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Abstract
Whenever a new supervised machine learning (ML) algorithm or solution is devel-
oped, it is imperative to evaluate the predictive performance it attains for diverse 
datasets. This is done in order to stress test the strengths and weaknesses of the 
novel algorithms and provide evidence for situations in which they are most useful. 
A common practice is to gather some datasets from public benchmark repositories 
for such an evaluation. But little or no specific criteria are used in the selection of 
these datasets, which is often ad-hoc. In this paper, the importance of gathering a 
diverse benchmark of datasets in order to properly evaluate ML models and really 
understand their capabilities is investigated. Leveraging from meta-learning stud-
ies evaluating the diversity of public repositories of datasets, this paper introduces 
an optimization method to choose varied classification and regression datasets from 
a pool of candidate datasets. The method is based on maximum coverage, circu-
lar packing, and the meta-heuristic Lichtenberg Algorithm for ensuring that diverse 
datasets able to challenge the ML algorithms more broadly are chosen. The selec-
tions were compared experimentally with a random selection of datasets and with 
clustering by k-medoids and proved to be more effective regarding the diversity of 
the chosen benchmarks and the ability to challenge the ML algorithms at different 
levels.
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1  Introduction

A common practice in Machine Learning (ML) studies is to evaluate one or more 
algorithms on various datasets. However, the no-free lunch theorem (Wolpert 2002) 
states that all ML algorithms are likely to perform equally well on average if we 
consider all classes of problems they can be applied to. So applying a set of bench-
marks necessitates an understanding of whether they are indeed representing all 
classes of problems, or are biased in some way that makes clear which algorithms 
are better suited to those biased classes. The characterization of the conditions under 
which any algorithm is expected to outperform others is an important task for algo-
rithm selection (Luengo and Herrera 2015), but relies on being able to control the 
diversity of selected benchmarks.

Despite the presence of a large number of datasets in public repositories such as 
UCI (Dua and Graff 2017), OpenML (Vanschoren et al. 2014), Keel (Alcalá-Fdez 
et al. 2011), and competitions, the selection of the datasets comprising a benchmark 
set for evaluating new ML solutions is usually random, or based on simple criteria 
such as limiting the number of observations or input features considered. This raises 
doubts as to whether the strengths and weaknesses of the compared ML algorithms 
are likely to be revealed, or if all algorithms will appear similar on average due to 
the lack of criteria to ensure their diversity and explore a full range of biases.

The few studies found proposing benchmark datasets are more concerned with 
their application field than their general aspects or properties: such as in materials 
(Clement et al. 2020), semantic web (Ristoski et al. 2016), website phishing detec-
tion (Hannousse and Yahiouche 2021), physical systems (Takamoto et  al. 2022), 
graphs (Hu et al. 2020), and atmospheric sciences (Dueben et al. 2022). Olson et al. 
(2017) and Bischl et al. (2017) are among the only ones to consider more general 
aspects by selecting a subset of 165 and 100 classification datasets, respectively. 
The first work manually curated datasets from public repositories and analysed their 
properties based on a set of meta-features values and the algorithmic performance of 
some ML classifiers. And Bischl et al. (2017) selected their datasets by applying 13 
rules on thousands of datasets from the OpenML repository. These rules target data-
sets with some desired properties (such as number of observations, features, imbal-
ance ratio, among others) and exclude datasets that are ill-conditioned or that are too 
easy (defined as having maximum 10-fold cross-validation accuracy when solved by 
a decision tree). A study proposing an optimization method to select a benchmark of 
diverse datasets able to challenge the ML algorithms at different levels from a pre-
defined pool of candidate datasets has never been done before. Regarding regression 
problems, the literature is even more limited (Muñoz et al. 2021).

The Meta-learning (MtL) (Vanschoren 2019) area provides multiple ways to 
characterize a dataset, which can be explored in order to assess inner properties 
from the data. Indeed, an active field in MtL is the proposal of meta-features for 
extracting different properties from the datasets. Among them, one can cite sta-
tistical, information-theoretic, landmarking, model-based, and complexity meas-
ures (Lorena et al. 2018, 2019; Rivolli et al. 2022). Therefore, much more infor-
mation can be used to support the choice of diverse datasets for evaluating new 
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ML solutions, an area which remains under explored. This is one of the main 
problems to be addressed in this paper: how to assemble an optimized benchmark 
of labeled datasets for evaluating new ML models and solutions based on meta-
knowledge about their properties?

This paper proposes a methodology to select a subset of diverse and challenging 
benchmark datasets which can stress-test the domains of competence of supervised 
ML algorithms in an unbiased manner. Both classification and regression problems 
are considered. For such, the meta-knowledge extracted in previous work of the lit-
erature (Munoz et al. 2018; Muñoz et al. 2021) and made publicly available at an 
online platform named Melbourne Algorithm Test Instance Library with Data Ana-
lytics (MATILDA) https://​matil​da.​unime​lb.​edu.​au/​matil​da/) is used.

We build this work from the framework of Instance Space Analysis (ISA), devel-
oped by Smith-Miles and co-authors over many years, and summarized as a meth-
odology in Smith-Miles and Muñoz (2023). In recent years, ISA has been applied to 
understanding strengths and weaknesses of algorithms in many fields, and to evalu-
ate the diversity of existing benchmark suites. Munoz et al. (2018) and Muñoz et al. 
(2021) present an ISA of classification and regression problems in ML where data-
sets are placed in a 2-dimensional instance space showing linear trends regarding 
their difficulty level according to different criteria. A set of meta-features is used to 
assess their properties and to obtain the projections. This paper proposes an opti-
mization method to solve the benchmark selection problem based on the maximum 
coverage of this latent space, so that diversity according to different meta-features 
values can be taken into account directly in this choice. Recently, Alipour et  al. 
(2023) proposed an strategy for selecting subsets of instances that retain diversity 
across the instance space by ensuring uniform density and discarding redundant 
instances, which was applied to the analysis of maximum flow problems. Our work 
differs from the previous proposal by formulating a geometric maximum coverage 
optimization strategy for covering the instance space, while also controlling the 
number of datasets to be selected as desired. The following criteria are addressed in 
our proposed approach:

•	 (C1) Stress-testing the choice of diverse benchmarks for unbiased evalu-
ation of algorithms: whenever an ad-hoc selection takes place, one may bias 
the results obtained. Ad-hoc selection can sometimes appear to have facilitated 
cherry picking of datasets for which better algorithm results are obtained, while 
bad results are simply omitted. But we argue one needs to know and understand 
situations where the new algorithm succeeds and fails as well. This practice is 
needed to improve the ML field as a whole and to make the evaluation of new 
solutions less biased, more comprehensive and trustworthy.

•	 (C2) Taking advantage of meta-knowledge on public repositories: there is 
plenty of previous work extracting meta-knowledge from public repositories 
employed in ML studies (Soares 2009; Macià and Bernadó-Mansilla 2014; Bis-
chl et al. 2017; Munoz et al. 2018; Muñoz et al. 2021). There is need to leverage 
such knowledge to support Data Scientists in different ways. Here the objective 
is to support practitioners in choosing their test cases for better coverage of dif-
ferent situations that may challenge their algorithms;

https://matilda.unimelb.edu.au/matilda/
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•	 (C3) Formulating the choice of diverse benchmarks as an optimization prob-
lem: given a set of N datasets, the goal is to choose subsets M < N with definite 
number (the operator chooses how many datasets) which is diverse according to dif-
ferent characteristics and that can challenge ML algorithms at different levels. This 
set should contain both easy, medium, and hard to predict datasets, with different 
characteristics and structural properties. But other subsets might be preferred, such 
as only a hard set of datasets. The method is general and can easily accommodate 
such preferences. This is an NP-hard maximum coverage combinatorial optimiza-
tion problem combined with circle packing and can be solved using meta-heuristics.

The main contributions of this work are: (1) although the importance of a broad 
evaluation of new algorithms is well known in general Computer Science (Hooker 
1995), there has been less focus in the ML field regarding this issue. This paper rein-
forces this concern when evaluating new ML solutions, not only in situations where an 
algorithm outperforms the others, but also to understand and characterize situations for 
which the algorithm does not perform so well; (2) acknowledging the existing literature 
on evaluating the diversity of public repositories of datasets in ML (Munoz et al. 2018; 
Macià and Bernadó-Mansilla 2014; Muñoz and Smith-Miles 2020; Muñoz et al. 2021), 
it is important to learn lessons and leverage new knowledge from this rich information. 
This paper makes use of some recent and state-of-the-art meta-knowledge reported in 
the literature in a new setting designed to support ML practitioners in evaluating their 
algorithmic solutions more properly; (3) given a search space represented as a latent 
bi-dimensional representation space where datasets are linearly distributed according 
to different meta-characteristics and the algorithmic performance of a pool of popular 
ML solutions, an optimization method based on maximum coverage and circle packing 
problems in this space is proposed. A recent and efficient meta-heuristic joining con-
currently population and trajectory based search strategies inspired by lightning storms 
named Lichtenberg algorithm (LA) (Pereira et al. 2021b) is used to solve the problem.

The results obtained in experiments for both classification and regression prob-
lems demonstrates the importance of properly selecting diverse benchmarks of data-
sets for evaluating ML models. Our automatic method to recommend datasets with 
diverse properties aids such methodological design choice efficiently. Compared to 
a random selection of datasets and to a k-medoids selection (with k = M ) applied in 
the 2D space, the diversity of datasets is ensured more properly with our method.

