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Abstract
Time series classification (TSC) aims to predict the class label of a given time series, 
which is critical to a rich set of application areas such as economics and medicine. 
State-of-the-art TSC methods have mostly focused on classification accuracy, with-
out considering classification speed. However, efficiency is important for big data 
analysis. Datasets with a large training size or long series challenge the use of the 
current highly accurate methods, because they are usually computationally expen-
sive. Similarly, classification explainability, which is an important property required 
by modern big data applications such as appliance modeling and legislation such as 
the European General Data Protection Regulation, has received little attention. To 
address these gaps, we propose a novel TSC method – the Randomized-Supervised 
Time Series Forest (r-STSF). r-STSF is extremely fast and achieves state-of-the-art 
classification accuracy. It is an efficient interval-based approach that classifies time 
series according to aggregate values of the discriminatory sub-series (intervals). To 
achieve state-of-the-art accuracy, r-STSF builds an ensemble of randomized trees 
using the discriminatory sub-series. It uses four time series representations, nine 
aggregation functions and a supervised binary-inspired search combined with a 
feature ranking metric to identify highly discriminatory sub-series. The discrimina-
tory sub-series enable explainable classifications. Experiments on extensive datasets 
show that r-STSF achieves state-of-the-art accuracy while being orders of magni-
tude faster than most existing TSC methods and enabling for explanations on the 
classifier decision.
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1 Introduction

Time series classification (TSC) aims to predict the class label of a given time 
series (or its feature-based representation). A time series is an ordered time-
stamped sequence of observations from a variable of interest. Various TSC meth-
ods have been proposed for a rich set of application areas such as economics 
(e.g., financial analysis  (Pattarin et  al. 2004)) and medicine (e.g., classification 
of electrocardiograms (Karpagachelvi et al. 2012)). Up to now, the key focus for 
TSC was on accuracy. However, while current techniques are able to generally 
achieve high levels of accuracy across a range of datasets, an important crite-
rion has been largely unaddressed: the ability to classify large datasets. Most 
of current state-of-the-art TSC methods are impractical (i.e., they are compu-
tationally and/or memory expensive) when classifying large datasets. A recent 
approach, ROCKET (Dempster et  al. 2020), has recognized the need for highly 
efficient TSC approaches and outperforms current state-of-the-art (SOTA) TSC 
approaches. The key contribution of our paper is to significantly increase the effi-
ciency compared to ROCKET as the currently fastest approach. Our paper is the 
first that provides a comprehensive evaluation of TSC approaches for large data-
sets addressing an urgent research issue.

SOTA TSC methods such as the hierarchical vote collective of transforma-
tion-based ensembles (HIVE-COTE)  (Lines et  al. 2018) and time series combi-
nation of heterogeneous and integrated embedding forest (TS-CHIEF)  (Shifaz 
et  al. 2020) are highly accurate, but inefficient in terms of time and memory. 
TS-CHIEF’s complexity is quadratic and HIVE-COTE has a bi-quadratic time 
complexity in the length of the time series. Recent variations of HIVE-COTE 
such as HIVE-COTE v1.0 (HC1)  (Bagnall et  al. 2020) and HIVE-COTE v2.0 
(HC2)  (Middlehurst et  al. 2021) are no longer bi-quadratic, but are still among 
the slowest TSC methods. Another method, InceptionTime  (Fawaz et  al. 2020) 
recently reported SOTA classification accuracy with faster training times. How-
ever, while InceptionTime is faster than HIVE-COTE and its variations, this 
is largely due to the use of a GPU. When running on a CPU, InceptionTime is 
approximately two times slower than HC1 and HC2.

The RandOm Convolutional KErnel Transform (ROCKET)  (Dempster et  al. 
2020) has recently claimed SOTA classification accuracy and faster training 
times. ROCKET is fast at training, approximately two orders of magnitude faster 
than HC1 and HC2. However, at testing, the difference between ROCKET and 
HC1 and HC2 is significantly reduced to one order of magnitude. ROCKET is 
currently the best suited SOTA TSC method for big data, however, its testing 
time could represent a drawback when classifying large datasets with very long 
series (Middlehurst et al. 2021).

Neither ROCKET or any other SOTA TSC method report a mechanism to 
explain their classifications. As these methods extract complex features based on 
latent features from many different time series representations/transformations, 
the integration of explainability is difficult. Whilst it might be possible to apply 
methods that provide post-hoc explanations for black box models, we will not 
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discuss them as they are beyond the scope of this paper. Instead, we focus on 
techniques that integrate explanations by design. For time series it is key to iden-
tify a subset of features, in our case time intervals, that can explain which feature 
led to a certain classification.

In this paper, we propose a novel TSC method: the Randomized-Supervised Time 
Series Forest (r-STSF). r-STSF is the fastest TSC method at both training and test-
ing; and to the best of our knowledge, r-STSF is the only TSC method that inte-
grates explainability and achieves SOTA classification accuracy (cf.  Fig.  1). As 
shown in Fig. 1, r-STSF is the fastest TSC method. The SOTA TSC methods such as 
ROCKET, HC1 and InceptionTime (ITime) are slower and do not integrate explana-
tions. All other depicted methods do not achieve SOTA accuracy. The TSC methods 
HC2 and DrCIF were published while this paper was under review (hence they are 
in grey). HC2 is the most accurate SOTA TSC method and DrCIF is statistically 
as accurate as r-STSF. Both approaches are two orders of magnitude slower than 
r-STSF.

r-STSF is a tree-based ensemble classifier whose trees are grown using features 
derived from summary statistics over a number of randomly selected sub-series 
(sub-intervals). Classifiers based on this paradigm are known as interval-based TSC 
methods. Typical examples of such classifiers include time series forest (TSF) (Deng 
et  al. 2013), time series bag-of-features (TSBF)  (Baydogan et  al. 2013), learned 

Fig. 1  Total run time (i.e., training plus testing time) of TSC methods when classifying 112 benchmark 
time series datasets normalized to r-STSF, i.e., r-STSF = 1. Each subsequent dashed circle represent an 
increase in the run time by a factor of 10. TSC methods that integrate explainability are in blue color; 
methods that do not integrate explainability are in black color. r-STSF is the fastest approach and is 
the only TSC method that achieves both SOTA accuracy and integrates explainability. All methods are 
implemented in Python and run under the same environment as detailed in Sect. 5 (Color figure online)



751

1 3

Fast, accurate and explainable time series classification...

pattern similarity (LPS)  (Baydogan and Runger 2016), the supervised time series 
forest (STSF)  (Cabello et  al. 2020), canonical interval forest (CIF) Middlehurst 
et al. (2020a), and diverse representation canonical interval forest (DrCIF) Middle-
hurst et al. (2021). Interval-based methods classify time series according to discrim-
inatory phase-dependent intervals (discriminatory intervals for short hereafter), i.e., 
sub-series located at the same time regions over all time series that maximize class 
separability. As Fig.  2 shows, interval 1 is an example of a discriminatory inter-
val. This interval differentiates the blue time series from the red ones. In contrast, 
interval 2 is non-discriminatory because it cannot separate the red and the blue time 
series.

Interval-based methods are generally fast and memory-efficient, while their tree-
based structure in tandem with meaningful features (the interval features) integrate 
explainable classifications by design. The interval features are derived from simple 
transformations (i.e., statistics such as mean or standard deviation) over a number of 
sub-series and their meaning is easy to understand. The interactions between these 
features are modeled by binary trees, which are interpretable (Breiman 2001).

Our previous work  (Cabello et  al. 2020) proposed a highly accurate interval-
based classifier, STSF, which showed that a “supervised” selection of intervals is 
significantly more efficient compared to one that is completely at random. Similar to 
TSF (Bagnall et al. 2017), it trains an ensemble of trees. The original TSF approach 
grows an ensemble of trees for classification, and a different set of intervals fea-
tures is computed at node level (on each of the trees from the ensemble). STSF, 
however, extracts a set of candidate discriminatory interval features for the train-
ing of each tree classifier instead of each tree node. Similar to TSF, STSF uses the 
interval features that split the tree nodes (i.e., discriminatory interval features) to 
integrate explainability into the classification results. STSF proposes the regions of 
interests (ROIs) to highlight the location of discriminatory intervals, which are the 
intersected regions of such intervals.

To achieve high classification accuracy without relying on complex features, 
r-STSF uses a novel perturbation scheme to grow an ensemble of uncorrelated trees. 
Uncorrelated trees reduce the variance of the ensemble and increase the classifica-
tion accuracy (Louppe et al. 2013). The perturbation scheme consists of (i) random 
partitions of intervals when searching for discriminatory features and (ii) an ensem-
ble of randomized trees. To allow for each tree in the ensemble to use a different set 

Fig. 2  Discriminatory interval 1 versus non-discriminatory interval 2 
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of interval features for classification (i.e., ensemble of uncorrelated trees), r-STSF 
randomly partitions the sub-series when searching for discriminatory interval fea-
tures. In comparison, our previous STSF method uses fixed partitions (following a 
binary search-based scheme) to extract interval features. Fixed partitions are not suit-
able to create uncorrelated trees, because they may allow for the repetition of some 
interval features across different trees in the ensemble. We show that random instead 
of fixed partitions makes r-STSF significantly more accurate. To further decrease the 
variance of ensembles, r-STSF adopts the extra-tree (ET) algorithm  (Geurts et  al. 
2006), which uses randomized trees. In such randomized trees, the cut-point of each 
feature is randomly selected when looking for the feature that provides the best split. 
These trees are different from those used in random forest (RF), where for each fea-
ture only the best cut-point (i.e., split with the lowest entropy) is selected.

Although trees built by using RF are also considered randomized trees, they are 
only weakly randomized because the cut point selection still relies on the lowest 
entropy. Methods based on ET, however, are strongly randomized because the cut 
point selection is random. Thus, we will use the term randomized trees exclusively 
for trees built using the ET algorithm; all other type of trees will be considered non-
randomized. We show that randomized trees instead of regular or non-randomized 
trees (as those based on RF) significantly increase the effectiveness of r-STSF.

Further, we introduce two new aggregation functions to form new features which 
are shown to improve the classification accuracy substantially: (i) the number of 
intersections of a sub-series with the mean axis of the entire sub-series, denoted as 
counts of mean-crossings in this paper, and (ii) the number of data points above 
the mean of a sub-series. These aggregation functions capture the shape of the time 
series and increase the classification accuracy more than generic statistics such as 
the mean or standard deviation.

To represent the temporal structure of time series data, we also include autore-
gressive representations of the series in our feature extraction process. This rep-
resentation models a time series with an autoregressive process, where a value of 
a time series is represented as a linear combination of (some of) its previous val-
ues. r-STSF computes autoregressive representations of the raw time series (via the 
autoregression coefficients), and it captures lagged relationships of time series data 
points by extracting discriminatory sub-series from such representations. Our exper-
iments show that the extraction of features from the autoregressive representation 
increases the classification accuracy considerably (i.e., more than 5%) for certain 
datasets.

r-STSF is very fast because it does not need to extract a set of candidate inter-
val features for each tree classifier as STSF does. The training process of r-STSF 
is designed to require a small number (denoted by d) of sets of candidate discrim-
inatory interval features. r-STSF extracts d sets of candidate interval features and 
merges all sets into a superset F  . Then, each of the r trees in the ensemble is built 
by using a set of randomly selected interval features from F  . Our experiments show 
that by setting d = 0.1 × r , r-STSF achieves a similar classification accuracy (to 
computing a set of interval features for each tree) but being an order of magnitude 
faster.
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An extensive experimental study on 112 time series datasets (Bagnall et al. 2019) 
shows that r-STSF is not significantly different in accuracy than most of the current 
SOTA classifiers, except for HC2, which was developed while this paper was under 
review. Whilst HC2 is more accurate than r-STSF, its long running time renders 
it impractical for classifying large time series datasets. Another approach, DrCIF 
which was proposed jointly with HC2, is slightly more accurate but not competitive 
in terms of runtime as it is two orders of magnitude slower. HC2 and DrCIF were 
published while r-STSF was under review. When reporting our results (e.g., rank-
ing) comparing r-STSF against evaluated TSC methods we use the notation b(a), 
where b denotes r-STSF’s position before HC2 and DrCIF, whereas a includes them. 
r-STSF is ranked as the fourth (sixth) best classifier (according to the average ranks). 
Among all TSC methods that integrate explainability, only r-STSF achieves SOTA 
classification accuracy. Since r-STSF is at least two orders of magnitude faster than 
most of the SOTA TSC methods, it is ideal for classifying large data sets with long 
series. Its explainability supports applications requiring insights on the classifier 
decision.

In our previous work STSF (Cabello et al. 2020), we show that computing inter-
val features in a supervised manner from different time series representations by 
using robust statistics is a highly efficient and accurate interval-based classification 
strategy. In this article, we design r-STSF with with the following new contributions:

– We propose a novel TSC method, r-STSF, which is currently the fastest current 
TSC method (Sect. 5.3). r-STSF is highly competitive to SOTA TSC methods in 
terms of average ranks and its interval-based design offers explainable classifica-
tion results (Sect. 7). For large time series datasets, r-STSF is also the most suit-
able (i.e., accuracy-efficiency trade-off) TSC method (Sect. 5.3.1).

– We propose a novel perturbation scheme to create an ensemble of uncorrelated 
trees which improves the classification accuracy of interval-based techniques. 
Our scheme employs (i) random partitions when assessing the discriminatory 
quality of sub-series (Sect.  4.2) and (ii) randomized trees to build the ensem-
ble of trees for classification (Sect. 4.3). Our selection of sets of sub-series can 
decrease the correlation of trees in the ensemble without affecting the strength of 
each tree.

– r-STSF’s redesigned training process (Sect. 4.4) shows that by (i) computing and 
merging a small number of sets of candidate discriminatory interval features into 
a superset F  , and (ii) randomly selecting interval features from F  to build each 
tree classifier, we achieve a similar classification accuracy (to computing a set of 
interval features for each tree) but being an order of magnitude faster.

