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Abstract
We revisit the problem of fair clustering, first introduced by Chierichetti et al. (Fair
clustering through fairlets, 2017), which requires each protected attribute to have
approximately equal representation in every cluster, i.e., a Balance property. Existing
solutions to fair clustering are either not scalable or do not achieve an optimal trade-off
between clustering objectives and fairness. In this paper, we propose a new notion of
fairness which we call τ -ratio fairness, that strictly generalizes the Balance property
and enables a fine-grained efficiency vs. fairness trade-off. Furthermore, we show that
a simple greedy round-robin-based algorithm achieves this trade-off efficiently. Under
a more general setting of multi-valued protected attributes, we rigorously analyze the
theoretical properties of the proposed algorithm, the Fair Round-Robin Algorithm
for Clustering Over-End (FRACOE ). We also propose a heuristic algorithm, Fair
Round-Robin Algorithm for Clustering (FRAC), that applies round-robin allocation
at each iteration of a vanilla clustering algorithm. Our experimental results suggest
that both FRAC and FRACOE outperform all the state-of-the-art algorithms and work
exceptionally well even for a large number of clusters.
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1 Introduction

Machine learning (ML) research advances have resulted in the development of increas-
ingly accurate models. These advancements lead to the widespread adoption of ML
algorithms in applications ranging from self-driving cars, loan approvals, criminal risk
prediction, college admissions, and health risk prediction. The primary objective of
these algorithms is to obtain improved accuracy and predictive performance. However,
their use to allocate social goods andopportunities such as access to healthcare, job, and
education warrants a closer look at the societal impacts of their outcomes (Carey and
Wu 2022; Ntoutsi et al. 2020). Recent studies have exposed a discriminatory outlook
on the outcomes of these algorithms. The adverse societal effects include treatment
disparity towards individuals belonging to marginalized groups based on gender and
race in real-world applications like automated resume processing (Dastin 2018), loan
application screening, and criminal risk prediction (Julia et al. 2016). Designing fair
and accurate machine learning models is thus an essential and immediate requirement
for these algorithms to make a meaningful impact in the real world.

While fairness in supervised learning is well-studied (Dwork et al. 2012; Correa
et al. 2021; Chikahara et al. 2021; Lee et al. 2021; Mehrabi et al. 2021; Le Quy
et al. 2022), fairness in unsupervised learning is still in its formative stages (Deepak
et al. 2020; Chhabra et al. 2021; Harris et al. 2019). Clustering, along with classifica-
tion, forms the core of powerful machine learning algorithms with significant societal
impact through applications such as automated assessment of job suitability (Padman-
abhan 2020) and facial recognition (Li et al. 2020). These constraints arise naturally
in applications where data points correspond to individuals, and cluster association
signifies the partitioning of individuals based on features.

To emphasize the importance of fairness in unsupervised learning, we consider
the following example: An employee-friendly company is looking to open multiple
branches across the city and distribute its workforce in these branches. The goal is to
improve work efficiency and minimize overall travel time to work. The company has
employees with diverse backgrounds (race and gender). The company’s diversity pol-
icy dictates hiring a minimum fraction of employees from each group in every branch.
Thus, the natural question is: where should the branches be set up to maximize work
efficiency, minimize travel time, andmaintain diversity? In other words, the problem is
to devise an unsupervised learning algorithm for identifying branch locations with the
fairness (diversity) constraints applied to each branch. This problem can be naturally
formulated as a clustering problem with additional fairness constraints on allocating
the data points to the cluster centers.

Typically, fairness in supervised learning is measured by the algorithm’s perfor-
mance over different groups based on protected (sensitive) attributes such as gender,
race, and ethnicity. Chierichetti et al. (2017) proposed the first fairness notion in
unsupervised clustering, wherein each cluster must exhibit a Balance. The Balance
represents the ratio of data points with different values of the protected attribute in each
cluster. Their methodology apart from having significant computational complexity
applies only to binary-valued protected attributes and does not allow for trade-offs
between the clustering objective and fairness guarantees. The subsequent literature
(Backurs et al. 2019; Schmidt et al. 2019; Schmidt and Wargalla 2021; Huang et al.
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2019) improves efficiency but does not facilitate an explicit trade-off between the
clustering objective cost and the fairness guarantee. In this paper, we define a new
notion of fairness which we call τ -ratio fairness. The τ -ratio fairness ensures a certain
fraction of data points for a given protected attribute in each cluster. We show that
this simple notion of fairness has several advantages. First, the definition of τ -ratio
naturally extends to multi-valued protected attributes. Second, τ -ratio fairness strictly
generalizes the Balance property. Third, it admits an intuitive and computationally
efficient round-robin approach to fair allocation. Fourth, it is straightforward for the
algorithm designer to input the requirement into the algorithm as constraints. And
fifth, it is easy to interpret and evaluate it from the output. In our running example, if
a company wants to have a minimum fraction of employees from each group in every
branch (clusters), then one can specify it in the form of a vector τ of size equal to
the number of data points needed from each group. The contributions of our work are
summarized in the following section:

1.1 Our contribution

Conceptual contribution We introduce a new notion of fairness which we call τ -
ratio fairness and show that any algorithm satisfying a τ -ratio fairness also satisfies
the Balance property (Theorem 4). We also show that sometimes one can obtain a
degenerate value of τ -ratio fairness using Balance. We propose two simple and effi-
cient round-robin-based algorithms for the τ -ratio fair allocation problem, namely,
FRACOE (see Sect. 4) and a heuristic algorithm called FRAC (Sect. 6). Our algo-
rithm FRACOE uses the unconstrained clustering algorithm (referred to as vanilla
clustering) as a black-box implementation and modifies its output appropriately to
ensure τ -ratio fairness. The fairness guarantee is deterministic and verifiable, i.e., it
holds for every algorithm run and can be verified from the outcome without explicit
knowledge of the underlying clustering algorithm. The guarantee on objective cost,
however, depends on the approximation guarantee of the clustering algorithm. Our
algorithms can handle multi-valued protected attributes, allow user-specified bounds
on Balance, are computationally efficient, and incur only an additional time complex-
ity of O(kn log(n)), best in the current literature. Here, n is the size of the dataset, and
k is the number of clusters.
Theoretical contributions We show theoretical guarantees for our algorithm,
FRACOE .We first show that FRACOE achieves a 2(α+2)-approximate for clustering
instances up to three clusters (Theorem7 andLemma 11) to optimal fair clustering cost
for τ=1/k which corresponds to maximally balanced clusters. Here, α is a clustering
algorithm-specific constant. That is, given a fair clustering instance with k ≤ 3 clus-
ters and n data points, our proposed algorithm returns an allocation with an objective
cost of atmost 2(α + 2) times the objective cost of optimal assignment to maximally
balanced clusters. We further show that this guarantee is tight (Proposition 12). For
k > 3 clusters we show 2k−1(α + 2)-approximation guarantee on the τ -ratio. We
conjecture that the exponential dependence of the approximation guarantee on k can
be reduced to a constant. The guarantees are extended to work for any general τ vector
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(see Sect. 5.2). We also theoretically analyze the convergence of FRACOE (Lemma
14). The time complexity of FRACOE is O(kn log(n)) where n is the size of the
dataset, and k is the number of clusters.
Experimental contributions Through extensive experiments on four datasets (Adult,
Bank, Diabetes, and Census II), we show that the proposed algorithms, FRAC and
FRACOE outperform all the existing algorithms on fairness and objective costs. Per-
haps the most critical insight from our experiments is that the performance of our
proposed algorithms does not deteriorate with increasing k, validating our conjecture.
Experiments also show that while we do not have convergence guarantees for the
heuristic algorithm FRAC, it does converge on all the datasets and performs slightly
better than FRACOE . Thus, making it suitable for practical applications. We compare
our algorithms with SOTA algorithms for their fairness guarantee, objective cost, and
runtime analysis. We also remark that our algorithms do not require hyper-parameter
tuning, making our method easy to train and scalable. While our algorithms apply to
the center-based clustering approach, we demonstrate its efficacy using k-means and
k-median.

2 Related work

There is abundant literature on fairness in supervised learning (Chikahara et al. 2021;
Gong et al. 2021; Zhang et al. 2021; Ranzato et al. 2021; Lohaus et al. 2020; Cho et al.
2020; Baumann and Rumberger 2018). However, the research on fair clustering is still
in its infancy and rapidly gathering attention (Chierichetti et al. 2017; Kleindessner
et al. 2019; Brubach et al. 2021; Liu and Vicente 2021; Davidson and Ravi 2020;
Bercea et al. 2018; Le Quy and Ntoutsi 2021). These studies include extending the
existing fairness notions such as group and individual fairness to clustering (Bera et al.
2019; Kleindessner et al. 2020; Chen et al. 2019), proposing new problem-specific
fairness notions such as social fairness (Abbasi et al. 2021; Makarychev and Vakilian
2021), characterizing the fairness v/s efficiency trade-off (Ziko et al. 2021; Abraham
et al. 2020), and developing, analyzing efficient fair algorithms (Bandyapadhyay et al.
2020; Schmidt et al. 2019). We now categorize the literature on fairness in clustering
based on different stages of implementation, namely—pre-processing, in-processing,
and post-processing.

Pre-processing: Following a disparate impact doctrine (Barocas and Selbst 2016),
Chierichetti et al. (2017), in their pioneeringwork, define fairness in clustering through
a Balance property. Chierichetti et al. (2017) achieve balanced clustering by partition-
ing the data into balanced sets called fairlets. These fairlets are then merged while
maintaining the Balance property in each merge operation. Backurs et al. (2019) pro-
pose an efficient algorithm to compute the fairlets. Both the above approaches have
two major drawbacks: they only work for binary-valued protected attributes and can
only create clusters exhibiting the exact dataset ratio. Schmidt et al. (2019) provide an
efficient and scalable algorithm using composable fair coresets [see also (Huang et al.
2019; Schmidt and Wargalla 2021; Bandyapadhyay et al. 2020; Feng et al. 2021)]. A
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coreset is a set of points approximating the optimal clustering objective value for any
k cluster centers. Though the coreset construction can be performed in a single pass
over the data as opposed to the fairlets construction, storing coresets takes exponential
space in terms of the dimension of the dataset. Bandyapadhyay et al. (2020) reduce
this exponential size requirement to linear in terms of space, but it still has the running
complexity that is exponential in the number of clusters. Chhabra et al. (2021) propose
a pre-processing technique by adding a small number of extra points. Our algorithms
are efficient in terms of space and time complexity.

