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Abstract
Mining frequent Time Intervals-Related Patterns (TIRPs) from series of symbolic 
time intervals offers a comprehensive framework for heterogeneous, multivariate 
temporal data analysis in various application domains. While gaining a growing 
interest in recent decades, the efficient mining of frequent TIRPs is still a high com-
putational challenge which has also not yet been investigated in its full complex-
ity. The majority of previous methods discover only the first instances of the TIRPs 
within each series of symbolic time intervals, whereas their re-occurring instances 
are ignored. This eventually results in an incomplete discovery of frequent TIRPs, 
a problem that lies also in the challenge of mining only the frequent closed TIRPs, 
which was only recently investigated for the first time. In this paper, we introduce 
TIRPClo—an efficient algorithm for the complete mining of either the entire set of 
frequent TIRPs, or only the frequent closed TIRPs. The algorithm proposes a non-
ambiguous sequential representation of symbolic time intervals series through the 
intervals’ end-points, as well as a memory-efficient index and a novel method for 
data projection, due to which it is the first algorithm to guarantee a complete dis-
covery of frequent closed TIRPs. The experimental evaluation conducted on eleven 
real-world and four synthetic datasets demonstrates that TIRPClo is up to 10 times 
faster when mining the entire set of frequent TIRPs, and up to more than 100 times 
faster when mining only the frequent closed TIRPs compared to four state-of-the-art 
methods, while also reporting lower memory measurements.
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1 Introduction

Along the recent two decades, there has been a growing interest in temporal knowl-
edge discovery through frequent temporal patterns, and particularly through the dis-
covery of frequent Time Intervals-Related Patterns (TIRPs) from series of symbolic 
time intervals (STIs) data. STIs may be raw, i.e., describing events which have a 
non-zero time duration, such as a time period a patient is prescribed on a medication 
or the period of time the green light is on in a traffic light. Alternatively, STIs can 
be created from raw time-points series after employing temporal abstraction (Sha-
har 1997; Lavrac et al. 2000; Höppner 2002; Lin et al. 2003; Mörchen and Ultsch 
2005; Moskovitch 2022; Moskovitch and Shahar 2015a; Mordvanyuk et al. 2022). 
Through the process of temporal abstraction various forms of temporal variables, 
whether sampled regularly or irregularly, are transformed into a uniform representa-
tion as series of STIs, as will be elaborated in Sect. 2. Thus, enabling the discov-
ery of frequent TIRPs from multivariate heterogeneous temporal data, after being 
abstracted into STIs series representation.

Due to the constant growth not only in the availability of temporal data but also 
in the data heterogeneity, mining frequent TIRPs has become highly relevant in a 
large variety of real-world applications. That is, either by directly using the dis-
covered TIRPs for knowledge discovery (Sacchi et al. 2007), or utilizing them for 
a wide range of downstream tasks such as STIs series classification or clustering 
(Patel et al. 2008; Batal et al. 2009; Moskovitch et al. 2009; Moskovitch and Shahar 
2015b; Rebane et al. 2021; Shknevsky et al. 2021), as well as outcome prediction 
(Moskovitch et al. 2015; Itzhak et al. 2023; Novitski et al. 2020). In dynamic graphs, 
for example, frequent STIs series mining was also used for the discovery of frequent 
temporal patterns of edge-interactions (Kostakis and Gionis 2017). In addition, as 
will be explained in Sect. 2, TIRPs are explicitly represented by the temporal rela-
tions among their STIs. Therefore, they can be easily interpreted by domain experts, 
which makes time interval mining a very attractive technique for explainable tempo-
ral data analytics in real-life data.

The discovery of frequent closed TIRPs, in particular, has a significant poten-
tial advantage over the discovery of the entire set of frequent TIRPs. While a single 
frequent closed TIRP may contain an exponential number (in the size of the TIRP) 
of frequent sub-TIRPs that are all not closed, their entire information is contained 
within the closed TIRP itself. Thus, mining frequent closed TIRPs potentially pro-
duces a much more compact output of frequent TIRPs, which contains the complete 
information of all the frequent TIRPs in the underlying data. However, the detec-
tion and pruning of unclosed TIRPs during runtime is a quite expensive task, which 
is sometimes slower than mining the entire set of frequent TIRPs. In this paper’s 
evaluation, we empirically exemplify just this trade-off.

Several methods were proposed for the discovery of frequent TIRPs from a 
dataset of STIs series. However, the complete discovery of frequent TIRPs was 
not addressed properly until recently in (Moskovitch and Shahar 2015c; Lee et al. 
2020; Mordvanyuk et al. 2022). Earlier methods (Winarko and Roddick 2007; Wu 
and Chen 2007; Patel et al. 2008; Papapetrou et al. 2009; Chen et al. 2015) mostly 
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discovered only the first instance of a TIRP within each series of STIs. The fol-
lowing instances of the TIRP, on the other hand, had been ignored, which eventu-
ally resulted in an incomplete discovery of frequent TIRPs, as will be explained 
in detail in Sect. 2.4. The same completeness problem lies also in the related task 
of frequent closed TIRP mining, which has only been investigated for the first 
time in (Chen et  al. 2016). In this paper we demonstrate the said completeness 
problem in each of the two TIRP mining tasks and introduce a novel algorithm 
which is complete. The algorithm also keeps track of the complete set of specific 
instances of the frequent TIRPs that it discovers.

The main contributions of the paper are the following:

• Novelty We introduce TIRPClo—An efficient algorithm for the complete min-
ing of either the entire set of frequent TIRPs, or only the frequent closed TIRPs. 
The algorithm’s main technical novelty includes (1) a novel method for STIs 
series transformation into sequential representation, avoiding ambiguity; (2) 
a complete method for data projection which aims to overcome the main chal-
lenge of current projection mechanisms, i.e., the detection of the re-occurring 
instances of TIRPs within a single series of STIs; and (3) a closure-checking 
scheme for the detection and pruning of TIRPs that are not closed early during 
the mining process, when closed TIRPs discovery is desired.

• Completeness Theoretical and empirical analysis of the completeness problem in 
the previous TIRP mining methods is provided, and proofs for TIRPClo’s com-
pleteness are supplied. To the best of our knowledge, TIRPClo is the first com-
plete algorithm for frequent closed TIRP mining, and the first sequence-based 
complete algorithm for mining the entire set of frequent TIRPs.

• Performance We conducted a rigorous runtime and memory consumption 
evaluation of TIRPClo compared to four state-of-the-art methods, including: 
KarmaLego (Moskovitch and Shahar 2015c), CCMiner (Chen et  al. 2016), 
ZMiner (Lee et al. 2020), and VertTIRP (Mordvanyuk et al. 2021), on a wide 
benchmark of eleven real-world datasets as well as several novel synthetic data-
sets, demonstrating

– 2–18 times faster runtimes compared to KarmaLego and ZMiner, and 1.5–
10 times faster runtimes compared to VertTIRP when mining the entire set 
of frequent TIRPs, while also reporting up to ten times lower memory meas-
urements.

– One to more than two orders of a magnitude shorter runtimes compared to 
CCMiner when mining only the frequent closed TIRPs, with competitive 
memory requirements.

• Code and Data Availability The code of the TIRPClo algorithm, as well as all the 
evaluation datasets and our synthetic datasets generator are publicly available.1

The rest of the paper is organized as follows: Sect. 2 reviews the related work and 
lays the foundations for the discussion on completeness in frequent TIRP mining. 

1 https:// github. com/ TIRPC lo/ Compl ete- Time- Inter vals- Relat ed- Patte rns- Mining.

https://github.com/TIRPClo/Complete-Time-Intervals-Related-Patterns-Mining
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Section  3 introduces the proposed TIRPClo algorithm, and Sect.  4 details the 
experimental setup which has been designed for TIRPClo’s performance evalua-
tion. Finally, Sect. 5 reports the experimental results and Sect. 6 concludes the paper 
and discusses future research directions.

2  Background

While this paper deals with the discovery of frequent TIRPs from symbolic time 
intervals data, we start with a concise subsection about the discovery of sequen-
tial patterns, from time-points based sequential data. That is since the time inter-
val mining algorithm that we introduce here consists of sequential representation 
and thus, principles from sequential pattern mining are relevant.

2.1  Sequential mining

Sequential pattern mining is a problem which has been investigated more 
intensely in past years and refers to the discovery of the frequent sequential pat-
terns within a sequences database (Fournier-Viger et  al. 2017). According to 
(Zhao and Bhowmick 2003; Mabroukeh and Ezeife 2010), sequential pattern 
mining algorithms mainly differ in two aspects: candidate sequences’ generation 
and support counting techniques. Based on these criteria, sequential pattern min-
ing methods can be broadly divided into two approaches: (1) Apriori-based algo-
rithms, such as GSP (Srikant and Agrawal 1996), SPADE (Zaki 2001) and SPAM 
(Ayres et al. 2002); and (2) Pattern-growth algorithms, which focus the search on 
a restricted portion of the initial database recursively. Among these algorithms 
are FreeSpan (Han et  al. 2000), PrefixSpan (Han et  al. 2001) and LAPIN 
(Yang et  al. 2007), which are projection-based; and the WAP-mine (Pei et  al. 
2000) and PLWAP (Ezeife et  al. 2005) methods that use a tree structure-mining 
technique.

Few of these methods, in fact, have been further extended to address the problem 
of symbolic time interval mining, on which we focus in this paper. An example is 
the PrefixSpan algorithm (Han et al. 2001) which has been extended in (Wu and 
Chen 2007) to form the TIRP mining algorithm TPrefixSpan. There are also quite 
few methods that deal with the problem of mining only the frequent closed sequen-
tial patterns (Yan et  al. 2003; Wang and Han 2004; Tzvetkov et  al. 2005; Huang 
et al. 2006; Chang et al. 2008; Gomariz et al. 2013; Zhang et al. 2015; Fumarola 
et al. 2016), on which we will elaborate later in the Closed TIRPs Sect. 2.3.3.

2.2  Symbolic time intervals data

Temporal data include not only time-stamped raw data or time-points series, but 
also time intervals, which are events having a type and a non-zero time duration. 
Such time intervals are referred to as symbolic time intervals (STIs).
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Definition 1 (STI) A symbolic time interval I = (symbol, s, f ) is a triplet of a symbol 
(i.e., the event type), a start-time, and a finish-time.

Definition 2 (Lexicographical STIs Series) A lexicographi-
cal STIs series (I1, I2, … , Ik) is a sorted series of STIs, such that ∀Ii, Ij : 
i < j ≡ Ii.s < Ij.s ∨ (Ii.s = Ij.s ∧ Ii.f < Ij.f ) ∨ (Ii.s = Ij.s ∧ Ii.f = Ij.f ∧ Ii.symbol < Ij.symbol).

While STIs may indeed be raw, describing events that have a non-zero time 
duration, they can be also created from time-points series after employing tem-
poral abstraction. Temporal abstraction refers to the segmentation and aggrega-
tion of a series of raw, timestamped, multivariate temporal data into a uniform 
representation as a series of STIs. Quite few methods have been proposed for 
temporal abstraction (Shahar 1997; Lavrac et al. 2000; Höppner 2002; Lin et al. 
2003; Mörchen and Ultsch 2005; Azulay et  al. 2007; Moskovitch and Shahar 
2015a; Mordvanyuk et al. 2022). Most of them are based on either state or gra-
dient abstraction (Moskovitch and Shahar 2015b). After state abstraction, STIs 
represent periods of time during which a variable is in a specific state (defined 
by cutoffs), or after gradient abstraction—a segment of an increasing or decreas-
ing period of the values according to the first derivative. When temporal data are 
given as time series or data streams, temporal abstraction may be applied as a 
preliminary stage prior to TIRP mining.

2.3  Frequent TIRP mining

Frequent TIRPs are mined from a dataset of STIs series, in which each series of 
STIs is associated with an entity (e.g., patient) that has a unique identifier, i.e., the 
entity ID. While the entire set of methods that we review in this subsection focus 
on the discovery of frequent TIRPs from STIs data, not all of them maintain the 
time intervals-based representation. Looking at the methods that were published, 
it is clear that two types of approaches have been developed. Several methods are 
time intervals-based (Winarko and Roddick 2007; Patel et  al. 2008; Papapetrou 
et al. 2009; Moskovitch and Shahar 2015c; Sharma and Patel 2018; Lee et al. 2020), 
which means that they directly operate the time intervals-based representation. Oth-
ers are sequence-based (Wu and Chen 2007; Chen et al. 2015, 2016), which refer 
to the end-points of the STIs as time-points sequences, to which sequential mining 
style algorithms are applied in order to mine the frequent TIRPs. In both approaches, 
the most commonly used method to define the temporal relations among the STIs is 
based on Allen’s temporal relations (Allen 1983)—either explicitly in time-intervals 
based methods, or implicitly in sequence-based methods.

Allen (1983) formulated a finite set of 13 temporal relations between a pair 
of STIs. The set includes before, meet, overlap, start, contain, finished-by; their 
corresponding inverse relations: after, met-by, overlapped-by, started-by, during, 
finish; and equal. Allen’s temporal relations can be referred as if they include 
seven basic relations, six of which have an inverse relation, while equal is its own 
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inverse. When the STIs are lexicographically ordered (Definition 2) it is sufficient 
to use the seven relations, without their inverse relations. Figure 1 shows Allen’s 
seven temporal relations, their inverse relations, and the sequence definition of 
each relation based on the end-times of the STIs.

Definition 3 (TIRP) A Time Intervals-Related Pattern (TIRP) is defined as 
T = {TIntervals, TRelations} where TIntervals = (I1, I2,… , Ik) is a lexicographically 

ordered set of k STIs, and TRelations =
k⋀

i=1

k⋀
j=i+1

AllenRelation(Ii, Ij) defines the con-

junction of Allen’s temporal relations among each of the 
(
k

2

)
 pairs of STIs within 

TIntervals.

Note that the timestamps of the STIs’ end-points are, of course, not part of the 
TIRP definition, but only their symbols and the temporal relations among them. 
Otherwise, frequent TIRPs would be hardly discovered.