– We show that time-specific aggregation functions (e.g., slope) have a larger 
positive impact in the classification accuracy than generic statistics (e.g., mean). 
To capture details of the shape of the sub-series, we propose two time-specific 
aggregation functions: (i) the counts of mean-crossings, and (ii) the counts of 
data points above the mean (Sect. 4.2).

– We propose to capture lagged relationships of the time series data points by using 
autoregressive representations (i.e., autoregressive coefficients) of the time series 
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(Sect. 4.1). Our experiments show that extracting interval features from autore-
gressive representations of the series can increase the classification accuracy.

– We significantly enhance the discussion of explainability for TSC (Sect. 7), pre-
senting different case studies and showing the utility of our approach in explain-
ing classification results on different time series representations.

– To validate the contribution of each component of r-STSF to the classification 
accuracy, we conduct an ablation study on the method (Sect. 6).

We provide the experimental results and source code at https:// github. com/ stevc 
abello/ r- STSF.

2  Related work

Time series classification (TSC) methods can be categorised into distance-based, 
shapelet-based, dictionary-based, interval-based, kernel-based, hybrid, and 
deep learning-based methods. Distance-based methods, such as elastic ensem-
ble  (EE)  (Lines and Bagnall 2015) and proximity forest (PF)  (Lucas et  al. 2019) 
focus on classify a time series according to the similarity of its ordered data points 
to those of time series with known class labels, where localized distortions of the 
data points are allowed. EE uses an ensemble of 11 elastic nearest neighbour classi-
fiers, whereas PF builds an ensemble of proximity trees for classification. Proximity 
trees use elastic distance measures as the splitting criteria. Both EE and PF have 
a quadratic time complexity over the length of the time series, which makes them 
computationally inefficient for long series.

Shapelet-based methods  (Rakthanmanon and Keogh 2011; Hills et  al. 2014; 
Grabocka et al. 2014) use shapelets, i.e, sub-series that are representative of class 
membership, and time series are classified according to their similarity to the (dis-
criminatory) shapelets. By conducting a post-transform clustering of the shape-
lets, these methods may provide some level of explainability. Shapelet Transform 
(ST) (Hills et al. 2014) achieves a competitive classification accuracy Bagnall et al. 
(2017) with a bi-quadratic time complexity over the length of the series (due to full 
enumeration of all possible shapelets), which makes it impractical for long series. To 
improve the efficiency and hence the applicability of shapelet-based classifications, 
methods such as random shapelet forest (RSF) (Karlsson et al. 2015) and its more 
recent and general version, the generalized random shapelet forest (gRSF) (Karlsson 
et  al. 2016) construct an ensemble of randomized shapelet trees, where each tree 
is built using a random selection of time series instances and a random selection 
(rather than a full enumeration) of shapelets. RSF and gRSF integrate explainability 
by identifying relevant shapelet lengths and time-points for the classifier decision. 
Recently, Bagnall et al. (2020) found that a full enumeration of all possible shape-
lets is not only unnecessary, but often results in over-fitting. Bagnall et  al. (2020) 
proposed the shapelet transform classifier (STC), which randomly selects shapelets 
(i.e., no longer bi-quadratic time complexity as ST) and uses rotation forest (Rodri-
guez et al. 2006) for classification.

https://github.com/stevcabello/r-STSF
https://github.com/stevcabello/r-STSF
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Dictionary-based methods  (Lin et  al. 2012; Schäfer 2015) use the relative 
frequency of discriminatory sub-series for classification. These methods trans-
form each sub-series into a symbolic representation such as the Symbolic Fou-
rier Approximation (SFA) Schäfer and Högqvist (2012) or the Symbolic Aggre-
gate Approximation (SAX) (Lin et al. 2003) and employ a bag-of-patterns (BOP) 
model  (Lin et  al. 2012) to transform the symbols into a histogram representa-
tion. The bag of SFA symbols (BOSS) (Schäfer 2015) is the best dictionary-based 
method according to Bagnall et al. (2017). Although more recent dictionary-based 
classifiers such as the Word ExtrAction for time SEries cLassification (WEASEL) 
Schäfer and Leser (2017), Spatial BOSS (S-BOSS) (Large et al. 2019), and Con-
tractable BOSS (cBOSS) (Middlehurst et al. 2019) are more accurate than BOSS, 
their difference in classification accuracy is not significant  (Middlehurst et  al. 
2020b), while WEASEL is even more memory-intensive than BOSS (Le Nguyen 
et  al. 2019). This makes BOSS a more practical TSC method. BOSS computes 
the number of times that a discriminatory sub-series (represented as a symbol) 
appears in the time series. This provides more accurate classifications if the dis-
criminatory sub-series appears in different classes, i.e., represents more than one 
class. In BOSS, the size of the alphabet grows exponentially to the word length, 
which makes this method memory intensive for long series. A recent TSC method, 
temporal dictionary ensemble (TDE)  (Middlehurst et  al. 2020b) combines fea-
tures from four dictionary-based TSC methods BOSS, WEASEL, S-BOSS, and 
cBOSS. TDE is significantly more accurate than all other dictionary-based TSC 
methods. However, as mentioned in its original proposal, TDE is slow at testing 
and less scalable, which makes it impractical to classify large time series datasets. 
To the best of our knowledge, none of the previously discussed dictionary-based 
TSC methods has focused on providing explainable classifications. However, 
a recent dictionary-based method, mtSAX-SEQL+LR  (Le Nguyen et  al. 2019) 
enables classification explainability. It transforms the time series into a symbolic 
representation, but it uses a Sequential Learner (SEQL)  (Ifrim and Wiuf 2011) 
for feature selection and a logistic regression (LR) classifier for classification. 
The LR classifier learns a linear classification model which is essentially a set of 
symbols and their coefficients. The symbols can be mapped back to their origi-
nal location in the time series. Since the coefficients can be interpreted as the 
discriminatory power of the symbols, mtSAX-SEQL+LR uses such coefficients 
to enable explainability into their classification results. mtSAX-SEQL+LR has 
quasi-quadratic time complexity over the length of the series. It is more efficient 
than BOSS and WEASEL (quadratic time over the length of the series). However, 
it is not competitive to SOTA TSC methods in terms of accuracy. Instead of using 
SAX or SFA symbols, Baydogan and Runger (2015) propose SMTS. It employs 
a tree-based ensemble to compute a symbolic representation of the time series, 
identifying discriminatory sub-series by their relative frequency at the terminal 
nodes. Building upon this, Rand-TS  (Görgülü and Baydogan 2021) includes a 
post-processing step with a supervised learner. This further refines the symbolic 
representation by filtering out irrelevant features. Classification is done using 
k-nearest neighbour with Manhattan distance. We compared the reported classi-
fication accuracy values of Rand-TS and SMTS against those of SOTA methods 
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and found that neither is significantly more accurate than BOSS nor competitive 
with SOTA methods. This aligns with existing literature (Bailly et al. 2016).

Interval-based methods (Deng et al. 2013; Baydogan et al. 2013; Baydogan and 
Runger 2016) are well known to be highly efficient TSC methods  (Bagnall et  al. 
2017). These methods, similar to the random patches (RP) approach (Louppe and 
Geurts 2012), rely on random subsets of features. However, unlike most TSC meth-
ods including the interval-based ones which use all training instances for model 
training, RP uses randomly sampled training instances. Interval-based methods 
explore sets of sub-series to extract discriminatory intervals. The idea is that time 
series from the same class tend to have intervals with similar characteristics. Time 
series forest (TSF) (Deng et al. 2013) relies on random searches to reduce the high-
dimensional interval space (i.e., quadratic to the length of the time series) and to 
explore intervals of different lengths. TSF uses three statistical measurements (mean, 
standard deviation, and slope) and tree-based ensembles to capture discriminatory 
intervals. TSF is fast and memory efficient (Bagnall et al. 2017), and the discrim-
inatory intervals can be identified by using the temporal importance curve  (Deng 
et al. 2013), which enables explainable classifications. The random interval spectral 
ensemble (RISE)  (Lines et  al. 2018) was introduced to capture frequency-domain 
features. RISE works similar to TSF, but it extracts spectral features over each ran-
dom interval instead of statistical measurements as in TSF. Both TSF and RISE 
are highly efficient but less accurate than other feature-based TSC methods. More 
recent interval-based TSC methods such as our previous supervised time series 
forest (STSF)  (Cabello et  al. 2020) and the canonical interval forest (CIF)  (Mid-
dlehurst et  al. 2020a) have improved considerably the classification accuracy, and 
are competitive to highly accurate shapelet and dictionary-based classifiers. STSF 
selects its intervals in a supervised manner rather than completely at random as TSF 
does, and it uses a set of seven summary statistics to compute the interval features. 
Besides, STSF computes interval features not only from the original (i.e. raw) time 
series but also from additional time series representations such as the periodogram 
and first-order difference representations. CIF is similar to TSF, while it randomly 
selects eight out of the twenty-two descriptive statistics proposed by Lubba et  al. 
(2019) when building each tree. Both STSF and CIF can provide explainable clas-
sifications but are less accurate than SOTA TSC methods. A recent interval-based 
method proposed in a parallel work, diverse representation of canonical interval for-
est (DrCIF)  (Middlehurst et al. 2021) draws on ideas presented in STSF and CIF, 
and achieves SOTA accuracy. However, as shown in Sect. 5.3, it requires of a long 
running time and does not scale to large time series datasets.

Kernel-based methods such as the RandOm Convolutional KErnel Transform 
(ROCKET)  (Dempster et  al. 2020) transforms the series into a feature-based 
representation by using a large number of random convolutional kernels, and it 
uses such features to train a linear ridge regression classifier. ROCKET achieves 
SOTA classification accuracy, but it has not reported classification explainabil-
ity. ROCKET’s time complexity is quadratic to the number of time series or to 
the number of extracted features (depending on which is smaller). Large data-
sets with very long series may affect ROCKET’s scalability. An ensemble of 
smaller ROCKET classifiers, Arsenal, is proposed by Middlehurst et al. (2021) to 
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integrate ROCKET into HC2’s ensemble. Arsenal by itself is statistically as accu-
rate as ROCKET. However, HC2 with Arsenal is significantly better than HC2 
with ROCKET.

Hybrid methods are heterogeneous ensembles. They classify time series 
datasets by combining information from different types of TSC methods. These 
methods are highly accurate but usually time and memory expensive. Two repre-
sentatives are the hierarchical vote collective of transformation-based ensembles 
(HIVE-COTE) (Lines et al. 2018) and time series combination of heterogeneous 
and integrated embedding forest (TS-CHIEF)  (Shifaz et al. 2020). HIVE-COTE 
uses EE, ST, BOSS, TSF, and RISE for classification and employs a modular 
hierarchical structure to allow a single probabilistic prediction from each clas-
sifier. HIVE-COTE achieves SOTA classification accuracy but is impractical for 
long series (bi-quadratic time complexity over the length of the time series). TS-
CHIEF builds on PF and incorporates BOSS and RISE features as splitting crite-
ria. TS-CHIEF is statistically similar to HIVE-COTE in classification accuracy, 
but more scalable (similar to PF). TS-CHIEF time complexity is quadratic to the 
series length, which makes it costly for long series.

To make HIVE-COTE faster and more scalable, Bagnall et al. (2020) proposed 
HIVE-COTE v1.0 (HC1). HC1 makes modifications such as dropping the elastic 
ensemble  (EE), no longer fully enumerating the shapelet space (i.e., STC), and 
setting running time limits. In terms of accuracy, HC1 is statistically similar to 
HIVE-COTE, but significantly faster. The recent HIVE-COTE v2.0 (HC2) (Mid-
dlehurst et al. 2021) method, which is proposed in a parallel work, replaces three 
of the four classifiers from HC1. HC2 still uses STC, but it replaces BOSS with 
TDE and TSF with DrCIF. HC2 not longer uses RISE, and it adds Arsenal to the 
ensemble. To the best of our knowledge, HC2 is the new SOTA TSC method in 
terms of accuracy. However, as shown in Sect. 5.3, HC2 is among the slowest and 
most memory expensive classifiers. It does not scale to large datasets. No hybrid 
methods have reported classification explainability.

Deep learning-based methods such as the fully convolutional networks (FCN) 
and residual networks (ResNet) obtain competitive accuracy  (Wang et al. 2017) 
and integrate explanations into the model decisions using the class activation 
map (CAM)  (Zhou et  al. 2016) to highlight relevant sub-series. However, they 
are also computationally expensive for long series and require a GPU. Incep-
tionTime (Fawaz et al. 2020) is the best deep learning-based classifier, and it is 
competitive to SOTA TSC methods. It improves ResNet’s accuracy by using an 
ensemble of five different Inception networks which are randomly initialized. 
InceptionTime is faster than HIVE-COTE as it uses GPU parallelization; how-
ever, it is very slow when running without GPU (Bagnall et al. 2020) and does 
not report classification explainability.