The remainder of this paper is organized as follows. Section 2 presents the main 
concepts involved in this study. The complete developed optimization methodology 
is presented in Sect. 3. The set of datasets selected in the experiments are analyzed 
in Sects. 4 and 5 draws conclusions.

2 � Background

2.1 � Meta‑learning

The ML area has evolved and grown very quickly in the last decades, with the pro-
posal of many new techniques and the expansion of the areas of application covered 
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(Davenport and Ronanki 2018). Controlled experimental design methodologies and 
standard benchmarks for testing such techniques have also been devised, increasing 
the reliability in their evaluation (Thiyagalingam et  al. 2022). But it is still com-
mon to face challenges when deploying ML-based systems in practice (Paleyes et al. 
2022), making it not uncommon that results become disappointing. This raises the 
question on whether current evaluation repositories and benchmarks are really rep-
resentative so as to challenge the ML techniques at different levels, stressing their 
main capabilities but also limitations (Macià and Bernadó-Mansilla 2014; Munoz 
et al. 2018).

Meanwhile, the Metalearning (MtL) community has been studying how to lever-
age higher-level knowledge on previous problems already solved by ML techniques 
(Vanschoren 2019). This meta-knowledge, which can be extracted independently of 
the target domain addressed, has been used to support algorithmic selection for new 
problems with similar characteristics and properties (Smith-Miles 2009). Here we 
advocate such meta-knowledge can be useful beyond algorithmic selection and may 
also support a better evaluation of the strengths and weaknesses of ML techniques.

For such, this work takes advantage of the meta-knowledge gathered in some 
recent pieces of work in the MtL area. Munoz et al. (2018) and Muñoz et al. (2021) 
present an Instance Space Analysis (ISA) of classification and regression problems 
in ML, where datasets from popular repositories are analyzed regarding their capa-
bilities to challenge different ML algorithms. A 2-dimensional space named Instance 
Space (IS) is built so that linear trends of the difficulty level of the datasets accord-
ing to different perspectives are preserved.

Given a set I  of N datasets, which can be gathered from public repositories com-
monly adopted by the ML community or from other sources, the ISA framework 
involves six main steps (Smith-Miles and Muñoz 2023): assembling a meta-dataset; 
constructing an instance space; generating ML predictions for automated algorithm 
selection; generating algorithm footprints, defined as areas of the IS where the algo-
rithm is expected to perform well; analyzing the IS; and generating additional meta-
data if required. Next we present the first two steps, which allow to explain how the 
IS projections are obtained.

2.1.1 � Assembling the meta‑dataset

The meta-dataset must join two components: (i) properties of the base datasets that 
evidence their characteristics and difficulty levels; and (ii) the predictive perfor-
mance of a pool of ML algorithms when applied to such datasets. Let F  denote the 
set of meta-features and A denote the pool of algorithms considered, whose predic-
tive performances on the datasets I  are recorded in a set Y.

Regarding the first component, there are many meta-features for characterizing 
classification datasets in the literature (Rivolli et al. 2022). For regression datasets, 
the literature is less abundant (Aguiar et al. 2022). Generally, they can be divided 
into the following categories:

•	 Simple measures: basic characteristics, such as the datasets size, their input fea-
tures number, among others;
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•	 Statistical measures: measures of localization, dispersion, distribution, and cor-
relation of variables;

•	 Information theoretic measures: measures of the information content of the vari-
ables, as entropy and mutual information;

•	 Model-based features: take the characteristics of models built using the dataset, 
e.g. the size of decision trees;

•	 Landmarking features: consider the predictive performance of simple baseline 
models on the datasets, as the error rate of decision stumps;

•	 Complexity/hardness measures: capture the intrinsic difficulty in solving the 
problem by structural and geometric descriptors extracted from data.

Each dataset in I  should be described by a set of metafeatures F  , which will char-
acterize them. As a result, the meta-dataset will have a tabular format, with N rows 
(each dataset) and d columns (each meta-feature value for the given dataset).

In turn, the pool of algorithms A should include representatives with different 
biases. As each technique can extract distinct representations from data, they might 
suit better the structures of certain datasets and not others. The ultimate objective is 
to understand for which data conformations each technique can be recommended or 
not. The algorithms must receive the datasets in I  as input and, by a cross-validation 
procedure, estimate the predictive performance attained when solving the underly-
ing classification/regression problem using such data.

For classification problems, common performance metrics that can be used are 
Accuracy, AUC (Area Under the ROC Curve), Precision, Recall, F-measure, among 
others (Ferri et al. 2009). For regression problems, where the data labels are con-
tinuous, performance metrics taking into account the distance between the predicted 
values and the true labels are preferred, as the Mean Squared Error (MSE), Mean 
Absolute Error (MAE), etc. (Botchkarev 2018). By choosing one metric, the set Y 
containing the evaluation of the algorithms A in the datasets I  can be assembled.

In ISA analysis, the set Y is concatenated to the set F  to form the final meta-
dataset M to be analysed, as illustrated in Fig. 1. M will have N rows and d + a 
columns, where a is the number of algorithms included in the pool A . In contrast, in 
standard MtL studies, each row of the meta-dataset is labeled according to either the 
best performing algorithm, a ranking of algorithms or the performance of a chosen 
algorithm (Garcia et al. 2018).

Fig. 1   Assembling the meta-dataset for ISA analysis
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2.1.2 � Obtaining the IS

Smith-Miles and Muñoz (2023) frame the IS obtainment as an optimization problem 
named Projecting Instances with Linearly Observable Trends (PILOT). The objec-
tive is to find an optimum mapping from the meta-dataset M to a 2-D instance space 
where linear trends of the meta-features values and of the performance metrics are 
observed. Before, M is subject to a feature selection process where only those meta-
features which are more predictive of the algorithms’ performance are kept.

Let F ∈ ℝd×N be a matrix containing the meta-features values after feature selec-
tion for all datasets. Similarly, let Y ∈ R

N×a be a matrix containing the performances 
of the a algorithms on the same N datasets. The 2-D projection of the instances 
for this group of meta-features and algorithms is achieved by finding the matrices 
Ar ∈ ℝ2×d , Br ∈ ℝd×2 , and Cr ∈ ℝa×2 which minimize the following approximation 
error:

with:

where Z ∈ ℝ2×N is the matrix which gives the coordinates of the datasets (instances) 
in the 2-D space and Ar is the projection matrix mapping the meta-features values 
to the new space. Summarizing, the objective is to find the optimal linear transfor-
mation matrix Ar , such that the mapping of all instances from ℝd to ℝ2 results in 
the strongest possible linear trends across the IS when inspecting the distribution of 
each algorithm’s performance metric and of each of the meta-feature’s values.

This optimization problem is rewritten as an alternative optimization problem 
assuming that d < N and that F is full row rank and solved numerically using the 
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm (Broyden 1970; Muñoz 
et  al. 2021). From multiple runs of the algorithm, typically 30, the solution that 
achieves a maximum topological preservation is chosen (Yarrow et al. 2014). That 
is the solution showing maximum Pearson Correlation between the distances in the 
original meta-feature space and the distances in the IS.

The IS of classification datasets and of regression datasets from Munoz et  al. 
(2018) and  Muñoz et al. (2021) are presented in Fig. 2a, b, respectively. They are 
colored according to different meta-features’ values: fraction of borderline points 
in the case of classification problems and number of observations in the case of 
regression problems. The higher the fraction of borderline points a training dataset 
has, the more complex the underlying classification problem tends to be, possibly 
requiring more complex decision boundaries to separate the classes. According to 

(1)‖F − F̂‖2
F
+ ‖Y − Ŷ‖2

F

(2)Z = ArF

(3)F̂ = BrZ

(4)�Y
⊤
= CrZ



468	 J. L. J. Pereira et al.

1 3

this observation, more complex datasets are placed towards the upper-right corner 
of the IS in Fig. 2a. In the case of the regression IS, datasets with a larger number 
of observations are placed in the upper-right corner of the IS. Taking the premise 
that more training data should lead to better predictive performance, in Fig. 2b the 
more complex datasets are in the down left region of the IS. More details on these 
IS are presented in Sect. 3. Although more dimensions could be considered when 
building the IS, the usage of two dimensions has a visual appeal, which also applies 
to our method. One can easily select regions of the IS to focus the search procedure, 
as done in our experiments where specific quadrants of the ISs are subject to the 
benchmark selection process.

Since the IS is a two-dimensional square geometric space, strategies can be 
adopted to select instances in order to build a benchmark of datasets that is as diverse 
as possible, with a definite number M inferior to the whole set, that is, M < N . It is 
important to emphasize to the reader that the IS used in this work is constantly being 
improved, either by adding new datasets (real or synthetic), meta-features, ML algo-
rithms, ways of processing data, methodologies, among others (Smith-Miles and 
Muñoz 2023). Therefore, the results of this work are faithful to the current IS for 
classification and regression problems.

For the optimization process, an objective function is built based on two classic 
and complex NP-hard problems found in the literature: (i) the maximum coverage 
and (ii) the circular packing problems (Hochbaum 1996).