Definition 4 (Vertical Support) The vertical support of a TIRP T is the number of 
entities’ STIs series |ET | in which T appears at least once, divided by the total num-

ber of entities in the dataset |E| . Therefore, vertical support(T) =
|ET |
|E| .

Example 1 In Fig.  2, both of the TIRPs T1 = ⟨Aoverlaps B⟩ and T2 = 
⟨Aoverlaps B ∧Boverlaps C ∧ Abefore C⟩ appear in each of the two STIs series (a) 
and (b). Therefore, assuming a dataset of only these two STIs series shown in Fig. 2, 

∀ i ∈ {1, 2} ∶ vertical support(Ti) =
|ETi

|
|E| = 1.0.

Definition 5 (Frequent TIRP Mining Task) Given a dataset of |E| entities’ STIs 
series, the goal of the frequent TIRP mining task is to discover the entire set of fre-
quent TIRPs, with respect to a given minimum vertical support threshold (including 
each of the TIRPs’ instances within each entity in the dataset, for the sake of com-
pleteness, as will be demonstrated in Sect. 2.4).

2.3.1  Time intervals‑based TIRP mining

Time intervals-based TIRP mining methods directly discover frequent TIRPs that 
are composed of STIs and the conjunction of Allen’s temporal relations among 
them, as defined in Definition 3. Most methods, especially in early studies, used a 
subset of Allen’s temporal relations. For example, Villafane et al. (2000), in which 
containments of STIs within a multivariate STIs series were discovered. The first to 
use the entire set of Allen’s temporal relations were Kam and Fu (2000). However, 
since they have not defined the temporal relations among the patterns’ components 
that are not successive, these patterns have been ambiguous. The first to define a 
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non-ambiguous representation of TIRPs based on Allen’s relations was Höppner 
(2001), using a k2 matrix to represent all of the pairwise relations within a k-STIs 
TIRP.

In Winarko and Roddick (2007), the ARMADA algorithm was introduced as an 
extension of the sequential pattern mining algorithm MEMISP (Lin and Lee 2002). 
Papapetrou et al. (2009) proposed two approaches for the generation of the discov-
ered TIRPs tree—using either a breadth first search (BFS) or a greedy depth first 
search (DFS), and also a hybrid approach (H-DFS) combining the two methods 
inspired by the SPAM sequential mining method (Ayres et  al. 2002). Patel et  al. 
(2008) introduced IEMiner, improving the performance over Papapetrou et  al. 
(2009) by directly extending the TIRPs during the discovery process. The Kar-
maLego algorithm (Moskovitch and Shahar 2015c) introduced a novel direct exten-
sion approach, employing the transitivity property of Allen’s temporal relations for 
a more efficient candidate generation. Since KarmaLego’s index is quite not scal-
able, in Moskovitch et al. (2015) an improvement on KarmaLego was proposed, 
using a more memory-efficient hash-based index.

Sharma and Patel (2018) introduced the STIPA algorithm as a memory effi-
cient extension of ARMADA (Winarko and Roddick 2007), shrinking its index to 
fit in devices with strong memory requirements. In Lee et al. (2020), the ZMiner 
algorithm was proposed. The algorithm utilizes a hierarchical lookup hash structure 

Fig. 1  Allen’s 13 temporal relations between a pair of STIs

Fig. 2  Two STIs series which include the TIRPs T
1

= ⟨Aoverlaps B⟩ and T
2

 = 
⟨Aoverlaps B ∧ Boverlaps C ∧ Abefore C⟩ . While T

1

 appears twice in (a) and once in (b), T
2

 appears 
only once in each of the two STIs series
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which is used to index the frequent two-sized TIRPs, similar to H-DFS (Papape-
trou et  al. 2009) and KarmaLego (Moskovitch and Shahar 2015c). However, in 
ZMiner candidates for the extension of a current pattern are generated based on the 
indexed pairwise temporal relations, and without employing the transitivity prop-
erty, as opposed to KarmaLego. ZMiner also stores longer, discovered TIRPs 
within an additional data structure, to enhance the recursive frequent TIRP mining 
process. In Mordvanyuk et  al. (2021) the VertTIRP algorithm was introduced. 
To accelerate the candidate generation process, VertTIRP uses a pairing strategy 
which sorts the temporal relations to be assessed, beyond just utilizing the transitiv-
ity property as made in KarmaLego.

2.3.2  Sequence‑based TIRP mining

Sequence-based TIRP mining methods intend to take advantage of the advance-
ments made already in sequential mining algorithms. For that, the input STIs series 
data are first transformed into a sequential representation of the STIs’ start and fin-
ish end-points. In this paper, the start and finish end-points of an STI which has 
the symbol A are denoted by A+ and A− respectively. Then, typically a sequential 
mining-based method is applied to the database of end-points sequences in order to 
discover the frequent TIRPs, which are thus represented as frequent sequences of 
their STIs’ end-points. In that respect, it is important to note that such a discovered 
frequent end-points sequence does not correspond to a valid TIRP if it contains only 
one of the two end-points (either start or finish) of some STI.

Allen’s temporal relations among the TIRPs’ STIs are implicitly represented by 
the sequential order of their end-points. For that, a non-ambiguous sequential rep-
resentation is essential. Ambiguity means either (1) having different representations 
for the same temporal relation, or (2) having one representation which expresses dif-
ferent temporal relations. Note that due to sequentially representing the whole STIs 
series, time flexibility extensions over Allen’s relations, which have been addressed 
in several time intervals-based methods (Moskovitch and Shahar 2015c; Lee et al. 
2020; Mordvanyuk et al. 2021), are not addressed in sequence-based methods.

In Wu and Chen (2007) introduced the sequence-based TPrefixSpan algorithm 
as an extension of the PrefixSpan sequential mining method (Han et  al. 2001). 
However, due to representation, the method does not prevent the generation of mul-
tiple candidates of the same pattern, as described in Moskovitch and Shahar (2015c). 
Inspired by PrefixSpan, Chen et al. (2015) proposed TPMiner and P-TPMiner 
using an extended sequential representation, adding the STIs’ end-times to the end-
point based TIRPs representation used in PrefixSpan. An incremental version of 
TPMiner was also presented later in Hui et al. (2016). In Chen et al. (2016) the 
CCMiner algorithm was introduced. CCMiner is inspired by the BIDE method 
for closed sequential pattern mining (Wang and Han 2004), and is the only method 
proposed in the literature for the discovery of only the frequent closed TIRPs. While 
we elaborate more on CCMiner in the next subsection on closed TIRP mining, here 
we focus on the sequential representation they introduced.

As a sequence-based TIRP mining method, CCMiner transforms the STIs series 
input into a string representation of the STIs’ end-points. However, looking carefully 
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into the proposed representation, it is ambiguous due to not uniquely representing 
Allen’s overlap temporal relation. Figure 3 illustrates an ambiguous scenario which 
results from the current representation. It presents two series of STIs (a) and (b), 
and their corresponding representation in the current format which are shown on the 
right. First, the STIs’ end-points are chronologically ordered. When a start end-point 
is followed by a finish end-point (of another STI) and there is no other end-point 
between them, they are put within brackets (as happens in sequential mining with 
events that happen within the same time), as shown at the top of both series’ repre-
sentations. Then, the symbols within brackets are ordered alphabetically, as shown 
at the bottom.

Looking at the representation of the STIs A and B, in (a) the sequential order 
of their end-points is A+, B+, A− , and B− ; while in (b) their order is A+, A−, B+ , 
and B− . That is despite Allen’s temporal relation among them is overlap in both 
series, which means that there are at least two different representations of the same 
temporal relation in the described representation. This stands for an ambiguous sce-
nario, due to which we will not be able to know for sure what series contains the 
TIRP ⟨Aoverlaps B⟩ . The difference is due to the STI C, whose start time in (a) is 
between the start time of B and the finish time of A, unlike in (b). Hence, in (a) B+ 
and A− are separated, while in (b) they are grouped together within brackets. This is 
just a single example of the ambiguity, but there are more obviously. In this paper, 
we propose a novel non-ambiguous transformation method from an input series of 
STIs into sequential representation, which overcomes the representation challenges 
described in this subsection.

2.3.3  Closed TIRP mining

Definition 6 (Super-pattern) In sequential representation, given two sequen-
tial patterns p1 = ⟨t1, t2,… , tk⟩ and p2 =

⟨
t
�

1
, t

�

2
,… , t

�

n

⟩
 , p2 is a super-pat-

tern of p1 if and only if there exist indices 1 ≤ i1 < i2 < … < ik ≤ n such that 
t1 = ti

�

1
, t2 = ti

�

2
,⋯ , tk = ti

�

k
.

Definition 7 (Super-TIRP) Let T1 and T2 be two TIRPs. Then T2 is a super-TIRP of 
T1 if and only if 1) T1Intervals ⊆ T2Intervals and 2) ∀Ii < Ij ∈ T1Intervals : T1Relations(Ii, Ij) = 
T2Relations(Ii, Ij).

Definition 8 (Closed TIRP) A TIRP T1 is a closed TIRP if and only if there is no 
super-TIRP T2 of T1 , which has the same vertical support.

Example 2 In Fig. 2, the TIRP T2 = ⟨Aoverlaps B ∧ Boverlaps C ∧ Abefore C⟩ is a 
super-TIRP of the TIRP T1 = ⟨Aoverlaps B⟩ . That is since 1) T1Intervals = (A, B) ⊆ 
(A, B, C) = T2Intervals , and 2) T1Relations(A,B) = T2Relations(A,B) = overlap. In addition, 
T1 and T2 have the same vertical support of 1.0, as they appear in each of the two 
STIs series (a) and (b) in Fig. 2. Therefore, according to Definition 8, T1 is not a 
closed TIRP, while its super-TIRP T2 is indeed closed.
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Definition 9 (Frequent Closed TIRP Mining Task) Given a dataset of |E| entities’ 
STIs series, the goal of the frequent closed TIRP mining task is to discover the set of 
frequent closed TIRPs, with respect to a given minimum vertical support threshold 
(including each of the closed TIRPs’ instances within each entity in the dataset, for 
the sake of completeness, as will be demonstrated in Sect. 2.4).

The discovery of frequent closed temporal patterns has recently gained significant 
interest. That is mainly due to the fact that the set of frequent closed patterns contains 
the entire information of all the frequent patterns in the underlying data, although it 
is potentially much more compact. Therefore, mining only the frequent closed tem-
poral patterns typically shrinks the output of frequent patterns, without any loss of 
information. Prior research on closed temporal pattern mining has mainly focused on 
sequential data (Yan et al. 2003; Wang and Han 2004; Tzvetkov et al. 2005; Huang 
et al. 2006; Chang et al. 2008; Gomariz et al. 2013; Zhang et al. 2015; Fumarola et al. 
2016). The CCMiner algorithm (Chen et  al. 2016), however, is the first and only 
method proposed so far for the discovery of frequent closed temporal patterns from 
STIs-based data (i.e., closed TIRPs). The algorithm is inspired by the BIDE method 
(Wang and Han 2004) originally used for mining closed sequential patterns.

Finally, there are, of course, several other interesting approaches for time inter-
val mining, e.g., high-utility pattern mining (Huang et  al. 2019; Mirbagheri and 
Hamilton 2020a, 2021), sub-sequence searching within series of STIs (Yang et al. 
2017), and similarity matching of multiple STIs series (Kostakis et al. 2011; Kotsi-
fakos et al. 2013; Mirbagheri and Hamilton 2020b) to name a few. However, these 
approaches are not part of the core topics and methods covered in this paper, which 
focus on the two specific tasks of mining either the entire set of frequent TIRPs 
(Definition 5), or only the frequent closed TIRPs (Definition 9).

2.4  Completeness and horizontal support

Definition 10 (Horizontal Support) The horizontal support of a TIRP T within an 
entity e is the number of instances of T within e’s STIs series.

Fig. 3  Two STIs series which include the TIRP ⟨Aoverlaps B⟩ , and their corresponding sequential rep-
resentation in CCMiner (Chen et al. 2016). While the sequential order of the end-points of the TIRP’s 
STIs is A+

, B+
, A− , and B− in (a), their sequential order in (b) is A+

, A−
, B+ , and B− ; which stands for 

an ambiguous scenario in which there are at least two different representations of the same temporal rela-
tion in the described representation
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Example 3 In Fig. 2, the TIRP T1 appears twice within the series (a) and once within 
(b). Thus, horizontal support(T1, (a)) = 2 , while horizontal support(T1, (b)) = 1.

Completeness in frequent TIRP mining means to discover all the frequent TIRPs in 
the underlying data, with respect to the predefined minimum vertical support thresh-
old, which is mandatory for compliance with the TIRP mining problem definition 
(Definition 5). In this subsection we analyze and demonstrate a completeness prob-
lem in the majority of previous methods for either the discovery of the entire set of 
frequent TIRPs, or only the frequent closed TIRPs. That is due to not entirely dis-
covering the TIRPs’ horizontal support (Definition 10). A supplementary empirical 
analysis which substantiates the main claims stated in this subsection and exempli-
fies them on real-world data will be provided in experiment 3.

2.4.1  Completeness in the entire frequent TIRP mining

The majority of previous TIRP mining methods—either time intervals-based (Winarko 
and Roddick 2007; Patel et al. 2008; Papapetrou et al. 2009) or sequence-based (Wu 
and Chen 2007; Chen et al. 2015), intended to discover only the first TIRP instance 
within each entity’s STIs series, and not all the horizontally supporting instances of 
the TIRPs. That is probably due to meaningful complexity and computational require-
ments. However, in this subsection we show that in order to correctly count the TIRPs’ 
vertical support values, their horizontal support discovery is essential. Otherwise, when 
intending to discover only the first instance of a TIRP within its supporting entities (i.e., 
the entities in which the TIRP appears), TIRPs’ vertical support values are potentially 
undercounted. Consequentially, TIRPs that are indeed frequent. i.e., their true vertical 
support value is above the minimum vertical support threshold, are wrongly considered 
infrequent. Thus, they are not discovered by the algorithm, which directly results in an 
incomplete discovery of frequent TIRPs according to Definition 5.