Table 1 summarizes the representative TSC methods. Most current TSC methods 
have time complexities that are quadratic or bi-quadratic to the length of the time 
series, which makes them less practical on long time series. Besides, to the best of 
our knowledge, with the exception of TSF, RSF, gRSF, ST, FCN, ResNet, mtSAX-
SEQL+LR, STSF and CIF no existing TSC methods provide insights about the clas-
sifier decision.
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Table 1  Summary of representative TSC methods: The time and space complexities show that these 
methods (except for r-STSF, STSF and TSF) are not suitable for large datasets with long time series

r-STSF is the only TSC method that integrates explainability and achieves SOTA classification accuracy. 
Other SOTA TSC methods do not provide explainable classifications. Other TSC methods that integrate 
explainability do not achieve SOTA classification accuracy
n number of time series, m length of a series, � number of shapelets, � alphabet size, �  word length, 
r number of trees, c number of classes, C

e
 number of candidate splits, D

t
 number of dictionary-based 

transformations, K number of kernels, v number of extracted features. For space, in TS-CHIEF’s training 
time, we have only included the complexity of the similarity-based splitting
*Indicates that the information is not explicitly stated in the associated paper
Bold “Yes” is used to highlight that r-STSF is the only TSC method that achieves SOTA accuracy and 
integrates explainability

Approach Training Training memory cost SOTA accuracy Integrates 
explain-
ability

r-STSF O(r ⋅ n ⋅ log n ⋅ log m) O(n ⋅ m + r ⋅ m) Yes Yes
TSF O(r ⋅ n ⋅ log n ⋅ m) O(rm) No Yes
RSF O(n2 log n) * No Yes
gRSF O(n2m2 log nm2) * No Yes
ST O(n2m4) O(�n) No Yes
FCN * * No Yes
ResNet * * No Yes
mtSAX-SEQL+LR O(n ⋅ m3∕2 log m) * No Yes
STSF O(r ⋅ n ⋅ log n ⋅ log m) O(rm) No Yes
CIF * * No Yes
BOSS O(n2m2) O(n��) No No
EE O(n2m2) O(m2) No No
PF O(r ⋅ n ⋅ log n⋅

Ce ⋅ c ⋅ m
2)

No No

TDE * * No No
STC * * No No
HIVE-COTE O(n2m4) O(�nm2) Yes No
TS-CHIEF O(r ⋅ n ⋅ log n⋅

Ce ⋅ c ⋅ m
2)

O(n ⋅ m + r ⋅ n ⋅ c

+Dt ⋅ n ⋅ m)

Yes No

InceptionTime * * Yes No
ROCKET O(Knm + n2v) or

O(Knm + nv2)

Yes No

HC1 * * Yes No
HC2 * * Yes No
DrCIF * * Yes No
Arsenal * * Yes No
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3  Preliminaries

We take an interval-based approach to classify time series and identify discrimina-
tory features. The basic idea is to extract sub-series for which aggregates (e.g., mean 
and standard deviation) are computed and used as features. To allow for explainable 
classifications, we focus on phase-dependent intervals, i.e., discriminatory features 
located at the same time regions over all time series in a given dataset. Although 
r-STSF’s explainability is oriented towards phase-dependent intervals, this does not 
imply that r-STSF cannot provide explanations in case of phase-independent dis-
criminatory intervals (or in the absence of phase-dependent discriminatory inter-
vals). As discussed in Sect. 4.1, r-STSF uses different time series representations as 
a proxy to indirectly detect phase-independent discriminatory intervals, i.e., phase-
independent intervals in the time domain may become phase-dependent when being 
moved into the frequency-domain.

Interval feature: Given a set of time series X = {x1, x2, x3,… , xn} , where xi = 
{xi

1
, xi

2
,… , xi

m
} , an aggregation function a(⋅) , and an interval (s,e), an interval fea-

ture f = a(X, s, e) is a vector of length n, defined as follows: 

where a(xi, s, e) = a({xi
s
, xi

s+1
,… , xi

e−1
, xi

e
})1⩽s⩽e⩽m . With s=2, e=4, a=mean, an 

interval feature f = mean (X, 2, 4) is represented with the dashed rectangle as:

Problem statement: Consider a set of n univariate time series X = {x1, x2,… , xn} , 
where each time series xi = {xi

1
, xi

2
,… , xi

m
} has m ordered real-valued observations, 

sampled at equally-spaced time intervals. Each time series xi is also associated with 
a class label yi . We aim to find the set of interval features that yield the highest time 
series class prediction accuracy. Finding such a set of interval features is NP-hard. 
For a time series of length m, there are O(m2) different intervals, and hence O(2m2

) 
subsets of intervals. For a large m, it is prohibitively expensive to explore all subsets. 
We present an efficient heuristic to avoid the exhaustive search while retaining a 
high classification accuracy

Table 2 summarizes the symbols frequently used in this paper.

f = {a(x1, s, e), a(x2, s, e), a(x3, s, e),… , a(xn, s, e)}
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4  Our approach

Our proposed TSC algorithm, r-STSF, takes a stochastic optimization approach to 
select a set of interval features with a high discriminating power (i.e., candidate dis-
criminatory interval features) from the high dimensional interval feature space (i.e., 
all O(m2) possible interval features). For a time series of length m, we reduce the 
interval feature space size to O(log m) . We search for the best interval features sub-
set F∗ (i.e., discriminatory interval features) through an ensemble of binary trees, 
which has a time complexity of O(r ⋅ n ⋅ log n ⋅ log m) , where r is the total number 
of trees in the ensemble and n is the number of time series instances. The trees in 
the ensemble are built in a randomized manner following the extra-trees algorithm 
(see Sect. 4.3) to reduce the variance of the ensemble and improve the classification 
accuracy. Figure 3 shows an overview of r-STSF when training the ensemble of ran-
domized binary trees.

For a given time series training set X, r-STSF does not only uses its original (raw) 
representation, i.e., XO , but derives its periodogram, i.e., XP , derivative, i.e., XD , and 
autoregressive representation, i.e., XG . For each representation, r-STSF selects a group 
of candidate discriminatory interval features FO, FP, FD , and FG , respectively. Next, 
a union set F  is formed by merging all candidate discriminatory interval features. It 
is worth noting that the process of extracting candidate interval features is repeated for 
d times, where d is a system constant parameter. In other words, d sets of candidate 

Table 2  Frequently used symbols and their meanings

Symbol Meaning

UCR112 The 112 benchmark time series datasets from the UCR repository
n Number of time series instances
m Time series length
X Time series set of size n × m

y Class labels vector of size n × 1

c Number of class labels
xi Time series instance
yi Class label
f Interval feature of size n × 1

a(⋅) Aggregation function
⊺ Tree classifier
r Number of tree classifier in the ensemble
XO,XP,XD,XG Original (raw), periodogram, derivative and autoregressive representations of X, 

respectively
FO,FP,FD,FG Candidate discriminatory interval features extracted from XO,XP,XD and XG , respec-

tively
d Number of sets of candidate discriminatory interval features
F Set of candidate discriminatory interval features (union of FO,FP,FD,FG)
F

∗ Set of discriminatory interval features
i, j, k Indices to iterate across time series instances, time series data points, class labels, etc
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discriminatory interval features are extracted. In our empirical study, we find that a 
small value, e.g., d = 0.1 × r , is sufficient to yield a high TSC accuracy. This means 
that, for an ensemble of 500 trees, we just extract 50 sets of candidate discriminatory 
intervals. Lastly, each randomized tree is built by using a number of randomly selected 
interval features from F  . We set this number to the square root of the size of F  follow-
ing other tree-based ensemble approaches such as random forest (RF) (Breiman 2001). 
A tree classifier, due to its intrinsic feature selection capability, enables the selection of 
a set of discriminatory intervals F∗ with which TSC is performed. Features from F∗ 
enable the explainability of the TSC task, which will be discussed in Sect. 7.

r-STSF and STSF share a similar logic, i.e., extract features in a supervised man-
ner and use them to build an ensemble of trees for classification. However, every 
component of r-STSF is designed with the goal of improving classification accuracy 
and decreasing training/testing time, while retaining explainability. A summary of 
the main differences between r-STSF and STSF is discussed in Sect. 4.4.

4.1  Time series representation

We first discuss time series representations to extract intervals features. We use 
intervals from original (i.e., the time domain as described in Sect. 3), periodogram 
(i.e., the frequency domain), derivative, and autoregressive representations. We 
focus on the latter three representations.

Periodogram representation: Several TSC methods  (Bagnall et  al. 2012; 
Lines et al. 2018) use the periodogram representation when examining time series 

Fig. 3  Overview of r-STSF when training an ensemble of r randomized trees. Sets of candidate discrimi-
natory interval features FO,FP,FD,FG are selected from the time series representations XO,XP,XD,XG , 
respectively. All sets of candidate discriminatory interval features are merged into a single superset F  . 
Each randomized tree is built by using a number of randomly selected interval features from F  . It is 
worth noting that each tree node selects its own group of interval features (from F  ) for the split. The set 
of discriminatory intervals F∗ from the nodes of the randomized trees offers explainability to the clas-
sification outcome
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similarity in the frequency domain. We adopt this and exploit the periodogram rep-
resentation of each time series derived from the discrete Fourier transform (DFT). 
The DFT decomposes a real-valued time series xi into a linear combination of sinu-
soidal functions with amplitudes o and q, and phase �:

The periodogram xi
P
 = {pi

1
, pi

2
,… , pi

m
} of series xi is represented using the set of 

amplitudes {(o1, q1), (o2, q2),… , (om, qm)} from Equation (1), i.e., pi
j
=
√

o2
j
+ q2

j
 . A 

property of the DFT of a real-valued series is that it is symmetric, i.e., 
(oj, qj) = (om−j−1, qm−j−1) . Thus, we can shrink the size of the periodogram by half, 
resulting in xi

P
 = {pi

1
, pi

2
,… , pi

m∕2
} . For long series, this reduces the computation 

cost substantially in assessing the discriminatory power of the interval features. A 
side benefit of this representation is that it helps to indirectly detect phase-independ-
ent discriminatory intervals, i.e., discriminatory features located at different time 
regions of the original series. Take Fig. 4 as an example. r-STSF assesses the simi-
larity of a group of series based on the discriminatory power of the extracted phase-
dependent interval features. Hence, time series xi and xk , with a same class label 
(i.e., yi = yk ) but time-shifted discriminatory interval, are more likely to be identi-
fied as similar by using the periodogram representation of the series (i.e., xi

P
 and xk

P
 ) 

rather than their original (time domain) representation.
Derivative representation: Using a (first-order) derivative representation of a time 

series rather than the original time series improves the classification accuracy (Keogh 
and Pazzani 2001; Górecki and Łuczak 2013) as it provides trend information. Given a 
time series xi , its derivative representation is xi

D
= {xi

2
− xi

1
, xi

3
− xi

2
,… , xi

m
− xi

m−1
}.

Autoregressive representation: An autoregressive model, as shown in Eq. (2), 
assumes that the current observation of a time series, xt , can be explained as a linear 

(1)xt =
∑m

j=1
(oj cos(2��jt) + qj sin(2��jt))

Fig. 4  a Time series xi and xk , with a same class label (i.e., yi = yk ) present a similar sub-series but 
located at different time regions (i.e., phase-independent). b The periodogram representation xi

P
 and xk

P
 

of series xi and xk , respectively. Our algorithm searches for discriminatory phase-dependent interval fea-
tures, which in a are challenging to identify. The periodogram representation provides more flexibility as 
it considers the frequency of the discriminatory sub-series (ignoring its location in time) and thus helps 
identify discriminatory sub-series even when they appear at non-identical location in time across differ-
ent time series
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combination of its past l observations, model coefficients {�i}li=1 , a constant b, and the 
error term �t.

If a time series dataset satisfies this assumption, the time series can be modeled 
as an autoregressive process which can be used for the classification task, since 
series from different classes may have different autoregressive models. The model 
(autoregressive) coefficients {�k}lk=1 form an autoregressive representation. Given a 
time series xi , its autoregressive representation is xi

G
= {� i

1
, � i

2
,… , � i

l−1
, � i

l
} . Three 

well-known methods to estimate such coefficients are the ordinary least-squares 
(OLS), Yule-Walker, and Burg’s method. We use Burg’s method as it usually yields 
better model fitting than the Yule-Walker approach, and it is computationally effi-
cient (Proakis and Manolakis 2014; Brockwell et al. 2002), while OLS has a time 
complexity quadratic to the length of the time series. Moreover, we set the lag order 
l = 12(m∕100)1∕4 , where m is the series length, as suggested by Schwert (1989).

The idea of using autoregressive coefficients for classification has been pre-
viously adopted in TSC methods  (Lines et  al. 2018). Nonetheless, unlike these 
approaches, we do not use the autoregressive coefficients directly as features. 
Instead, we build an autoregressive representation (i.e., series of autoregressive 
coefficients), from which interval features are derived by using a set of aggregation 
functions. Our insight is that whilst the individual coefficients may not be discrimi-
natory, the summary representation of a group of them is likely to retain more dis-
criminatory information.

4.2  Extraction of candidate discriminatory interval features

Our process to extract candidate discriminatory interval features is summarized in 
Algorithms 1 and 2. This process is similar to that in STSF. The key difference is that, 
unlike STSF, r-STSF does not partition each interval into halves to assess the quality of 
sub-intervals. Instead, r-STSF creates partitions with random cut points (Lines 4 and 
5 in Algorithm 2). This strategy plays a significant role in further boosting the TSC 
accuracy (see Sect. 6.6), since it allows to explore a larger number of sub-intervals and 
hence generates less correlated trees.

As detailed in Algorithm 1, given a time series set X of size n × m , a set of aggrega-
tion functions A, and a feature ranking metric fr , r-STSF computes a set of candidate 
discriminatory interval features, F  , using all time series representations (i.e., original, 
periodogram, derivative and autoregressive) (Line 2). For each representation, r-STSF 
finds discriminatory features from each aggregation function a ∈ A (Line 4). A cut 
point u is randomly selected from {1, 2,… ,m} (Line 5), which partitions X into two 
sub-sets: (i) XL of size n × u , and (ii) XR of size n × (m − u) (Line 6). The initial ran-
dom partition (according to u) enables r-STSF to explore more diverse sub-series (i.e., 
at different locations and of different lengths). Next, in Lines 7 and 8, XL and XR are 
used to extract a set of interval features FL and FR in a supervised manner (i.e., Algo-
rithm 2). Finally, FL and FR are added to F  (Line 9).

(2)xt = b +
∑l

k=1
�kxt−k + �t
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Our supervised search algorithm for the candidate discriminatory intervals is 
summarized in Algorithm  2. The algorithm recursively breaks a given interval 
into two and computes interval features for the two resultant intervals (Line 5). 
The size of each interval is not fixed, but set based on a random cut point u (Line 
4). The Fisher score Duda et al. (2012) (detailed below) is further computed for 
each interval feature (Line 6). The interval feature with a higher score is added to 
the set of candidate discriminatory interval features (the starting and ending time 
indices for each interval as well as the aggregation function used to represent the 
interval feature), and the search continues within this interval (Lines 7 to 13). The 
algorithm stops when the interval cannot be partitioned further (with less than 
two points, Lines 1 to 3).
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Feature ranking metric: We assess the quality of sub-intervals using Fisher 
Score  (Duda et al. 2012) as the feature ranking metric. The Fisher score of an inter-
val feature indicates how well the feature separates a class of time series from the 
other classes. A higher Fisher score suggests a more discriminatory feature. For a 
given time series subset of size n × m� , an interval feature f  of size n × 1 is extracted 
(by applying a(⋅) on each time series row-wise). Interval feature f  and a vector of 
class labels y ∈ {1, 2,… , c}n are used to compute the Fisher score to obtain the dis-
criminatory quality of f  as follows:

Here, �f  is the overall mean of the elements in f  ; �f

k
 and �f

k
 are the mean and stand-

ard deviation of the elements in f  labelled with the k-th class; and nk is the number 
of time series labelled with the k-th class.