2.2 � Maximum coverage problem

The Maximum Coverage (MC) is a combinatorial optimization problem that 
consists of finding a collection of sets S = {S1,… , SM} in a domain of elements 
E = {e1,… , eN} so that the collection of elements in Si ⊆ S is maximized, that is, 

Fig. 2   IS of classification and regression datasets from Munoz et al. (2018) and Muñoz et al. (2021)
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a maximum coverage is attained. From this original version, there are three other 
versions: (i) the weighted version adds weights {wi}

N
i=1

 to the elements and these 
weights must also be maximized, (ii) the budgeted version, in which each collec-
tion of sets S can be associated with {cj}Mi=1 costs and its sum must be less than 
a specified budget B, and (iii) generalized maximum coverage, which is a com-
postion of the previous versions (Khuller et al. 1999). The choice of one of these 
versions is determined by the problems’ constraints and interests. The complete 
version is described in Eq. 5 (Cohen and Katzir 2008):

Subject to:

where yij = 1 if ej is covered by a set Si and if xi = 1 , Si is activated for the cover.
Even before the 2000s, this formulation has been applied for optimization in 

several areas, such as facility location, job scheduling, and circuit layout (Khuller 
et al. 1999). Until then, because it is a combinatorial optimization problem, the 
most used iterative and heuristic algorithm was the greedy algorithm (Zhang 
et al. 2000), that remains used nowadays. However, many limitations of this type 
of solution have been evidenced (Bang-Jensen et  al. 2004) and new and more 
powerful algorithms have emerged to solve applications using the MC problem’s 
formulation.

Several meta-heuristics have been successfully employed to solve the MC 
problem. Nascimento and Bastos-Filho (2010) applied the Particle Swarm Opti-
mization (PSO) to solve the cellular base stations positioning using MC as objec-
tive function. Rahmani et al. (2018) applied a genetic algorithm (GA) and simu-
lated annealing (SA) in the supply chain network design optimization, concluding 
that the first algorithm was more accurate. Another important area is the design 
of wireless sensor networks, in which Tossa et al. (2022) also used GA. For this 
same application, Taşdemir et  al. (2022) compared the Immune Plasma Algo-
rithm (IPA) and the Artificial Bee Colony (ABC) and concluded that the first had 
better results, but both showed significant improvements in relation to classical 
algorithms. Also recently, Matt et al. (2022) applied MC for the first time in lit-
erature in a ML problem. Using a nested GA, the authors proposed a method to 
extract a set of decision rules that best explains a classification data set.

(5)max
∑

e∈Ei,Si

wi(ej)yij

(6)
∑

ci(ej)yij +
∑

c(Si)xi ⩽ Bi

(7)
∑
i

yij ⩽ 1

(8)yij ∈ {0, 1}

(9)xi ∈ {0, 1}
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2.3 � Circular packing

Circular Packing (CP) is a problem related to MC, with some fundamental differ-
ences. This is also a complex optimization problem, consisting in finding how many 
equal circles can fit inside another geometric figure. Or in other words, considering 
a set C of M circles with location and size (xi, yi, ri) , what are the locations of these 
M circles that have the MC of the geometric figure considered? Note that there can 
be two approaches to find the CM locations, considering for example that they are 
inscribed in a square: (i) Fix the radius circle and find M or (ii) Fix M and find the 
radius, which can be the same or different for each circle. In both cases the MC is 
achieved the closer the circles are and constraining that they do not overlap (Castillo 
et al. 2008).

Being also a combinatorial and NP-hard problem, several algorithms have been 
proposed to solve it. Again, the best solutions were obtained using meta-heuristics. 
Flores et al. (2016) used the GA, Diferential Evolution (DE), PSO, and the Evolu-
tion Strategy (ES) and concluded that the first two algorithms came closer of the 
exact solutions to CP into squares and other circles. A similar result was obtained by 
Yuan et al. (2022) using a hybrid GA-greedy algorithm.

Section 3 explains how MC and CP are composed here to guide a meta-heuristic 
to segregate the IS in a defined number of sets M, from which representative pro-
totypes are chosen. But there is general a trend to apply new and improved meta-
heuristics to get better results in solving these complex optimization problems. This 
paper uses a novel meta-heuristic inspired by lightning storms and Lichtenberg Fig-
ures, described next. Section A.3 of the Appendix presents and applies other three 
popular meta-heuristics from the literature to one instance of our problem.

2.4 � Lichtenberg algorithm

The Lichtenberg Algorithm (LA) is a physics based meta-heuristic with mono and 
multi-objective versions (Pereira et al. 2021b, 2022). Both were successfully tested 
against traditional and recent meta-heuristics using complex groups of test func-
tions. LA proved to be a promising algorithm overcoming traditional and recent 
optimization algorithms such as GA, PSO, ACO, NSGA-II, MOPSO, MOEA/D, 
MOGOA, and MOGWO. Since then, it has been efficiently applied in complex opti-
mization problems as wind speed prediction optimizing Artificial Neural Networks 
models (Tian and Wang 2022), damage identification being treated as a minimiza-
tion inverse method (Pereira et al. 2021a), subsurface imaging antenna capacitance 
(Janairo et  al. 2022), structural design (Pereira et  al. 2022b), image segmentation 
(Xiao and Cheng 2022; Ma et al. 2023), and sensor placement in helicopter main 
rotor blade (Pereira et al. 2022a). In the latter case the LA algorithm found optimal 
positions for a reduced number of sensors within more than 10,000 candidate nodes. 
This is a problem similar to the one addressed in the present work.

LA uses figures similar to lightning, with tortuous aspects similar to fractals, 
whose propagation has chaotic dynamics and are called Lichtenberg Figures (LF). 
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LA creates them using a stochastic cluster growth theory named Diffusion Limited 
Aggregation (Witten and Sander 1981) and shoots figures in the search space with 
random sizes and rotations at each iteration, centered on the best solution of the pre-
vious step. The LF is created as a cluster of particles (or points) and just a limited 
Pop number of them are used as population for evaluation in the objective function. 
The LF creation is fully numerical: a binary and squared matrix with size twice Rc 
(creation radius) is built like a map and in the center, a particle represented by the 
number one is fixed. The cluster is built by unitary values and the empty spaces 
worth zero.

Particles are randomly released across the matrix and if they reach the cluster, 
they have an S probability of fixing (stickiness coefficient), which controls the clus-
ter’s (or LF’s) density. The particle can be added only if there is another particle 
next to it confirmed by a lateral check. If it reaches a radius slightly larger than the 
Rc , it is exterminated and another one starts the random walk again. This happens 
until all the particles ( Np ) determined are contained in the cluster or until it reaches 
its construction limit. These three LA’s parameters are about LF construction. Then, 
each particle can be transformed into locations on a Cartesian plane and the LF can 
be plotted at any size, slope or starting point. This process allows flat (2D) and spa-
tial (3D) LF, which means that they could be used for problems of two and three 
decision variables. When dealing with more variables, a projection (or mirroring) of 
these figures is made.

Another optimizer’s parameter is the refinement (ref), that can range from 0 to 1 
and is a creator of a second LF (red) every iteration from zero to one hundred the 
size of the main LF (blue), see Fig.  3. This smaller scale figure improves exploi-
tation by always having half of pop, when it exists ( ref > 0)—see Fig. 3. Pop are 
black dots, usually set 10 times the number of design variables (D). They are ran-
domly chosen throughout the LF structure (which is modified at each iteration). This 
unique hybrid routine not found in any meta-heuristics brought to the algorithm a 
great capacity for both exploitation and exploration.

Fig. 3   LA in bidimensional 
search space (Color figure 
online)



472	 J. L. J. Pereira et al.

1 3

The sixth parameter of the algorithm is the LF switching factor (M). It can be 
worth zero, one or two. If one, a LF is generated when starting the program and 
used in all iterations. If it is two, a new figure is generated and used at each iteration 
(implying in a huge computational cost). The fastest way is using M = 0, where a 
previously optimized LF is used in the optimizer: no figure is generated. Finally, the 
number of iterations ( Niter ) is the algorithm’s stopping criterion. Figure 14 summa-
rizes the algorithm.

3 � Methodology

The main objective of this work is to assemble a benchmark of M datasets that chal-
lenges ML algorithms in different ways, where M is set by the user. The IS presented 
in Fig. 2a has 235 classification datasets and the IS in Fig. 2b has 4885 regression 
datasets, both represented in a bidimensional square space with Cartesian coordi-
nates. The closer one dataset is to another in this space, the closer their similarities 
in terms of difficulties as measured in the embedded space. First, the two previous 
ISs are described in more details, followed by the proposed optimization problem 
formulation.

3.1 � IS of classification problems

The IS of classification datasets was built in Munoz et al. (2018) using 235 datasets 
(composing the set I  ), where 210 are UCI instances (Dua and Graff 2017), 19 are 
Keel instances (Alcalá-Fdez et  al. 2011), and 6 are DCol instances (Orriols-Puig 
et al. 2010). This collection of datasets has up to 11,055 observations and up to 1558 
input features.

The pool of algorithms A has as representatives: Naive Bayes (NB), Linear Dis-
criminant (LDA), Quadratic Discriminant (QDA), Classification and Regression 
Trees (CART), J48 decision tree (J48), k-Nearest Neighbor (KNN), Support Vec-
tor Machines with linear, polynomial and radial basis kernels (L-SVM, p-SVM, and 
RB-SVM, respectively), and Random Forests (RF). They are popular algorithms in 
ML and represent a wide range of biases. Their predictive performance registered in 
Y is measured by an error rate after running a ten-fold cross-validation procedure, as 
presented in Eq. 10 (Munoz et al. 2018):

where FN is the number of false negatives and FP is the number of false positives 
and n is the size of the dataset.

