydra. This is at least in parts the result of the
configuration and implementation of HC2. For example, TDE, a component of HC2,
is not optimised using numba12. Nevertheless, there is no doubt that MR-Hydra offers
a good accuracy/train time trade off: it is on average as accurate as HC2 but orders
of magnitude faster. If results are required very quickly or train set sizes are large,
MR-Hydra would seem to be the better option. However, for smaller train set sizes
(see Table 16), or if probabilities or orderings are required (see Table 14), the results
indicate that HC2 is the better option. A special mention must be given to QUANT. It
achieves high accuracy remarkably fast: it is an order of magnitude faster. We would
recommend QUANT for very large problems, assuming it scales accordingly.

Figure 45 shows the violin plot of the deviation of each classifier from the median
performing algorithm. It shows that both HC2 and MR-Hydra have tightly grouped
distributions, withHC2 having awider spread of positive values. H-InceptionTime (H-
IT) has a very wide spread, both positive and negative, reflecting the wide variation in
performance we have previously observed. FreshPrince (FP), QUANT and Proximity
Forest (PF) also have wide distributions. PF performs relatively poorly more often
than it does well.

We explored the effect on performance of the design decisions described inTable 22.
Ifwe group average accuracy ranks by each design factor of use of dilation, differences,
ensemble, frequency domain and discretisation and perform a one factor ANOVA
on each factor, we find a significant difference in rank distribution between those
using dilation and those that do not, and those that use differences and those that do
not. There was no significant difference in distribution when grouped by frequency,
ensemble or discretisation. Caremust be takenwhen interpreting these results since the
assumptions behind the tests are not satisfied. However, there is at least some support
for the utility of using dilation and differenced series. Finally, we have included a
comprehensive correlationmatrix on average accuracy ranks (Fig. 49 in the appendix).

12 http://numba.pydata.org/

123

http://numba.pydata.org/

Bake off redux: a review and experimental evaluation... 2011

Table 17 Average accuracy rank of classifiers on 30 resamples of 142 TSC problems split by number of
classes

2 (50) 3-5 (38) 6-10 (30) 11+ (24)

HC2 3.38 (2) 2.79 (1) 2.85 (1) 3.08 (2)

MR-Hydra (MR-H) 3.20 (1) 3.62 (2) 3.68 (2) 2.50 (1)

RDST 4.81 (6) 4.34 (3) 4.08 (3) 3.75 (4)

QUANT 4.11 (3) 4.59 (4) 4.52 (4) 5.38 (6)

H-InceptionTime 4.57 (4) 4.78 (5) 4.97 (6) 3.25 (3)

WEASEL 2.0 (W 2.0) 4.75 (5) 4.79 (6) 4.85 (5) 4.75 (5)

FreshPrince (FP) 4.95 (7) 5.33 (7) 5.40 (7) 6.58 (7)

Proximity Forest (PF) 6.23 (8) 5.76 (8) 5.65 (8) 6.71 (8)

These demonstrate the diversity in performance of these classifiers and show the
difference in performance between shapelet based and convolution based algorithms
(Fig. 50).

7 Conclusions

Research into algorithms for TSC has seen genuine progress in the last ten years, and
the volume of research has dramatically increased.We have provided a particular view

Table 18 Average accuracy rank of classifiers on 30 resamples of 142 TSC problems split by problem type

Type DEVICE ECG HAR IMAGE

HC2 2.42 (1) 2.14 (1) 2.90 (2) 3.52 (2)

MR-Hydra (MR-H) 2.83 (2) 2.43 (2) 2.40 (1) 3.09 (1)

RDST 4.17 (5) 4.29 (3) 3.26 (3) 3.98 (4)

QUANT 3.88 (3) 5.00 (6) 5.93 (7) 4.74 (6)

H-InceptionTime 3.96 (4) 4.57 (5) 4.19 (4) 4.33 (5)

WEASEL 2.0 (W 2.0) 6.00 (7) 4.43 (4) 4.81 (5) 3.86 (3)

FreshPrince (FP) 5.42 (6) 5.71 (7) 6.74 (8) 5.97 (7)

Proximity Forest (PF) 7.33 (8) 7.43 (8) 5.76 (6) 6.50 (8)

Type MOTION SENSOR SIMULATED SPECTRO

HC2 3.22 (2) 3.60 (2) 2.61 (1) 2.38 (1)

MR-Hydra (MR-H) 4.33 (3) 3.54 (1) 3.50 (2) 3.79 (2)

RDST 4.67 (5) 4.69 (4) 4.56 (5) 5.29 (6)

QUANT 2.33 (1) 5.27 (7) 3.78 (3) 6.17 (8)

H-InceptionTime 6.11 (8) 5.38 (8) 4.44 (4) 5.62 (7)

WEASEL 2.0 (W 2.0) 4.44 (4) 3.83 (3) 5.00 (6) 4.00 (4)

FreshPrince 5.11 (6) 4.90 (6) 5.44 (7) 4.83 (5)

Proximity Forest (PF) 5.78 (7) 4.79 (5) 6.67 (8) 3.92 (3)

123

2012 M. Middlehurst et al.

Table 19 Train time statistics on 142 TSC problems. H-InceptionTime is omitted because the times are not
comparable. Best in bold

Total (Hours) Median (Minutes) Min (Seconds) Max (Hours)

QUANT 0.22 0.02 0.17 0.02

MR-Hydra (MR-H) 1.33 0.13 0.8 0.13

WEASEL 2.0 (W 2.0) 1.92 0.17 1.8 0.17

RDST 4.63 0.95 16.51 0.23

FreshPRINCE (FP) 30.02 2.95 12.27 4.08

HC2 263.89 15.28 38.94 65.66

Proximity Forest (PF) 743.42 8.7 0.09 260.43

QUANT

MR-H

W 2.0

RDST

FP

PF

HC2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

1 10 100 1000 10000 100000

knaR
ycaruccA

egarevA

Average Build Time (Seconds)

Fig. 44 Averaged rank on accuracy against train time on 142 UTSC problems

FP HC2
MR-H

RDST
QUANT

H-IT PF W 2.0

−0.4

−0.2

0.0

0.2

D
ev

ia
tio

n
fro

m
 m

ed
ia

n
ac

cu
ra

cy

Fig. 45 Distributions of the deviation of test accuracies from the median value of eight classifiers

123

Bake off redux: a review and experimental evaluation... 2013

of this research landscape by grouping algorithms into eight categories defined by the
core representation/transformation. We have compared the best in each category on
112 TSC problem and introduced 30 new datasets to counter any possible bias from
over fitting. We evidence progress by benchmarking against algorithms previously
considered the best performing, and show that two classifiers, MR-Hydra and HC2,
generally perform the best. HC2 performs significantly better on the current UCR
archive, but there is less observable difference when we compare them on 30 new
problems we have introduced. This could be due to the smaller sample size, the nature
of the data sets or reflect some embedded bias in algorithm design. We note that HC2
does worse than MR-Hydra on imbalanced data and with larger train set sizes, but is
better with more class balance, smaller train set sizes and with long series.