A common scenario which exemplifies the said completeness problem is illus-
trated in Fig. 2. Assume that only the first instance of a TIRP within each entity’s 
STIs series is discovered, as made in Winarko and Roddick (2007), Wu and Chen 
(2007), Patel et al. (2008), Papapetrou et al. (2009), Chen et al. (2015). Then, in the 
series (a) only the first instance of T1 is discovered, whereas its second instance is 
ignored, which is indeed sufficient for T1 ’s vertical support counting. However, due to 
ignoring the second instance of T1 within (a), the only instance of T2 within this series 
is not discovered as well. That is since typically, in order to discover an instance of 
a TIRP, its prefix has to be discovered first, and then extended (e.g., an instance of 
the one-sized TIRP ⟨A⟩ should be discovered and extended in order to discover an 
instance of the two-sized TIRP ⟨Aoverlaps B⟩).

As a result, T2 ’s vertical support is undercounted, and it might be wrongly consid-
ered infrequent with respect to the predefined minimum vertical support threshold. In 
such case, the TIRP T2 is not discovered despite it is indeed frequent, which results 
in an incomplete discovery of frequent TIRPs. Therefore, we conclude that all the 
horizontally supporting instances of the TIRPs must be discovered to guarantee a 
complete discovery of frequent TIRPs as defined in Definition 5. The crucial need in 
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the discovery of the horizontal support for completeness when mining the entire set 
of frequent TIRPs will be empirically demonstrated in experiment 3.

2.4.2  Completeness in frequent closed TIRP mining

As described in Sect. 2.3, CCMiner (Chen et al. 2016) is the first and only method 
proposed in the literature for the discovery of only the frequent closed TIRPs. The 
algorithm, similar to the majority of previous methods for the discovery of the entire 
set of frequent TIRPs, intends to discover at most a single TIRP instance within each 
entity’s STIs series in the dataset. In the previous subsection it has already been 
demonstrated that the discovery of the TIRPs’ horizontal support is essential for 
completeness when mining all the frequent TIRPs. In this subsection, we elaborate 
on the example from Fig. 2 to show that the same completeness problem lies in the 
discovery of only the frequent closed TIRPs as well.

Suppose that only the first instance of a TIRP is discovered within each entity’s 
STIs series, as made in Chen et al. (2016). Then, as described in the previous subsec-
tion, the TIRP T2 in Fig. 2 is not discovered within the series (a). Therefore, its vertical 
support is undercounted and T2 might be wrongly considered infrequent, in which case 
it is not discovered. Since T2 does not have any super-TIRP that maintains the same 
vertical support, it is a closed TIRP according to Definition 8. Thus, not discovering T2 
stands for an incomplete discovery of frequent closed TIRPs. Furthermore, according 
to Definition 8, T1 is not a closed TIRP. That is due to its super-TIRP T2 , which has the 
same vertical support as T1 in the example dataset shown in Fig. 2. However, since the 
vertical support of T2 is undercounted, T1 might be wrongly considered a closed TIRP. 
Consequently, assuming that T1 is frequent, it would be discovered by such a closed 
TIRP mining algorithm, although it is not a closed TIRP. Therefore, we conclude that 
all the horizontally supporting instances of the TIRPs must be discovered to guarantee 
a complete discovery of frequent closed TIRPs as defined in Definition 9. This conclu-
sion will be empirically demonstrated in experiment 3 as well.

3  Methods

In this section we introduce TIRPClo—a complete sequence-based TIRP mining 
algorithm, which is designed to discover either the entire set of frequent TIRPs, 
or only the frequent closed TIRPs. First, a couple of terms are introduced, which 
are necessary for the algorithm’s description.

Definition 11 (Tiep) A time-interval-end-point (tiep) represents an STI’s end-point 
through a pair of a symbol and an end-type, which can be either start or finish.

In this paper, the start-tiep and finish-tiep of an STI which has the symbol A 
are denoted by A+ and A− respectively. Since in real-life data multiple STIs hav-
ing the same symbol can occur, we allow multiple instances of them within a 
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single entity’s STIs series. For that, an index is added to differentiate the tieps’ 
instances within the same entity. For example, the ith instance of an STI A is rep-
resented by Ai

+ for its start-tiep and Ai
− for its finish-tiep.

Definition 12 (Complementing-tiep) Given a start-tiep t = A+ , its complementing 
tiep is A− and vice versa. We denote a tiep t’s complementing tiep by tC.

3.1  TIRPClo

The main steps of TIRPClo are outlined in Algorithm 1, which focuses on the dis-
covery of the entire set of frequent TIRPs. For the complete discovery of only the 
frequent closed TIRPs, the algorithm also introduces a closure-checking scheme 
which detects and prunes TIRPs that are not closed early during the mining process 
and is described later in Sect. 3.5.

Since TIRPClo is a sequence-based TIRP mining algorithm, it first transforms 
the input STIs series data into a novel tieps-based sequences database representa-
tion (line 2). The frequent TIRPs, which are actually frequent sequences of the start-
tieps and finish-tieps of the original STIs, are then discovered from the sequential 
representation. During the input transformation process, which is performed by 
the STIs2Seq method (Algorithm  3), the created tieps are also indexed within 
the tieps-index. The index enables the retrieval of the ordered instances of the tieps 
within their supporting entities in a constant time, due to which no repeated scans of 
the data records are performed in TIRPClo throughout the complete mining pro-
cess. TIRPClo’s novel sequential representation of the STIs series, as well as the 
tieps-index are described in great detail in the next subsection.
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Then (lines 3–7), the infrequent tieps are filtered out of the index according to 
the Apriori-All principle. Thus, shrinking the size of the index as well as the search 
space of the recursive mining process. In addition, the infrequent tieps are also fil-
tered out of the initial sequences database, as an additional step of input data com-
paction (line 8). TIRPClo uses a projection-based DFS approach for patterns 
growth, for which a novel, complete Entities Spawning projection method 
is introduced (Algorithm 4). For each frequent start-tiep t, this method is applied to 
project the initial sequences database, referring to all the re-occurring instances of t 
for completeness (lines 9–11). Afterwards, all the frequent TIRPs that begin with t 
are recursively discovered through the ExtendTIRP method (Algorithm 2) in line 
12. Finally, the complete set of frequent TIRPs is discovered and returned by the 
algorithm.

The ExtendTIRP method (Algorithm 2) extends a current frequent pattern p 
recursively. Note that as described in Sect.  2, the pattern p is actually a frequent 
mined tieps sequence that cannot always be a valid TIRP. For that, all of its tieps 
must appear paired with their complementing tieps (either start or finish—Definition 
12), which is verified in line 1. If p is a valid TIRP, its data, including the entire set 
of discovered instances, are added to the set of frequent TIRPs that are discovered 
by the algorithm (line 2). Then, to generate the candidate tieps for the extension 
of p, the tieps’ support-indices are generated via Algorithm 5 (line 4). A support-
index is a data structure that is created for each tiep cndt which is a valid candi-
date for the extension of p. That is, the extended pattern p�

= p + cndt can possibly 
be re-extended to form a valid TIRP. The conditions for the validity of a candidate 
tiep are formally listed in the Candidate Generation Sect.  3.4. The support-index 
holds cndt ’s current vertical support value, and points at its first instance within each 
record in the projected sequences database sdbp.
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For each such valid candidate tiep cndt whose support-index indicates it to be 
currently frequent, it is selected for the extension of p (lines 5–7). For that, the pro-
jected sequences database sdbp is first re-projected with respect to cndt (line 8). 
Then, the ExtendTIRP method is repeatedly applied to further extend the pattern 
p

�

= p + cndt (line 9). Note that the vertical support of p′ is known beforehand and it 
equals to cndt ’s current vertical support value, which is above the minimum vertical 
support threshold by selection. Therefore, all the extended patterns in TIRPClo are 
guaranteed to be frequent, and TIRPClo performs the least pattern extension steps 
that are required for the discovery of the complete set of frequent patterns based on 
only a single scan of the data.

3.2  TIRPClo sequence‑based TIRP representation and tieps‑index

As a sequence-based TIRP mining algorithm, TIRPClo first transforms the STIs 
series data into a sequences database representation, from which the frequent TIRPs 
are then discovered. For that, TIRPClo introduces a novel tieps-based sequential 
representation of an entity’s STIs series. The proposed representation is non-ambig-
uous, unlike CCMiner’s representation (Chen et al. 2016), and we also believe it is 
more intuitive in terms of the conversion to/from Allen’s temporal relations com-
pared to the other existing representations inspired by sequential mining employed 
in TPrefixSpan (Wu and Chen 2007) and TPMiner (Chen et al. 2015). But most 
importantly, in contrast to both TPrefixSpan, TPMiner, and CCMiner, that do 
not properly handle the re-occurrences of symbols and TIRPs within STIs series and 
are thus incomplete (Sect. 2.4); TIRPClo’s representation, combined with our pro-
posed projection method on which we elaborate in the next subsection, enable the 
discovery of all the horizontally supporting instances of the TIRPs, due to which it 
is the first complete sequence-based TIRP mining method.

Definition 13 (ct-group) A coinciding-tieps group (ct-group) is a triplet 
CT = ⟨ts, et, (t1,… , tn)⟩ , where ts is a timestamp, et is an end-type (i.e., start or fin-
ish), and (t1,… , tn) is a set of coinciding-tieps that occur at the timestamp ts and 
have the end-type et. The set is alphabetically ordered according to the tieps’ sym-
bols, i.e., ∀1 ≤ i < j ≤ n ∶ ti.symbol < tj.symbol.

Definition 14 (ct-sequence) A coinciding-tieps sequence (ct-
sequence) CTSeq = ⟨⟨CT1, isMet1⟩,… , ⟨CTk, isMetk⟩⟩ is a 
sequence of pairs for which: 1) ∀1 ≤ i ≤ k ∶ CTi is a ct-group, 2) 
∀1 ≤ i < j ≤ k ∶ CTi.ts < CTj.ts ∨ (CTi.ts = CTj.ts ∧ CTi.et = finish ∧ CTj.et = start)  , 
which defines the order of the ct-groups within the sequence; and 3) 
∀1 ≤ i ≤ k ∶ isMeti ≡ 1 < i ∧ CTi.ts = CTi−1.ts , which indicates whether the STIs that 
start with the tieps of CTi are met-by (Allen relations, Fig. 1) the STIs that end with the 
tieps of CTi−1 , or not.

In this paper, a ct-group CT is denoted by its set of coinciding-tieps (t1,… , tn) . 
For simplicity, brackets are omitted if n = 1 . In addition, within a ct-sequence, a 
pair ⟨CT , isMet⟩ , would be denoted by M(t1,… , tn) if isMet = true , and (t1,… , tn) 
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otherwise. As will be elaborated later in this subsection, the isMet flag enables to 
distinguish between the before and meet temporal relations within a ct-sequence, 
which is crucial for the non-ambiguity of TIRPClo’s representation.

TIRPClo’s data transformation method—STIs2Seq, transforms an entity’s 
lexicographically ordered series of STIs (Definition 2) into a sequential representa-
tion as a ct-sequence (Definition 14), and is described in Algorithm 3. First, each 
STI is broken into its start-tiep and finish-tiep (line 1). Then, the tieps are partitioned 
to ct-groups (Definition 13), that are ordered chronologically as defined in condition 
(2) of Definition 14 (line 2). Next, the ct-groups are traversed, in order, so that each 
group’s tieps are appended to the transformed ct-sequence ctseq (lines 4–11). When 
two successive ct-groups share the same timestamp (in which case the former has 
a finish end-type and the latter has a start end-type), their STIs are met (Allen rela-
tions, Fig. 1). Thus, as defined in Definition 14 (3), the isMet flag is set to true for 
the latter group, whose tieps’ STIs are met-by the STIs of the former group’s tieps 
(lines 6–7). Finally, the transformed ct-sequence ctseq is returned (line 14).

The complete transformation process carried by the STIs2Seq procedure 
is illustrated in Fig. 4, in which the output ct-sequence on the right (3) is created 
from the STIs series input on the left (1). First the STIs’ tieps are partitioned to 
ct-groups (2). When multiple coinciding tieps have the same end-type, as happens 
with A0

+ and B0
+ at timestamp 1, they are grouped together and ordered alphabeti-

cally according to the symbol. However, when the tieps’ end-types are opposed, as 
happens with B0

− and C0
+ at timestamp 4, they appear separately, starting with the 

finish-tieps’ group which is followed by the start-tieps’ group. This scenario stands 
for the STI C being met-by the STI B. Therefore, when the ct-groups are collected 
to create the output ct-sequence, the isMet flag is set to true for C0

+ , to which an 
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M character is thus pre-pended in Fig. 4 (3). This is essential for a non-ambiguous 
representation, in which the before and meet temporal relations are distinguishable.

Figure  5 exemplifies TIRPClo’s sequential representation versus the existing 
sequence-based representations employed in CCMiner (Chen et al. 2016), TPre-
fixSpan (Wu and Chen 2007), and TPMiner (Chen et al. 2015). In TIRPClo, all 
of Allen’s temporal relations are uniquely represented due to the following proper-
ties. First, TIRPClo always keeps the chronological order of the tieps, unlike in 
CCMiner, in which tieps having close timestamps are considered coinciding and 
marked by brackets (a), which may change their order sometimes and result in the 
ambiguity described in Sect. 2. In addition, TIRPClo groups together coinciding 
tieps which have the same end-type (i.e., start or finish), unlike in TPrefixSpan. 
For example, A0

+ and B0
+ in the series (b).

However, two tieps that do not have the same end-type are never grouped together 
in TIRPClo, unlike in both CCMiner and TPMiner. When tieps have the same 
timestamp but their end-type is opposed, as happens with B0

− and C0
+ in series (b), 

their STIs are met. This is directly indicated in TIRPClo’s representation by the M 
character that is inserted among them.