Finally, the set of meta-features F  is initially composed by 509 candidate meta-
features, which are reduced to 10 after a meta-feature selection step. The meta-data-
set M is then composed by 235 rows, described by 10 meta-features and with the 
error rate performance measures of 10 classifiers. After submitting this meta-dataset 

(10)ER =
FN + FP

n
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to the PILOT, the resulting coordinates of the datasets are given as (Munoz et al. 
2018):

where:

•	 H(X)max is the maximum normalized entropy of the input features, quantify-
ing the highest amount of information contained in the input features, assum-
ing they are independent from each other;

•	 H(c) is the normalized entropy of the class attribute, being a measure of 
the imbalance of the dataset concerning the proportions of observations per 
class;

•	 M̄CX is the mean mutual information of the input features and the class and 
measures the average shared information between the class and the input fea-
tures;

•	 DNER is the error rate of a decision node (aka decision stump), measured in a 
ten-fold cross-validation procedure;

•	 SD(v) is the standard deviation of the weighted distance, measuring the spar-
sity of the observations in a dataset;

•	 F3 is the maximum feature efficiency, measuring whether there is at least an 
input feature allowing a linear separation of the classes;

•	 F4 is the collective feature efficiency, measuring whether an iterative combi-
nation of the input features can separate the classes effectively;

•	 L2 is the training error of a linear classifier and assesses whether the dataset 
is linearly separable or not;

•	 N1 is the fraction of points on the class boundary, estimating the size of the 
decision boundary needed to separate the classes by regarding on nearby 
observations of different classes;

•	 N4 is the nonlinearity of the nearest neighbor classifier, which estimates the 
nonlinearity of the class boundary needed to separate the classes by measur-
ing the error rate of a one-nearest neighbor classifier for new observations 
generated by random linear interpolation of some original training observa-
tions.

From the list of meta-features, the datasets are placed in the IS regarding: the 
efficacy of the available input features in separating the classes ( H(X)max , M̄CX , 

(11)
�
Z1
Z2

�
=

⎡
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−0.277 − 0.052
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⎤
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T ⎡
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⎤
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F3 and F4), the expected format of the decision frontier (L2, N1 and N4), the 
imbalance of the classes (H(c)), and the sparsity of the data (SD(v)).

3.2 � IS of regression problems

The set I  of the IS of regression problems has 4885 datasets, where: 246 datasets 
were collected from the Kell (Alcalá-Fdez et al. 2011), OpenML (Vanschoren et al. 
2014), and UCI Machine Learning (Dua and Graff 2017) public repositories; 2547 
datasets were randomly selected instances from the Comparing COntinuous Optimi-
sation (COCO) benchmark set (Hansen et al. 2014), commonly used to test numeri-
cal optimisation algorithms; 1763 datasets are instances generated for testing black-
box optimisation algorithms as described in Muñoz and Smith-Miles (2019); and 
299 datasets correspond to time series problems from the M3-Competition (LLC 
2019), transformed into regression datasets by using the auto-regressive method, in 
which previous values of the series are used to predict the next. The selected data-
sets have from 13 to 2400 observations and from 1 to 108 input features.

The set A contains the algorithms: Adaboost (ADB), Bagging (BAG), Bayesian 
ARD (B-ARD), Decision Tree (DT), Support Vector Regressor ( �-SVR), linear SVR 
(l-SVR), �-SVR, Extra Tree (ET), Gradient Boosting (GB), Kernel Ridge regression 
(KR), Multilayer Perceptron Neural Network (MLP), Passive aggressive (PA), Ran-
dom Forest (RF), and Stochastic Gradient Descent (SGD). They belong to different 
families of algorithms and present distinct biases. Their performance Y was assessed 
using a five-fold cross-validation strategy with the Normalized Mean Absolute Error 
(NMAE) metric, represented in Eq. 12.

where yi is the target output for the i-th observation of the dataset, ŷi is the prediction 
obtained for this observation, and ỹ is the average of the target values in the dataset.

A set of 26 meta-features were employed to describe the datasets and compose F  . 
After meta-feature selection, seven of them are kept. The meta-dataset M subject to 
PBLDR has 4,885 rows (instances or datasets) and 21 columns (seven meta-features 
plus 14 algorithmic performances). The projection of the datasets in the IS space is 
given by:

where:

(12)NMAE =

∑n

i=1
�yi − ŷi�∑n

i=1
�yi − ỹ�
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•	 n1 is the number of observations the dataset has or its size;
•	 C2 is the average input features’ correlation to the output, measuring whether the 

input features are predictive of the data labels, considering a linear relationship;
•	 C5 is the average correlation between the input features of the dataset, measuring 

the degree of redundancy of the input features;
•	 L1a is the mean absolute error of and Ordinary Least Square regressor (OLS) 

without using symbolic features as input, measuring whether a linear fit suits the 
dataset or not;

•	 M5 is the average mutual information among input features, also quantifying 
their level of redundancy;

•	 S1 is the normalized output distribution, measuring the smoothness of the rela-
tionship of similar observations in the dataset;

•	 T2 is the ratio between the number of observations and the number of input fea-
tures, being a rough indicator of data sparsity.

Therefore, the meta-features for regression problems used in the IS account for: 
the representativeness of the available input features (C2, C5 and M5), the size of 
the dataset (n1 and T2), the expected format of the approximation function fitting 
the data ( L1a and S1), and data sparsity (T2).

3.3 � Optimization problem

The proposed methodology focuses on finding M < N subsets S within all datasets 
I  that have the greatest coverage of all points (datasets) and are equally spaced from 
each other when projected in the IS. In other words, it seeks to divide the IS into M 
circular regions where each one has a central dataset that best represents this region. 
Summarizing, the aim is to find a set of M datasets that represent the entire IS space 
with greater heterogeneity. To solve this combinatorial optimization problem, an 
objective function based on the maximum coverage and circle packing problems is 
proposed. The LA meta-heuristic is then used to solve the formulated optimization 
problem.

The sets S were defined as circular areas. Having the number of regions or circles 
to be formed equal to M, the objective is to position these circles in points of the IS 
that lead to the greatest coverage. In order to give the same priority to each dataset, 
they must have circles of the same radius R. However, the proposed methodology 
allows varying the number of datasets to be selected based on a target number that 
the operator wishes to choose. Therefore, a definition of which should be the radius 
R as a function of M is needed.

The CP in a square (as is the case of the IS conformation) is a classical optimi-
zation problem in the literature that already has exact results for calculating R in a 
unit square, and therefore expandable to any size, for M up to more than 100 circles. 
These results allow to say which should be the largest possible radius for these cir-
cles that results in the greatest area coverage in the IS square ( Ropt ) (Flores et  al. 
2016). To reduce the dimensionality of the optimization problem here, a vector that 
associates M to Ropt is incorporated in the optimization problem.
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Having defined the size of the circles as a function of the number of datasets to be 
chosen and knowing that the IS is square, the MC problem arises as where to position 
these circles in the IS so that this results in the greatest coverage. No circle is allowed 
to overlap neither to fall outside this square. Still, these circles cannot be positioned 
anywhere, but at some point that is already contained in the IS itself, that is, an existing 
dataset.

Two optimization options were considered: discrete or continuous. If discrete, a 
binary vector of size N would be used, where M positions would get a value 1 (rep-
resenting the selection of a dataset) and the corresponding datasets could get a circle, 
making it possible to compute the coverage. However, this formulation would result in 
D = 235 for classification problems and D = 4885 for regression problems, where D is 
the size of the search space, which would be a high-dimensional optimization problem. 
In the continuous optimization formulation, each dataset is associated with a Cartesian 
coordinate ZM = (z1M , z2M) and therefore, the dimensionality D of the search space is 
reduced to D = 2 ∗ M . This was the option chosen and in order to circumvent the prob-
lem of discrete selection of datasets in the ISA, the LA was allowed to search the entire 
space and for each proposed solution ZM , the dataset closest to it in the IS was consid-
ered for positioning the circle, as calculated by the Euclidean distance.

Then, for each set of proposed solutions S with M circles (or datasets) of optimal 
radius ( Ropt ), the coverage is calculated. The considered optimization problem can 
be formulated as a linear integer programming problem (Matt et al. 2022). To do so, 
a large number of M′ points Xj are randomly plotted across the search space (or IS) 
and all of them are compared with each ZM solution using Ropt . The more of these 
M′ points are contained within each region of each Z point with radius Ropt , the 
greater the coverage. A constraint is also added to the program that penalizes solu-
tions that repeat datasets.

Therefore, the optimization problem to be solved by LA is an adaptation of the 
Eq. 5 and can be expressed by Eq. 14. Note that min(Z) and max(Z) are the lower 
and upper bounds composed by the minimum and maximum values found in the IS 
that forms a square (minimum and maximum found in both z1 and z2 IS’s axes).

The LA is applied to solve the optimization problem described by Eq. 14 for both 
classification and regression problems, whose data were obtained from MATILDA.