We are not claiming that these results should be taken to mean practitioners should
always use MR-Hydra and/or HC2. There are strengths and weakness to all the algo-
rithms we have described. Indeed, there is a case to be made for using QUANT by
default, at least for exploratory analysis, because it is so fast. Understanding when it
is appropriate to use which algorithm for a specific problem is an active research area.
However, we suggest that, in the absence of any prior information these two algorithms
make a sensible starting point for a new TSC problem. Despite significant research
effort, there has not been an Alexnet for TSC, i.e. a deep learning approach that has
dominated all others. It may be because the problems in the archives are relatively
small compared to other archives used for deep learning evaluation: Table 16 shows
that H-Inception time improves relative to other algorithms as the number of training
cases increases.

However, we think the core reason deep learning has not provided the gains many
expected is that, unlike specific applications such as image classification or natural
language processing, there is not one common underlying structure for the neural
networks to exploit. Nevertheless, there is no doubt scope for improvements in deep
learning algorithms for TSC. H-InceptionTime performs well overall, but Fig. 45
demonstrates its limitations: it often performs terribly, and this makes its overall per-
formance worse. If this tendency could be corrected, possibly by some automated
structural optimisation, it seems likely that H-InceptionTime could match HC2 and
MR-Hydra.

Since the original bake off a number of trends have developed in research, and some
prior observations remain true. On average, hybrid algorithms still perform better than
single domain approaches on theUCRarchive. TheROCKETandHIVE-COTE family
of classifiers work well because they combine convolution/shapelet approaches with
dictionary based ones, i.e. they look for the presence of or the frequency of subseries.
A key component of ROCKET based classifiers is dilation. We have shown that using
dilation has significantly improved the single representation classifiers RDST and
WEASEL 2.0. Incorporation of dilation could well benefit other algorithms, such
as interval based classifiers. Ensemble algorithms are still effective and popular, but
pipeline algorithms combining a transformation with a linear classifier such as ridge
regression have shown to be just as competitive. The algorithms using linear classifiers
such as ROCKET, WEASEL 2.0 and RDST have shown to be more scalable than
ensembles generally, but cannot produce good probability estimates. More algorithms
now incorporate transformed series such as first-order differences and periodograms

123

2014 M. Middlehurst et al.

into their feature extraction. This has been shown to increase accuracy in the majority
of the algorithm types we have presented.

We believe there is great scope for improving time series specific classifiers: None
except QUANT scale particularly well for large data, particularly in terms of memory:
we are constructing a set of larger problems but none of the classifiers could be built
in them in reasonable time and/or memory; there is a lack of principled work flows
for using these classifiers to help understand the mechanisms for forming classifiers;
multivariate TSC is less understood and many of the classifiers described have not
been designed to be used in this way; and there has been little research into how best
to handle unequal length series. We believe there are many unanswered questions in
the field of TSC and predict it will remain as active and productive for the next 10
years.

Appendix A: Reproducibility

The majority of the algorithms we have evaluated in this work are available in the
aeon toolkit (see Footnote 2), and those that are not we plan to include over time.
aeon is a Python based toolbox for time series analysis which contains a developed
classification module. The aeon toolkit is compatible with scikit-learn13, and aims to
follow its interface and enable usage of its tools where possible.

The version of aeon classifiers used in this work is aeon v0.6.0, with this version
and later releases available on PyPi14. In Listing 1 we show a usage example for a
time series classifier in aeon. While we use ROCKET in the example as it is fast, the
same interface applied to other aeon classifiers15.

1 import numpy as np
2

3 from aeon.classification .convolution_based import
RocketClassifier

4 from aeon.datasets import load_from_tsfile
5

6 if __name__ == "__main__":
7 # 1a. Load data
8 X_train , y_train = load_from_tsfile("data_TRAIN.ts")
9 X_test , y_test = load_from_tsfile("data_TEST.ts")

10

11 # 1b. Alternatively , format your data as a 3D numpy
array and labels as a 1D array

12 # shape == (n_instances , n_channels , series_length)
13 X_train = 2 * np.random.uniform(size =(100 , 1, 100))
14 y_train = X_train[:, 0, 0]. astype(int)
15 X_test = 2 * np.random.uniform(size =(50, 1, 100))
16 y_test = X_test[:, 0, 0]. astype(int)
17

18 # 2. Call fit() to build the classifier
19 clf = RocketClassifier ()

13 https://scikit-learn.org/stable/
14 https://pypi.org/project/aeon/
15 https://www.aeon-toolkit.org/en/latest/api_reference.html

123

https://scikit-learn.org/stable/
https://pypi.org/project/aeon/
https://www.aeon-toolkit.org/en/latest/api_reference.html

Bake off redux: a review and experimental evaluation... 2015

20 clf.fit(X_train , y_train)
21

22 # 3a. To predict the class label for new cases , use
predict ()

23 predictions = clf.predict(X_test)
24

25 # 3b. If probabilities are required , use predict_proba
()

26 probabilities = clf.predict_proba(X_test)
27

28 # 3c. To just calculate accuracy , use score()
29 accuracy = clf.score(X_test , y_test)

Listing 1 Loading data, building an estimator and making predictions using a time series classifier in aeon.

To run our experiments, we primarily use the tsml-eval16 package to produce results
files for aeon and scikit-learn estimators. The version used for our experiments is
tsml-eval v0.2.1, which contains additional estimators not currently available in aeon.
Listing 2 gives an example for running an experiment using an aeon classifier loading
from .ts files. Alternatively, you can input already loaded data as shown in Listing 3.
For more guidance on producing our results using tsml-eval, visit our accompanying
webpage hosted on the repository (see Footnote 9).

1 from aeon.classification .convolution_based import
RocketClassifier

2

3 from tsml_eval.experiments import
load_and_run_classification_experiment

4 from tsml_eval.experiments import get_classifier_by_name
5

6 if __name__ == "__main__":
7 # The directory where the data is stored. This

directory should contain a directory with the name *
dataset*, holding a *dataset *.TS file or *dataset*
_TRAIN.TS and *dataset*_TEST.TS files

8 data_dir = "../"
9 # The directory to write the results file to

10 results_dir = "../"
11 # The name of the dataset to load
12 dataset = "ItalyPowerDemand"
13 # The resample id to use for random resampling , 0 uses

the original train/test split if available
14 resample_id = 0
15 # The name of the classifier to use in the experiment
16 classifier_name = "ROCKET"
17

18 # The classifier to use
19 classifier = RocketClassifier(random_state=resample_id

)
20 # Alternatively , use the set_classifier function to

select a predefined classifier
21 classifier = get_classifier_by_name(classifier_name)
22

23 # Run the experiment
24 load_and_run_classification_experiment(

16 https://github.com/time-series-machine-learning/tsml-eval

123

https://github.com/time-series-machine-learning/tsml-eval

2016 M. Middlehurst et al.

25 data_dir ,
26 results_dir ,
27 dataset ,
28 classifier ,
29 resample_id=resample_id ,
30 classifier_name=classifier_name ,
31)

Listing 2 Running a classification experiment using tsml-eval with data loaded from file.