After the STIs2Seq method is applied to all the entities’ STIs series in the 
dataset, their transformed ct-sequences are collected to form the initial sequences 
database. Along the projection-based mining process of the frequent TIRPs, the 
sequences database shrinks typically, or at least does not change, corresponding to 

Fig. 4  The input transformation process—from an STIs series (1) into a ct-sequence (3). Coinciding-
tieps having the same end-type are grouped. Otherwise, they appear separately, starting with the finish-
tieps, which are followed by the start-tieps (2). In addition, an M character is inserted among them in the 
output ct-sequence to mark that their STIs are met

Fig. 5  Three STIs series and their sequential representations in TIRPClo, CCMiner (Chen et al. 2016), 
TPrefixSpan (Wu and Chen 2007), and TPMiner (Chen et al. 2015)
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the current projected pattern. In TIRPClo, the output is designed to include the 
complete set of specific instances of the discovered frequent TIRPs. Therefore, a 
record in a projected sequences database of a discovered pattern is a pair ⟨ctseq, pi⟩ , 
where ctseq is a ct-sequence from which the specific pattern instance pi has been 
projected. Note that since in TIRPClo it is allowed to have multiple occurrences 
of the same symbol within a single entity’s STIs series, as often happens in real-
world data, the projection of an entity’s sequence can result in multiple projects of 
the same pattern. We elaborate more on that in the next subsection.

Finally, in line 12 of Algorithm 3, the ct-groups’ tieps are incrementally indexed 
in the tieps-index, which is used for the retrieval of the ordered instances of the tieps 
within their supporting entities in O(1) time. The tieps-index maps each tiep’s common 
representation (e.g., A+ ) to a master-tiep using a hash map. The master-tiep indexes 
all of the tiep’s instances by entity, ordered by their timestamp. For example, a tiep 
t’s ith instance within an entity e, is accessed through TiepsIndex[t][e][i] in a constant 
time. Figure 6 illustrates an example of two entities’ STIs series, their sequential rep-
resentation in TIRPClo, and a part of the corresponding tieps-index. Since there are 
three types of symbols in the data—i.e., A, B and C, the index consists of six tieps 
entries—A+ , A− , B+ , B− , C+ , and C− . Each entry maps a tiep’s representation to its 
master-tiep, which indexes the tiep’s instances by entity ID. For example, the master-
tiep of A+ (in green) has two entries—one for e1 and another for e2 , since A+ appears in 
both entities’ records. In e1 ’s record A+ has two instances (ordered by their timestamp), 
while in e2 ’s record A+ has only a single instance. The master-tiep of C+ (in blue), how-
ever, contains only a single entry. That is since C+ is solely supported by the entity e2 , 
in which it appears just once.

3.2.1  Complexity

Assume an input dataset in which the set of entities is E = {e0, ..., e|E|} and the number 
of STIs of an entity ei is ni (the number of STIs of each entity may vary). Since each 
STI is comprised of exactly two tieps, i.e., its start-tiep and finish-tiep, the time com-
plexity of applying the STIs2Seq method to a specific entity ei is: O(ni) for breaking 
the STIs into their corresponding tieps (line 1), O(ni ⋅ log(ni)) for the construction and 
sorting of the ct-groups (line 2), O(ni) for the ct-sequence construction from the ct-
groups (lines 4–11), and O(1) for indexing (line 11); which sums to a total of 
O(ni ⋅ log(ni)) . Thus, the time complexity of transforming the entire dataset into the 
tieps-based sequential representation through STIs2Seq is O( max

1≤i≤|E|
ni ⋅ log(ni)) . In 

addition, assuming a total number of N =
∑�E�

i=1
ni STIs in the data, the size of both the 

tieps-index and the initial sequences database is bounded at 2N, which equals to the 
total number of tieps and yields an overall memory complexity which is linear in N. 
Note that effectively, the size of both the index and the initial sequences database is 
expected to be much smaller, as the infrequent tieps are immediately filtered-out of 
them in lines 3–8 of Algorithm 1.
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3.3  The entities spawning method for data projection

Sequences database projection methods typically search for the first instance of 
a tiep within an entity’s record, without intending to discover the horizontal sup-
port (Definition 10). A projected record then includes the elements appearing 
after the tiep’s first instance, as illustrated in Fig. 7a. In this figure it can be seen 
that typically, projection with respect to the tiep B+ refers only to the first instance 
of the tiep, while there are another two instances which are ignored. Thus, using 
current projection methods for sequence-based TIRP mining eventually results in 
an incomplete discovery of frequent TIRPs due to not discovering all the TIRPs’ 
horizontally supporting instances, as described in Sect. 2.4.

The Entities Spawning projection method that we introduce here 
addresses this very challenge of horizontal support discovery, to guarantee a com-
plete discovery of frequent TIRPs. For that, projection of an entity’s record by a 
tiep that appears N times within it, requires N projections—which result in multi-
ple projected records. Figure 7b illustrates the multiple projections performed in 
TIRPClo for a complete discovery of frequent TIRPs. In this figure, it is shown 
that TIRPClo’s projection refers to each of the three instances of the tiep B+ 
within the original record, and results in three projected records. Furthermore, 
when having N instances of a tiep t within an entity’s record, TIRPClo’s projec-
tion of the record by the ith instance of t within it, keeps the next N − i instances 
of t within the projected record. An example is shown in Fig.  7b, in which the 
first projected record (that corresponds to TIRPClo’s projection of the original 
record by the first instance of the tiep B+ ) includes the second and third instances 
of B+ within it. Thus, TIRPs that include multiple occurrences of STIs which 
have the same symbol are discovered in TIRPClo as well.

Fig. 6  Two entity’s STIs series, their sequential representation in TIRPClo, and a part of the corre-
sponding tieps-index
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To limit the discovery of potentially meaningless frequent TIRPs, which have 
very long time durations between their STIs, TIRPClo uses a maximal gap time 
constraint, by which the projection is limited. The maximal gap ha been first 
introduced in Papapetrou et al. (2009) and is defined in Definition 15. The effect 
of the maximal gap on the discovery of the frequent TIRPs is empirically investi-
gated in experiment 5, followed by which several recommendations for choosing 
the appropriate maximal gap value for a given dataset are provided in the Discus-
sion Sect. 6.

Definition 15 (Maximal gap) The maximal gap is the maximal time duration 
allowed between two STIs among which the temporal relation is before, for TIRPs 
discovery.

TIRPClo’s novel projection method is described in Algorithm  4, which 
receives three parameters as input: a sequences database sdb for further projec-
tion, a tiep t based on which the database is projected, and t’s support-index. 
First, using the support-index, t’s instances within each record are traversed 
from the first instance for projection (lines 2–4). The projection is conditioned 
by the maximal gap (Definition 15), making sure that the duration till the next 
STI is below it. Once a potential start-tiep is beyond the maximal gap relatively 
to the last finish-tiep of the current pattern, it means that its following instances 
will be for sure also beyond it. Thus, a break stops the routine (lines 5–7). Oth-
erwise, projection is applied only to the specific ct-group which includes t’s cur-
rent instance within the record’s sequence (lines 8–9). The projected record (i.e., 
the projected ct-group concatenated to the rest of the sequence by a pointer), and 
the extended pattern instance are then added to the projected sequences database 
sdbt (lines 10–11), which is eventually returned in line 14. Note that in line 11 of 
Algorithm 1 projection is employed to project the initial sequences database, in 
which case support-indices still do not exist (as they are only constructed during 

Fig. 7  Projection without discovering the horizontal support, as currently made (a), versus TIRPClo’s 
projection that includes horizontal support discovery (b). The sequence record stands for TIRPClo’s 
representation of the given STIs series, and it is projected by the tiep B+ which appears three times 
within it (in bold)
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the ExtendTIRP method, Algorithm 2). Thus, the tieps-index is used instead 
for the traversal over all of the ordered instances of the tiep t within its support-
ing entities in lines 2–4 of Algorithm 4.

Finally, besides discovering all the re-occurring instances of the tieps within 
their supporting entities, the Entities Spawning projection method is also 
much more efficient compared to typical projection mechanisms. That is since in 
TIRPClo the tieps’ instances are directly accessed through the index in a con-
stant time, instead of re-scanning repetitively the entities’ records. The proposed 
approach is also efficient memory-wise, since a projected record of an entity e 
points at its start position within e’s initial record, as made in pseudo-projection, 
rather than repeatedly making sub-copies of it.

3.3.1  Complexity

Assume a sequences database sdb of a current pattern p, and a tiep t for further 
projection. Then, due to the tieps-index and the pseudo-projection approach, pro-
jection of a specific record in sdb with respect to a specific instance of the tiep 
t is performed in TIRPClo in a constant time (lines 8–11). Since TIRPClo’s 
projection refers to all the re-occurring instances of the tieps, the total number 
of performed projections in Algorithm  4 equals to the number of instances of 
t within sdb, which stands for the number of instances of the extended pattern 
p

�

= p + t . Let �p′ denote the total number of instances of the pattern p′ , which 
equals to 

∑
e∈supportingEntities(p

�
) horizontal support(p

�

, e) , i.e., summing the horizon-
tal support values of p′ over all of its supporting entities. Then the overall time 
complexity of TIRPClo’s projection is O(�p� ).
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3.4  Candidate generation and support‑indices

TIRPClo’s candidate generation scheme aims at minimizing not only the num-
ber of generated candidate tieps for the extension of a current frequent pattern p, 
but also the computational cost of extending p with a selected generated candi-
date tiep cndt . For that purpose, TIRPClo uses the support-indices. As was intro-
duced in Sect. 3.1, support-indices are created only for tieps that are valid candi-
dates for the extension of p. Each support-index keeps track of such tiep’s current 
vertical support value, and points at the tiep’s first instance within each record in 
the projected sequences database of p. As described in the previous subsections, 
due to these properties, all the extended patterns in TIRPClo are guaranteed to 
be frequent, and the performance of TIRPClo’s projection is enhanced. In this 
subsection we describe the creation process of the support-indices, but first the 
conditions for the validity of a candidate tiep, for which a support-index will be 
created, are described.

Since the start-tiep of an STI always precedes its finish-tiep, a current pattern 
p cannot be extended by any finish-tiep unless it already contains its complement-
ing start-tiep. Otherwise, the extended pattern could never be re-extended to form 
a valid TIRP, in which all the tieps appear paired with their complementing tieps. 
TIRPClo enables the discovery of TIRPs that include multiple STIs which have 
the same symbol. Hence, a tiep t (e.g., A+ ) may occur multiple times within a 
discovered pattern p. To represent the number of occurrences of t within p, the 
notation #pt is introduced.

Accordingly, the conditions for a tiep cndt which is a valid candidate for the 
extension of p are the following: 

1. If cndt is a start-tiep, it is always a valid candidate for p’s extension.
2. If cndt is a finish-tiep, then it is a valid candidate if #pcndt < #pcndt

C , which 
means that there are more occurrences of the complementing start-tiep of cndt 
within p, than occurrences of cndt within p.

Example 4 The valid candidate tieps for the extension of the pattern q = ⟨A+⟩ are 
all the start-tieps (condition 1) and the single finish-tiep A− (condition 2). The 
valid candidate tieps for the extension of p = ⟨A+B+⟩ , however, include not 
only the valid candidates of q, but also the finish-tiep B− . That is since currently 
0 = #pB

− < #pB
+ = 1 , which stands for the validity of B− according to condition 2. 

For any other finish-tiep which has a symbol X ∉ {A,B} , it is still an invalid candi-
date for the extension of p since 0 = #pX

− = #pX
+ = 0.
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Lemma 1 Assume two patterns p and q, and a tiep lp such that p = q + lp , which 
means that the pattern p is the result of extending q with the tiep lp . Then, for any 
tiep t ∉ {lp, lp

C} (i.e., t is neither lp nor its complementing-tiep), t is a valid candi-
date for the extension of q if and only if it is a valid candidate for the extension of p.

Proof First, according to condition 1, a start-tiep t is always a valid candidate. Hence, 
suppose a finish-tiep t ∉ {lp, lp

C} . According to condition 2, t is a valid candidate for 
the extension of the pattern q if and only if #qt < #qt

C . Since t ∉ {lp, lp
C} (under the 

assumption), #qt = #pt and #qtC = #pt
C . Therefore, #qt < #qt

C
≡ #pt < #pt

C which is 
also equivalent to t being a valid candidate for the extension of p due to condition 2.  
 ◻

Based on Lemma 1 and the two conditions for the validity of a candidate tiep, 
the support-indices are created via the GetSupportIndices method (Algo-
rithm 5). The method receives three parameters as input: a current pattern p, p’s 
projected sequences database sdbp , and the previous candidate tieps’ support-
indices prevSIs , based on which the new candidate tieps’ support-indices are cre-
ated. Assume that p = q + lp , i.e., the pattern p is the result of extending a pattern 
q with the tiep lp , which is thus the last tiep of p. Then, according to Lemma 1, 
the set of previously valid candidate tieps (i.e., for the extension of q) is iden-
tical to the set of currently valid candidate tieps (i.e., for the extension of p). 
That is except for the tieps lp and lpC , to which we will refer soon. Therefore, in 
Algorithm  5, the previous candidate tieps’ support-indices are traversed for the 
purpose of creating the new candidate tieps’ support-indices (line 5). Note that 
the tiep lp was for sure a valid candidate previously, since q was extended by lp 
forming the current pattern p. However, if lp is a finish-tiep it might no longer be 
a valid candidate for the extension of p despite it has been a valid candidate pre-
viously. That is, subject to condition 2. In case condition 2 is violated, we make 
sure that a new support-index would not be created for lp (lines 2–4).

New support-indices for the currently valid candidate tieps are created in lines 
5–22. First, tieps that have been previously infrequent are ignored (lines 6–8). 
That is since they cannot extend p to form frequent TIRPs. For each valid can-
didate tiep that has been previously frequent, its new support-index is incremen-
tally created based on the tiep’s first instances within each record in the current 
projected sequences database sdbp . These instances are collected by traversing 
the tiep’s instances within each record through the tieps-index—from the first 
instance in the previous projected record (i.e., before the last projection) as indi-
cated by the previous support-index, and until the first instance occurring within 
the current projected record (lines 9–12).
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For a start-tiep t, having one of its instances beyond the maximal gap (relatively 
to the last finish-tiep in p), means that t’s following instances will be for sure also 
beyond it. Thus, a break stops the routine (lines 13–15). Otherwise, once the first 
instance of the tiep is discovered within each record, it is added to the new support-
index (lines 16–17). At last, in lines 23–25, a new-support index is also created for 
the complementing-tiep of p’s last tiep—lp

C , which is for sure a currently valid can-
didate regardless of its end-type. That is, of course, only if a new support-index has 
not yet been created for it in lines 5–22. Eventually, the set of newly created support-
indices is returned by the algorithm (line 26).