Subject to:

(14)max

M�∑
i=1

M∑
j=1

yij

(15)min(Z) ⩽ Zi ⩽ max(Z)

(16)di,j =

√
(Zi − Xj)

2

(17)yij = 1 if di,j ⩽ Ropt
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Therefore, the proposed method will be called Lichtenberg-MATILDA (LM) here-
after. In this paper the used LA’s parameters are: Rc = 200, Np = 860,000 , S = 0.88 , 
ref = 0.4 , M = 0 , Pop = 10 ∗ D , and Niter = 100 . They were found after an in-depth 
study with more than 15,000 simulations using Design of Experiments with Full Facto-
rial design and Response Surface Methodology in 10 complex test functions with more 
than 10 design variables. A comparative study of LA with three of the most popular 
meta-heuristics from the literature for the proposed problem are in the Appendix sec-
tion, where the LA was able to find solutions with better coverage of the IS.

In our formulation, each datataset (or instance) is located according to the corre-
sponding Cartesian coordinates in the two-dimensional IS. For ISs with more dimen-
sions, more decision variables would need to be added, increasing the difficulty and 
computational cost of the optimization problem. The authors believe that the two-
dimensional coordinates from standard ISA ( Z1 and Z2 ) are already able to represent all 
meta-features well, while allowing to present the results graphically, which strengthens 
the appeal of the applied methodology.

3.4 � Baselines

The proposed method is compared with other two selection methods: a simple random 
selection of M datasets from the pool I  and applying a k-medoids clustering algorithm 
(Park and Jun 2009) to the IS (where k = M ). The last technique is a very effective and 
fast clustering technique able to partition a set of points into k clusters represented by 
their medoids, using the Eucledian distance for computing the dissimilarity of the pairs 
of points in the clustered space (Arora and Varshney 2016).

We perform two types of analyses. The first is visual, where the chosen datasets are 
highlighted in the IS. The second shows plots of the algorithmic performances of the 
pool of algorithms tested for the datasets. The greater the variation in the performances, 
the greater the diversity of the datasets concerning their ability to challenge the ML 
algorithms at different levels (that is, including easy, medium and hard level datasets). 
Similar plots for the meta-features values are also presented, in order to evidence the 
diversity regarding properties of the datasets selected.

4 � Results and discussion

For both classification and regression IS problems, the following setups will be con-
sidered: (i) Finding a set of more diverse datasets that cover the entire IS of Fig. 2; (ii) 
Repeating the previous step for the quadrants of the IS containing the datasets hard-
est to predict, which are considered of greater difficulty; Finally, (iii) comparing the 
proposed optimization method with the other two baseline dataset selection methods 
considering the entire IS.

(18)Zi ≠ Zi+1
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4.1 � Benchmarks for classification

4.1.1 � More diverse datasets

Considering the entire IS, the selection of diversified datasets is guaranteed. The 
visual results for M = {3, 4, 5, 10, 20, 30} datasets are in Fig. 4, where the selected 
datasets are represented as red dots. It is possible to note that in all cases the pro-
posed methodology fulfilled its goal of selecting datasets that, according to their 
number M and consequently Ropt , covered the entire IS, avoiding as much as pos-
sible the overlapping of the selected regions. Furthermore, there was no repetition of 
datasets for any case.

As the number of selected datasets increases, the method seeks to select data-
sets near the border of the IS, ensuring a more extreme distance selection. This is 
clearer from the selection of three datasets (Fig. 4a). In Fig. 4b it is possible to see a 
complete division, where each quadrant of the IS has a dataset representing it. Up to 
20 datasets (Fig. 4e), the total separation of regions is still clear. Due to the greater 
complexity of the optimization problem for 30 datasets, it is possible to observe in 
Fig. 4f that some regions begin to slightly overlap.

The names of the selected datasets are presented in Table  1 of the Appendix 
section. The Lichtenberg-MATILDA (LM) benchmark datasets are quite diverse, 
although there are some repeated datasets for different M sizes. The most repeated 
dataset was teaching, which was selected in the benchmarks of 3, 4, 5, 20 and 30 

Fig. 4   Selection of more diverse classification datasets: datasets selected by the LM algorithm for differ-
ent M values are colored in red (Color figure online)
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datasets. Next comes the dataset thyroid_allhyper, being in benchmarks of 5, 10, 
20, and 30 datasets. Considering that the selection here is geometric, the repetition 
of datasets is justified by their positions in isolated regions with a lower density of 
points, reinforcing their special properties that are not captured by other datasets.

Comparing this study with the only two others that proposed classification bench-
mark datasets considering more general aspects (Bischl et  al. 2017; Olson et  al. 
2017), some differences are noticeable. The teaching dataset, that appeared most in 
the different selections and is considered of greater difficulty for being in the posi-
tive IS quadrant (see Fig. 4a), is not present in the previous benchmarks. The only 
common datasets with these studies are: (i) phishing, diabetic, balance, and credit 
for Bischl et al. (2017) and (ii) titanic, flare, diabetics, coil2000, mushroom, credit, 
automobile, yeast, crx, dermatology, and spambase for Olson et al. (2017). As can 
be seen, there are few datasets common to all studies, although there are more simi-
larities of our selections with (Olson et  al. 2017), who also used MtL to analyze 
the datasets. But neither of the previous work used any kind of optimization in this 
selection process, differing from our proposal.

4.2 � Hardest datasets

While in the previous analysis the most diverse datasets were considered by adopt-
ing all the 235 datasets in the IS for classification, here the same methodology was 
applied to determine benchmarks with M = {5, 10, 20, 30} datasets that are able to 
challenge the most the ML classification algorithms. These datasets are contained in 
the IS Quadrant 1 (with Z1 ≥ 0 and Z2 ≥ 0 ). The visual results are in Fig. 5 and the 
datasets names are in Table 2 (appendix section).

Here the IS was reduced by a quarter and the proposed method was automatically 
adapted by reducing Ropt . An increased number of datasets leads to more overlap-
ping of regions, and the LM method really forces the selection of more extreme and 
distant datasets. This is because the dataset selection does not depend only on their 
positions in the IS, but on the coverage of the entire search space considered, which 
makes the proposed method less susceptible to regions of high densities in the space.

In order to show how the difficulty level of the selected datasets increased here 
compared to selecting datasets from all the IS, Fig. 6 shows boxplots of the error 
rates (ER as measured by Eq.  10) of the classification techniques composing the 
pool A . Boxplots in green correspond to the ER values registered for the diverse 
benchmark of datasets, while boxplots in blue contain the ER registered for the hard 
datasets. In these cases benchmarks of M = 30 datasets are considered. In red are 
boxplots of the ERs for all 235 datasets in the pool I  . Clearly, the error rates are 
higher for the hard datasets, for all classification techniques considered. On the other 
hand, the interquartile ranges (IQR) are usually larger for the diverse benchmark, 
demonstrating it encompasses datasets with distinct hardness profiles (from easy to 
hard to classify). The boxplots for diverse datasets are in general similar and some-
times larger than those of using all datasets, showing how the proposed methodol-
ogy successfully captured the entire IS representation in terms of classification dif-
ficulty, but with a smaller number of core instances.



480	 J. L. J. Pereira et al.

1 3

For stress-testing how changing the pool of datasets may affect the conclu-
sions drawn from comparing different ML techniques, Fig. 7 shows the Critical 
Difference (CD) diagrams after comparing the pool of algorithms in A using 
the diverse and the hard benchmarks containing M = 30 datasets. The Friedman 
multiple comparison test is employed, followed by the Nemenyi test at 95% of 
confidence level, as described in Demsar (2006) and  Calvo and Santafé  Rod-
rigo (2016). The linear SVM classifier (LSVM) performed better for the diverse 
benchmark, in general, whilst RF was the best classifier overall in the hard bench-
mark of datasets. QDA was the worst performing algorithm in both sets. In addi-
tion to this non-parametric test, a detailed discussing using the Bayesian test from 
Benavoli et al. (2017) is in the Appendix section.

The teaching dataset is again the most selected in the hard selection, being in 
all benchmark datasets (of all sizes). Followed by auto7_2 (benchmarks of 10, 
20, and 30 datasets), heartswitzerland_no_Nas (10, 20, and 30 datasets), auto6_3 
(10, 20, and 30 datasets) and hayes (10, 20, and 30 datasets). The decrease both 
in the Ropt and the number of candidate datasets results in a greater repetition of 
datasets among benchmarks of different sizes, as expected.

Fig. 5   Hardest classification datasets selected by the LM algorithm, represented as red dots (Color figure 
online)

Fig. 6   Boxplots of error rates (ER) of classification techniques in the pool A for the datasets composing 
the set of diverse datasets (in green), the set of hard datasets (in blue), for M = 30 , and all the pool I  of 
datasets (in red) (Color figure online)
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Comparing these selections once again with the benchmark datasets from pre-
vious work from the literature, the following are common: (i) breast, dresses, 
madelon, credit_no_Nas, and cilinder for Bischl et al. (2017) and (ii) horse_colic_
outcome, lymphography, breast, yeast, contraceptive, tae, and hv_noise for Olson 
et  al. (2017). Once again, there are few common datasets with LM’s selections. 
Although this suggests these benchmarks have a reduced number of difficult data-
sets, this might not be the case since they contain other datasets that are absent from 
our initial pool of instances I .

4.2.1 � LM’s comparison to baselines

Figures 4 and 5 evidence that the LM optimization method is able to cover well the 
regions defined in the IS for classification problems. Now the attention is dedicated 
to compare the obtained selections with those of two baselines: a simple random 
selection and using the k-medoids clustering technique in the IS with k = M.