Other feature ranking metric such as Laplacian score  (He et  al. 2005) or Reli-
efF (Robnik-Šikonja and Kononenko 2003) could also be used. We use Fisher score 
for its fast computation and the resultant high accuracy of r-STSF (see Sect. 6.2).

Aggregation functions: Standard interval-based classifiers such as TSF use 
mean, standard deviation (std), and slope (i.e., slope of the least-squares regression 
line) aggregation functions to obtain a representative value for the sub-series. Oth-
ers interval-based methods such as STSF expand the set of aggregation functions by 
adding more robust statistics such as the median and the interquartile range (iqr). 
STSF also incorporates the minimum (min) and maximum (max) statistics as they 
can potentially detect discriminatory extreme values. According to our experiments, 
the slope is the aggregation function that contributes the most to the classification 
accuracy of STSF. This aggregation function captures the shape of the series, and it 
is the only one in the set of statistics used by STSF that can do so. To reinforce cap-
turing a higher level of details regarding the shape of the sub-series, we further pro-
pose two aggregation functions: (i) counts of mean-crossings (cmc) (i.e., the number 
of intersections of a sub-series with the mean axis of the entire sub-series), and (ii) 
counts of values above the mean (cam) (i.e., the number of data points above the 
mean of a sub-series). Hence, r-STSF uses nine aggregations to compute the interval 
features: cmc, cam and the seven aggregation proposed in STSF.

4.3  Classification with randomized trees

Our algorithm creates randomized binary trees for classification (summarized in Algo-
rithm 3). In such trees, the cut-point of each feature is randomly selected when looking 
for the feature that provides the best split (i.e., best random split). This perturbation 
strategy was originally proposed by Geurts et al. (2006) for the extra-trees (ET) algo-
rithm. The idea is to create an ensemble of uncorrelated trees (i.e., different tree mod-
els), which decreases the estimation variance (i.e., variability of the predictions) and 
hence decreases the classification error. We use this strategy to decrease the similarities 
among the trees in our ensemble. We build our trees node-by-node recursively starting 

(3)FisherScore (f , y) =
(∑c

k=1
nk(�

f

k
− �

f )2
)
∕
(∑c

k=1
nk(�

f

k
)2
)
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from the root node. At each node, we do not inspect all possible cut-points for each fea-
ture (to split that node). Instead, we randomly select one value cp as the cut-point (for 
each feature) (Line 7). This cut-point splits the learning sample LS and its class label 
vector y into two sets each. The rows of the learning sample and label vector where the 
values of a feature are less than or equal to its corresponding cut-point are sent to LSL 
and yL , respectively (Line 8). The remaining rows of LS and y are sent to LSR and yR , 
respectively (Line 9). Then, we compute the information gain (IG, Eq.  (4)) for each 
split (Line 10) and use the split with the maximum gain (Lines 11 to 15) to expand our 
tree (Lines 17 and 18). If the node cannot be further split, i.e., all the samples have the 
same class label, the node becomes a leaf or a terminal node (Lines 1 to 4).

For a given vector of class labels y = {y1, y2,… , yi,… , yn} where yi ∈ {1, 2,… , c} , 
and its corresponding subsets after split, yL and yR , the IG is given by:

Here, H is the entropy (i.e., impurity measure), which is computed as 
H(y∗) = −

∑c

k=1
�k log �k , where �k = |{yi|yi = k;yi ∈ y

∗
}|∕|y∗| is the relative fre-

quency of class label yi in y
∗
.

4.4  r‑STSF vs. STSF

r-STSF extends from STSF. r-STSF is redesigned to be extremely fast and competi-
tive in terms of accuracy to SOTA TSC methods. Table 3 summarizes the main dif-
ferences between r-STSF and STSF.

(4)IG(y, yL, yR) = H(y) −

[|yL|
|y|

H(yL) +
|yR|
|y|

H(yR)

]
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The additional time series representation (i.e., autoregressive) and aggregation 
functions (i.e., cmc and cam) and our novel perturbation scheme (i.e., supervised 
search through random partitions of sub-series and randomized binary trees to select 
discriminatory interval features) significantly improve the classification accuracy of 
r-STSF over its predecessor STSF (see Fig. 5). Using randomized binary trees (i.e., 
ET) instead of non-randomized trees (e.g., random forest (RF)) do not only improves 
significantly the classification accuracy (see  Fig.  23), but using randomized trees 
also contributes to decrease the training time.

Randomized trees are known to be faster than non-randomized trees  (Geurts 
et al. 2006) since in the former the cut-point of each feature is randomly selected 
when looking for the feature that provides the best split. Further, r-STSF’s approach 
to train its tree-based ensemble is significantly faster than that of STSF. r-STSF 
requires an order of magnitude less computations when searching for candidate dis-
criminatory interval features (see Sect. 5.3). It is worth noting that on STSF each 
tree node uses the same group of features (given as input to their corresponding tree) 
when looking for the best split whereas on r-STSF each tree node uses a different 
group of randomly selected features from F  when looking for the best random split.

4.5  Computation complexity

The training time of r-STSF depends on two processes: (i) extracting candidate inter-
val features and (ii) building a tree ensemble with a subset of the extracted features.

Candidate interval feature extraction: This process is summarized in Algo-
rithm 1. The set of candidate interval features is found by a supervised search on 
each segment created after the initial random partition. The supervised search fol-
lows a binary-inspired search strategy (Algorithm 2). In a single run of Algorithm 1, 
the total number of candidate interval features extracted is O(z ⋅ g ⋅ log m) , where z 
is the number of time series representations, g is the number of aggregation func-
tions, and m is the time series length. Since z and g are constants, the total number 
of candidate interval features extracted in a single run of Algorithm 1 is O(log m).

For an ensemble with r trees, our experiments suggest that r-STSF requires 0.1 × r 
runs of Algorithm 1 for classification accuracy optimization. r-STSF sets the number 
of runs of Algorithm 1 to the constant parameter d = 50 . Hence, the total number of 
interval features computed to build an ensemble with r trees is O(d ⋅ log m) . Overall, 
the total number of interval features computed is O(log m) . The time complexity for 
extracting such features from n (training) time series is O(n ⋅ log m) . The space com-
plexity when generating the sets of candidate interval features is O(n ⋅ d ⋅ m) . Since d 
is a constant, the space complexity is thus O(n ⋅ m).

 Tree-based ensemble construction: The time complexity to train a single tree 
is O(n ⋅ h ⋅ v) , where n is the number of training instances (i.e., time series), v is 
the number of interval features for node splitting, and h is the depth of the tree. 
For a balanced tree, h is in O(log n) . Also, as detailed above, the number of can-
didate interval features, v, is O(log m) . Hence, the time complexity of training 
a single tree is O(n ⋅ log n ⋅ log m) . To compute r trees, the time complexity is 
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O(r ⋅ n ⋅ log n ⋅ log m) . Similar to other interval-based approaches, the space com-
plexity to build the ensemble is O(r ⋅ m).

Computation complexity of r-STSF: The total training time for r-STSF is thus 
O(n ⋅ log m) + O(r ⋅ n ⋅ log n ⋅ log m) = O(r ⋅ n ⋅ log n ⋅ log m) . The testing (or pre-
diction) time complexity for r-STSF is O(r ⋅ n ⋅ log n) . The total space complexity 
for r-STSF is O(n ⋅ m) + O(r ⋅ m).

5  Evaluation

We evaluate the classification effectiveness (i.e., accuracy) and computational effi-
ciency (i.e., memory consumption and running time) of r-STSF. Our results show 
that r-STSF achieves classification accuracies competitive to those of SOTA meth-
ods, while it is orders of magnitude faster and requires less memory than most of 
them. By default, r-STSF is trained with 500 trees (similar to all interval-based 
methods) and uses four time series representations and nine aggregation functions as 
summarized in Table 3. We compare r-STSF against interval-based, shapelet-based, 
dictionary-based, kernel-based, deep learning-based and hybrid TSC methods as 
detailed in Sect. 5.1. All methods use their default settings and are tested on the 112 
benchmark datasets from the UCR Time Series Classification Repository (Bagnall 
et al. 2019), i.e., UCR112 . We use the default train and test split of each dataset from 
the repository.

Classification effectiveness: To evaluate the effectiveness of r-STSF, we use the 
well-known average ranking metric. For a visual comparison according to the aver-
age rank, we use the critical difference diagram (Demšar 2006) which is widely used 
by the TSC community to assess the statistical differences of the ranks when com-
paring multiple classifiers over multiple datasets. Horizontal, bold lines show groups 
of statistically similar methods. A smaller rank indicates a better classifier. Ranks 
are based on classification accuracies. Accuracy results from each competitor TSC 
method are obtained from its original paper. In cases where results from a dataset are 
missing, we use the results reported in the UCR repository or in recent works (Mid-
dlehurst et al. 2021). We report the overall effectiveness comparison results against 
the competitors in Sect. 5.2. We also report the average ranks of r-STSF and com-
petitors when evaluated on different application domains in Sect. 5.2.1.

Computational efficiency: To assess efficiency, we measure the algorithms’ 
maximum memory consumption, and total training and testing times when running 

Fig. 5  Critical difference diagram of average ranks of r-STSF and STSF. The proposed r-STSF is signifi-
cantly more accurate than STSF
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on UCR112 . r-STSF is implemented in Python. For a fair efficiency comparison with 
the competitor methods, we used their implementations in sktime  Löning et  al. 
(2019) (a library for time series analysis in Python). For the deep learning-based 
methods, ResNet and InceptionTime, we used their original Python implementations 
(we did not use sktime-dl because of errors found when running those methods). 
For gRSF (originally implemented in Java) we used a Python implementation from 
Wildboar (Samsten 2020), a Python module for temporal machine learning and fast 
distance computations. We report the overall efficiency comparison results against 
the competitors in Sect. 5.3. In addition, we evaluate the computational efficiency of 
TSC methods running on a set of eight large time series datasets from Bagnall et al. 
(2019) and report our results in Sect. 5.3.1.

All experiments are run on the High Performance Computing (HPC) system 
Spartan at The University of Melbourne. Each job runs on a single core and consists 
of a single dataset and TSC method. A job has a maximum run time of seven days 
and the maximum memory allowed is 500 GB.

5.1  Competitor TSC methods

To evaluate r-STSF, we compare it against other interval-based, shapelet-based, 
dictionary-based, kernel-based, hybrid and deep learning TSC methods.  Table 4 
details the classifiers used as competitors. We did not include distance-based 
methods such as EE (Lines and Bagnall 2015) or PF (Lucas et al. 2019) as they 
are not competitive to SOTA TSC methods (as shown in results from Middle-
hurst et al. (2020a) and Fawaz et al. (2020)), are very slow (Bagnall et al. 2020), 
and there is no record of their classification accuracies on the full UCR112 data-
set. Similarly, we did not include mtSAX-SEQL+LR  (Le Nguyen et  al. 2019) 
because there is no result on UCR112 and its original implementation is in C++ 
(i.e., not in Python as the other competitor TSC methods). Other dictionary-
based methods such as WEASEL (Schäfer and Leser 2017), S-BOSS (Large et al. 
2019), cBOSS  (Middlehurst et  al. 2019), SMTS  (Baydogan and Runger 2015) 
and Rand-TS (Görgülü and Baydogan 2021) were not included because they are 

Table 4  Competitor TSC methods used in our evaluation. Default parameters of each competitor are set 
as suggested in their original paper

Interval-based Hybrid Deep learning

TSF (Deng et al. 2013) TS-CHIEF (Shifaz et al. 2020) ResNet (Fawaz et al. 2019)
RISE (Lines et al. 2018) HC1 (Bagnall et al. 2020) ITime (Fawaz et al. 2020)
STSF (Cabello et al. 2020) HC2 (Middlehurst et al. 2021)
CIF (Middlehurst et al. 2020a)
DrCIF (Middlehurst et al. 2021)

Shapelet-based Dictionary-based Kernel-based

gRSF (Karlsson et al. 2016) BOSS (Schäfer 2015) ROCKET (Dempster et al. 2020)
STC (Bagnall et al. 2020) TDE (Middlehurst et al. 2020b)
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not significantly more accurate than the baseline BOSS, as detailed in Sect.  2. 
The deep learning-based method, FCN, was excluded as it is known to be out-
performed by ResNet (Fawaz et al. 2019). The SOTA method TS-CHIEF (Shifaz 
et al. 2020) was not included in the computational efficiency evaluation because 
its original implementation is in Java and it has not been added to the sktime 
library.

5.2  Classification effectiveness

r-STSF is the only TSC method that that integrates explainability and achieves 
competitive classification accuracy comparable to SOTA methods. As Fig.  6 
shows, despite having a larger average rank than SOTA TSC methods, r-STSF is 
not significantly different from them except for the parallel work HC2. However, 
in Sect. 5.3 we show the practical limits of HC2 when it is run on large datasets. 
r-STSF ranks the fourth (sixth), just behind the the other parallel (interval-based) 
work DrCIF. However, as shown in Sect. 5.3, r-STSF is on average two order of 
magnitude faster than DrCIF. It is worth noting the substantial improvements of 
recent interval-based methods. Compared to earlier interval-based methods such 
as TSF and RISE that were less competitive, current interval-based methods are 
in the group of best ranked TSC methods. As shown in Fig.  6, interval-based 
TSC methods such as r-STSF just rank behind time and memory expensive hybrid 
methods such as HC2 and TS-CHIEF, and kernel-based methods that do not inte-
grate explainability such as ROCKET.