Additionally, note that when support-indices are created for a single-tiep pattern 
p =

⟨
lp
⟩
 , previous support-indices still do not exist. Hence, new support-indices are 

created from scratch, based on the tieps-index, rather than being extended based on 
the previous support-indices. Since the initial sequences database is projected only 
by start-tieps in Algorithm 1, the tiep lp must be a start-tiep. Thus, according to the 
conditions for the validity of a candidate tiep, initial support-indices are created for 
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all the frequent start-tieps (condition 1), as well as for the only finish-tiep lpC (condi-
tion 2).

3.4.1  Complexity

Assume an input dataset with S symbol types, and a current pattern p = q + lp . 
Then, to create the support-index of a single valid candidate tiep cndt , the specific 
instances of the tiep are traversed within each record in p’s projected sequences 
database sdbp—from the previous first instance indicated by the previous support-
index, and until the first instance occurring within the current projected record (lines 
12–20). For a worst case assessment, assume that cndt occurs within each record 
in sdbp , and that all of its instances are always traversed until the last one in lines 
12–20.

Then, as described in the previous subsection, the number of records within sdbp 
equals to the number of instances of the current pattern p, which we denote by �p . In 
addition, note that the total number of instances of the tiep cndt across all records, 
counting from the first instances indicated by the previous support-index, equals to 
the number of instances of cndt within the previous projected sequences database—
of the pattern q. As described, this is the number of instances of the pattern 
q

�

= q + cndt , which we denote by �q′ . Therefore, having a direct access to all the 
relevant instances of the tieps through the tieps-index in O(1) time, a worst case 
assessment of the complexity of creating the support-index of a single candidate tiep 
cndt is O(�p + �q� ) . The maximal number of valid candidate tieps for the extension of 
p is 2S, including the start-tieps and the finish-tieps of all the symbol types in the 
dataset. Thus, summing over all the O(S) valid candidate tieps, an overall time com-
plexity of O(S ⋅ (�p + max

q
�
=q+cndt

�q� )) is assessed in the worst-case for TIRPClo’s can-

didate generation process.

3.5  Closure‑checking

TIRPClo’s description in Algorithms 1–2 deals with the task of mining the entire 
set of frequent TIRPs. However, TIRPClo is designed also for the complete mining 
of only the frequent closed TIRPs. For that, the algorithm utilizes a closure-checking 
scheme, which is used for the detection and possibly pruning of the unclosed TIRPs 
early during the mining process. Since TIRPClo is a sequence-based TIRP mining 
algorithm, its closure-checking scheme is inspired by the bi-directional extension 
approach (Wang and Han 2004), that has been originally used for closed sequential 
pattern mining.

In TIRPClo, the TIRPs are represented as sequences of their STIs’ tieps. Thus, 
assume a TIRP which is represented in TIRPClo by the pattern p = ⟨t1,… , tk⟩ . 
Then, TIRPClo’s closure-checking scheme searches for an additional STI X whose 
both start-tiep and finish-tiep could extend p forming a super-TIRP which has the 
same vertical support. In such case, according to Definition 8, p is for sure not a 
closed TIRP. The tieps of such an STI X are referred to as forward-extension and 
backward-extension tieps, and they are formally defined as follows.
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Definition 16 (Forward-extension tiep) A tiep t∗ is a forward-extension tiep of a 
pattern p = ⟨t1,… , tk⟩ if vertical support(p) = vertical support(pFt∗ ) , for p’s super-
pattern pFt∗ = p + t∗ = ⟨t1,… , tk, t

∗⟩ . In this subsection, the notation F(p, t∗) will be 
used to denote the set of records within the sequences database of p that support the 
super-pattern pFt∗.

Definition 17 (Backward-extension tiep) A tiep t∗ is a backward-
extension tiep of a pattern p = ⟨t1,… , tk⟩ if ∃1 ≤ i ≤ k such that 
vertical support(p) = vertical support(pBi

t∗ ) , for p’s super-pattern 
pBi

t∗ = ⟨t1,… , ti−1, t
∗, ti,… , tk⟩ . In this subsection, the notation Bi(p, t∗) will be 

used to denote the set of records within the sequences database of p that support the 
super-pattern pBi

t∗.

Example 5 Given the sample dataset shown in Fig.  6, the tiep t1
∗ = B− 

is a forward-extension tiep of the pattern p = ⟨B+⟩ . That is since 
vertical support(p) = vertical support(pFB− = ⟨B+B−⟩) = 2

2
= 1.0 . The tiep 

t2
∗ = A+ , however, is a backward-extension tiep of the pattern p for i = 1 , since 

vertical support(p) = vertical support(pB1
A+ = ⟨A+B+⟩) = 2

2
= 1.0.

Accordingly, let a current frequent pattern p = ⟨t1,… , tk⟩ . TIRPClo’s closure-
checking scheme is based on the following three claims:

Claim 1 Assume that 1) X+ and X− are backward-exten-
sion tieps of p for 1 ≤ i ≤ j ≤ k , and that 2) vertical 
support(p) = |{record.entityID ∣ record ∈ Bi(p,X+) ∩ Bj(p,X−)}| . Then p, as well 
as any future extension of it, are not closed TIRPs.

Proof Under the assumptions, each supporting entity of p has at least a single record 
within p’s sequences database that supports both of p’s super-patterns pBi

X+ and 
pBj

X− . Hence, the pattern pBi,j
X = ⟨t1,… , ti−1,X

+, ti,… , tj−1,X
−, tj,… , tk⟩ , which is 

a super-pattern of p as well, is supported by all of p’s supporting entities. Thus, 
vertical support(p) = vertical support(pBi,j

X) , and according to Definition 8, p is not 
a closed TIRP. Similarly, let an extended pattern of p: q = p +

⟨
tk+1,… , tn

⟩
 . Then 

vertical support(q) = vertical support(qBi,j
X) , for qBi,j

X = pBi,j
X +

⟨
tk+1,… , tn

⟩
 , 

which is a super-pattern of q. Therefore, p as well as any future extension of it q, are 
not closed TIRPs (Definition 8).   ◻

Claim 2 Assume that 1) X+ is a backward-extension tiep of p 
for 1 ≤ i ≤ k , 2) X− is a forward-extension tiep of p, and that 3) 
vertical support(p) = |{record.entityID ∣ record ∈ Bi(p,X+) ∩ F(p,X−)}| . Then p is 
not a closed TIRP.

Proof Similar to Claim 1, vertical support(p) = vertical support(pBiF
X) for p’s 

super-pattern pBiF
X = ⟨t1,… , ti−1,X+, ti,… , tk,X

−⟩ . Therefore, p is not a closed 
TIRP according to Definition 8.   ◻
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Claim 3 Assume that X+ is a forward-extension tiep of p. Then p is not a closed 
TIRP.

Proof Under the assumption and according to Definition 16, 
vertical support(p) = vertical support(pFX+) . Since the start-tiep of an STI always 
precedes its complementing finish-tiep, vertical support(p) = vertical support(pFX) 
for pFX = pFX+ + X− = ⟨t1,… , tk,X

+,X−⟩ . Since pFX is a super-pattern of p which 
has the same vertical support, p is not a closed TIRP according to Definition 8.   ◻

If the conditions for the first claim hold for p, it cannot be further extended to 
form any frequent closed TIRP. Therefore, p is safely pruned. Otherwise, if either 
the conditions for the second or third claims hold for p, it is not a closed TIRP. How-
ever, it may potentially be further extended to form frequent closed TIRPs. Thus, in 
such case, p is not added to the set of frequent closed TIRPs that are discovered by 
the algorithm, yet it is not pruned. Finally, for the complete mining of the frequent 
closed TIRPs in TIRPClo, it is important to verify that backward-extension and 
forward-extension tieps which have the same symbol, indeed originate in the same 
specific STI. That is since TIRPClo allows multiple occurrences of STIs having the 
same symbol within a single entity’s STIs series. By following this closure-checking 
scheme and to the best of our knowledge, TIRPClo is the first algorithm that guar-
antees a complete discovery of frequent closed TIRPs.

3.6  TIRPClo completeness and complexity

In this subsection we provide proofs for TIRPClo’s completeness, which means 
that the algorithm’s discovery of either the entire set of frequent TIRPs, or only the 
frequent closed TIRPs, is complete (Definitions 5, 9). In addition, an analytical com-
plexity analysis of TIRPClo is presented, which is a worst case assessment of the 
algorithm’s runtime.

3.6.1  Completeness

Claim 4 TIRPClo is a complete frequent TIRPs discovery algorithm.

Proof Let a frequent k-sized TIRP which is represented in TIRPClo by the 2k-tieps 
pattern T = ⟨t1,… , t2k⟩ . In order to prove that TIRPClo discovers the pattern T, 
it is sufficient to show that for any 1 ≤ i ≤ 2k , the pattern Ti = ⟨t1,… , ti⟩ is discov-
ered and extended in TIRPClo. We prove that by induction on i. (1) Since T is a 
frequent and valid TIRP, the tiep t1 is for sure a frequent start-tiep. Therefore, the 
single-tiep pattern T1 = ⟨t1⟩ is discovered and extended in TIRPClo in lines 9–12 
of Algorithm 1. (2) Assume that for some 1 < i < 2k , Ti is discovered and extended 
in TIRPClo. Then, as described in Sect.  3.3, since TIRPClo’s projection refers 
to all the re-occurring instances of the tieps, the projected sequences database of 
Ti includes a single projected record for each of Ti ’s instances. Since T is frequent, 
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its prefix Ti+1 = Ti + ti+1 is frequent as well, and thus ti+1 is for sure frequent within 
the projected sequences database of Ti . In addition, ti+1 is a valid candidate for the 
extension of Ti (Sect. 3.4). Otherwise T is invalid, which contradicts the assumption. 
Therefore, Ti+1 is extended in TIRPClo (Algorithm 2 lines 7–9) as well, and due to 
(1) and (2) the pattern T is discovered by the algorithm.   ◻

Claim 5 TIRPClo is a complete frequent closed TIRPs discovery algorithm.

Proof Let a frequent k-sized closed TIRP which is represented in TIRPClo by the 
2k-tieps pattern T = ⟨t1,… , t2k⟩ . According to the previous claim, T is discovered 
in TIRPClo when no pruning of unclosed TIRPs is performed. Assume that for 
some 0 < i < 2k , Ti = ⟨t1,… , ti⟩ is pruned. Then, according to TIRPClo’s closure-
checking scheme (Sect. 3.5), the conditions for claim 1 hold for Ti . Thus, Ti as well 
as any future extension of it, including T, are not closed TIRPs, which contradicts 
the assumption.   ◻

3.6.2  Complexity

As is often the case in pattern mining algorithms, it is almost impossible to quan-
tify the input data, and as a consequence to provide an accurate analytical analy-
sis of the time complexity of a frequent TIRP mining algorithm, which is there-
fore typically of lower interest compared to an empirical analysis. Thus, previous 
papers in the field of TIRP mining did not show a theoretical complexity analysis 
(Winarko and Roddick 2007; Wu and Chen 2007; Patel et al. 2008; Papapetrou et al. 
2009; Chen et al. 2015; Moskovitch and Shahar 2015c; Chen et al. 2016; Sharma 
and Patel 2018; Lee et al. 2020), but rather solely conducted an empirical perfor-
mance evaluation on multiple benchmark datasets. That is except for (Moskovitch 
and Shahar 2015b), in which a worst case assessment of the time complexity of the 
KarmaLego algorithm has been presented, which is in fact common for most time 
intervals-based TIRP mining methods and resembles the analysis provided in Mord-
vanyuk et al. (2021).

In this paper, we empirically evaluate the performance of the proposed TIRPClo 
algorithm on a wide benchmark of over a dozen datasets compared to four state-of-
the-art methods, which is in fact the widest benchmark to ever been used for runt-
ime comparisons in a TIRP mining paper. However, for the readers’ convenience, 
we also provide a theoretical complexity analysis of TIRPClo, which is a simpli-
fied worst case assessment of the actual runtime and is somewhat common for any 
sequence-based TIRP mining method.

Assume:

S—number of symbol types
N—total number of STIs in the dataset
n—maximal number of STIs within an entities’ STIs series
L—maximal number of STIs within a frequent TIRP
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Initially, TIRPClo transforms the input STIs series data into a tieps-based sequen-
tial representation through the STIs2Seq method (Algorithm 3). This input trans-
formation process is conducted only once and has a time complexity of O(n ⋅ log(n)) , 
as described in Sect.  3.2. Then, the recursive TIRP mining process is performed, 
following a DFS-like approach. In each step along the mining process a current fre-
quent pattern q is extended by a tiep t to form a new, extended pattern p = q + t . 
Each such pattern extension step requires (1) to project the sequences database of 
q with respect to the tiep t, and then (2) to generate all the candidate tieps for the 
extension of the new pattern p. Based on the analysis presented in Sects. 3.3–3.4, the 
complexity of projection is O(�p) , while the complexity of generating each specific 
candidate tiep cndt is O(�p + �q� ) for q�

= q + cndt . Since the maximal number of 
instances of a frequent TIRP in the input dataset is for sure smaller than N, a simpli-
fied worst case assessment of the complexity of any projection or a specific candi-
date’s generation along the mining process is O(N).