The visual results of these three methods are shown in Fig.  8, reminding the 
reader that in all cases the optimized selected datasets are the same ones presented 
previously, provided by LM. In terms of greater coverage of all the 235 IS datasets, 
it is clear that the LM method is able to select the most diverse datasets for what-
ever the number of datasets considered. Considering the benchmarks of 10 data-
sets (Fig. 8a), LM increased better the distances between the datasets, selecting the 
most extreme ones. The k-medoids clustering solutions are more concentrated in the 
central region of the IS, despite having a better distribution of the selected datasets 
compared to the random selection. The same behavior is repeated for more datasets, 
with a clear trend that with this increase, the two baseline techniques present diffi-
culties in selecting more distant datasets.

Fig. 7   Critical Difference diagram of statistical comparison of classifiers using different sets of M = 30 
datasets (diverse and hard)
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This reinforces what has already been discussed before: the selection of data-
sets proposed here is not based only on the datasets as plotted in the IS them-
selves, but on covering the entire IS region. The k-medoids clustering technique 
is based purely on the organization of the points in the IS, which makes its selec-
tion result in more internal datasets, less distant from each other, and a more con-
fusing selection in regions of greater density. All these challenges are overcome 
by the proposed method. However, it is important to emphasize that its computa-
tional cost increases linearly with M.

Fig. 8   Classification datasets selected by methods: optimized, k-medoids, and random selection (Color 
figure online)
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In addition to the visual inspection of the datasets selected by each technique, 
boxplots of the ER performance of each of the algorithms from the pool A used 
to build the IS for the datasets selected are shown, for the three benchmark selec-
tion methods. The greater the range of the plots, the greater the variety of difficulty 
levels of the selected datasets. Results for M = 30 benchmark datasets are in the 
left column of Fig. 9, as with 30 datasets all methods are given higher opportunities 
to select diverse datasets. When presented to the datasets selected by LM, all ML 
techniques showed a larger variation of ER results, with more elongated boxplots. 
k-medoids and random selection had in most of the cases similar variations. The 
same types of observations hold for the meta-features values (Fig. 9b, d and f in the 
right side), which tend to vary in a larger extent for the datasets selected by LM.

4.3 � Benchmarks for regression

4.3.1 � More diverse datasets

The IS here has 4885 candidate datasets with many regions of high density (as can 
be seen in Fig.  2b), which makes the benchmark selection optimization problem 

Fig. 9   Error rate of ML classification algorithms (left side) and meta-features values (right side) for 
selections of M = 30 datasets (Color figure online)
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more challenging. The visual results of selecting M = {5, 10, 20, 30} regression 
datasets over the entire IS are in Fig.  10, while the datasets names are listed in 
Table 3 (appendix section).

In contrast to what was observed for classification problems, even for a low num-
ber of datasets, there is a slight overlapping of regions, which becomes more accen-
tuated with the increase in the number of datasets selected. This is due to the greater 
complexity of the search problem here. Still a good spacing between the selected 
datasets was observed in all cases, with the exception of the upper left quadrant of 
the benchmark of 30 datasets.

This study is the first, to the authors’ best knowledge, to propose a benchmark 
of datasets for evaluating ML regression algorithms, so there are no previous stud-
ies to compare if the datasets found in Table 3 have been suggested before. Due to 
the high quantity of available datasets in the set I  , there was practically no rep-
etition of datasets for benchmarks of different sizes. Some notable exceptions are: 
treasury (appearing in benchmarks of 5, 20 and 30 datasets) and Data_X_D2_Y_
EXP1_82_50_truncated (composing benchmarks of 10, 20, and 30 datasets).

4.3.2 � Hardest datasets

Here the LM algorithm is employed to select benchmarks with M = {5, 10, 20, 30} 
datasets that are able to challenge the ML regression algorithms the most. These 
datasets are contained in IS Quadrant 3 (with coordinates Z1 ≤ 0 and Z2 ≤ 0 in 
Fig. 2b). As this quadrant is less dense compared to the others, for up to 10 datasets 
there is almost no overlapping of regions found by LM (Fig. 11). However, precisely 
due to the lack of datasets, the overlap increases after this number. This fact also 
contributes to a repetition of datasets between benchmarks of different sizes. The 
names of the selected datasets are in Table  4 (appendix section), where the most 
repeated datasets for different benchmark sizes are: N 138_20_1_2_1 (appearing in 
all benchmarks); N 35_20_1_2_1 (5, 20, and 30 benchmarks); dataset_2197_longley 
(5, 10, and 20 benchmarks); and N1167_24_1_2_1 (10, 20, and 30 benchmarks).

The Appendix section show a similar statistical comparison of the regres-
sors for the diverse and hard benchmarks of M = 30 datasets too. There are more 
noticeable differences in the rankings of algorithms for the regression algo-
rithms. For instance, the algorithm Bayesian ARD, which is the best performing 

Fig. 10   Selection of more diverse regression datasets: datasets selected by the LM algorithm for different 
M values are colored in red (Color figure online)
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algorithm for the set of hard datasets, is one intermediary solution in the diverse 
benchmark of datasets. Results of a Bayesian statistical test are also presented in 
the Appendix section.

4.3.3 � LM’s comparison to baselines

In face of the large number of datasets composing the instance set I  for regres-
sion, all selection techniques will be more challenged when choosing a reduced 
subset. Figure 12 shows how LM, k-medoids, and random selections perform for 
M = {10, 20, 30} datasets.

LM is clearly able to cover the IS better and proves to be even more powerful 
for a large and dense number of datasets. Again, the optimized method selects 
datasets that are placed more at the extremes of the IS, making it possible to 
select datasets with very distinct properties not covered by other denser regions 
of the space. The k-medoids technique keeps selecting more grouped datasets 
and concentrated in the central region of the IS, although they are more spaced 
than the randomly selected datasets. This pattern holds regardless of the number 
of datasets to be selected and the superiority of the LM method grows with the 
increase in the number of datasets.

The greater diversity and coverage of the LM technique is also observed by 
examining the boxplots of the NMAE errors of the regression algorithms used 
to build the IS in the datasets selected by the three techniques and of their meta-
features values. Boxplots of these results for the benchmark of 30 datasets are in 
Fig. 13. For all three methods, all ML regression algorithms, and all of the meta-
features values excepting n1 , the LM technique shows a much larger variation of 
results. Furthermore, in all cases the mean NMAE for the datasets selected by the 
LM method are higher. The main reason for this is that the compared methods 
depend exclusively on the positions of the datasets and their density in the IS. As 
the most difficult datasets for regression are positioned in the negative quadrant 
of the IS, which presents a small density, the LM technique is the only technique 
able to select datasets that best represent this area.

Fig. 11   Hardest regression datasets selected by the LM algorithm, represented as red dots (Color figure 
online)
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5 � Conclusion

This work is dedicated to propose and evaluate a method for selecting an unbi-
ased subset of dataset benchmarks that are diverse and challenging in order to 
evaluate both classification and regression ML algorithms. Leveraging from 
a 2-D mapping built using meta-features extracted from datasets contained in 
public repositories, named Instance Space, a complex NP-hard problem is for-
mulated combining Maximum Coverage and Circular Packing and is solved by 

Fig. 12   Regression datasets selected by methods: optimized, k-medoids, and random selection (Color 
figure online)
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the Lichtenberg Algorithm meta-heuristic. The results of the proposed method, 
named Lichtenberg-MATILDA (LM), are then compared with selections per-
formed by k-medoids clustering and a random selection.

Benchmarks of 5, 10, 20, and 30 datasets containing more diverse and hard-
est datasets are proposed as case studies, totalling 8 benchmark dataset suites. 
Applying the proposed method, there was little overlapping of regions covered by 
different suites in the IS, which grew with the increase in the number of datasets 
to be selected. Some of the classification datasets found are consistent with pre-
vious studies in the literature and for regression, this is the first work to propose 
a guided benchmark selection. The more diverse optimized benchmark datasets 
are then compared with the other two baselines. In all cases, the LM technique 
selected the datasets with the greatest coverage of the IS, which were both the 
most extreme and the most widely spaced. The k-medoids clustering technique 
selected datasets that were also well spaced, but with a smaller distance between 
each other in the IS and which are more concentrated in the central regions of 
the IS. Both LM and k-medoids performed better than the random selection. The 
superiority of the proposed technique became more evident as the number of 
datasets to be selected and the amount of available datasets increased. The main 

Fig. 13   NMAE of ML regression algorithms (left side) and meta-features values (right side) for selec-
tions of M = 30 datasets (Color figure online)
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reason for the success of the proposed method is that it ensures the entire IS space 
coverage. This favors that datasets placed in more extreme and less concentrated 
regions of the IS, and therefore with more distinct characteristics, are selected.

In addition to the IS visual results, the errors of the algorithms used to build 
the IS in the selected benchmarks are compared, as well as the meta-features val-
ues of the datasets. The benchmark datasets selected by LM in general presented 
the largest ranges of variation, allowing to stress-test different domains where 
each algorithm performs better or struggles to solve. Still, it was shown that the 
proposed benchmark with 30 classification datasets had the same diversity as the 
whole IS.