Table 9, Appendix A shows the classification accuracies (as reported) from the 
majority of competitors TSC methods mentioned above. We did not include the 

Fig. 6  Critical difference diagram of average ranks of r-STSF and competitors on UCR112 . TSC methods 
that integrate explainability are in blue. TSC methods that do not integrate explainability are in black. 
r-STSF is the only classifier competitive to SOTA TSC methods that integrates explanations. Interval-
based methods (i) rank higher than deep learning-based (l), dictionary-based (d) and shapelet-based (s) 
TSC methods. Only highly accurate but time and memory expensive hybrid methods (h) and fast but 
non-explainable by design kernel-based methods (k) rank higher than the best interval-based methods
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classification accuracies of every competitor approach due to space limitations, 
however, they are included in our accompanying website.

5.2.1  Comparing TSC methods with data from different application domains

It has been a common practice in the TSC community to use UCR112 for empirical 
studies. These datasets come from a variety of domains, with an emphasis on time 
series from the image outline domain, as shown in Fig. 7. We use the application 
domain as given in Bagnall et al. (2019). Domains with less than 4 representative 
datasets are labelled as Others. This is the case for EOGHorizontalSignal, EOG-
VerticalSignal (originally part of the EOG domain); InsectEPGRegularTrain, 
InsectEPGSmallTrain (originally part of the EPG domain); PigAirwayPressure, 
PigArtPressure, and PigCVP (originally part of the Hemodynamics domain).

We argue that using an unbalanced distribution of times series domains may 
not be appropriate to assess the overall effectiveness of different TSC methods. 
As Fig. 8 shows, the average ranks of different TSC methods change when classi-
fying datasets from different domains. The overall average ranks of the TSC meth-
ods on UCR112 (Fig. 6) are highly influenced by the classification accuracy in the 
over represented time series domain, i.e., image outline (Fig. 8a). The dominant 
or over represented domain could affect positively or negatively the “perceived” 
effectiveness of a classifier. For example, adding more time series datasets from 
sensor readings or spectrograhps domains could improve the average rank of 
r-STSF. Similarly, adding more datasets from ECG or electric devices domains 
could decrease the average performance of the SOTA method TS-CHIEF.

r-STSF is the best (third best) approach when classifying series from sensor 
readings domain (see  Fig.  8b), which is the second largest domain on UCR112 . 
r-STSF, as well as other interval-based methods, focuses on phase-dependent 
discriminatory intervals, i.e., discriminatory features located at the same time 
regions over all time series. The high accuracy of r-STSF when classifying sen-
sor readings series suggests that there are relevant features embedded in phase-
dependent intervals. Nonetheless, these features cannot be found in the original 
(time-stamped) series but in additional representations of the time series. This 
is inferred from the rather poor performance (i.e., higher average ranks) of the 
interval-based methods TSF and CIF that only use the original series to extract 

Fig. 7  Summary of dataset 
domains of UCR112 . There is an 
over representation of data from 
image outline classification 
problems



773

1 3

Fast, accurate and explainable time series classification...

discriminatory features. Further, the additional parameters and design criteria 
make r-STSF to outperform STSF on this type of domain.

Fig. 8  Critical difference diagram of average ranks per time series domain in UCR112 . a Image Outline, b 
Sensor Readings, c Motion Capture, d Spectrographs, e ECG, f Electric Devices, g Simulated, h Others. 
TSC methods that integrate explainability are in blue color (Color figure online)
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In series from the spectrographs domain, r-STSF also achieves a good perfor-
mance. r-STSF is the second (third) best classifier according to the average ranks 
(see Fig. 8d). It is evident that on this type of domains there exists phase-depend-
ent discriminatory features. This is the only domain where interval-based methods 
outperform most of the other SOTA classifiers. Series derived from the spectro-
graphs domain show the spectrum of frequencies of a signal as it varies with time, 
i.e., show the time at which the signal’s frequency changes. Thus, if series exhibit 
changes of their frequency at different times, interval-based TSC methods can detect 
those times and provide accurate classification accuracies.

According to  Fig.  8 r-STSF usually ranks between the 1st (3rd) and 5th (7th) 
place, with the exception of the simulated and motion capture domains where 
r-STSF’s effectiveness decreases. The motion capture datasets are prone to contain 
phase-independent discriminatory intervals, which pose an additional challenge for 
r-STSF (and other interval-based methods). This reflects on the higher average rank 
of r-STSF when classifying motion capture series (see Fig. 8c).

Among UCR112 , only nine are representative of the simulated domain, which are 
BME, CBF, ChlorineConcentration (ChlCon), Mallat, ShapeletSim, SmoothSub-
space, SyntheticControl (SynthCon), TwoPatterns, and UMD. As shown in Table 9, 
Appendix A, most of classifiers (including r-STSF) achieve accuracies above 95% 
for the majority of the simulated datasets. Consider the case of CBF dataset where 
the accuracy of most of the classifiers is above 99%, and r-STSF ranks in 9th (11th) 
place (among the fourteen (sixteen) evaluated TSC methods, but 8th if consider-
ing the ten classifiers shown in Table 9, Appendix A) despite having an accuracy 
of 99.17%. In this kind of scenarios, the ranks amplify the differences among TSC 
methods and may not reflect their actual performance difference.

It is worth noting that r-STSF outperforms STSF in the majority of domains. 
They have a similar performance only on datasets from electric devices (Fig. 8f) and 
simulated (Fig. 8g) domains. This suggests that, on these types of datasets/domains, 
the number of relevant features is small. On such datasets, randomized methods are 
less likely to identify the relevant features (Geurts et al. 2006).

5.3  Computational efficiency

Training time: In  Fig.  9, we present the normalized training time of each TSC 
method. r-STSF is two orders of magnitude faster than the majority of the evaluated 
TSC methods (and almost three orders of magnitude faster than HC2), except for 
TSF, RISE, STSF, and ROCKET. r-STSF is an order of magnitude faster than STSF 
and has a similar training time to that of ROCKET. As discussed in Sect. 5.1, we did 
not evaluate the computational efficiency of TS-CHIEF as it was implemented in 
Java. However, r-STSF is estimated to be three orders of magnitude faster than TS-
CHIEF in training based on the results reported by Middlehurst et al. (2021).

Testing time: For the majority of datasets from UCR112 , the number of testing 
instances is much larger than the number of training instances. This affects the per-
formance of classifiers such as ROCKET, which is fast on training but may become 
slow at testing. ROCKET uses a large number of kernels (10,000) to transform the 
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time series into a feature-based representation. The computation of each representa-
tion is related not only to the number of kernels but also to the characteristics of the 
datasets (i.e., the number of instances and the length of the time series). For large 
datasets with very long series, ROCKET becomes computationally expensive. This 
difference in the number of instances between training and testing sets is reflected 
in ROCKET’s testing time, which is an order of magnitude slower than r-STSF and 
even InceptionTime (Fig. 10).

The SOTA methods HC2 and HC1 are both expensive at testing. HC2 is almost 
three orders of magnitude slower than r-STSF when testing on UCR112 . HC1 is two 
orders of magnitude slower than r-STSF. Similarly, DrCIF, TDE, CIF, and BOSS are 
also two orders of magnitude slower than r-STSF at testing. InceptionTime (ITime) 

Fig. 9  Normalized training times of HC2, HC1, ROCKET, DrCIF, InceptionTime (ITime), TDE, STC, 
CIF, ResNet, STSF, gRSF, BOSS, TSF, RISE, and r-STSF when training on UCR112 . The TSC methods 
are ordered by their accuracy ranks from the left to the right based on Fig. 6. All training times are rela-
tive to the training time of r-STSF, i.e., the training time of r-STSF is considered to be 1. r-STSF is the 
fastest TSC method at training and is part of the top 5 most accurate TSC methods

Fig. 10  Normalized testing times of HC2, HC1, ROCKET, DrCIF, InceptionTime (ITime), TDE, STC, 
CIF, ResNet, STSF, gRSF, BOSS, TSF, RISE, and r-STSF when testing on UCR112 . The TSC methods 
are ordered by their accuracy ranks from the left to the right based on Fig. 6. All testing times are rela-
tive to the testing of r-STSF, i.e., testing time of r-STSF is considered to be 1. r-STSF is the fastest TSC 
method at testing and is part of the top 5 most accurate TSC methods
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and ResNet are comparable to r-STSF in terms of testing time. We could not esti-
mate the testing time of TS-CHIEF for the reasons provided above.

Memory consumption: As shown in Fig. 11, among the SOTA TSC methods, 
r-STSF is the most memory efficient on UCR112 . HC2 requires five times more 
memory than r-STSF, whereas HC1 requires almost three times more memory than 
r-STSF. Methods such as STC, ResNet, and gRSF are the most memory efficient, 
but they are not competitive to SOTA TSC methods in terms of accuracy.

The results reported in Figs. 9, 10, and 11 suggest that, among the SOTA group, 
r-STSF is the only method that is fast at both training and testing, and it is also 
the most memory efficient within the SOTA group. ROCKET is fast at training, 
but much slower at testing (specially if the testing datasets have a large number 
of instances), and it requires more memory than r-STSF. HC2, HC1, and DrCIF 
are two orders of magnitude slower at training and testing, and are more memory 
expensive than r-STSF. It is worth mentioning that when running on GPU, ResNet 
and InceptionTime are an order of magnitude faster than when running on CPU. 
Similarly, results for gRSF presented above are only based on 111 datasets. gRSF 
could not complete a run (i.e., training and testing) for HandOutlines dataset within 
the seven-day time limit. gRSF’s original Java implementation is approximately an 
order of magnitude faster than its Python implementation. The large training times 
of gRSF can be related to differences on its implementations.

5.3.1  Comparing TSC methods on larger time series datasets

In UCR112 , ElectricDevices is the dataset with the largest training size (8,926 train-
ing instances), and HouseTwenty is the one with the longest time series (3,000 data 
points per time series). However, ElectricDevices has only 96 data points per time 
series, while HouseTwenty has only 34 training instances.

To assess TSC methods under a big data scenario, we report the classification 
accuracy, training time, testing time and memory consumption of r-STSC and com-
petitors when running on eight larger time series datasets from Bagnall et al. (2019). 
Such datasets were selected based on (i) being univariate (i.e., 1 dimensional), and 
(ii) having a training set size larger than that of ElectricDevices or a series length 
longer than that of HouseTwenty. Although the AbnormalHearbeat dataset with 

Fig. 11  Maximum memory 
used (in GB) of HC2, HC1, 
ROCKET, DrCIF, Inception-
Time (ITime), TDE, STC, CIF, 
ResNet, STSF, gRSF, BOSS, 
TSF, RISE, and r-STSF when 
testing on UCR112 . The TSC 
methods are ordered by their 
accuracy ranks from the left 
to the right based on Fig. 6. 
r-STSF is memory efficient and 
is part of the top 5 most accurate 
TSC methods
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time series of length 3,053 meets these selection criteria, we did not include it into 
this set of experiments for its small training set size (303 training instances).

Table 5 summarizes the eight datasets. In particular, FruitFlies has twice the 
number of training instances of that of ElectricDevices. InsectSound and Mos-
quitoSound have approximately three and 15 times more training instances than 
ElectricDevices has, respectively. RightWhaleCalls has a training set size similar 
to that of ElectricDevices but significantly longer time series.

CatsDogs, BinaryHeartbeat, and UrbanSound have approximately five, six and 
15 times longer series than those of HouseTwenty, respectively. Despite having a 
small training set size, DuckAndGeese is the dataset with the longest time series 
(79 times longer than those of HouseTwenty). Hence, we consider it relevant to 
assess the efficiency of TSC methods under a very long series setting.

Largest training size datasets: Table 6 and Fig. 12 summarize our results on 
the four time series datasets with the largest training set sizes shown in Table 5. 
We report classification accuracy (Table 6), normalized training time, i.e., rela-
tive the training times of r-STSF (Fig. 12a), normalized testing time (Fig. 12b), 
and memory consumption (Fig. 12c). The only TSC methods to complete a run 
(i.e., training and testing) within the seven-day time limit for each of the four 
datasets are the interval-based methods r-STSF, STSF, TSF and RISE, and the 

Table 5  Largest Time Series Datasets from Bagnall et al. (2019)

Type Dataset Training set size Test set size Length Num-
ber of 
classes

Largest RightWhaleCalls 10,934 1,962 4,000 2
FruitFlies 17,259 17,259 5,000 3
InsectSound 25,000 25,000 600 10
MosquitoSound 139,883 139,883 3,750 6

Longest CatsDogs 138 137 14,773 2
BinaryHeartbeat 204 205 18,530 2
UrbanSound 2,713 2,712 44,100 10
DucksAndGeese 50 50 236,784 5

Table 6  Classification Accuracy of TSC methods in the four largest datasets from Bagnall et al. (2019)

Bold classification accuracies are used to highlight the most accurate methods for each time series data-
set

r-STSF STSF TSF RISE ROCKET CIF DrCIF

RightWhaleCalls 84.00 81.35 77.42 82.98 78.85 83.23 86.44
FruitFlies 92.03 91.35 90.13 83.19 96.33
InsectSound 76.05 75.75 45.83 74.63 80.39 69.27 77.66
MosquitoSound 80.69 79.99 56.98 75.97 87.84
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kernel-based method ROCKET. The other interval-based methods, CIF and 
DrCIF, complete a run just for RightWhaleCalls and InsectSound. This suggests 
that the competitors TSC methods HC2, HC1, STC, BOSS, TDE, ResNet, ITime 
and gRSF are impractical to train their models on datasets with a large number of 
training time series, where the time series are of medium length.

We make the following observations:

– In terms of effectiveness, ROCKET achieves an average classification accu-
racy of 85.85% followed by r-STSF with 83.19% and STSF with 82.11%.