1 import numpy as np
2 from aeon.classification .convolution_based import

RocketClassifier
3

4 from tsml_eval.experiments import
run_classification_experiment

5

6 if __name__ == "__main__":
7 # shape == (n_cases , n_channels , n_timepoints)
8 X_train = 2 * np.random.uniform(size =(100 , 1, 100))
9 y_train = X_train[:, 0, 0]. astype(int)

10 X_test = 2 * np.random.uniform(size =(50, 1, 100))
11 y_test = X_test[:, 0, 0]. astype(int)
12

13 results_dir = "../"
14 dataset = "ItalyPowerDemand"
15 resample_id = 0
16 classifier_name = "ROCKET"
17 classifier = RocketClassifier(random_state=resample_id

)
18

19 run_classification_experiment(
20 X_train ,
21 y_train ,
22 X_test ,
23 y_test ,
24 classifier ,
25 results_dir ,
26 classifier_name=classifier_name ,
27 dataset_name=dataset ,
28 resample_id=resample_id ,
29)

Listing 3 Running a classification experiment using tsml-eval with pre-loaded data.

The experiment functions will output a results file. The format for this file can be
found in the results_format.ipynb example Jupyter notebook17. The utilities
used to evaluate algorithms over multiple datasets and resamples can be found in the
evaluation.ipynb notebook.

All results files from our experiments and a table of parameters can be found on
the accompanying website and the publication directory18.

17 https://github.com/time-series-machine-learning/tsml-eval/tree/main/examples
18 https://github.com/time-series-machine-learning/tsml-eval/tree/main/tsml_eval/publications/y2023/
tsc_bakeoff

123

https://github.com/time-series-machine-learning/tsml-eval/tree/main/examples
https://github.com/time-series-machine-learning/tsml-eval/tree/main/tsml_eval/publications/y2023/tsc_bakeoff
https://github.com/time-series-machine-learning/tsml-eval/tree/main/tsml_eval/publications/y2023/tsc_bakeoff

Bake off redux: a review and experimental evaluation... 2017

Appendix B: Algorithms

Table 20 shows the algorithms used in the original classification bake off (Bagnall
et al. 2017). Table 21 shows the algorithms used in our experiments. Table 22 shows
the different characteristics for each algorithm.

Table 20 Algorithms used in the
2017 bake off Standard classifiers

Logistic Logisitic regression

C45 Decision Tree

NB Naive Bayes

BN Bayesian Network

SVML Linear kernel Support Vector Machine

SVMQ Quadratic kernel Support Vector Machine

MLP Multilayer Perceptron

RandF Random Forest

RotF Rotation Forest

Distance based

ED Euclidean Distance

DTW Dynamic Time Warping

WDTW Weighted DTW (Jeong et al. 2011)

TWE Time Warp Edit (Marteau 2009)

MSM Move-Split-Merge (Stefan et al. 2013)

CIDD T W Complexity Invariant Distance with
DTW (Batista et al. 2014)

DDD T W Derivative DTW (Górecki and Łuczak 2013)

DTDC Derivative Transform Distance (Górecki and
Łuczak 2014)

EE Elastic Ensemble (Lines and Bagnall 2015)

Interval Based

TSF Time Series Forest (Deng et al. 2013)

TSBF Time Series Bag of Features (Baydogan et al.
2013)

LPS Learned Pattern Similarity (Baydogan and
Runger 2016)

Shapelet Based

FS Fast Shapelets (Rakthanmanon and Keogh 2013)

ST Shapelet Transform (Hills et al. 2014)

123

2018 M. Middlehurst et al.

Table 20 continued Shapelet Based

LS Learned Shapelets (Grabocka et al. 2014)

Dictionary Based

BoP Bag of Patterns (Lin et al. 2012)

SAXVSM Symbolic Aggregate Approximation-vector

Space Model (Senin and Malinchik 2013)

BOSS Bag of Symbolic Fourier Approximation Sym-
bols (Schäfer 2015)

Hybrid

COTE/flat-COTE Collective of Transformation-based

Ensembles (Bagnall et al. 2015)

DTWF DTW Features (Kate 2016)

Table 21 Algorithms used in the
Redux bake off Distance based

DTW Dynamic Time Warping

ShapeDTW Shape Based DTW (Zhao and Itti 2019)

EE Fast Elastic Ensemble (Oastler and Lines
2019)

PF Proximity Forest (Lucas et al. 2019)

GRAIL Generic RepresentAtIon Learning (Paparri-
zos and Franklin 2019)

Feature Based

Catch22 Canonical TimeSeriesCharacteristics (Lubba
et al. 2019)

Signatures Canonical Signature Pipeline (Morrill et al.
2020)

TSFresh Time Series Feature Extraction Based on
Scalable

Hypothesis Tests (Christ et al. 2018)

FreshPRINCE Fresh Pipeline with Rotation Forest

Classifier (Middlehurst and Bagnall 2022)

Shapelet Based

RSF Random Shapelet Forest (Karlsson et al.
2016)

STC Binary Shapelet Transform Classi-
fier (Bostrom and Bagnall 2017)

MrSQM Multiple Representations Sequence
Miner (Nguyen and Ifrim 2022)

123

Bake off redux: a review and experimental evaluation... 2019

Table 21 continued
Shapelet Based

RDST Random Dilated Shapelet Transform (Guil-
laume et al. 2022)

Interval Based

TSF Time Series Forest (Deng et al. 2013)

RISE Random Interval Spectral Ensemble (Flynn
et al. 2019)

CIF Canonical Interval Forest (Middlehurst et al.
2020a)

DrCIF Diverse Representation CIF (Middlehurst
et al. 2021)

STSF Supervised TSF (Cabello et al. 2020)

R-STSF Randomised STSF (Cabello et al. 2021)

QUANT QUANTiles (Dempster et al. 2023)

Dictionary Based

BOSS Bag of Symbolic Fourier Approximation
Symbols (Schäfer 2015)

cBOSS Contractable BOSS (Middlehurst et al. 2019)

WEASEL v1.0 Word Extraction for Time Series Classifica-
tion (Schäfer and Leser 2017)

TDE Temporal Dictionary Ensemble (Middlehurst
et al. 2020b)

WEASEL v2.0 WEASEL with Dilation (Schäfer and Leser
2023)

Kernel/convolution Based

ROCKET Random Convolutional Kernel Trans-
form (Dempster et al. 2020)

Arsenal The Arsenal (Middlehurst et al. 2021)

MultiROCKET MultiROCKET (Tan et al. 2022)

MiniROCKET MiniROCKET (Dempster et al. 2021)

Hydra Hybrid Dictionary-ROCKET Architec-
ture (Dempster et al. 2022)

MultiROCKET-Hydra MultiROCKET + Hydra (Dempster et al.
2022)

Deep Learning Based

CNN Convolution Neural Network (Fukushima
1980)

ResNet Residual Network (Wang et al. 2017)

InceptionTime Inception Time (Fawaz et al. 2020)