Note that as a sequence-based algorithm, to discover a k-sized TIRP in TIRPClo 
it is necessary to perform 2k pattern extension steps—for the start-tiep and finish-
tiep of each of the TIRP’s k STIs. Hence, under the assumption of having at most L 
STIs within a frequent TIRP, the depth of the algorithm’s search space is bounded 
by 2L. In addition, as analyzed in Sect. 3.4, the maximal number of candidate tieps 
that are generated for the extension of any current pattern is 2S. For a worst case 
assessment, assume that the search space constitutes a full tree. Thus, the time com-
plexity of the entire frequent TIRP mining process in TIRPClo, including the dis-
covery of all of the specific instances of the discovered TIRPs, can be assessed by 
O(N ⋅ (2S)2L + n ⋅ log(n)) in the worst case. Nevertheless, we highlight that this is 
only a theoretical upper-bound for the complexity of the proposed algorithm, while 
the actual runtime is much shorter typically as will be shown in the empirical evalu-
ation. For the readers’ convenience, in Appendix C we also provide a concise analy-
sis of the complexity of the more basic task of sequential pattern mining, where, 
unlike in TIRP mining, both the input data and the discovered patterns only consist 
of time point-based events, rather than STIs.

4  Experimental setup

This paper’s experimental evaluation mainly focuses on comparing the performance 
of the proposed TIRPClo algorithm to state-of-the-art methods, in terms of both 
runtime and memory consumption. Since there is no existing TIRP mining method 
designed for both the discovery of the entire set of frequent TIRPs and the discovery 
of only the frequent closed TIRPs, except for TIRPClo, performance comparisons 
have been divided into the two TIRP mining tasks that the algorithm performs. The 
evaluation has been conducted based on an extensive benchmark of eleven real-
world datasets, as well as four novel synthetic datasets, which is the widest bench-
mark to ever been used for runtime comparisons in a TIRP mining paper. In addition 
to the performance comparisons, we also conducted a rigorous quantitative analysis 
of the common completeness problem in frequent TIRP mining on real-world data, 
to supplement the theoretical discussion made in Sect. 2.4. Finally, TIRPClo was 
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also run with different parameters to evaluate and exemplify the trade-off between 
its runtime duration and the number of discovered frequent TIRPs for different exe-
cution settings.

All the compared methods were implemented in Visual C# and the experiments 
were conducted on a Dell G5, having 16GB main memory, running Microsoft Win-
dows 10. For the sake of conducting as fair comparison as possible, we verified that 
the exact same set of frequent TIRPs were discovered by all the compared methods 
in the respective experiments. In addition, input reading and output writing across 
all the compared methods were made using the exact same code, to make sure that 
runtime differences among the compared methods are solely due to the efficiency of 
the TIRP mining process. To allow the complete reproducibility of the experimental 
results, the evaluation datasets, as well as the code of TIRPClo, were made pub-
licly available on GitHub (a link provided in the Introduction Sect. 1).

4.1  Datasets

To evaluate the performance of the proposed TIRPClo algorithm in each of the two 
TIRP mining tasks that the algorithm performs, we used a benchmark of eleven real-
world datasets from various application domains (datasets 1–11 in Table 1). To the 
best of our knowledge, these datasets include all the publicly available time intervals 
datasets (Patel et al. 2008; Papapetrou et al. 2009; Mörchen and Fradkin 2010; Jak-
kula and Cook 2011; Moskovitch and Shahar 2015c). In addition, to examine the 
performance of the compared methods in extreme scenarios which are not met by 
any of the real-world datasets (e.g., an extremely large number of STIs or symbol 
types), performance experiments were also conducted on two novel synthetic data-
sets (datasets 12–13 in Table 1). The synthetic datasets have been generated by our 
synthetic datasets generator, which is also provided as part of the online code reposi-
tory. The generator requires the following seven input parameters:

• {minE,maxE}—lower and upper bounds for the total number of entities’ STIs 
series in the dataset, which is chosen uniformly at random between them.

• {minSTIs,maxSTIs}—lower and upper bounds for the number of STIs within a 
single entity’s STIs series. For each entity, its number of STIs is chosen uni-
formly at random between minSTIs and maxSTIs.

• maxDuration—the maximal time duration of a single STI.
• maxTimestamp—the maximal timestamp at which an STI may start.
• maxS—the maximal number of symbol types.

Using the synthetic datasets generator, two additional datasets were generated, to 
which arbitrary TIRPs of two to ten STIs with vertical support values of 10–70% 
were injected (datasets 14–15 in Table 1). These datasets were not used for the per-
formance comparisons, but only for an advanced analysis of TIRPClo’s discov-
ery of entire set of frequent TIRPs versus the discovery of only the frequent closed 
TIRPs, on which we will elaborate in the next subsection.
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Table 1 describes the fifteen datasets that have been used for the evaluation of 
TIRPClo considering five parameters: |E|—the number of entities, |STIs|—the total 

number of STIs in the dataset, 
|STIs|
|E| —the mean number of STIs per entity, MHS—

the mean horizontal support of a symbol within an entity, and |S| – the number of 
symbol types. The extreme conditions of each dataset appear in bold in Table 1. A 
more detailed description of the real-world datasets is provided in Appendix A.

4.2  Experimental plan

The experimental evaluation is divided into five major experiments as follows:

• Runtime and memory consumption evaluation of TIRPClo in the discovery of 
the entire set of frequent TIRPs, compared to KarmaLego (Moskovitch and 
Shahar 2015c), ZMiner (Lee et al. 2020), and VertTIRP (Mordvanyuk et al. 
2021).

• Runtime and memory consumption evaluation of TIRPClo in the discovery of 
only the frequent closed TIRP, compared to CCMiner (Chen et al. 2016).

• Quantitative analysis of the common completeness problem in frequent TIRP 
mining, in which the effect of the horizontal support discovery on the complete 
discovery of the frequent TIRPs is evaluated, either when mining the entire set of 
frequent TIRPs or only the frequent closed TIRPs.

• Comparison of TIRPClo’s discovery of the entire set of frequent TIRPs versus 
the discovery of only the frequent closed TIRPs, analyzing major pros and cons 
of applying TIRPClo for each of the two TIRP mining tasks.

• Maximal gap analysis, in which the effect of the maximal gap parameter on 
TIRPClo’s runtime duration and the total number of frequent TIRPs that are 
discovered is evaluated.

4.2.1  Experiment 1: entire frequent TIRP mining

In this experiment, we evaluated the runtime duration and the memory consumption of 
TIRPClo in the discovery of the entire set of frequent TIRPs, compared to (1) Kar-
maLego (Moskovitch and Shahar 2015c) with its enhanced index proposed in (Mosko-
vitch et al. 2015), which was proved to be faster than ARMADA (Winarko and Roddick 
2007), IEMiner (Patel et al. 2008), and H-DFS (Papapetrou et al. 2009; 2) ZMiner 
(Lee et  al. 2020), which outperformed TPMiner (Chen et  al. 2015) and STIPA 
(Sharma and Patel 2018); and (3) VertTIRP (Mordvanyuk et al. 2021). The compari-
sons were conducted on the full benchmark of eleven real-world datasets, as well as on 
the ST1 and ST2 synthetic datasets (datasets 1–13 in Table 1). On the majority of data-
sets, all methods were run with minimum vertical support thresholds of 10–70% and a 
fixed, common maximal gap value of 30. In several datasets, however, lower minimum 
vertical support thresholds and larger maximal gap values were required to discover a 
considerable number of frequent TIRPs, that allow a meaningful comparison. Thus, in 
these datasets (datasets 4–7, 10–12 in Table 1) the maximal gap value was set to infinity.
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Note that in several TIRP mining papers in the literature, performance comparisons 
have often considered extremely low levels of minimum vertical support (even below 
1%), which in fact usually does not show a meaningful difference. That is unlike a 
meaningful runtime duration difference already at higher levels of the minimum verti-
cal support, when having dozens of percentages, as we show in this paper. Finally, in 
this experiment, as well as in the next experiment, we verified that the exact same set 
of frequent TIRPs was discovered by all the compared methods in all the datasets.

4.2.2  Experiment 2: frequent closed TIRP mining

The goal in this experiment was to evaluate TIRPClo’s runtime duration and mem-
ory consumption in the discovery of only the frequent closed TIRPs, compared to 
CCMiner (Chen et al. 2016), which is the only current method designed for closed 
TIRP mining. Note that CCMiner discovers only the first instances of the TIRPs 
within each series of STIs. Hence, its projection was repeatedly applied in order to 
discover all the horizontally supporting instances of the TIRPs, which is essential 
for completeness. In addition, since TIRPClo uses the maximal gap constraint, 
similar to KarmaLego, ZMiner, and VertTIRP; this parameter was also added 
to CCMiner, to conduct as fair comparison as possible between the methods. This 
experiment’s settings are the same as described in experiment 1.

4.2.3  Experiment 3: completeness in frequent TIRP mining

To supplement the theoretical discussion regarding the incompleteness of the major-
ity of existing methods for either the discovery of the entire set of frequent TIRPs or 
only the frequent closed TIRPs (Sect. 2.4), a quantitative analysis was designed. The 
goal of the analysis was to empirically substantiate the need in the discovery of all 
the horizontally supporting instances of the TIRPs (Definition 10) for completeness 
in frequent TIRP mining. That is, by showing the differences in both the number 
of discovered frequent TIRPs and in the number of their discovered instances, with 
and without the horizontal support discovery in real-world data. If such significant 
differences indeed persist, then it is not just a theoretical issue (which may be fine 
as well), but rather a fundamental aspect in frequent TIRP mining, which may ulti-
mately be critical for a large variety of downstream tasks relying on the output of the 
frequent TIRPs discovery process.

For that purpose, TIRPClo was run once without discovering the horizontally 
supporting instances of the TIRPs as previously made in (Winarko and Roddick 
2007; Wu and Chen 2007; Patel et al. 2008; Papapetrou et al. 2009; Chen et al. 2015, 
2016), and then including horizontal support discovery which is required for com-
pleteness. Taking advantage of TIRPClo’s capability to discover all the specific 
instances of the frequent TIRPs, the evaluation metrics in this experiment include 
not only the comparison of (1) the number of frequent TIRPs that were discovered 
in each approach, but also (2) the mean number of discovered instances of a dis-
covered frequent TIRP, and (3) the mean horizontal support value of a discovered 
frequent TIRP within an entity in the dataset.
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These comparisons were conducted both in the discovery of the entire set of fre-
quent TIRPs, as well as in the discovery of only the frequent closed TIRPs. For the 
former comparison we used the smart-home dataset, while the diabetes dataset was 
used for the latter. In both datasets, minimum vertical support thresholds of 20–70% 
were evaluated with a fixed, common maximal gap value of 20. These datasets 
were selected for this experiment due to their relatively high mean horizontal sup-
port value of a symbol within an entity among the real-world datasets (Table 1), and 
also due to the considerable number of frequent TIRPs that they include, given the 
respective range of minimum vertical support thresholds and the maximal gap value.

4.2.4  Experiment 4: entire frequent TIRP mining versus frequent closed TIRP mining 
using TIRPClo

Since the entire set of frequent TIRPs can be revealed based on the more compact 
set of only the frequent closed TIRPs, the knowledge one can extract from the output 
of each of the two TIRP mining tasks that TIRPClo performs is identical. Thus, in 
this experiment, we wanted to analyze the trade-off in applying TIRPClo for each 
of them. That is, focusing on the runtime duration of TIRPClo and on the reduc-
tion in the number of discovered frequent closed TIRPs compared to the entire set of 
frequent TIRPs. For that, TIRPClo was run once for each of the two TIRP mining 
tasks—i.e., either for mining the entire set of frequent TIRPs or only the frequent 
closed TIRPs, on the CT1 and CT2 synthetic datasets (datasets 14–15 in Table 1). 
In both datasets minimum vertical support thresholds of 10–70% were used with a 
fixed maximal gap value of 100.

4.2.5  Experiment 5: maximal gap analysis

Despite the maximal gap parameter (Definition 15) was already used in Papapetrou 
et al. (2009), Moskovitch and Shahar (2015c), Lee et al. (2020), Mordvanyuk et al. 
(2021) to limit Allen’s before temporal relation, its effects on the discovery of the 
frequent TIRPs were never evaluated empirically. In this experiment, the goal was to 
give a notion for these effects, focusing on the trade-off between the runtime dura-
tion of TIRPClo and the number of discovered frequent TIRPs when changing the 
value of the maximal gap parameter. For that, TIRPClo was run on the ASL, diabe-
tes, smart-home, context, and pioneer datasets (datasets 1–3, 8–9 in Table 1), which 
are all the real-world datasets in which a considerable number of frequent TIRPs 
could be discovered for finite maximal gap values, as explained in experiment 1. In 
each of these datasets maximal gap values between 10 and 40 were evaluated, hav-
ing the minimum vertical support value fixed on each of the following thresholds: 
20%, 30%, and 40%.
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5  Results

5.1  Experiment 1: entire frequent TIRP mining

In this experiment, TIRPClo’s runtime duration and memory consumption were 
compared to KarmaLego (Moskovitch and Shahar 2015c), ZMiner (Lee et  al. 
2020), and VertTIRP (Mordvanyuk et al. 2021) in the discovery of the entire set 
of frequent TIRPs. Figure 8 shows the runtime duration comparison when running 
the algorithms on the full benchmark of real-world datasets as well as on the two 
synthetic datasets ST1 and ST2 , using a logarithmic scale.

In Fig.  8 TIRPClo’s superior performance compared to both KarmaLego, 
ZMiner, and VertTIRP is demonstrated in all the benchmark datasets, and 
already at considerably high levels of minimum vertical support. In the ASL, diabe-
tes, smart-home, and ASL-BU datasets, for example, TIRPClo was 5 to 10 times 
faster than both KarmaLego and ZMiner, and 2–4 times faster than VertTIRP, 
already at 30–50% of minimum vertical support. At lower thresholds, e.g., 20%, the 
runtime duration differences between the compared methods were typically larger, 
reaching speed-ups by up to a factor of 18 compared to KarmaLego and ZMiner, 
and by up to a factor of 10 compared to VertTIRP. Encouragingly, even in the 
ASL-GT and pioneer datasets, in which the runtime differences between the meth-
ods were smaller, TIRPClo was still more than 1.5 times faster than each of the 
compared methods. Looking at Fig.  8, it is also quite clear to see that these dif-
ferences typically increase as the minimum vertical support threshold decreases, 
and they are expected to widen even more at lower thresholds. Note that in the 
ST2 dataset the size of the index of both KarmaLego and ZMiner exceeded the 
16GB memory limit. Therefore, only the runtime duration results of TIRPClo and 
VertTIRP on this dataset are presented in Fig. 8.