Fig. 12  Computational efficiency comparison of TSC methods in the four largest datasets from Bagnall 
et al. (2019). a Normalized training times of r-STSF and competitor TSC methods. All training times are 
normalized to the training time of r-STSF, i.e., training time of r-STSF is considered to be 1. b Normal-
ized testing times of r-STSF and competitor TSC methods. All testing times are normalized to the testing 
time of r-STSF, i.e., testing time of r-STSF is considered to be 1. c Maximum memory used (in GB) of 
r-STSF and competitor TSC methods. r-STSF is the fastest TSC method at training and testing and is 
memory efficient
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– In terms of training speed, r-STSF takes around 12 h to train on the four data-
sets, ROCKET takes 32 h, whereas TSF takes 33 h. CIF and DrCIF take 8 and 
10 days, respectively, to train on the two datasets mentioned above.

– r-STSF is also the fastest at testing, which takes only 3 h on the four datasets, 
whereas STSF, TSF and RISE take 11, 13 and 15  h, respectively. ROCKET 
takes 25 h which is the slowest at testing. CIF and DrCIF take 20 and 18 h to 
test, respectively, but only finish on two datasets.

– In terms of memory efficiency, ROCKET is overall the most memory expen-
sive approach, while r-STSF is the second. On datasets with a large number of 
medium-length training instances such as MosquitoSound, ROCKET and r-STSF 
require approximately twice the memory of interval-based methods such STSF, 
TSF and RISE. On datasets with a large number of short training series such 
as InsectSound, ROCKET is memory-inefficient, which consumes approximately 
three times more memory than r-STSF does. On the other two large datasets 
RighWhaleCalls and FruitFlies, r-STSF and ROCKET consume approximately 
the same amount of memory.

Our results suggest that, among the SOTA TSC methods, only r-STSF and ROCKET 
are practical for time series datasets with large training set sizes. r-STSF is the fast-
est TSC method at training, and it is approximately an order of magnitude faster 
at testing time than ROCKET. ROCKET and r-STSF are the most accurate TSC 
method (that could complete their runs on all four large datasets) but also are the 
most memory expensive, where r-STSF is slightly more memory efficient than 
ROCKET. Ideas similar to Random Patches  (Louppe and Geurts 2012) that build 
each individual model of the ensemble not only using random subsets of features 
but also randomly sampled training instances, can be further explored and integrated 
into r-STSF to improve its memory efficiency without decreasing its classification 
accuracy. We take this as a future work.

Longest time series: Table 7 and Fig. 13 summarize our results on the four time 
series datasets with the longest series shown in Table 5. Like above, we report clas-
sification accuracy (Table 7), normalized training time (Fig. 13a), normalized test-
ing time (Fig.  13b), and memory consumption (Fig.  13c). gRSF is the only TSC 
method that could not complete a run (within the seven-day time limit) for any of 
these four datasets. However, this can be related to its Python implementation as dis-
cussed in Sect. 5.3. InceptionTime just completed a run for CatsDogs, which is the 
least lengthy of the four dataset. CIF, DrCIF, HC2, STC, BOSS, TDE, and ResNet 
could complete a run just for CatsDogs and BinaryHeartbeat datasets. HC1 could 
not run for UrbanSound which is the only dataset with medium training set size (all 
other three datasets have a small training set size). r-STSF, STSF, TSF, RISE and 
ROCKET are the only TSC methods that can run on all four lengthy datasets. This 
suggests that such TSC methods are practical to classify datasets with very long 
series.

Summary:  We make the following observations:
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– Among the TSC methods that could complete a run on all four datasets, 
ROCKET is the most accurate, with a 70.48% accuracy on average. r-STSF fol-
lows closely with an accuracy of 69.56% and STSF with 68.25%.

– r-STSF is the fastest at training on the four datasets, taking less than 2 h in total. 
ROCKET is the second fastest, completing all runs in 6 h. From the group of 
TSC methods that could only run on two datasets (CatsDogs and BinaryHear-
beat), TDE is the fastest, with 4 h in total for training. This is followed by CIF 
and DrCIF, which take 25 and 28 h, respectively. HC1 takes more than 5 days to 
train on three datasets, among which 5 days are spent on just DucksAndGeese.

Fig. 13  Computational efficiency comparison of TSC methods in the four longest datasets from Bagnall 
et al. (2019). a Normalized training times of r-STSF and competitor TSC methods. All training times are 
normalized to the training time of r-STSF, i.e., training time of r-STSF is considered to be 1. b Normal-
ized testing times of r-STSF and competitor TSC methods. All testing times are normalized to the testing 
time of r-STSF, i.e., testing time of r-STSF is considered to be 1. c Maximum memory used (in GB) of 
r-STSF and competitor TSC methods. r-STSF is the fastest TSC method at training and testing and is 
memory efficient
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– In terms of testing time, r-STSF significantly faster than the other (also fast) TSC 
methods. It takes only 30 min to classify all four datasets. Other fast approaches 
such as ROCKET and TSF take 5 and 7 h, respectively. HC1 needs more than 1 
day just to test on DucksAndGeese.

– In terms of memory efficiency, HC2, BOSS, TDE, and InceptionTime are most 
memory expensive when running on datasets with long series. r-STSF, STSF, 
TSF, RISE, and ROCKET have a similar performance in this regard.

These results suggest that r-STSF is the best TSC method when classifying time 
series datasets with very long series. It is competitive to ROCKET in terms of 
accuracy, while it is faster at both training and testing than ROCKET, STSF, TSF, 
and RISE. r-STSF is also more memory efficient comparing with the other SOTA 
TSC methods and uses the same amount of memory as that by ROCKET.

Additional results on comparing with faster ROCKET variants: When our 
paper was under review, two faster variants of ROCKET, MiniROCKET (Demp-
ster et al. 2021) and MultiROCKET (Tan et al. 2022), have been proposed. These 
two methods are significantly faster than ROCKET while remaining competitive 
to SOTA TSC methods in classification accuracy. We compare r-STSF against 
ROCKET and its faster variants on the eight large time series datasets above. As 
shown in Table 8, MiniROCKET and r-STSF are the fastest approaches, requir-
ing 12 and 17 h, respectively, to train and classify the large time series datasets. 

Table 8  Run times in seconds (i.e., training plus testing time) of r-STSF and ROCKET variants when 
running on eight large time series datasets detailed in Table 5

Dataset r-STSF ROCKET MiniROCKET MultiROCKET

CatsDogs 93 664 51 188
BinaryHeartbeat 137 1,051 77 271
UrbanSound 7,313 34,869 2,407 8,804
DucksAndGeese 450 3,336 782 941
RightWhaleCalls 2,333 7,287 1,318 2,860
FruitFlies 6,415 26,008 2,972 25,508
InsectSound 1,719 11,558 1,366 5,150
MosquitoSound 44,294 162,577 34,408 Failed after 42,604
Total time in seconds 62,754 247,350 43,381 86,326
Total time in hours 17 69 12 24

Fig. 14  Critical difference diagram of average ranks of r-STSF and competitor ROCKET variants on the 
eight largest time series datasets detailed in Table 5
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Although MiniROCKET is very fast, it is the least accurate among the four TSC 
methods (see  Fig.  14). MultiROCKET is slighlty slower than r-STSF but more 
accurate. None of the faster ROCKET variants integrate explainability in their 
classifications. We consider r-STSF relevant in cases of large time series data 
where explainability is required. It is worth noting that MultiROCKET could not 
finish its run in MosquitoSound due to memory issues. Hence, its total running 
time is expected to increase. In Table 8 we are reporting the running time before 
failure. For completion, in Fig. 14 we set the accuracy of MultiROCKET as same 
as ROCKET when run on MosquitoSound.

6  Ablation study

To provide a comprehensive analysis of r-STSF, we present experimental results 
to support (i) our decision for a supervised selection of intervals features instead 
of an unsupervised one (i.e., random selection) and (ii) our decision to use Fisher 
score as the feature ranking metric in the supervised search. Further, we explore 
the impact of different parameters of r-STSF on its classification accuracy. The 
parameters to consider are: (i) number of candidate discriminatory interval fea-
ture sets, (ii) time series representations, and (iii) aggregation functions. The 
number of trees in the ensemble is not considered in this analysis. It is set to 
500 following the other tree-based TSC methods (Deng et al. 2013; Shifaz et al. 
2020). Moreover, we present experimental results to support our claims regarding 
the improvements to the average classification accuracy of r-STSF when (i) using 
random partitions (instead of middle-point partitions) of intervals when search-
ing for candidate discriminatory interval features, and (ii) building ensembles 
of randomized binary trees (i.e., extra-trees) instead of non-randomized binary 
trees (i.e., random forest). All the results presented in this section are based on 
the average classification accuracy over three runs of r-STSF when classifying on 
UCR112 . r-STSF uses by default (unless said otherwise) the four time series repre-
sentations and the nine aggregation functions mentioned in Sect. 4.

6.1  Supervised vs unsupervised selection of interval features

Our proposed r-STSF selects (in a supervised manner) a set of candidate discrimi-
natory interval features and then uses such features to build an ensemble of binary 
trees (see Fig. 3). We compare r-STSF against different “unsupervised" versions 
of r-STSF, i.e., random selections of candidate discriminatory interval features. 
We set the number of randomly selected interval features to compute according to 
sqrt(m) × f  , where m is the time series length and f ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} . 
Hence, unsupervised versions of r-STSF with larger f values will compute a larger 
set of candidate discriminatory interval features. As shown in  Fig.  15, r-STSF 
is not significantly different in accuracy from the majority of the unsupervised 
versions.



784 N. Cabello et al.

1 3

Only when f ⩾ 9 , r-STSF is significantly less accurate than its corresponding 
unsupervised versions. i.e., r-STSF ( sqrt(m) × 9 ) and r-STSF ( sqrt(m) × 10 ). How-
ever, as shown in  Fig.  16, such unsupervised versions are an order of magnitude 
slower at training (Fig. 16a) and approximately five times slower at testing (Fig. 16b) 
than r-STSF. Besides, they also require five times more memory (Fig. 16c).

The results in Figs. 15 and 16 suggest that our default r-STSF achieves the best 
trade-off among accuracy, training and testing times, and memory consumption. 
Unsupervised versions either require large training time and substantially more 
memory space to be significantly more accurate than our default r-STSF, or they 
take a larger testing time to achieve a slightly higher but not significantly different 
accuracy.

Fig. 15  Critical difference diagram of average ranks of our default r-STSF, i.e., supervised selection of 
intervals (blue color) and different unsupervised versions of r-STSF, i.e., random selection of intervals 
(black color). Unsupervised versions differ in the number of interval features to select, which is given 
by sqrt(m) × f  . The default r-STSF is not significantly different in accuracy from the majority of unsu-
pervised versions of r-STSF. It takes a large number of random intervals ( f ⩾ 9 ) to make this difference 
significant (Color figure online)

Fig. 16  a Normalized training time, i.e., training time of r-STSF = 1, b normalized testing time, i.e., test-
ing time of r-STSF = 1 and c maximum memory consumed in GB of our default r-STSF (color blue) and 
unsupervised versions of r-STSF (color black). The default (supervised) r-STSF is faster in training and 
testing than all of the unsupervised versions. It is also more memory efficient than most of them (Color 
figure online)
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6.2  Feature ranking metric

As discussed in Sect. 4.2, r-STSF requires training an ensemble of trees with a group 
of highly discriminatory set of interval features. The supervised selection of these 
intervals is guided by a feature ranking metric that scores the “quality” of the inter-
vals. Intervals with a high score are more likely to maximize class separability. We 
compare our default feature ranking metric, Fisher score, against the well-known 
Gini index and other commonly-used ranking metrics such as Laplacian score (He 
et  al. 2005) and ReliefF  (Robnik-Šikonja and Kononenko 2003). For the compet-
itor metrics, we use an implementation by Li et  al. (2018). As shown in  Fig.  17, 
r-STSF with Fisher score is significantly more accurate than with Gini index or 
Laplacian score. r-STSF with (different settings of) ReliefF is statistically as accu-
rate as r-STSF with Fisher score. ReliefF estimates the relevance of features based 
on how well their values distinguish the instances (of the same or different classes) 
that are near to each other. It uses the k-nearest neighbour search to compute similar 
instances. ReliefF with k = 5 is slightly more accurate than ReliefF with k = 1 , but 
both still rank behind Fisher score. Although r-STSF with ReliefF is competitive in 
terms of accuracy against r-STSF with Fisher score, ReliefF is known to be slow on 
large training sets (Urbanowicz et al. 2018), and hence we have used Fisher score by 
default.

6.3  Number of candidate discriminatory interval feature sets

The extraction of d sets of candidate discriminatory interval features may become 
expensive on large datasets with very long series. This parameter has a direct impact 
on the efficiency of r-STSF. The process to extract a single set of candidate intervals 
(i.e., d = 1 ) is summarized in Algorithm 1. r-STSF’s predecessor, STSF, extracts a 
set of intervals for each tree of the ensemble, e.g., for an ensemble with 500 trees, 
STSF extracts 500 sets of candidate interval features. In r-STSF, we propose to 
extract 50 sets of interval features (i.e., d = 50 ) regardless of the ensemble size. The 
training process of r-STSF does not only differ from that of STSF in the number of 
extracted sets of intervals, but also in how such features are used to build each of 
the trees in the ensemble. As detailed in Sect. 4.4, STSF uses each set of intervals 
to build each of the r trees in the ensemble, whereas r-STSF merges all sets into a 
superset F  . Then, each trees is built by using a set of randomly selected interval 
features from F .

Fig. 17  Critical difference of average ranks of r-STSF with different feature ranking metrics. r-STSF with 
Fisher score is the most accurate approach
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We study the classification accuracy of r-STSF when setting d to 
{15, 25, 50, 75, 100, 125, 150, 200, 500} . We also include a special case, d∗ = 500 , 
where each of the 500 trees of the ensemble is build as in STSF (i.e., each set of 
intervals builds one tree at a time). As shown in Fig. 18, after extracting 50 sets of 
candidate interval features ( d = 50 ), there is no significant difference in terms of 
classification accuracy. Thus, for r-STSF, we set d to 50 by default for efficiency 
considerations. Using d = 50 instead of d = 500 or d∗ = 500 makes r-STSF an order 
of magnitude faster in the feature extraction process without significantly affecting 
its effectiveness.