H-InceptionTime Hybrid Inception Time (Ismail-Fawaz et al.
2022)

123

2020 M. Middlehurst et al.

Table 21 continued
Deep Learning Based

LiteTime Lite Inception Time (Ismail-Fawaz et al.
2023b)

Hybrid

TS-CHIEF Time Series Combination of Heterogeneous
and Integrated

Embedding Forest (Shifaz et al. 2020)

HC1 Hierarchical Vote Collective of
Transformation-based

Ensembles (Bagnall et al. 2020a)

HC2 HIVE-COTE version 2 (Middlehurst et al.
2021)

RIST Randomised Interval-Shapelet Transforma-
tion (Middlehurst and Bagnall 2023)

Table 22 Characteristics of the
40 approaches included in our
experiments

dil disc diff freq ens lin

DTW

ShapeDTW

EE X X

PF X X

GRAIL

Catch22

Signatures

TSFresh

FreshPRINCE

RSF X

STC

MrSQM X X X

RDST X X

TSF X

RISE X X

CIF X

DrCIF X X X

STSF X X X

R-STSF X X

QUANT X X

123

Bake off redux: a review and experimental evaluation... 2021

Table 22 continued dil disc diff freq ens lin

BOSS X X X

cBOSS X X X

WEASEL v1.0 X X X

TDE X X X

WEASEL v2.0 X X X X X

ROCKET X X

Arsenal X X X

MultiROCKET X X X

MiniROCKET X X

Hydra X X X

MR-Hydra X X X

CNN

ResNet

InceptionTime X

H-InceptionTime X

LiteTime X

TS-CHIEF X X X

HC1 X X X

HC2 X X X X X X

RIST X X X

Columns are dilation (dil), discretisation (disc), differences/derivatives
(diff), frequency domain (freq), ensemble (ens) and linear classifier
(lin)

Appendix C: Results

Table 23 shows the accuracy results of the best performing algorithms on the 30 new
classification datasets. Figure 46 shows a critical difference diagram for all algorithms
included in our experiments on the 112 UCR datasets. Figures 47 and 48 contain addi-
tional MCM diagrams for the 30 new datasets and original 142 datasets respectively
on the best in class algorithms. Figures 49 and 50 show correlation diagrams for the
algorithms.

123

2022 M. Middlehurst et al.

Ta
bl
e
23

A
cc
ur
ac
y
of

cl
as
si
fie
rs
on

th
e
30

ne
w
da
ta
se
ts
(a
ve
ra
ge
d
ov
er

30
re
sa
m
pl
es
)