The reported improvements in the runtime of TIRPClo have been mainly due to 
its projection-based mining approach and the effective candidate generation scheme, 

Fig. 8  Runtime comparison in the discovery of the entire set of frequent TIRPs. TIRPClo was faster 
than both KarmaLego, ZMiner, and VertTIRP in all the datasets and already at relatively high levels 
of minimum vertical support, reporting speed-ups by a factor of 1.5 up to more than 10
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which generates only valid and frequent candidates for pattern extensions directly 
from the data. That is unlike both KarmaLego, ZMiner, and VertTIRP, in 
which the generation of infrequent candidates cannot be prevented, but only lim-
ited based on search space reduction heuristics. The differences between the meth-
ods’ runtime durations then typically depend on the quality and effectiveness of the 
respective heuristics.

In KarmaLego, for example, the transitivity property of Allen’s temporal rela-
tions is used for that purpose, while in ZMiner transitivity is not utilized, but rather 
it is the indexed frequent two-sized TIRPs based on which new candidates are recur-
sively generated. Looking at Fig. 8, it cannot be confidently determined whether one 
of these two heuristics is necessarily better than the other, as the runtimes of Kar-
maLego and ZMiner have been competitive in the majority of datasets. In Vert-
TIRP, a pairing strategy is utilized for a more efficient candidate generation, which 
sorts the temporal relations to be assessed after employing transitivity, and seems to 
usually improve runtime compared to KarmaLego and ZMiner.

However, note that the effectiveness of VertTIRP’s approach, similar to Kar-
maLego, is highly dependent on the distribution of temporal relations in the under-
lying data. That is since the transitivity table returns a varied number of possible 
relations for different input temporal relations. For example, the before, meets, 
and equals temporal relations typically return only a single possible relation from 
the transitivity table, and thus result in an effectively reduced search space. That 
is unlike the contains and starts temporal relations, for which multiple possible 
relations are almost always retrieved from the transitivity table, resulting in only a 
slightly reduced search space. In TIRPClo, on the other hand, the different tempo-
ral relations are seamlessly processed, since they are all implicitly embedded within 
the sequential representation. These insights may explain the somewhat smaller 
improvement factors in the runtime of TIRPClo compared to VertTIRP which 
have been recorded in the ASL-GT and pioneer datasets, in which the before, meets, 
and equals relations constitute 100% of the frequent pairwise temporal relations at 
40–50% of minimum vertical support. In other datasets, e.g., the smart-home and 
diabetes datasets, the contains and starts relations typically constitute a consider-
able portion of about 20–40% of all the frequent pairwise temporal relations at the 
respective minimum support thresholds, resulting in larger runtime duration differ-
ences in favor of TIRPClo.

To further test for statistical significance in the differences between the evalu-
ated methods’ runtimes, we also conducted a pairwise post-hoc analysis comparing 
them. As suggested in Benavoli et  al. (2016), comparisons were conducted using 
a Wilcoxon signed-rank test with Holm’s alpha correction (Garcia and Herrera 
2008), setting � = 5% . That is, searching for statistical significance in the rankings 
of the evaluated methods (based on their obtained runtimes) in each configuration 
of a dataset and a minimum vertical support threshold tested, over all of the tested 
configurations, which constitute a total sample size of over seventy configurations 
for significance testing. Thus, complementing the detailed comparisons provided in 
Fig. 8, which focus on the runtime differences between the methods in each configu-
ration of a dataset and a minimum vertical support threshold, and not on their rela-
tive rankings over all the configurations.
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The results of significance testing are summarized in the critical difference dia-
gram (Demšar 2006) shown in Fig. 9, in which the average rank of each method is 
shown, based on the obtained runtimes, and non-significantly different methods are 
connected by a thick horizontal line. In this figure, an indeed statistically significant 
improvement is demonstrated in the obtained runtimes of TIRPClo over each of 
the compared methods, while there is no significant difference in the runtimes of 
ZMiner and KarmaLego, which confirms the results presented in Fig. 8.

Figure 10 shows a memory consumption summary of TIRPClo, KarmaLego, 
ZMiner, and VertTIRP using a logarithmic scale. In this figure, it is demon-
strated that TIRPClo’s main memory requirements in the benchmark datasets were 
lower compared to evaluated baseline methods by a factor of 2 up to more than 
10. That is except for the ST2 dataset, in which TIRPClo and VertTIRP con-
sumed similar amounts of memory. The observed differences may be explained by 
the relatively small size of TIRPClo’s tieps-index, whose memory complexity can 
be bounded linearly in the number of STIs in the dataset, as theoretically analyzed 
in Sect. 3.2. That is in contrast to the more complex indices of KarmaLego and 
ZMiner, whose memory complexity is quadratic in the number of symbol types 
in the dataset as well as in the number of STIs per entity. Therefore, when having 
extreme values for these properties within an input dataset, which is the case in the 
ST2 dataset, the memory consumption of their indices explodes, rapidly exceeding 
the 16GB memory limit even before the beginning of the recursive TIRP mining 
process.

5.2  Experiment 2: frequent closed TIRP mining

After showing TIRPClo’s enhanced performance when mining the entire set of fre-
quent TIRPs, in this experiment the runtime duration and memory consumption of 
TIRPClo were compared to CCMiner (Chen et al. 2016) in the discovery of only 
the frequent closed TIRPs. Figure 11 summarizes the runtime duration comparison 
of the algorithms using a logarithmic scale. In this figure, it is clearly demonstrated 
that TIRPClo has outperformed CCMiner in all the datasets and already at very 
high levels of minimum vertical support.

In the ASL, diabetes, smart-home, and ASL-BU datasets, for example, TIRP-
Clo reported speed-ups by at least a factor of 10 up to more than two orders of a 
magnitude compared to CCMiner, already at 50% of minimum vertical support. 

Fig. 9  Critical difference diagram comparing the obtained runtimes of TIRPClo, KarmaLego, 
ZMiner, and VertTIRP, over all the evaluation datasets in the discovery of the entire set of frequent 
TIRPs. While a statistically significant improvement is demonstrated in the runtime of TIRPClo com-
pared to each of the three baseline methods, a non-significant difference is observed between ZMiner 
and KarmaLego 
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Similar improvements were also shown in the rest of the datasets, at relatively high 
and moderate minimum vertical support thresholds. We strongly hypothesize that 
these significant runtime speed-ups have mainly stemmed from TIRPClo’s use of 
the tieps-index and the support-indices, due to which no repeated scanning nor cop-
ying of the input datasets’ records are performed, unlike in CCMiner. In Fig. 12 a 
critical difference diagram is illustrated, comparing the obtained runtimes of TIR-
PClo and CCMiner over all the evaluation datasets, in which a statistically signifi-
cant improvement is demonstrated in favor of TIRPClo.

At last, in Fig.  13 a memory consumption comparison of TIRPClo and 
CCMiner is presented in the discovery of only the frequent closed TIRPs. First, 
in all the datasets, both TIRPClo and CCMiner consumed reasonable amounts of 
main memory. Since CCMiner does not consist of an indexing phase, its memory 
consumption was expected to be somewhat lower compared to TIRPClo, which 
was indeed the case in the diabetes, ASL-GT, hepatitis, ST1 , and ST2 datasets. In 
the smart-home, blocks, auslan2, and skating datasets, however, TIRPClo reported 
lower memory measurements, yet without showing a significant difference. That is 
due to an increased memory usage during the recursive TIRPs discovery process in 
CCMiner. Overall, looking at Fig. 13 it can be concluded that the memory require-
ments of the two methods are competitive.

5.3  Experiment 3: completeness in frequent TIRP mining

Beyond the performance evaluation, in this experiment we wanted to empirically 
substantiate the necessity of the horizontal support discovery for completeness in 
each of the two TIRP mining tasks addressed in the paper.

That is, both in the discovery of the entire set of frequent TIRPs, and in the dis-
covery of only the frequent closed TIRPs. For that, we first compared the number of 

Fig. 10  Memory consumption comparison in the discovery of the entire set of frequent TIRPs. TIRP-
Clo consumed up to 10 times less main memory compared to both KarmaLego, ZMiner, and Vert-
TIRP 
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frequent TIRPs that were discovered, either when discovering the horizontal support 
as made in TIRPClo, or without horizontal support discovery as previously made 
in Winarko and Roddick (2007), Wu and Chen (2007), Patel et al. (2008), Papap-
etrou et al. (2009), Chen et al. (2015).

Fig. 11  Runtime comparison in the discovery of only the frequent closed TIRPs. TIRPClo was one to 
more than two orders of a magnitude faster than CCMiner in all the datasets

Fig. 12  Critical difference diagram comparing the obtained runtimes of TIRPClo and CCMiner over 
all the evaluation datasets in the discovery of only the frequent closed TIRPs, in which a statistically sig-
nificant improvement is demonstrated in favor of TIRPClo 

Fig. 13  Memory consumption comparison in the discovery of only the frequent closed TIRPs. TIRP-
Clo’s memory consumption was competitive with the memory consumption of CCMiner 
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The results when mining the entire set of frequent TIRPs in the smart-home data-
set are presented Fig. 14a, in which significant differences have been demonstrated 
between the two approaches already at considerably high levels of minimum verti-
cal support. Specifically, for minimum vertical support thresholds between 20–40%, 
less than 10% of the frequent TIRPs which had been discovered by TIRPClo were 
also discovered without the horizontal support discovery, as previously made. In 
Fig.  14b a comparison of the number of frequent closed TIRPs which have been 
discovered in the diabetes dataset is shown, either with or without the horizontal 
support discovery. In this comparison similar outcomes were observed, as even less 
than one third of the frequent closed TIRPs that had been discovered by TIRPClo 
were also discovered without the horizontal support discovery, already at remark-
ably high levels of minimum vertical support (e.g., 50–60%). In addition, in both 
Fig. 14a, b a common, yet unsurprising trend was observed according to which the 
gap in the number of frequent that were discovered by the two approaches signifi-
cantly widened as the minimum vertical support thresholds decreased.

Furthermore, taking advantage of TIRPClo’s capability to discover all the spe-
cific instances of the frequent TIRPs, Fig. 15 presents two additional comparisons 
of both the mean number of discovered instances of a discovered frequent TIRP 
(a–b), and the mean horizontal support value of a discovered frequent TIRP within 
an entity in the dataset (c–d). First, as expected, in Fig. 15a, b it is observed that the 
mean number of instances of a discovered frequent TIRP has typically increased 
with the minimum vertical support threshold, either when discovering the TIRPs’ 
horizontal support or not.

However, without the horizontal support discovery, even when a frequent TIRP 
was indeed discovered, only 5–10% and 15–20% of its true total number of instances 
(which were discovered by TIRPClo) had been typically discovered in the smart-
home and diabetes datasets respectively. This shortage in the number of discovered 

Fig. 14  Comparison of the number of discovered frequent TIRPs with and without the horizontal sup-
port (HS) discovery, either when mining the entire set of frequent TIRPs in the smart-home dataset (a), 
or only the frequent closed TIRPs in the diabetes dataset (b). In both (a) and (b) the complete mining of 
the frequent TIRPs, which includes horizontal support discovery, has resulted in a substantially larger 
number of discovered frequent TIRPs compared to the previous, incomplete approach, by factors of 3 up 
to more than 10
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instances is directly reflected in missing either all the instances of a frequent TIRP, 
or at least some of them, within the STIs series of indeed supporting entities. The 
latter case is emphasized in Fig. 15c, d, in which the true mean horizontal support 
value of a discovered TIRP within an entity’s series of STIs is shown to vary from 
8 to 17 in the smart-home dataset and 3–7 in the diabetes dataset; in correlation 
with the datasets’ mean horizontal support value of a symbol shown in Table 1. That 
is, while always having, by definition, only a single discovered instance of a TIRP 
within a supporting entity when the TIRPs’ horizontal support is not discovered. 
Note that as shown in Fig. 15c, d, the mean horizontal support of a discovered fre-
quent TIRP may either increase or decrease when increasing the minimum vertical 

Fig. 15  Comparison of the mean number of discovered instances of a discovered frequent TIRP (a, b), 
and the mean horizontal support value of a discovered frequent TIRP within an entity in the dataset (c, 
d), with and without the horizontal support discovery in the smart-home and diabetes datasets. Not dis-
covering the TIRPs’ horizontal support resulted in the discovery of only 5–20% of their true total number 
of instances, as well as only one out of typically 3–17 instances per entity on average
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support threshold. That is since the vertical support refers only to the number of 
supporting entities, and not to the number of instances of the TIRP within them.

Overall, the results obtained in this experiment demonstrate that without the dis-
covery of the TIRPs’ horizontal support, a substantial portion of both the frequent 
TIRPs and their instances are not discovered, which might eventually deteriorate the 
performance of downstream tasks relying on the output of the frequent TIRPs dis-
covery process. For example, the classification of STIs series based on the frequent 
TIRPs that they include (Patel et al. 2008; Batal et al. 2009; Moskovitch et al. 2009; 
Moskovitch and Shahar 2015b; Rebane et al. 2021; Shknevsky et al. 2021). For such 
downstream task, not discovering the horizontal support is likely to result in mis-
classification of STIs series, due to either (1) completely missing the discovery of 
valuable frequent TIRPs, (2) missing the discovery of all the instances of frequent 
TIRPs within STIs series in which they indeed occur, or (3) discovering only one 
out of many instances of frequent TIRPs within each series of STIs, resulting in 
miscalculation of features such as the mean duration of a TIRP, which has been an 
important feature for correct classification in several previous works (Moskovitch 
and Shahar 2015b; Shknevsky et  al. 2021). Further conducting a comprehensive 
qualitative evaluation of the discovered TIRPs in various such scenarios is out of the 
scope of this paper, while it is of course of interest for future work.