6.4  Time series representations

r-STSF uses four time series representations to extract discriminatory interval 
features, including the original (raw), i.e., XO , periodogram, i.e., XP , derivative, 
i.e., XD , and autoregressive representations, i.e., XG , of the training time series. 
As presented in  Fig.  19, the best rank is achieved by using all four time series 

Fig. 18  Critical difference diagram of average ranks of r-STSF with varying numbers of sets of candidate 
discriminatory interval features, i.e., d. When d ≥ 50 , the average ranks are close and statistically similar. 
This validates our decision of just computing a small number of sets of candidate intervals. The special 
case of training the ensemble of trees as in STSF (i.e., one set per tree – r-STSF ( d∗=500)) is an order of 
magnitude slower and not significantly different from r-STSF (d=50). This validates our decision to build 
each tree from features randomly selected from a larger super set

Fig. 19  Critical difference diagram of average ranks of r-STSF with different combinations of time series 
representations: original (ori), periodogram (per), derivative (der), and autoregressive (reg). r-STSF is 
more effective when using all four time series representations, i.e., r-STSF (all)
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representations. Individually, XO is the most effective (i.e., r-STSF (ori)). Using 
only XG (i.e., r-STSF (reg)) makes r-STSF perform poorly (in terms of accuracy).

XG is relevant when past values have an effect on current values of a given time 
series. If a time series does not hold this premise, it is challenging to classify 
such series by just using this representation. Moreover, even for a series hold-
ing this premise it is necessary to estimate the correct lag order which allows to 
identify the lagged relationships within a series. If a large number of time series 
classification problems from UCR112 cannot be modeled by an autoregressive pro-
cess, then using just the autoregressive representation of the series is not enough 
to achieve accurate classifications. However, when comparing the classification 
accuracy of r-STSF (all) and r-STSF (ori/per/der) (Fig. 37, Appendix B) we find 
that the addition of XG improves the classification accuracy in many datasets. In 
some datasets such as Car, Ham, OSULeaf, Phoneme, ProximalPhalanxOutline-
Corret, ScreenType, SonyAIBORobotSurface2, Wine, and Worms, this improve-
ment is between 2 and 6%.

6.5  Aggregation functions

We evaluate the impact of the aggregation functions (aggregation statistics) on the 
classification accuracy of r-STSF, which by default uses nine statistics to compute 
the interval features (detailed in Sect. 4.2). For each statistic, we compute r-STSF 
by (i) using that statistic and (ii) removing it from the set of (nine) aggregation func-
tions. As shown in Fig. 20, generic statistics such as the mean, median, and min con-
tribute slightly to the effectiveness of r-STSF. The most important statistics are slope 
and max, which yield the individual best ranks (i.e., r-STSF (slope) and r-STSF 
(max)). Their importance is also reflected when they are removed from the set of 
aggregation functions (i.e., r-STSF (no slope) and r-STSF (no max)), which leads 
to large drops in the average rank. Besides, although individually cmc and cam are 
the least important, if they are removed from the aggregation functions, r-STSF has 

Fig. 20  Critical difference diagram of average ranks of r-STSF with different combinations of aggre-
gation functions (or statistics). r-STSF (statistic) means using r-STSF just with the respective statistic. 
r-STSF (no statistic) means using all aggregation functions but statistic. r-STSF (all) uses all the aggre-
gation functions and is the most effective approach
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a substantial drop in its average rank (similar to removing the slope statistic). This 
suggests that cmc and cam are more effective when combined with other statistics.

As shown in Fig. 21, not including the cmc and cam aggregation functions makes 
r-STSF significantly less accurate when comparing with the version of r-STSF which 
includes them into the set of statistics. Moreover, as shown in Fig. 38, Appendix C, 
the addition of cmc and cam statistics improves the classification accuracy in many 
datasets. In some datasets such as Beef, Ham, RefrigerationDevices, ToeSegmenta-
tion1, Wine, and WormsTwoClasses, this improvement is between 2 and 5%.

6.6  Impact of the perturbation scheme

r-STSF uses a novel perturbation scheme to create an ensemble of uncorrelated trees 
for higher accuracy. Our scheme employs (i) random partitions when assessing the 
discriminatory quality of sub-series and (ii) randomized trees to build the ensemble 
of trees for classification. We evaluate the impact of these steps in this section.

Random partitions: r-STSF’s predecessor, STSF, uses the middle-point of the 
sub-series as a cut point and builds fixed partitions when searching for candidate 
discriminatory interval features. In Sect. 4.2, we showed that such a technique may 
not be the best if the goal is to create an ensemble of uncorrelated trees. In r-STSF, 
we rely on random partitions when assessing the discriminatory quality of sub-
series, which increases the average accuracy of r-STSF by 1% compared to using 
fixed partitions. Moreover, as shown in Fig. 22, r-STSF with random partitions is 
significantly more accurate than r-STSF with fixed partitions.

Randomized trees: The Extra-trees (ET) algorithm builds an ensemble of ran-
domized binary trees to decrease the variance of the ensemble (by creating uncor-
related trees) and thus achieves high classification accuracy. In randomized trees, 
the cut-point of each feature is randomly selected when looking for the feature that 
provides the best split. These trees are different from those in a random forest (RF), 

Fig. 21  Critical difference diagram of average ranks of r-STSF with and without cmc and cam aggrega-
tion functions. r-STSF (no cmc/cam) means using r-STSF without cmc and cam statistics. r-STSF (all) 
uses all the aggregation functions and is the most effective approach

Fig. 22  Critical difference diagram of average ranks of r-STSF with fixed and random partitions. r-STSF 
with random partitions is significantly more accurate than r-STSF with fixed partitions
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where for each feature only the best cut-point (i.e., split with the lowest entropy) is 
selected. r-STSF’s predecessor, STSF, follows RF and builds non-randomized binary 
trees. For r-STSF, we create an ensemble of randomized binary trees.

As detailed in Table 3, r-STSF first extracts a set of candidate discriminatory 
interval features, i.e., F  . Then, (at node level) it randomly selects 

√
F  inter-

val features from F  when looking for the best random split. In this section, we 
denote r-STSF as r-STSF (ET) and compare it against two variants of r-STSF 
which use non-randomized trees and are denoted as r-STSF (RF) and r-STSF (RF 
all), respectively. r-STSF (RF) selects 

√
F  interval features to split the tree nodes 

and builds an ensemble of non-randomized trees, whereas r-STSF (RF all) also 
builds non-randomized trees but uses all features from F  for the splits. Thus, 
r-STSF (RF) builds “more" randomized trees than r-STSF (RF all), but “less" 
randomized than r-STSF (ET). We also include in our comparisons a variant of 
r-STSF, denoted as r-STSF (ET 1), that randomly selects a single interval feature 
from F  to split each node and builds randomized trees. Hence, on r-STSF (ET 
1), the feature and its cut-point are randomly selected. Trees built in this manner 
are known as totally randomized trees (Geurts et al. 2006) and are “more" rand-
omized than those of r-STSF (ET).

As shown in Fig. 23, r-STSF (ET) is significantly more accurate than the ver-
sions of r-STSF using non-randomized trees. Moreover, the poor performance of 
r-STSF (ET 1) suggests that there is a limit on the level of perturbation that can 
be applied when building uncorrelated trees. Trees that are “too” uncorrelated 
negatively impact the classification accuracy.

7  Explainable classification

To provide further insights to the classification decisions of r-STSF, we use the 
discriminatory intervals computed by it. Each discriminatory interval has infor-
mation on its interval boundary (i.e., starting and ending indices), the aggregation 
function (e.g., mean), and the time series representation (e.g., periodogram) that 
was used to generate the corresponding feature. To highlight the regions of the 

Fig. 23  Critical difference diagram of average ranks of r-STSF at different levels of perturbation. 
r-STSF (ET 1) is the most extreme case where a single feature and cut-point are randomly selected to 
split the nodes. It follows r-STSF (ET) where the nodes are split according to the random cut-point (from 
a group of randomly selected features) that provides the best split. Next, r-STSF (RF) which is similar 
to r-STSF (ET), selects a group of features but looks for the best cut-point instead of selecting one at 
random. r-STSF (RF all) also looks for the best split, but among all the available features, i.e., not from a 
selected group. r-STSF (ET) is significantly more accurate than the other versions of r-STSF
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time series which are discriminatory, i.e., maximizing class separability, we count 
the number of times that each data point of a testing series is contained in the dis-
criminatory intervals. We normalize such counts and use a heatmap to visualize 
the most interesting regions.

As discussed in Sect. 4, r-STSF uses different time series representations for 
classification. These representations allow for explanations directly, i.e., it is not 
necessary to rely only on relevant features from the original series. In this sec-
tion, we present cases where the original time series does not support the identi-
fication of discriminatory features and show how our additional representations 
provide more discriminatory features while enabling explainability. More impor-
tantly, since r-STSF uses simple statistics to compute its features, our explana-
tions are not only limited to highlighting discriminatory regions, i.e., we can also 
provide explanations for the classifier’s decision. For example, if a discrimina-
tory interval was extracted with the slope, it can be explained that sub-series from 
one class may exhibit a different trend from that of sub-series of another class.

7.1  Integrating explainability on time series classification

TSC methods that integrate explainability into their classifications do so by iden-
tifying and highlighting relevant time-stamps that can potentially provide further 
insights to the classification decision. TSF and CIF capture discriminatory features 
embedded in sub-series, whose location in the time series (i.e., time-stamps) is high-
lighted by the temporal importance curve mechanism (Deng et al. 2013). RSF and 
gRSF adapt ideas from the temporal importance curve and propose an importance 
measure for the shapelet scenario. They identify time-stamps and shapelet lengths 
relevant for the classifier’s decision. However, discriminatory or relevant features 
are not always presented in the time series in their original form (i.e., time-stamped 
data), but can be found in additional representations/transformations of the time 
series  (Bagnall et  al. 2012). For example, mtSAX-SEQL+LR  (Le Nguyen et  al. 
2019) captures discriminatory features in symbolic representations of the time 
series. Given that symbol-based representations do not directly support explain-
ability, mtSAX-SEQL+LR maps the features back to their locations in the (origi-
nal) series to integrate explainability. ResNet and FCN use class activation map 
(CAM) (Wang et al. 2017) to highlight the sub-series that contribute the most for a 
given class identification.

The mechanism used by mtSAX-SEQL+LR, ResNet and FCN to highlight reve-
lant sub-series is known as saliency maps. Saliency maps are often regarded as “less 
explainable” mechanisms  (Rudin 2019). They show which sub-series are relevant 
for a class, but cannot provide more information to explain what the model does 
with that sub-series, i.e., what characteristics of the data are relevant for the classi-
fier’s decision. For instance, as shown in Fig. 24, ResNet only highlights the relevant 
sub-series to each class when explaining the model’s decision to classify the Meat 
time series dataset. r-STSF’s explainability mechanism not only highlights relevant 
sub-series but provides the most important time series representation and the most 
important aggregation functions (detailed in Sect.  7.2) to identify discriminatory 
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sub-series when classifying the dataset. This extra level of information can be used 
to explain with more details what characteristics of the data is considered by the 
model when making its decision.

7.2  Computing importance of time series representations and aggregation 
functions

Using different time series representations increases the chances to find discrimina-
tory interval features. Depending on the time series dataset, some representations 
may be more important than the others. Similarly, depending on the time series 

Fig. 24  a ResNet’s explainability mechanism using CAM (figure adapted from Wang et  al. (2017)). b 
r-STSF’s explainability mechanism using relevant intervals computed from original time series repre-
sentation and the mean aggregation function to explain for the classification of the Meat dataset. ResNet 
highlights the sub-series relevant to each class but cannot provide any other information to explain for 
the classifier’s decision. r-STSF uses the time series in their original form (i.e., time-stamped data) to 
highlight relevant sub-series to all classes, and the mean aggregation function suggests that the classifier 
could identify series from different classes due to a difference in their mean values in the highlighted 
regions
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representation, there are aggregation functions which may contribute more than the 
others when extracting discriminatory intervals.

Discriminatory interval features are located in the nodes of our tree-based ensem-
ble, i.e., F∗ in Fig. 3. Each of these interval features keeps a record of the time series 
representation and aggregation function used for its computation. To identify which 
time series representation and which aggregation functions contribute the most over 
a given dataset, we estimate the importance of their corresponding features by com-
puting the mean decrease impurity (MDI) (Louppe et al. 2013) of such features. At 
each tree node � , the interval feature f  that achieves the largest impurity decrease is 
selected as the best split S

�
 . When using entropy as the impurity measure, the infor-

mation gain (IG) computes the impurity decrease (see Eq. (4)). Thus, the importance 
of an interval feature f  is estimated by adding up the weighted impurity decrease 
�
�
IG(f , �) of every node � where f  is used (to split that node), averaged over all r 

trees in the forest:

where ⊺ is a tree classifier and �
�
 is the probability of reaching node � . Probability 

�
�
 is calculated as the number of time series instances that reach the node, divided 

by the total number of time series instances n. The higher the MDI, the more impor-
tant the interval feature is. Time series representations and aggregation functions 
used to compute important interval features are also considered to be more impor-
tant. To estimate the importance of a representation (or aggregation function), we 
average the importance of their corresponding features. For example, to estimate the 
importance of the periodogram representation, we compute the average of the MDI 
(i.e., importance) of all the features extracted from this representation. After esti-
mating the importance of the remaining representations (i.e., original, derivative and 
autoregressive), the importance values are normalized. A similar process is used to 
estimate the importance of each aggregation function.

(5)MDI(f ) =
1

r

∑

⊺

∑

�∈⊺∶S
�
=f

�
�
IG(f , �)

Fig. 25  a Importance of time series representations and b importance of aggregation functions when 
classifying the ItalyPowerDemand dataset with r-STSF. The original (ori) representation is the most 
important. The mean and min aggregation functions are the most important when extracting discrimina-
tory intervals from the original representation of the dataset
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7.3  Explaining classifications with the original time series

r-STSF uses different time series representations for classification. When the time 
series contain intervals with discriminatory time-stamped data (e.g., class A series 
have values above threshold T, whereas class B series have values below T), the 
original representation of the series is enough to achieve an accurate classification. 
As a case study, we use the ItalyPowerDemand dataset (Bagnall et al. 2019), which 
consists of series of daily household energy consumption. When classifying this 
dataset with r-STSF, the original time series representation is the most important 
(Fig. 25a). Besides, as shown in Fig. 25b, in this representation, the mean and min 
aggregation functions contribute the most to the classification accuracy. We select 
the min aggregation to continue with our case (the mean shows similar results and is 
omitted).