M
R
-H

yd
ra

H
C
2

R
D
ST

Q
U
A
N
T

Fr
es
hP

R
IN

C
E

H
-I
T

W
E
A
SE

L
v2
.0

PF
1N

N
-D

T
W

A
co
ni
ty
M
IN

IP
ri
nt
er
L
ar
ge
E
q

95
.7
0%

95
.4
6%

95
.8
2%

94
.3
9%

94
.6
1%

96
.4
9%

95
.3
4%

91
.0
4%

85
.8
5%

A
co
ni
ty
M
IN

IP
ri
nt
er
Sm

al
lE
q

97
.7
5%

97
.8
5%

97
.5
6%

97
.5
8%

97
.1
9%

97
.7
4%

97
.6
3%

96
.4
0%

95
.0
0%

A
llG

es
tu
re
W
iim

ot
eX

E
q

76
.5
3%

73
.7
9%

71
.0
3%

67
.6
3%

68
.8
2%

81
.4
4%

70
.0
8%

76
.6
8%

68
.6
7%

A
llG

es
tu
re
W
iim

ot
eY

E
q

80
.6
3%

77
.6
0%

73
.2
8%

70
.5
1%

71
.4
3%

83
.8
3%

73
.1
6%

75
.3
4%

67
.6
5%

A
llG

es
tu
re
W
iim

ot
eZ

E
q

73
.0
7%

72
.8
9%

67
.7
6%

66
.1
8%

67
.4
9%

78
.2
4%

69
.1
7%

74
.1
9%

68
.2
2%

A
sp
ha
ltO

bs
ta
cl
es
U
ni
E
q

88
.5
2%

88
.9
0%

88
.0
0%

84
.2
8%

85
.7
2%

91
.1
9%

88
.3
7%

88
.8
7%

80
.4
9%

A
sp
ha
ltP

av
em

en
tT
yp

eU
ni
E
q

91
.7
6%

89
.0
8%

89
.2
4%

93
.5
9%

92
.9
3%

93
.8
4%

79
.9
6%

89
.2
6%

59
.9
7%

A
sp
ha
ltR

eg
ul
ar
ity

U
ni
E
q

98
.6
9%

95
.8
1%

97
.6
9%

98
.8
7%

98
.6
6%

98
.5
6%

93
.2
7%

98
.3
0%

69
.2
4%

C
ol
po

sc
op
y

37
.5
9%

39
.7
4%

39
.6
0%

42
.4
1%

41
.1
9%

36
.1
1%

38
.2
8%

32
.9
0%

28
.6
5%

C
ov
id
3M

on
th
D
is
cr
et
e

78
.2
9%

65
.5
2%

79
.0
2%

61
.4
8%

78
.9
0%

46
.9
4%

79
.2
9%

78
.6
7%

74
.8
6%

D
od

ge
rL
oo

pD
ay
N
m
v

54
.8
1%

60
.7
8%

61
.0
8%

61
.1
7%

57
.4
5%

52
.6
4%

60
.3
9%

58
.8
3%

41
.9
5%

D
od

ge
rL
oo

pG
am

eN
m
v

86
.5
4%

84
.4
9%

80
.8
4%

83
.3
1%

84
.8
8%

78
.2
4%

84
.2
5%

88
.0
6%

86
.7
7%

D
od

ge
rL
oo

pW
ee
ke
nd

N
m
v

98
.1
0%

98
.3
6%

98
.3
6%

98
.4
9%

97
.8
8%

97
.0
1%

97
.9
4%

98
.4
7%

95
.5
3%

E
le
ct
ri
cD

ev
ic
eD

et
ec
tio

n
90

.1
8%

89
.1
5%

90
.0
2%

90
.2
0%

89
.6
8%

75
.1
4%

89
.3
1%

88
.9
9%

85
.8
4%

Fl
oo

dM
od

el
in
g1

D
is
cr
et
e

96
.1
6%

87
.2
3%

93
.0
4%

94
.4
9%

96
.9
4%

92
.0
6%

89
.4
1%

96
.3
4%

94
.1
5%

Fl
oo

dM
od

el
in
g2

D
is
cr
et
e

98
.3
4%

93
.4
2%

95
.8
5%

97
.8
1%

98
.3
0%

96
.5
0%

95
.9
1%

97
.3
9%

97
.4
5%

Fl
oo

dM
od

el
in
g3

D
is
cr
et
e

96
.5
5%

80
.0
2%

92
.6
3%

92
.7
0%

97
.4
4%

88
.5
1%

90
.3
7%

96
.4
4%

94
.8
4%

G
es
tu
re
M
id
A
ir
D
1E

q
77

.3
6%

78
.0
3%

74
.2
6%

71
.0
8%

70
.6
7%

75
.3
6%

73
.3
3%

64
.4
6%

45
.6
2%

G
es
tu
re
M
id
A
ir
D
2E

q
63

.6
7%

64
.8
2%

62
.2
1%

61
.7
7%

61
.3
6%

59
.9
5%

63
.3
3%

53
.9
5%

31
.7
9%

G
es
tu
re
M
id
A
ir
D
3E

q
48

.4
6%

53
.1
8%

51
.9
2%

47
.0
3%

47
.4
6%

39
.6
2%

44
.7
2%

34
.5
4%

18
.4
1%

G
es
tu
re
Pe

bb
le
Z
1E

q
95

.7
2%

95
.9
5%

97
.1
3%

94
.5
2%

94
.4
0%

97
.0
9%

96
.1
0%

89
.9
6%

71
.1
0%

G
es
tu
re
Pe

bb
le
Z
2E

q
96

.7
9%

96
.7
5%

97
.4
9%

94
.9
8%

94
.4
1%

96
.1
2%

96
.9
2%

90
.7
8%

73
.3
5%

123

Bake off redux: a review and experimental evaluation... 2023

Ta
bl
e
23

co
nt
in
ue
d

M
R
-H

yd
ra

H
C
2

R
D
ST

Q
U
A
N
T

Fr
es
hP

R
IN

C
E

H
-I
T

W
E
A
SE

L
v2
.0

PF
1N

N
-D

T
W

K
ep
le
rL
ig
ht
C
ur
ve
s

92
.4
6%

96
.6
6%

92
.8
4%

94
.8
0%

96
.5
7%

75
.0
7%

92
.3
9%

89
.4
7%

80
.1
4%

M
el
bo

ur
ne
Pe

de
st
ri
an
N
m
v

96
.3
1%

94
.7
5%

95
.9
5%

97
.0
6%

96
.4
4%

96
.7
8%

92
.0
9%

95
.2
8%

88
.5
5%

Ph
on

eH
ea
rt
be
at
So

un
d

65
.0
7%

89
.3
5%

66
.8
7%

91
.6
1%

65
.2
6%

47
.5
9%

64
.0
8%

63
.8
1%

54
.2
7%

Pi
ck
up

G
es
tu
re
W
iim

ot
eZ

E
q

84
.6
7%

64
.5
8%

82
.2
0%

66
.2
3%

79
.8
0%

63
.6
6%

82
.0
7%

80
.9
3%

70
.0
0%

PL
A
ID

E
q

93
.9
2%

78
.4
0%

91
.7
8%

81
.7
3%

88
.8
7%

77
.4
0%

89
.8
5%

87
.9
9%

84
.9
7%

Sh
ak
eG

es
tu
re
W
iim

ot
eZ

E
q

92
.8
7%

93
.1
3%

93
.7
3%

85
.5
3%

90
.4
7%

85
.9
3%

92
.7
3%

89
.7
3%

85
.4
7%

Sh
ar
eP

ri
ce
In
cr
ea
se

66
.4
8%

68
.6
2%

66
.0
2%

69
.0
1%

69
.4
4%

65
.2
6%

68
.6
2%

69
.1
3%

62
.0
5%

To
ol
s

86
.5
2%

88
.4
3%

86
.2
7%

81
.0
0%

86
.9
9%

85
.5
2%

88
.2
6%

76
.7
4%

69
.3
3%

123

2024 M. Middlehurst et al.

Fig. 46 Ranked test accuracy of all 40 classifiers in the bake-off on 112 UCR UTSC problems. Accuracies
are averaged over 30 resamples of train and test splits

Fig. 47 Summary performance statistics for eight classifiers on 30 datasets, generated using the multiple
comparison matrix (MCM)

123

Bake off redux: a review and experimental evaluation... 2025

Fig. 48 Summary performance statistics for eight classifiers on 142 datasets, generated using the multiple
comparison matrix (MCM)

1N
N

-D
TW

A
rs

en
al

B
O

SS C
IF

C
N

N
C
at

ch
22

D
rC

IF EE
Fr

es
hP

R
IN

C
E

G
R
A
IL

H
-I

nc
ep

tio
nT

im
e

H
C
1

H
C
2

H
yd

ra
In

ce
pt

io
nT

im
e

Li
te

Ti
m

e
M

R
M

R-
H

yd
ra

M
in

iR
O

C
K
ET

M
rS

Q
M PF

Q
U

A
N

T
R-

S
TS

F
R
D

S
T

R
IS

E
R
IS

T
R
O

C
K
ET

R
S
F

Re
sN

et
S
TC

S
TS

F
S
ha

pe
D

TW
S
ig

na
tu

re
s

TD
E

TS
-C

H
IE

F
TS

F
TS

Fr
es

h
W

EA
S
EL

 1
.0

W
EA

S
EL

 2
.0

cB
O

SS

1NN-DTW
Arsenal

BOSS
CIF

CNN
Catch22

DrCIF
EE

FreshPRINCE
GRAIL

H-InceptionTime
HC1
HC2

Hydra
InceptionTime

LiteTime
MR

MR-Hydra
MiniROCKET

MrSQM
PF

QUANT
R-STSF

RDST
RISE
RIST

ROCKET
RSF

ResNet
STC

STSF
ShapeDTW
Signatures

TDE
TS-CHIEF

TSF
TSFresh

WEASEL 1.0
WEASEL 2.0

cBOSS

Correlation on average accuracy ranks over all reshuffles

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

Fig. 49 Correlation on Average Accuracy Ranks for all competitors

123

2026 M. Middlehurst et al.

S
TC

R
D

S
T

A
rs

en
al

R
O

C
K
ET M
R

M
R-

H
yd

ra

M
in

iR
O

C
K
ET

STC

RDST

Arsenal

ROCKET

MR

MR-Hydra

MiniROCKET

Correlation in Ranks

0.00

0.25

0.50

0.75

Fig. 50 Correlation on Average Accuracy Ranks between Shapelet-based and Convolution-based
approaches

Acknowledgements This work is supported by the UKEngineering and Physical Sciences Research Coun-
cil (EPSRC) grant number EP/W030756/1. The experiments were carried out on the High Performance
Computing Cluster supported by the Research and Specialist Computing Support service at the University
of East Anglia and the IRIDIS High Performance Computing Facility at the University of Southampton.
We would like to thank all those responsible for helping maintain the time series classification archives and
those contributing to open source implementations of the algorithms.

Author Contributions MatthewMiddlehurst, Patrick Schäfer and Anthony Bagnall were all involved in the
implementation of algorithms used and the writing of the paper. Experiments were carried out on the High
Performance Computing Cluster supported by the Research and Specialist Computing Support service at
the University of East Anglia by Matthew Middlehurst and Anthony Bagnall.

Funding this work is supported by the UK Engineering and Physical Sciences Research Council (EPSRC)
grant number EP/W030756/1.

Availability of data andmaterial all data is available from https://timeseriesclassification.com.