Therefore, the proposed methodology proved to be quite efficient in ensuring 
the selection of the most divergent datasets that cover the IS. Future studies shall 
consider selecting benchmarks of larger sizes and diversifying more the instances 
contained in the base ISs by including more datasets. And the same reasoning 
employed here can be easily extended to guide the selection of benchmarks for 
other learning and optimization problems. Another future work includes measur-
ing the degree of stringency of a benchmark of datasets from a published work. 
This can be done by projecting the datasets into the IS according to their meta-
features values and measuring their degree of IS coverage.

Finally, although we focused our analysis on diverse and hardest datasets, other 
selections are possible, by simply restricting the search to other quadrants of the 
IS or by omitting datasets which do not obey a desired constraint. For example, if 
one wants to test a regression technique only on datasets of large size, the search 
should concentrate on the upper right quadrant of the regression IS. Allowing the 
user to set some additional target characteristics of interest is also a worthwhile 
future investigation. For instance, one might need to select only classification 
datasets with a high imbalance ratio or number of classes, but with most distinct 
properties as measured by other meta-features values. This type of selection is 
straightforward in the method, which can be run for a subset of datasets obeying 
a given restriction.

A Supplementary Material

A.1 Extra figures and tables

Figure 14 summarizes the Lichtenberg Algorithm.
Table 1 presents the list of classification datasets selected by the LM algorithm, 

for each benchmark size M.
Table  2 shows the list of classification datasets chosen when only the hardest 

quadrant of the IS is considered as search space.
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Fig. 14   LA’s flowchart



490	 J. L. J. Pereira et al.

1 3

Table 3 presents the list of regression datasets selected by the LM algorithm, for 
each benchmark size M.

Table 4 shows the list of regression datasets chosen when only the hardest quad-
rant of the IS is considered as search space.

Table 1   The most diverse classification datasets

M Datasets

2 Titanic and seeds
3 Teaching, seeds, and hiv_schilling
4 Mushroom, teaching, titanic, and audiology_std
5 Flare, thyroid_allhyper, teaching, soybean_small, and titanic
10 chronic_kidney_disease_full_no_Nas, onehund_mar, titanic, seismic, soybean_small, balance, 

primary, abalone_ori, heart_switzerland_no_Nas, and thyroid_allhyper
20 Qualitative, thyroid_allhyper, credit, soybean_small, thyroid_dis_no_Nas, automobile, heart_va, 

echocardio, chronic_kidney_disease_full_no_Nas, phishing, titanic, auto7_3, chess-krkp, 
breast_tissue, onehund_mar, diabetic, congressional, coil2000, teaching, and yeast.

30 breast_tissue, hiv_746, hv_noise, heart_va_no_Nas, congressional, trains, turkiye, horse_colic_
lesionm, leaf, phishing, echocardio, seismic, auto8, blood, texture, chronic_kidney_disease_
full_no_Nas, user, grammatical_a4, horse_colic_outcome, molecular_splice, auto7_2, robot4, 
heart_switzerland_no_Nas, onehund_mar, titanic, ozone8_no_Nas, teaching, thyroid_allhyper, 
mushroom, and hiv_schilling

Table 2   The most challenging classification datasets

M Datasets

5 Teaching, breast_cancer_wis_pro2, dresses, pitt1_4, and lung_no_NAs
10 Auto7_2, teaching, heart switzerland_no_Nas, trains, horse_colic_outcome, hepatitis_no_Nas, 

auto6_3, hayes, mechanical, and lung
20 Madelon, hayes, credit_no_Nas, horse_colic_outcome, cilinder_no_NAs, heart_cleverland, auto7_2, 

heart_va_no_Nas, dresses, lymphography, heart_switzerland_no_Nas, wave2, lung, auto6_3, 
auto6_2, teaching, trains, auto8, auto7_2, and breast.

30 yeast, lung, auto2, abalone, tae, cilinder, horse_colic_outcome, and auto6_2, trains, contraceptive, 
madelon, heart_va_no_Nas, teaching, auto8, heart_switzerland_no_Nas, lung_no_NAs, auto7_2, 
mechanical, automobile, wave2, primary, lenses, hayes, credit_no_Nas, auto6_3, hv_noise, heart_
switzerland, heart_cleverland, lymphography, and pitt1_4
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Table 3   The most diverse regression datasets

M Dataset

5 Data_X_D2_Y_EXP1_55_2000_truncated, treasury, N 107_20_1_2_1,
Data_X_D2_Y_EXP3_51_2000_truncated, and
Data_X_D10_Y_EXP1_82_50_truncated

10 N 81_20_1_2_1, Data_X_D8_Y_F6_2_250, Data_X_D40_Y_F15_6_50,
Data_X_D2_Y_EXP1_82_50_truncated, meta, N 138_20_1_2_1, N 391_46_1_5_1, Data_X_

D2_Y_EXP1_55_2000_truncated, Data_X_D2_Y_EXP2_16_2000_truncated, and Data_X_
D2_Y_F5_22_1000

20 Data_X_D2_Y_EXP2_16_1000_truncated, N 35_20_1_2_1, N1167_24_1_2_1, Data_X_
D2_Y_EXP3_12_2000_truncated, treasury, laser, N 861_64_1_6_1, N 138_20_1_2_1, 
Data_X_D10_Y_EXP2_91_1000_truncated, heart, Data_X_D2_Y_EXP1_55_2000_trun-
cated, N2716_135_1_14_1, detroit, Data_X_D2_Y_EXP2_66_50_truncated Data_X_D3_Y_
F5_1_100, Data_X_D2_Y_EXP1_11_2000_truncated, dataset_2197_longley, Data_X_D8_Y_
F18_22_500, Data_X_D2_Y_EXP1_82_50_truncated, and Data_X_D5_Y_F12_21_50

30 Data_X_D2_Y_EXP2_7_50_truncated, Data_X_D2_Y_EXP2_47_2000_truncated, 
Data_X_D2_Y_EXP2_38_250_truncated, Data_X_D2_Y_F12_18_2000, N 391_46_1_5_1, 
N2716_135_1_14_1, Data_X_D2_Y_EXP3_94_100_truncated, iq_brain_size, 
N2891_71_1_7_1, Data_X_D2_Y_EXP2_50_2000_truncated, Data_X_D2_Y_
EXP3_51_2000_truncated, detroit N 644_36_1_4_1, Data_X_D2_Y_EXP1_82_50_truncated, 
N 143_20_1_2_1 treasury, Data_X_D2_Y_EXP3_12_2000_truncated, Data_X_D2_Y_
EXP2_3_2000_truncated, Data_X_D10_Y_F16_19_1000, Data_X_D2_Y_EXP1_82_50_
truncated, vineyard, Data_X_D3_Y_F19_6_50, N 35_20_1_2_1, N2514_120_1_12_1 
Data_X_D40_Y_F8_8_1000, Data_X_D10_Y_EXP2_91_250_truncated, Data_X_D20_Y_
F5_13_1000, Data_X_D2_Y_EXP1_53_250_truncated N2333_134_1_13_1, Data_X_
D10_Y_F16_19_1000, and N1190_24_1_2_1

Table 4   The most challenging regression datasets

Number Description

5 gascons, N 138_20_1_2_1, N 751_45_1_4_1, N 35_20_1_2_1, and
dataset_2197_longley

10 N 138_20_1_2_1, N 95_20_1_2_1, N 456_21_1_2_1, N 229_47_1_5_1, Data_X_D10_Y_
EXP3_37_50_truncated, N 576_25_1_2_1, vineyard, N1167_24_1_2_1, detroit, and 
dataset_2197_longley

20 N 78_20_1_2_1, N 911_72_1_7_1, fri_c3_100_5, N1353_72_1_7_1, N 44_20_1_2_1, 
N1300_39_1_4_1, N1167_24_1_2_1, dataset_2197_longley, N 35_20_1_2_1, N 
102_20_1_2_1, N 523_25_1_2_1, qqdefects_numeric, Data_X_D3_Y_F11_24_50, 
detroit, N 576_25_1_2_1 N 651_44_1_4_1, N 326_23_1_2_1, qsfsr1, N 138_20_1_2_1, 
and iq_brain_size

30 N 35_20_1_2_1, N 630_22_1_2_1, N 510_25_1_2_1, N 44_20_1_2_1, Data_X_
D100_Y_F19_15_50, N 540_25_1_2_1, N 725_44_1_4_1, N2441_134_1_13_1, qsfsr1, 
N 518_25_1_2_1, N 823_44_1_4_1, Data_X_D10_Y_F5_13_50, N 138_20_1_2_1, 
N1167_24_1_2_1, Data_X_D40_Y_F18_12_50, iq_brain_size, N1190_24_1_2_1, 
N1225_52_1_5_1, N 237_44_1_4_1, N2650_76_1_8_1, qsbr_y2, detroit, auto93, 
N1327_39_1_4_1, N 78_20_1_2_1, N 143_20_1_2_1, dataset_2191_sleep, N 
382_27_1_3_1, N1469_69_1_7_1, analcatdata_neavote
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A.2 More non‑parametric tests’ analysis

Figure  15 shows the CD diagrams after comparing the pool of regression algo-
rithms in A using the diverse and the hard benchmarks containing M = 30 data-
sets. As in the case of classification problems, the Friedman multiple comparison 
test is employed, followed by the Nemenyi test at 95% of confidence level (Demsar 
2006; Calvo and Santafé Rodrigo 2016). There are more noticeable differences in 
the rankins of algorithms here. For instance, the algorithm Bayesian ARD (ARD), 
which is the best performing algorithms for the set of hard datasets, is one of the 
intermediary solutions in the diverse benchmark of datasets.