5.4  Experiment 4: entire frequent TIRP mining versus frequent closed TIRP 
mining using TIRPClo

In this experiment we wanted to empirically evaluate major pros and cons of apply-
ing TIRPClo for each of the two TIRP mining tasks that the algorithm performs, 
focusing on the runtime duration of TIRPClo and on the reduction in the number 
of discovered frequent closed TIRPs compared to the entire set of frequent TIRPs. 
The results of running TIRPClo for each of the two TIRP mining tasks on the CT1 
and CT2 datasets are summarized in Fig. 16. First, in both datasets it is observed 
that the discovery of only the frequent closed TIRPs has typically resulted in a much 
more compact output of frequent TIRPs compared to the discovery of the entire set 
of frequent TIRPs, showing at least a 40% reduction (a–b). In addition, larger differ-
ences in the number of discovered frequent TIRPs were reported for lower minimum 
vertical support thresholds. That is primarily due to long closed TIRPs of various 
frequencies, which contain an exponential number (in the closed TIRPs’ lengths) of 
sub-TIRPs that are not closed.

In terms of the runtime duration of TIRPClo, however, a different behavior is 
observed in Fig. 16c–d) when running the algorithm on each of the two datasets in 
hand. While in the CT1 dataset closed TIRPs discovery was faster at higher levels of 
minimum vertical support but somewhat slower at lower thresholds, in the CT2 data-
set, on the other hand, the discovery of the entire set of frequent TIRPs was faster for 
all the minimum vertical support thresholds assessed. This outcome, especially in 
the CT2 dataset, might seem surprising given the reduction in the number of discov-
ered closed TIRPs compared to the entire set of frequent TIRPs shown in Fig. 16b. 
However, it could be indeed explained by the additional computational cost of the 
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closure-checking performed in TIRPClo only when applied for closed TIRP min-
ing, which, in this dataset, outclassed the gains from the early pruning of the TIRPs 
that are not closed during the mining process.

5.5  Experiment 5: maximal gap analysis

In this experiment, we evaluated the trade-off between TIRPClo’s runtime dura-
tion and the number of discovered frequent TIRPs when changing the value of the 
maximal gap parameter. The results of running the algorithm on the ASL, diabetes, 
smart-home, context, and pioneer datasets are summarized in Fig. 17. At the top of 
the figure the number of frequent TIRPs discovered by TIRPClo is shown, while 
at the bottom the respective runtimes are presented, depending on the value of the 
maximal gap for several minimum vertical support thresholds.

Fig. 16  Entire frequent TIRP mining versus frequent closed TIRP mining using TIRPClo. Runtimes in 
the CT

1

 and CT
2

 datasets are shown at the bottom, while the numbers of frequent TIRPs that have been 
discovered in each dataset are shown at the top. In both datasets closed TIRPs discovery resulted in a 
much smaller number of discovered frequent TIRPs, showing at least a 40% reduction. However, in the 
CT

2

 dataset the discovery of all the frequent TIRPs was still faster due to the additional computational 
cost of TIRPClo’s closure-checking employed only for closed TIRP mining, while in the CT

1

 dataset 
closed TIRPs discovery was faster at high and moderate minimum vertical support thresholds, due to 
more effective pruning of TIRPs that are not closed early during the mining process
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First, as expected, given a fixed minimum vertical support threshold, increasing 
the value of the maximal gap parameter typically resulted in a larger number of dis-
covered frequent TIRPs, as well as in longer runtimes. However, while in the major-
ity of datasets increasing the maximal gap value by 10 time-units resulted in several 
tens of percentages of additionally discovered frequent TIRPs, in the pioneer dataset 
only a slight change has been recorded. This could be explained by the distribution 
of time durations of the before temporal relation in each dataset, i.e., the time gaps 
between non-overlapping pairs of STIs, depicted in Fig. 18 in Appendix B. In the 
pioneer dataset about 80% of these gaps were even below the initial maximal gap 
of 10. Thus, not showing a significant difference in neither the number of discov-
ered frequent TIRPs nor in runtime when increasing the maximal gap value beyond 
it. That is unlike the rest of the datasets, in which the  80th percentile was always 
beyond 20.

In these datasets, it is also important to highlight that increasing the value of the 
maximal gap typically resulted not only in an increased number of discovered fre-
quent TIRPs, but also in much longer runtimes. For example, in the smart-home 
dataset, due to increasing the maximal gap value by 10 time-units, up to 150% more 
frequent TIRPs were discovered in the cost of 2–7 times longer runtimes. These out-
comes demonstrate the trade-off between the number of discovered frequent TIRPs 
(and consequently, their potential degree of expressiveness of the relevant temporal 
information in the underlying data) and the computational aspect, which may play a 
key role when determining the desirable value of the maximal gap parameter as we 
elaborate in the Discussion Sect. 6.

Finally, note that even if we keep on increasing the maximal gap to much larger 
values, we might still discover more and more frequent TIRPs. That is although they 
are potentially meaningless, due to the extremely large time gaps between their STIs. 
In future work, we plan on conducting a qualitative analysis of the discovered TIRPs 
depending on the maximal gap, aiming at minimizing the computational cost of the 
TIRP mining process while preserving the majority of temporal information of the 
discovered TIRPs, through controlling the value of the maximal gap.

Fig. 17  Maximal gap analysis. At the top the total numbers of discovered frequent TIRPs are presented, 
while at the bottom the respective runtimes of TIRPClo are shown, depending on the value of the maxi-
mal gap for several minimum vertical support thresholds. For a fixed value of minimum vertical support, 
larger maximal gap values typically led not only to an increased number of discovered frequent TIRPs, 
but also to much longer runtimes, demonstrating the trade-off between the two aspects
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6  Discussion

In this work we introduced TIRPClo—an efficient algorithm for the complete min-
ing of either the entire set of frequent TIRPs or only the frequent closed TIRPs. 
TIRPClo proposes a novel non-ambiguous transformation method from STIs series 
into sequential representation, a memory-efficient index, and a new complete projec-
tion method; due to which it is the first complete algorithm for frequent closed TIRP 
mining, and the first sequence-based complete algorithm for mining the entire set 
of frequent TIRPs. The performance evaluation benchmarked TIRPClo on over a 
dozen datasets against the best performing methods in each of the two TIRP min-
ing tasks that the algorithm performs, demonstrating significant runtime speed-ups 
while at the same time maintaining lower memory measurements.

Beyond performance, the paper also provided an in-depth analysis of the com-
mon completeness problem in the majority of previous methods for frequent TIRP 
mining, due to not entirely discovering the TIRPs’ horizontal support. The analysis 
included a theoretical demonstration as well as a quantitative assessment on real-
world data showing that the horizontal support discovery is crucial for both the 
complete discovery of the entire set of frequent TIRPs, and the complete discovery 
of only the frequent closed TIRPs. Otherwise, a non-negligible number of frequent 
TIRPs, and their instances, are missed, which is much likely to deteriorate the per-
formance of downstream tasks relying on the output of the frequent TIRPs discovery 
process, e.g., clustering or classification of STIs series.

In addition, we compared TIRPClo’s discovery of the entire set of frequent 
TIRPs to the discovery of only the frequent closed TIRPs. Since the complete set 
of frequent TIRPs can be revealed based on the more compact set of only the fre-
quent closed TIRPs, the knowledge one can extract from the output of each of the 
two TIRP mining tasks is identical. In this paper’s evaluation, although quite a 
considerable number of frequent TIRPs that are not closed had been pruned dur-
ing the frequent closed TIRPs discovery process, the discovery of all the frequent 
TIRPs was still usually faster. This outcome demonstrates the potential in the dis-
covery of the frequent closed TIRPs, which significantly shrinks the output of the 
algorithm, alongside the possibly higher computational costs due to the applied 
closure-checking.

At last, we also demonstrated the trade-off between TIRPClo’s runtime dura-
tion and the total number of discovered frequent TIRPs when changing the value 
of the maximal gap parameter, showing that increasing the maximal gap typically 
results not only in a larger number of discovered frequent TIRPs, but also in much 
longer runtimes. Therefore, when determining the desirable value of the maximal 
gap, there are several aspects to consider.

First, is the maximal relevant time duration among two STIs, which is domain-
dependent and can sometimes be estimated by a domain expert. Second, is the com-
putational aspect. Since the complexity of the TIRPs discovery process increases 
with the value of the maximal gap, it may be desirable to limit its value according to 
the available computing time and resources. However, one should also bear in mind 
that setting a too small maximal gap value is likely to result in much fewer frequent 



1851

1 3

TIRPClo: efficient and complete mining of time...

TIRPs, which might fail capturing all the temporal information in the underlying 
data relevant for a specific downstream task.

Finally, as demonstrated in experiments 4–5, both the output and the performance 
of TIRPClo heavily depend on its execution configuration (i.e., the desired TIRP 
mining task and the set of parameters values—e.g., minimum vertical support, max-
imal gap). Thus, for future work, we would like to learn an execution configuration, 
or a small set of configurations, which fit best for a given real-world TIRP mining 
application. That is to supply guidelines for application-customized execution con-
figurations. In addition, we would also like to design TIRPClo to enable parallel 
processing within one machine or distributed processing over multiple machines, for 
the efficient processing of significantly higher data volumes.

Appendix A: Real‑world datasets

Detailed information is provided on the real-world datasets which have been used to 
evaluate the proposed TIRPClo algorithm (datasets 1–11 in Table 1).

• American Sign Language (ASL) The dataset was created by the National Center 
for Sign Language and Gesture Resources at Boston University (Papapetrou 
et al. 2009). It consists of a collection of 884 utterances, in which each utterance 
associates a segment of video with a detailed transcription and contains several 
ASL gestures and grammatical fields (e.g., eyebrow raised, head tilted forward) 
occurring over a time interval.

• Diabetes The dataset was provided by Moskovitch and Shahar (2015c) as part 
of a collaboration with Clalit Health Services (Israel’s largest HMO). It con-
tains data on 2038 patients having type II diabetes, collected monthly from 
2002 to 2007. The dataset contains six variables recorded over time for each 
patient: hemoglobin-A1c values, blood glucose levels, cholesterol values, and 
several medications the patients purchased: diabetic (insulin-based) medica-
tions, cholesterol reducing statins, and beta blockers.

• MavLab Smart-home The dataset was provided by Jakkula and Cook (2011). 
It contains data from the readings of ninety-nine sensors installed in a com-
puterized apartment, describing the activity of people and various appliances 
scattered around the apartment.

• ASL-BU (Mörchen and Fradkin 2010) The dataset contains STIs which are 
transcriptions from videos of American Sign Language expressions. An enti-
ty’s series of STIs represents a single sentence.

• ASL-GT (Mörchen and Fradkin 2010) STIs were derived from sixteen dimen-
sional numerical time series with features extracted from videos of American 
Sign Language expressions. The dataset includes a larger number of entities’ 
STIs series and a smaller number of symbol types compared to the previous 
dataset.

• Auslan2 (Mörchen and Fradkin 2010) STIs were derived from the publicly 
available Australian Sign Language dataset in the UCI repository. An entity’s 
series of STIs represents a single word.
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• Blocks (Mörchen and Fradkin 2010) Contains STIs which represent visual 
primitives drawn from videos of a human hand stacking colored blocks. An 
entity’s STIs series represents one of eight different scenarios including either 
atomic actions (e.g., move-right) or complete scenarios (e.g., assemble).

• Context (Mörchen and Fradkin 2010) STIs were derived from categorical and 
numerical data that describe the context of a mobile device carried by humans 
in different situations. An entity’s series of STIs represents one of five sce-
narios (e.g., meeting or street).

• Pioneer (Mörchen and Fradkin 2010) STIs were derived from the Pioneer-1 
dataset in the UCI repository, which contains data collected from sensor read-
ings of the Pioneer-1 mobile robot. An entity’s STIs series describes one of 
the robot’s three moving scenarios—either gripper, move or turn.

• Skating (Mörchen and Fradkin 2010) The dataset contains STIs derived from 
fourteen dimensional numerical time series, which describe the muscle activ-
ity and leg position of six professional In-Line Speed Skaters during con-
trolled tests. An entity’s series of STIs describes a complete movement cycle.

• Hepatitis (Patel et al. 2008) The dataset contains STIs describing tests conducted 
to patients suffering from either Hepatitis B or C over a time period of 10 years. 
An entity’s STIs series represents the tests conducted to a single patient.

Appendix B: Distribution of time gaps between non‑overlapping STIs

Figure 18 shows the distribution of time durations of the before temporal relation, 
i.e., the time gaps between non-overlapping pairs of STIs, in the ASL, diabetes, 
smart-home, context, and pioneer datasets which have been used for the maximal 
gap analysis in experiment 5.

Appendix C: Worst‑case complexity analysis of sequential pattern 
mining

In Sect. 3.6.2, a simplified worst-case assessment of the complexity of the proposed 
TIRPClo algorithm, as a representative of sequence-based TIRP mining meth-
ods, was provided. In this appendix, we follow similar notations to those introduced 
in Sect.  3.6.2, and also concisely assess the complexity of the more basic task of 
sequential pattern mining.

Assume:

S—number of event-types
N—total number of events in the dataset
n—maximal number of events within an entities’ event-sequence
L—maximal number of events within a frequent sequential pattern

In sequential pattern mining, both the input data and the discovered patterns only 
consist of time point-based events. Thus, the discovery of a k-sized sequential 
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pattern requires k pattern extension steps, i.e., by a single event at a time, while 
having at most S candidates generated in each step, given a total of S event-types 
or symbols. That is unlike in sequence-based TIRP mining, where the input STIs 
data are broken into their start and finish tieps, which consequently doubles the 
number of pattern extension steps required to discover a k-sized TIRP as well as 
the maximal number of generated candidates, as described in Sect.  3.6.2. Hence, 
including the initial sorting of entities’ event-sequences, the overall time complex-
ity of the more basic task of sequential pattern mining can be typically assessed by 
O(N ⋅ SL + n ⋅ log(n)) in the worst-case.
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