Code availability all code to reproduce experiments using open source software are available from the asso-
ciated website https://tsml-eval.readthedocs.io/en/latest/publications/2023/tsc_bakeoff/tsc_bakeoff_2023.
html.

Declarations

Conflicts of interest/Competing interests There are no conflicts of interest/competing interests.

Ethics approval Not applicable.

Consent to participate All data used is freely available for scientific use.

123

https://timeseriesclassification.com
https://tsml-eval.readthedocs.io/en/latest/publications/2023/tsc_bakeoff/tsc_bakeoff_2023.html
https://tsml-eval.readthedocs.io/en/latest/publications/2023/tsc_bakeoff/tsc_bakeoff_2023.html

Bake off redux: a review and experimental evaluation... 2027

Consent for publication The authors of this paper give our consent for the publication of identifiable details,
which can include photograph(s) and/or videos and/or case history and/or details within the text.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abanda A, Mori U, Lozano J (2019) A review on distance based time series classification. Data Mining and
Knowledge Discovery 33(2):378–412

Bagnall A, Lines J, Hills J et al (2015) Time-series classification with COTE: The collective of
transformation-based ensembles. IEEE Trans Knowl Data Eng 27:2522–2535

Bagnall A, Lines J, Bostrom A et al (2017) The great time series classification bake off: a review and
experimental evaluation of recent algorithmic advances. Data Mining and Knowledge Discovery
31(3):606–660

Bagnall A, Bostrom A, Cawley G et al (2018) Is rotation forest the best classifier for problems with
continuous features? ArXiv e-prints arXiv:1809.06705

BagnallA, FlynnM,Large J et al (2020)On the usage and performance ofHIVE-COTEv1.0. In: proceedings
of the 5th Workshop on Advanced Analytics and Learning on Temporal Data

BagnallA, SouthamP, Large J et al (2020)Detecting electric devices in 3d images of bags. arXiv:2005.02163
Barbara NH, Bedding TR, Fulcher BD et al (2022) Classifying Kepler light curves for 12000 A and F stars

using supervised feature-based machine learning. Monthly Notices of the Royal Astronomical Society
514(2):2793–2804

Batista G, Keogh E, Tataw O et al (2014) CID: an efficient complexity-invariant distance measure for time
series. Data Mining and Knowledge Discovery 28(3):634–669

Baydogan M, Runger G (2016) Time series representation and similarity based on local autopatterns. Data
Mining and Knowledge Discovery 30(2):476–509

Baydogan M, Runger G, Tuv E (2013) A bag-of-features framework to classify time series. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 25(11):2796–2802

Benavoli A, Corani G, Mangili F (2016) Should we really use post-hoc tests based on mean-ranks? J Mach
Learn Res 17:1–10

Benjamini Y, Yekutieli D (2001) The control of the false discovery rate inmultiple testing under dependency.
Annals of statistics pp 1165–1188

Bostrom A, Bagnall A (2017) Binary shapelet transform for multiclass time series classification. Transac-
tions on Large-Scale Data and Knowledge Centered Systems 32:24–46

Bostrom A, Bagnall A, Lines J (2016) Evaluating improvements to the shapelet transform. in Workshop on
Mining and Learning from Time Series

Breiman L (2001) Random forests. Machine Learning 45(1):5–32
Cabello N, Naghizade E, Qi J, et al (2020) Fast and accurate time series classification through supervised

interval search. In: IEEE International Conference on Data Mining
Cabello N, Naghizade E, Qi J, et al (2021) Fast, accurate and interpretable time series classification through

randomization. arXiv:2105.14876
Christ M, Braun N, Neuffer J et al (2018) Time series feature extraction on basis of scalable hypothesis

tests (tsfresh-a python package). Neurocomputing 307:72–77
Dau H, Bagnall A, Kamgar K et al (2019) The UCR time series archive. IEEE/CAA Journal of Automatica

Sinica 6(6):1293–1305
Dempster A, Petitjean F,WebbG (2020) ROCKET: Exceptionally fast and accurate time series classification

using random convolutional kernels. Data Mining and Knowledge Discovery 34:1454–1495

123

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1809.06705
http://arxiv.org/abs/2005.02163
http://arxiv.org/abs/2105.14876

2028 M. Middlehurst et al.

Dempster A, Schmidt D, Webb G (2021) Minirocket: A very fast (almost) deterministic transform for
time series classification. In: proceedings of the 27th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining

Dempster A, Schmidt DF,Webb GI (2022) HYDRA: Competing convolutional kernels for fast and accurate
time series classification. arXiv:2203.13652

DempsterA, SchmidtDF,WebbGI (2023)Quant:Aminimalist intervalmethod for time series classification.
arXiv:2308.00928

Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30
Deng H, Runger G, Tuv E et al (2013) A time series forest for classification and feature extraction. Inf Sci

239:142–153
Fawaz H, Forestier G, Weber J et al (2019) Deep learning for time series classification: a review. Data

Mining and Knowledge Discovery 33(4):917–963
Fawaz H, Lucas B, Forestier G et al (2020) InceptionTime: finding AlexNet for time series classification.

Data Mining and Knowledge Discovery 34(6):1936–1962
Fisher RA (1922) On the interpretation of χ 2 from contingency tables, and the calculation of p. Journal of

the Royal Statistical Society 85(1):87–94
Flynn M, Bagnall A (2019) Classifying flies based on reconstructed audio signals. In: proceedings of the

Intelligent Data Engineering andAutomated Learning, Lecture Notes in Computer Science, vol 11872.
Springer, p 249–258

Flynn M, Large J, Bagnall A (2019) The contract random interval spectral ensemble (c-RISE): The effect
of contracting a classifier on accuracy. In: proceedings of the Hybrid Artificial Intelligence Systems,
Lecture Notes in Computer Science, vol 11734. Springer, p 381–392

Foumani N,Miller L, Tan C, et al (2023) Deep learning for time series classification and extrinsic regression:
A current survey. arXiv:2302.02515

FreundY, Schapire R (1996) Experiments with a new boosting algorithm. In: Proc. International Conference
on Machine Learning, pp 148–156

Fukushima K (1980) Neocognitron: A self-organizing neural network model for a mechanism of pattern
recognition unaffected by shift in position. Biological Cybernetics 36(4):193–202

Fulcher B, Jones N (2017) hctsa: A computational framework for automated time-series phenotyping using
massive feature extraction. Cell Systems 5(5):527–531

García S, Herrera F (2008) An extension on “statistical comparisons of classifiers over multiple data sets"
for all pairwise comparisons. J Mach Learn Res 9:2677–2694

Geurts P, Ernst D, Wehenkel L (2006) Extremely randomised trees. Mach Learn 63(1):3–42
Górecki T, Łuczak M (2013) Using derivatives in time series classification. Data Mining and Knowledge

Discovery 26(2):310–331
Górecki T, ŁuczakM (2014) Non-isometric transforms in time series classification usingDTW.Knowledge-

Based Systems 61:98–108
Grabocka J, Schilling N, Wistuba M, et al (2014) Learning time-series shapelets. In: proceedings of the