In addition to the Friedman multiple comparison non-parametric test used and 
expressed in Figs. 7 and 15, which is graphically valuable for multiple comparisons 
along multiple datasets, the Bayesian non-parametric test is also used here. This 
method allows a more detailed comparison of the performance of the employed 
algorithms, both regressors and classifiers, in a pairwise comparison (Benavoli et al. 
2017; Corani and Benavoli 2015).

Starting from the performance difference between two algorithms in all the data-
sets, this test calculates the probability p of the algorithm to be the best in these 
datasets. Or even the probability that both are equivalent, through the determination 
of a region of practical equivalence (rope). Therefore, three probabilistic regions 
have to be determined. However, having 10 classifiers and 14 regressors in this 
work, this would result in 45 and 91 combinations, respectively. Considering diverse 
and hardest datasets, there would be 272 combinations to apply the test. Since the 
Friedman-test pointed out the best ranked algorithms in each of the cases, these will 
be used as reference to be compared with the others.

Table 5 shows the Bayesian test results for the ML algorithms on the diverse and 
difficult classification datasets. In both, Classifier 1 is the one with the best ranking 

Fig. 15   Critical Difference diagram of statistical comparison of regressors using different sets of M = 30 
datasets (diverse and hard)
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in the Friedman test. The results coincide with those of the Friedman test in pointing 
out that LSVM overcomes the results of NB, PSVM and QDA for diverse datasets, 
with a large certainty. In the hardest datasets, RF was best ranked and there is a large 
confidence (higher than 90%) that its results are superior to those of QDA, PSVM, 
LDA and RSVM. In the Friedman test (diagram of Fig. 7b), the differences between 
RF, LDA, and RSVM are not conclusive.

Table 6 brings the results of the Bayesian test for the regressors on the diverse 
and hardest regression datasets. For diverse regression datasets, BAG was the best 
ranked algorithm and is compared against the other regressors. BAG has outper-
formed most of the algorithms, with the exception of RF and GB, where the rope 
probability precludes this assertion. Still, it can be seen that it is only slightly bet-
ter than ARD. Dealing with hard datasets, there is no doubt that for all datasets the 
ARD algorithm is the most accurate, whilst in the Friedman test ARD has shown 
similar performance to GB, BAG, AB, RF and nSVR.

A.3 Comparison to other meta‑heuristics

Meta-heuristics are nature-inspired optimization algorithms that computationally 
assemble some natural behavior to explore and exploit search spaces to find the best 

Table 5   Results of Bayesian test between the best ranked classifier in the Friedman test and the other 
classifiers for the benchmark of 30 datasets

Classif. 2 p (Classif. 1) p (rope) p (Classif. 2)
Diverse datasets (Classif. 1 is 
LSVM)

NB 99.8 0.2 0.0
LDA 84.6 15.4 0.0
QDA 100.0 0.0 0.0
CART​ 77.5 16.0 6.5
J48 46.8 27.0 26.2
KNN 83.30 13.0 3.70
PSVM 99.9 0.1 0.0
RSVM 39.7 60.3 0.0
RF 29.1 37.5 33.4

Hardest datasets (Classif. 1 is RF)

NB 69.5 0.0 30.5
LDA 99.1 0.0 0.9
QDA 100.0 0.0 0.0
CART​ 34.4 0.6 65.0
J48 41.3 0.0 58.7
KNN 62.6 0.0 37.4
LSVM 76.1 2.7 21.2
PSVM 100.0 0.0 0.0
RSVM 93.4 0.5 6.1
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possible solutions. They can be divided according to their inspiration creation and 
basis into the following categories: (i) evolutionary (most common); (ii) swarms; (iii) 
physical phenomena; and (iv) human behaviors. Besides this, they can be divided 
according to their search strategies into population and trajectory-based, being the 
former the category that presents the vast majority of known algorithms (Yang 2020).

In recent years, the literature has brought an explosion of meta-heuristic applica-
tions in optimization problems, overlapping with classical and gradient-based meth-
ods. Some of the factors that contribute to their success are: (i) better ability to escape 
from local optima; (ii) better ability to deal with multimodal, convex, and discrete 
problems; (iii) better capacity to deal with many variables and objectives; (iv) gradi-
ent independence; (v) independence from explicit equations, since they can be, for 

Table 6   Results of Bayesian test between the best ranked regressor in the Friedman test and the other 
regressors for the benchmard of 30 diverse datasets

Class. 2 p (Class. 1) p (rope) p (Class. 2)
Diverse datasets (Class. 1 is BAG)

AB 83.9 13.6 2.5
ARD 51.6 0.1 48.3
DT 68.9 10.7 20.4
eSVR 100.0 0.0 0.0
ET 96.3 0.9 2.8
GB 11.9 56.7 31.4
KRid 100.0 0.0 0.0
LSVR 100.0 0.0 0.0
MLP 99.9 0.0 0.1
nSVR 98.9 0.1 1.0
PA 100.0 0.0 0.0
RF 2.9 96.8 0.3
SGD 100.0 0.0 0.0

Hardest datasets (Class. 1 is 
B-ARD)

AB 99.9 0.0 0.1
BAG 100.0 0.0 0.0
DT 100.0 0.0 0.0
eSVR 100.0 0.0 0.0
ET 100.0 0.0 0.0
GB 99.5 0.0 0.5
KRid 100.0 0.0 0.0
LSVR 100.0 0.0 0.0
MLP 100.0 0.0 0.0
nSVR 100.0 0.0 0.0
PA 100.0 0.0 0.0
RF 100.0 0.0 0.0
SGD 100.0 0.0 0.0
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example, easily associated with numerical analysis software and ML algorithms to 
give responses from inputs, among others (Kumar et al. 2023; Pereira et al. 2021c).

Also according to the no free-lunch theorem, there is no single meta-heuristic 
that can be the best in all applications and they compete to deliver the best results at 
the lowest computational cost (Wolpert 2002; Joyce and Herrmann 2018). As seen 
before, the optimization problem proposed in this study is combinatorial and was 
solved in the paper with the LA algorithm. But, for fair comparison, other three meta-
heuristics are applied here: GA, PSO, and DE. They are the most popular and clas-
sical meta-heuristics and have several good reported results (Yang 2020). All these 
algorithms have as common parameters the population size and number of iterations.

The GA is the most popular evolution-based meta-heuristic in the literature and 
is inspired by the natural selection phenomenon and genetics in biology. The agents 
with best fitness survive and the others tends to vanish. It uses the principles of 
reproduction, crossover, and mutation to guide the population in the search space 
through the generations. Crossover improves exploitation, while the mutation guar-
antees better exploration. Its particular parameters are crossover and mutation rates.

DE has the similar inspiration to GA, but at each iteration it randomly selects 
three agents in the entire population and combines their characteristics. Its par-
ticular parameters are crossover rate (probability that a new solution will be cre-
ated by the three agents) and differential weight (distance between them).

PSO is the most popular swarm-based optimizer and is inspired by the bird 
flocking social behavior, where a set of particles (potential solutions) moves around 
the search space by updating their positions based on their own best position and 
the best position found by the swarm. It has three particular parameters: cognitive 
factor (attraction between the particle and its personal best position), social factor 

Table 7   Meta-heuristics settings Meta-heuristic Parameter Value

Common
All Population 10*d

Number of iterations 100
Particular

GA Crossover rate 0.8
Mutation rate 0.01

PSO Cognitive factor 2
Social factor 2
Inertia weight 0.9

DE Crossover rate 0.9
Differential weight 0.5

LA Creation radius 200
Particles number 860,000
Stickness coefficient 0.88
Switching factor 0
Refinement 0.4



496	 J. L. J. Pereira et al.

1 3

(attraction between the particle and the swarm’s best position), and inertia weight 
(controls the impact of the particle’s previous speed on its present speed).

The main parameters and the recommended values by the authors that published 
these algorithms are in Table 7. Beyond these parameters, the population size and 
number of iterations are shared between all algorithms. They are set to ten times the 
number of optimization variables and one hundred, respectively (Yang 2020).

The algorithms with the parameters in Table  7 were applied in the problem 
of Eq.  14 for the Classification IS to select ten diverse datasets, which results 
in twenty design variables. The only objective here is to observe which of the 
four algorithms finds the maximum coverage of the IS. A number pf 10 datasets 
was chosen because it represents a median dimensionality among those adopted 
in this study, with a moderate computational cost. Running all cases would be 
computational costly and comparing metaheuristics is not the main purpose of 
this study. All simulations were run using the software R2022b MATLAB on a 
CORE i7 Dell computer with 8GB and 1 TB HHD. Each meta-heuristic was run 
10 times. The mean and standard deviation of the maximum coverage result and 
the total time spent on the simulations are in Table 8.

LA was the most accurate technique, finding the best maximum coverage values 
on average (in bold in Table 8) for the problem and with a lower standard deviation. 
Next comes GA, PSO and DE. However, it had the third highest computational cost, 
behind DE and PSO, respectively. Since the algorithm is run in advance in order to 
select a benchmark that will be used multiple times, our choice was for the tech-
nique with highest accuracy and more stable results in the problem.
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Meta-heuristic Mean Standard deviation Simulations time (s)
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