The most discriminatory interval (according to the min aggregation function) is 
located between 19:00 and 20:00 (Fig. 26a). As shown in Fig. 26b, between 19:00 
and 20:00 (highlighted between the pair of dashed black lines), the majority of win-
ter series (red color) are above the summer series (blue color). This interval shows 
that, in winter, by 20:00, residents reach a peak in the energy consumption of their 
households appliances, whereas in summer, at that hour of the day, the energy con-
sumption is smaller, which can be explained by residents’ tendency to spend earlier 
times indoors in winter due to shorter days and cooler temperatures.

7.4  Explaining classifications with the periodogram representation

In datasets such as LargeKitchenAppliances  (Bagnall et  al. 2019) which contains 
energy consumption readings from three home appliances (dishwasher, tum-
ble dryer, and washing machine), the variability in the time of using each appli-
ance makes it difficult to identify discriminatory intervals in the original time series 
(Fig. 27).

As shown in  Fig. 28a, the original representation has a low importance in the 
classification of the LargeKitchenAppliances dataset whereas the periodogram rep-
resentation is much more important. Moreover, mean is the aggregation function 

Fig. 26  Original representations of all time series in the ItalyPowerDemand dataset. a Location (in time) 
of discriminatory intervals according to the min aggregation function. b The two types of series can be 
differentiated according to their minimum energy consumption between 19:00 and 20:00. Summer days 
are in blue color; winter days are in red color (Color figure online)
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that contributes the most to the classification accuracy when extracting features 
from the periodogram representation (Fig. 28b).

Fig. 27  LargeKitchenAppliances (original) time series. It is difficult to identify discriminatory intervals 
in the original representation of the series. The few cases of high energy consumption for the dishwasher 
(red color) around 03:20 are outliers and hence are not discriminatory for r-STSF. Most of dishwasher 
series have (in that hour) small energy consumption values, similar to those of washing machine (blue 
color) and tumble dryer (green color) series (Color figure online)

Fig. 28  a Importance of time series representations and b importance of aggregation functions when 
classifying the LargeKitchenAppliances dataset with r-STSF. The periodogram (per) representation is the 
most important representation when classifying this dataset. The mean aggregation function is the most 
important when extracting discriminatory intervals from the periodogram representation of the dataset

Fig. 29  Periodogram representations of all time series in LargeKitchenAppliances dataset. a Location 
(in the frequency-domain) of discriminatory intervals according to the mean aggregation function. b The 
three types of appliances can be differentiated according to their amplitude around the frequency of 1 
cycle/hour. Tumble dryer series are in green color, dishwasher series in red color and washing machine 
series in blue color (Color figure online)
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The periodogram representation shows how the signal’s amplitude is distributed 
over a range of frequencies. The frequencies with higher amplitude reveal repeated 
patterns at such frequencies. As shown in Fig.  29a, r-STSF uses the periodogram 
representation of LargeKitchenAppliances series to identify discriminatory intervals 
(using the mean aggregation function) located approximately at the frequency of 1 
cycle/hour. From Fig. 29b, we see that, around this frequency (highlighted between 
the pair of dashed black lines), there is a difference in the amplitude of the three 
types of appliances. The energy consumption signal of each appliance belongs to 
one operation cycle. The discriminatory frequency of 1 cycle/hour reveals that all 
three appliances have the most different energy consumption around the one-hour 
mark on average while running these appliances. The higher amplitude of this fre-
quency for the tumble dryer than for the other two appliances suggests that house-
holders use the tumble dryer more often during the day (e.g., one hour in the morn-
ing and one hour in the evening) or that it takes more than one hour to complete 
the drying process (when overloaded, the tumble dryer usually requires two hours). 
Similarly, this discriminatory frequency also suggests that householders use the 
dishwasher more often than the washing machine.

7.5  Explaining classifications with the first‑order derivative representation

To demonstrate how r-STSF allows for explainable classifications in the derivative 
representation, we discuss the case of SonyAIBORobotSurface2 dataset  (Bagnall 
et al. 2019) in this subsection. This dataset contains readings from an X-axis accel-
erometer attached to a quadruped Sony AIBO dog robot while walking on two dif-
ferent surfaces: cement and carpet. Each time series has a length of 65 data points 
(we assume 65 s of walking). The classification task is to detect the surface being 
walked on. Although an inspection to the original series of this dataset may lead to 
potential discriminatory intervals (Fig. 30), the derivative representation has a much 
more important role when classifying the series (Fig. 31a).

The derivative representation is useful when time series can be differentiated by 
their trends or changes in the series values. The derivative representation is the first-
order difference of a time series, and hence, every data point of this representation 

Fig. 30  SonyAIBORobotSurface2 (original) time series. Potential discriminatory intervals are located at 
second 10 and at second 50. At both locations, walking on cement (red color) and walking on carpet 
(blue color) signals are out-of-phase (Color figure online)
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can be mapped back to a pair of original data points (i.e., interval) of the original 
representation. As stated by Kertész (2014): “When a robot walks on a rigid surface, 
it produces vertical body oscillations while soft surfaces absorb these anomalies". 
Hence, walking on cement increases the variability (or rate of change) of the X-axis 
acceleration readings. The derivative representation is thus more useful to classify 
the SonyAIBORobotSurface2 series. Similarly, the std aggregation function, which 
measures the spread of the values, is also important to detect discriminatory interval 
in this representation (Fig. 31b).

As shown in  Fig.  32a, std detects discriminatory intervals at the beginning (first 
5 s of walking) and at the end (last 10 s of walking) in the derivative representations. 
A higher difference in the variability of the acceleration values between walking on 
cement and on carpet can be found approximately in the time interval between seconds 
55 to 60 (highlighted between the pair of dashed black lines in  Fig. 32b). We have 
no further information of the data collection process for the SonyAIBORobotSurface2 
dataset, which limits our explanations for the higher variability (of walking on cement) 
at the beginning and the end of the walking sessions. One explanation could be that due 

Fig. 31  a Importance of time series representations and b importance of aggregation functions when 
classifying the SonyAIBORobotSurface2 dataset with r-STSF. The derivative (der) representation is the 
most important representation, and std is the most important aggregation function when extracting dis-
criminatory intervals from the derivative representation

Fig. 32  Derivative representations of all time series in the SonyAIBORobotSurface2 dataset. a Location 
of discriminatory intervals according to the std aggregation function. b The two types of surfaces can be 
differentiated for the high variability of the AIBO robot acceleration when walking on cement in the time 
interval between second 55 and second 60 of the original time series. Walking on cement series are in 
red color; walking on carpet series are in blue color
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to the inertia (i.e., tendency of a body to resist a change in motion or rest), the accelera-
tion varies when the robot starts its movement and also when it is about the stop.

7.6  Explaining classifications with the autoregressive representation

We use the ECG200 dataset  (Bagnall et  al. 2019; Olszewski 2001) to show how 
r-STSF uses the autoregressive representation for classification and how to explain 
such classification. Each series in ECG200 contains the measurements recorded by 
one electrode during one heartbeat. The heartbeats are labeled as normal and abnor-
mal. The original representation of ECG200 series (Fig. 33) may not be the most 
informative to capture discriminatory intervals. Normal and abnormal series follow 
a similar pattern in time, which makes it difficult to identify discriminatory intervals.

As shown in Fig. 34a, the autoregressive representation is identified as the most 
important representation by r-STSF. Moreover, std and iqr, which capture dispersion 
or variability of the data points, extract the most discriminatory intervals in the autore-
gressive representation (Fig. 34b). An autoregressive (AR) model holds the premise 

Fig. 33  ECG200 (original) time series. There is not a specific interval where normal (blue color) and 
abnormal (red color) series are easily differentiable (Color figure online)

Fig. 34  a Importance of time series representations and b importance of aggregation functions when 
classifying the ECG200 dataset with r-STSF. The autoregressive (reg) representation is the most impor-
tant representation. The iqr aggregation function is the most important aggregation function when 
extracting discriminatory intervals from the derivative representation
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that past values have an impact on current values. For example, in an AR process with 
lag order of 1 (denoted by “AR(1)”), the current value is predicted based on the imme-
diate preceding value using a linear model. The coefficients of such predictors are the 
AR coefficients, which can be used as features for time series classification  (Lines 
et al. 2018). r-STSF does not use the AR coefficients directly as features, but it uses 
them as another representation of the original time series, i.e., AR representation. 
Thus, r-STSF extracts discriminatory interval features from the AR representation.

As shown in  Fig.  35a, the most discriminatory interval features are located 
between lags 1 and 3 and also between lags 8 and 10. The variability of the AR 
coefficients of series from abnormal heartbeats is much higher than that from 
series of normal heartbeats between these lags. r-STSF uses this difference in 
the variability to differentiate normal and abnormal heartbeats.

The AR coefficients of abnormal heartbeats are usually larger than those of nor-
mal heartbeats (Fig. 35). AR coefficients do not provide specific information on 
the relationship of the variables, i.e., AR coefficients cannot tell to which extent 
current and past value are correlated. Nonetheless, a high AR coefficient implies 
that past values have some impact on current values whereas a low AR coeffi-
cient implies a small or no impact. Hence, for ECG200, past values from abnormal 
series have some impact on current values. On the contrary, in normal heartbeats 
there is a small or no impact of past values on current ones. As shown in Fig. 36, 
normal heartbeats are more irregular or noisy than abnormal heartbeats. There-
fore, it is difficult to establish a correlation between past values and current ones.

Fig. 35  Autoregressive representations of all time series in the ECG200 dataset. a Location of discrimi-
natory intervals according to the iqr aggregation function. b The variability of the AR coefficients of the 
abnormal heartbeats (red color) is higher than those of the normal heartbeats (blue color) between lags 1 
and 3 and between lags 8 and 10 (Color figure online)

Fig. 36  Example of ten ECG200 series. N: normal heartbeats (blue), A: abnormal heartbeats (red) (Color 
figure online)
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Further, from Fig. 35, we can infer that the impact of past 2, 3, 8, and 9 values 
on current ones is much higher for abnormal heartbeats than for normal heart-
beats. Although for abnormal heartbeats there are also high AR coefficients at 
lags 4 and 5; the iqr aggregation function considers such values as extreme or 
outliers, thus the interval between such lags is not considered as discriminatory.

8  Conclusions and future work

We proposed r-STSF, an extremely fast and highly efficient interval-based algo-
rithm for time series classification. r-STSF integrates explainability into its 
classification and achieves SOTA classification accuracy. To achieve competi-
tive classification accuracies, r-STSF builds an ensemble of randomized trees 
for classification. It uses four time series representations, nine aggregation func-
tions, and a supervised search strategy combined with a feature ranking met-
ric when searching for highly discriminatory sets of interval features. The dis-
criminatory interval features enable explainable classification results. Extensive 
experiments on real-world datasets validate the accuracy and efficiency of our 
proposed method – r-STSF is as accurate as SOTA TSC methods but orders of 
magnitude faster, enabling it to classify large datasets with long series.

While randomized trees have shown to improve the classification accuracy 
(when compared to non-randomized trees) for a large number of datasets, they 
are less likely to identify relevant features in datasets with a small number of rel-
evant features as they might miss those. As future work, we plan to make r-STSF 
adaptive. When a dataset is expected to have a high percentage of relevant fea-
tures – estimated with techniques such as permutation importance (Louppe et al. 
2013) – r-STSF trains an ensemble of randomized trees for classification. Oth-
erwise, r-STSF uses non-randomized trees. Moreover, the intrinsic multivari-
ate nature of time series signals (e.g., 3-axis accelerometer) leads us to extend 
r-STSF towards multivariate or multidimensional scenarios. Other methods such 
as CIF extend to multivariate scenarios by searching for discriminatory inter-
val features in different dimensions of a series. However, extracting interval fea-
tures per dimension (i) could potentially miss discriminatory features only found 
when data from every dimension is combined, e.g., an interval from series of the 
x, y, and z-axis of the accelerometer may not be discriminatory when assessed 
by separate, but it is discriminatory when data from each axis is combined, and 
(ii) may hinder the explainability when classifying datasets with a high number 
of dimensions due to such explainability has to be done per dimension (by high-
lighting discriminatory regions in the series from each dimension). We plan to 
transform the individual (per dimension) time series into a single (unified) rep-
resentation from where to extract discriminatory interval features.

We consider r-STSF highly relevant to enable further studies on interval-based 
classifiers. Results from an extensive experimental study on TSC methods (Bag-
nall et al. 2017) reported that interval-based TSC methods were the least compet-
itive family of TSC methods. However, more recent studies including ours have 
positioned the interval-based methods among the best ranking TSC methods. As 
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shown in  Fig.  6, r-STSF ranks just behind time and memory expensive hybrid 
methods such as HC2 and TS-CHIEF, and non-explainable by design kernel-
based approaches such as ROCKET. Our proposed r-STSF achieves similar clas-
sification accuracy to that of DrCIF while being two orders of magnitude faster.

Appendices

A Results on 112 UCR benchmark time series datasets

See Table 9
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B Comparison of r‑STSF with and without the autoregressive 
representation

See Fig. 37

Fig. 37  Comparison of average accuracy (x-axis) of r-STSF when using three time series representations 
(r-STSF (ori/per/der)) and when using four time series representations (i.e., including autoregressive rep-
resentation - r-STSF (all))
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C Comparison of r‑STSF with and without the counts 
of mean‑crossings (cmc) and counts of values above the mean (cam) 
aggregation functions

See Fig. 38

Fig. 38  Comparison of average accuracy (x-axis) of r-STSF when using all nine aggregation functions 
(r-STSF (all)) and when using seven aggregation functions (i.e., without cmc and cam aggregation func-
tions - r-STSF (no cmc/cam))
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