20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
Guillaume A, Vrain C, Elloumi W (2022) Random dilated shapelet transform: A new approach for time

series shapelets. In: ICPRAI
Gutiérrez-Fragoso K, Acosta-Mesa G, Cruz-Ramírez N, Hernández-Jiménez R (2017) Optimization of

classification strategies of acetowhite temporal patterns towards improving diagnostic performance of
colposcopy. Computational and Mathematical Methods in Medicine 4

Hills J, Lines J, Baranauskas E et al (2014) Classification of time series by shapelet transformation. Data
Mining and Knowledge Discovery 28(4):851–881

Holder C, Middlehurst M, Bagnall A (2022) A review and evaluation of elastic distance functions for time
series clustering. arXiv preprint arXiv:2205.15181

Ismail-Fawaz A, Devanne M, Weber J, et al (2022) Deep learning for time series classification using new
hand-crafted convolution filters. In: 2022 IEEE International Conference on Big Data (Big Data),
IEEE, pp 972–981

Ismail-Fawaz A, Dempster A, Tan CW et al (2023) An approach to multiple comparison benchmark eval-
uations that is stable under manipulation of the comparate set. arXiv:2305.11921

Ismail-Fawaz A, Devanne M, Berretti S et al (2023) Lite: Light inception with boosting techniques for time
series classification. In: 2023 IEEE 10th International Conference on Data Science and Advanced
Analytics (DSAA), IEEE, pp 1–10

123

http://arxiv.org/abs/2203.13652
http://arxiv.org/abs/2308.00928
http://arxiv.org/abs/2302.02515
http://arxiv.org/abs/2205.15181
http://arxiv.org/abs/2305.11921

Bake off redux: a review and experimental evaluation... 2029

Jeong Y, Jeong M, Omitaomu O (2011) Weighted dynamic time warping for time series classification.
Pattern Recognition 44:2231–2240

Karlsson I, Papapetrou P, Boström H (2016) Generalized random shapelet forests. Data Mining and Knowl-
edge Discovery 30(5):1053–1085

Kate R (2016) Using dynamic time warping distances as features for improved time series classification.
Data Mining and Knowledge Discovery 30(2):283–312

Kendall MG (1938) A new measure of rank correlation. Biometrika 30(1/2):81–93
Large J, Bagnall A,Malinowski S et al (2019) On time series classification with dictionary-based classifiers.

Intelligent Data Analysis 23(5):1073–1089
Large J, Lines J, Bagnall A (2019) A probabilistic classifier ensemble weighting scheme based on cross

validated accuracy estimates. Data Mining and Knowledge Discovery 33(6):1674–1709
Lazebnik S, Schmid C, Ponce J (2006) Beyond bags of features: Spatial pyramid matching for recogniz-

ing natural scene categories. In: proceeding of the IEEE conference on computer vision and pattern
recognition, IEEE, pp 2169–2178

Lin J, Keogh E, Wei L et al (2007) Experiencing SAX: a novel symbolic representation of time series. Data
Mining and Knowledge Discovery 15(2):107–144

Lin J, Khade R, Li Y (2012) Rotation-invariant similarity in time series using bag-of-patterns representation.
Journal of Intelligent Information Systems 39(2):287–315

Lines J, Bagnall A (2014) Ensembles of elastic distance measures for time series classification. In: proceed-
ings of the 14th SIAM International Conference on Data Mining

Lines J, Bagnall A (2015) Time series classification with ensembles of elastic distance measures. Data
Mining and Knowledge Discovery 29:565–592

Lines J, Taylor S, Bagnall A (2018) Time series classification with HIVE-COTE: The hierarchical vote
collective of transformation-based ensembles. ACM Transactions Knowledge Discovery from Data
12(5):1–36

Lubba C, Sethi S, Knaute P et al (2019) catch22: canonical time-series characteristics. Data Mining and
Knowledge Discovery 33(6):1821–1852

LucasB, ShifazA, PelletierC et al (2019) Proximity forest: an effective and scalable distance-based classifier
for time series. Data Mining and Knowledge Discovery 33(3):607–635

Mahato V, Obeidi MA, Brabazon D et al (2020) Detecting voids in 3d printing using melt pool time series
data. J Intell Manuf

Marteau P (2009) Time warp edit distance with stiffness adjustment for time series matching. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 31(2):306–318

Massey FJ Jr (1951) The kolmogorov-smirnov test for goodness of fit. Journal of the American statistical
Association 46(253):68–78

Middlehurst M, Bagnall A (2022) The freshprince: A simple transformation based pipeline time series
classifier. In: International Conference on Pattern Recognition and Artificial Intelligence, Springer, pp
150–161

Middlehurst M, Bagnall A (2023) Extracting features from random subseries: A hybrid pipeline for time
series classification and extrinsic regression. In: proceedings of the 8th Workshop on Advanced Ana-
lytics and Learning on Temporal Data

MiddlehurstM, VickersW, Bagnall A (2019) Scalable dictionary classifiers for time series classification. In:
proceedings of the Intelligent Data Engineering and Automated Learning, Lecture Notes in Computer
Science, vol 11871. Springer, p 11–19

Middlehurst M, Large J, Bagnall A (2020) The canonical interval forest (CIF) classifier for time series
classification. In: IEEE International Conference on Big Data, pp 188–195

Middlehurst M, Large J, Cawley G et al (2020) The temporal dictionary ensemble (TDE) classifier for time
series classification. In: proceedings of the European Conference on Machine Learning and Principles
and Practice of Knowledge Discovery in Databases, pp 660–676

Middlehurst M, Large J, Flynn M et al (2021) HIVE-COTE 2.0: a new meta ensemble for time series
classification. Mach Learn 110:3211–3243

Morrill J, Fermanian A, Kidger P, et al (2020) A generalised signature method for multivariate time series
feature extraction. arXiv preprint arXiv:2006.00873

Nguyen TL, Ifrim G (2022) Fast time series classification with random symbolic subsequences. In: pro-
ceedings of the 7th Workshop on Advanced Analytics and Learning on Temporal Data

Nguyen TL, Gsponer S, Ifrim G (2017) Time series classification by sequence learning in all-subsequence
space. In: proceedings of the 33rd IEEE International Conference on Data Engineering, pp 947–958

123

http://arxiv.org/abs/2006.00873

2030 M. Middlehurst et al.

Nguyen TL, Gsponer S, Ilie I et al (2019) Interpretable time series classification using linear models
and multi-resolution multi-domain symbolic representations. Data Mining and Knowledge Discovery
33(4):1183–1222

Oastler G, Lines J (2019) A significantly faster elastic-ensemble for time-series classification. In: proceed-
ings of the Intelligent Data Engineering and Automated Learning, Lecture Notes in Computer Science,
vol 11871. Springer, p 446–453

Paparrizos J, Franklin MJ (2019) Grail: efficient time-series representation learning. Proceedings of the
VLDB Endowment 12(11):1762–1777

Provost F, Domingos P (2003) Tree induction for probability-based ranking. Machine Learning 52(3):199–
215

Rakthanmanon T, Keogh E (2013) Fast-shapelets: A fast algorithm for discovering robust time series
shapelets. In: proceedings of the 13th SIAM International Conference on Data Mining

Rakthanmanon T, Bilson J, Campana L, et al (2013) Addressing big data time series: Mining trillions of
time series subsequences under dynamic time warping. ACM Transactions on Knowledge Discovery
from Data 7(3)

Rodriguez J, Kuncheva L, Alonso C (2006) Rotation forest: A new classifier ensemble method. IEEE
Transactions on Pattern Analysis and Machine Intelligence 28(10):1619–1630

Ruiz AP, Flynn M, Large J et al (2021) The great multivariate time series classification bake off: a review
and experimental evaluation of recent algorithmic advances. Data Mining and Knowledge Discovery
35(2):401–449

Schäfer P (2015) The BOSS is concerned with time series classification in the presence of noise. Data
Mining and Knowledge Discovery 29(6):1505–1530

Schäfer P, Högqvist M (2012) SFA: a symbolic Fourier approximation and index for similarity search in
high dimensional datasets. In: proceedings of the 15th International Conference onExtendingDatabase
Technology, pp 516–527

Schäfer P, Leser U (2017) Fast and accurate time series classification with WEASEL. In: proceedings of
the ACM Conference on Information and Knowledge Management, pp 637–646

Schäfer P, Leser U (2023) WEASEL 2.0: a random dilated dictionary transform for fast, accurate and
memory constrained time series classification. Machine Learning 11:4763–4788

Senin P, Malinchik S (2013) SAX-VSM: interpretable time series classification using sax and vector space
model. In: proceedings of the 13th IEEE International Conference on Data Mining

Shifaz A, Pelletier C, Petitjean F et al (2020) TS-CHIEF: a scalable and accurate forest algorithm for time
series classification. Data Mining and Knowledge Discovery 34(3):742–775

Souza V (2018) Asphalt pavement classification using smartphone accelerometer and complexity invariant
distance. Engineering Applications of Artificial Intelligence 74:198–211

Stefan A, Athitsos V, Das G (2013) The Move-Split-Merge metric for time series. IEEE Transactions on
Knowledge and Data Engineering 25(6):1425–1438

SzegedyC, LiuW, JiaY, et al (2015)Going deeperwith convolutions. In: proceeding of the IEEEConference
on Computer Vision and Pattern Recognition

TanCW,Petitjean F,WebbG (2020) FastEE: Fast ensembles of elastic distances for time series classification.
Data Mining and Knowledge Discovery 34:1–42

Tan CW, Bergmeir C, Petitjean F et al (2021) Time series extrinsic regression. Data Mining and Knowledge
Discovery 35:1032–1060

Tan CW, Dempster A, Bergmeir C et al (2022)MultiRocket: multiple pooling operators and transformations
for fast and effective time series classification. Data Mining and Knowledge Discovery 36:1623–1646

Wang Z, Yan W, Oates T (2017) Time series classification from scratch with deep neural networks: a
strong baseline. In: proceedings of the IEEE International Joint Conference on Neural Networks, pp
1578–1585

Ye L, Keogh E (2011) Time series shapelets: a novel technique that allows accurate, interpretable and fast
classification. Data Mining and Knowledge Discovery 22(1–2):149–182

Zhao J, Itti L (2019) shapeDTW: Shape dynamic time warping. Pattern Recognition 74:171–184

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

Bake off redux: a review and experimental evaluation... 2031

Authors and Affiliations

Matthew Middlehurst1 · Patrick Schäfer2 · Anthony Bagnall1,3

Matthew Middlehurst
m.b.middlehurst@soton.ac.uk

Patrick Schäfer
patrick.schaefer@hu-berlin.de

1 School of Electronics and Computer Science, University of Southampton, Southampton, United
Kingdom

2 Humboldt-Universität zu Berlin, Berlin, Germany

3 School of Computing Sciences, University of East Anglia, Norwich, United Kingdom

123

	Bake off redux: a review and experimental evaluation of recent time series classification algorithms
	Abstract
	1 Introduction
	2 Definitions and terminology
	3 Experimental procedure
	3.1 New datasets
	3.2 Reproducibility

	4 Time series classification algorithms
	4.1 Distance based
	4.1.1 Elastic Ensemble (EE)
	4.1.2 Proximity Forest (PF)
	4.1.3 ShapeDTW
	4.1.4 Generic RepresentAtIon Learning (GRAIL)
	4.1.5 Comparison of distance based approaches

	4.2 Feature based
	4.2.1 The canonical time series characteristics (Catch22)
	4.2.2 Time Series Feature Extraction based on Scalable Hypothesis Tests (TSFresh)
	4.2.3 Generalised signatures
	4.2.4 Comparison of feature based approaches

	4.3 Interval based
	4.3.1 Time Series Forest (TSF)
	4.3.2 Random Interval Spectral Ensemble (RISE)
	4.3.3 STSF and R-STSF
	4.3.4 CIF and DrCIF
	4.3.5 QUANT
	4.3.6 Comparison of interval based approaches

	4.4 Shapelet based
	4.4.1 The Shapelet Transform Classifier (STC)
	4.4.2 The Generalised Random Shapelet Forest (RSF)
	4.4.3 MrSEQL and MrSQM
	4.4.4 Random Dilated Shapelet Transform (RDST)
	4.4.5 Comparison of shapelet based approaches

	4.5 Dictionary based
	4.5.1 Bag-of-SFA-Symbols (BOSS)
	4.5.2 Word Extraction for Time Series Classification (WEASEL v1.0)
	4.5.3 WEASEL v2.0 (with dilation)
	4.5.4 Contractable BOSS (cBOSS)
	4.5.5 SpatialBOSS
	4.5.6 Temporal Dictionary Ensemble (TDE)
	4.5.7 Comparison of dictionary based approaches

	4.6 Convolution based
	4.6.1 Random Convolutional Kernel Transform (ROCKET)
	4.6.2 Mini-ROCKET and Multi-ROCKET
	4.6.3 Hydra and MultiROCKET-Hydra
	4.6.4 Comparison of convolution based approaches

	4.7 Deep learning
	4.7.1 Convolution Neural Networks (CNN)
	4.7.2 Residual Network (ResNet)
	4.7.3 InceptionTime
	4.7.4 H-InceptionTime
	4.7.5 LITETime
	4.7.6 Comparison of deep learning based approaches

	4.8 Hybrid
	4.8.1 HIVE-COTE (HCα)
	4.8.2 HIVE-COTE version 1 (HC1)
	4.8.3 HIVE-COTE version 2 (HC2)
	4.8.4 TS-CHIEF
	4.8.5 Randomised Interval-Shapelet Transformation (RIST)
	4.8.6 Comparison of hybrid approaches

	5 Results
	5.1 Performance on new TSC datasets

	6 Analysis
	7 Conclusions
	Appendix A: Reproducibility
	Appendix B: Algorithms
	Appendix C: Results
	Acknowledgements
	References