In-processing: Böhm et al. (2020) propose an (α+2)-approximate algorithm for fair
clusteringusing aminimumcost-perfectmatching algorithm.The approachworkswith
a multi-valued protected attribute but has O(n3) time complexity and is not scalable.
Ziko et al. (2021) propose a variational framework for fair clustering. Apart from being
applicable to datasets with multi-valued protected attributes, the approach works for
both prototype-based (k-mean/k-median) and graph-based clustering problems (N -cut
or Ratio-cut). However, the sensitivity of the hyper-parameter to various datasets and
the number of clusters necessitates extensive tuning leading to a high computational
cost. Further, the clustering objective also deteriorates significantly under strict fairness
constraints when dealing with many clusters (refer Sect. 7.1). Along the same lines,
Abraham et al. (2020) devise an optimization-based approach for fair clustering with
multiple multi-valued protected attributes. It has a trade-off hyper-parameter similar
to Ziko et al. (2021).

Post-processing: Our proposed algorithm FRACOE follows the post-processing
approach. Bera et al. (2019) solved the fair clustering problem via a fair assignment
problem and formulated a linear programming (LP) based solution. The LP-based
formulation leads to a higher execution time (refer to Sect. 7.4). Also, the approach
fails to converge in a reasonable time for larger datasets. Our proposed approach takes
a similar route as Bera et al. (2019) and transforms the fair clustering problem into
a fair assignment problem. We give a simple polynomial-time algorithm which, in
O(nk log n) additional computations, guarantees a more general notion of fairness
which we call τ -ratio fairness. Harb and Lam (2020) extended the fair clustering
problem to the k-center problem, whereas we consider k-means and k-median based
centering techniques. There are other works that are applicable only for k-center
clustering (Ahmadian et al. 2019; Jones et al. 2020; Bandyapadhyay et al. 2019;
Jia et al. 2020; Anegg et al. 2020; Chakrabarti et al. 2022; Brubach et al. 2020).

Other related work: While we focus on the fairness notion of Balance, other per-
spectives on fairness are also defined in the literature. These include individual fairness
(Kleindessner et al. 2020), proportionality fairness (Chen et al. 2019; Mahabadi and
Vakilian 2020; Vakilian and Yalciner 2022; Negahbani and Chakrabarty 2021; Han
et al. 2022), and social fairness (Ghadiri et al. 2021; Abbasi et al. 2021; Ghadiri et al.
2022; Deepak and Abraham 2020; Makarychev and Vakilian 2021; Goyal and Jaiswal
2021; Chlamtáč et al. 2022).

Another line of related work in fair clustering revolves around hierarchical cluster-
ing, spectral clustering algorithms for graphs, deep clustering (Zhang and Davidson
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2021; Wang and Davidson 2019; Song et al. 2021), and hypergraph clustering (Bose
and Hamilton 2019; Kleindessner et al. 2019). Jones et al. (2020) define fairness in the
cluster centers, wherein each center comes from a demographic group. Clustering has
also been used for solving fair facility location problems (Jung et al. 2020; Micha and
Shah 2020; Chen et al. 2019). Recently, Li et al. (2021) proposed a new notion of core
fairness which is motivated by both group and individual fairness (Kar et al. 2021).
Elzayn et al. (2019) use fair clustering for resource allocation problems. Kleindessner
et al. (2019) use fair clustering for data summarization. Fair clustering is also being
studied in dynamic (Chan et al. 2018), capacitated (Quy et al. 2021), bounded cost
(Esmaeili et al. 2021), budgeted (Byrka et al. 2014), privacy-preserving (Rösner and
Schmidt 2018), probabilistic (Esmaeili et al. 2020), correlated (Ahmadian et al. 2020),
diversity aware (Thejaswi et al. 2021), and distributed environments (Anderson et al.
2020). Finally, our fairness notion (τ -ratio) resembles that of balanced (in terms of
the number of points in each cluster) clustering (Banerjee and Ghosh 2006) without
fairness constraint. However, their proposed sampling technique is not designed to
guarantee τ -ratio fairness and does not analyze loss incurred due to these fairness
constraints.

3 Preliminaries

Let X ⊆ R
d be a finite set of points that needs to be partitioned into k clusters.

Each data point xi ∈ X is a feature vector described using d real-valued features.
A k-clustering1 algorithm C = (C, φ) produces a partition of X into k subsets ([k])
with centers C = {c j }kj=1 using an assignment function φ : X → [k] that maps
each point to the corresponding cluster. Throughout this paper, we consider that each
point, xi ∈ X , is associated with a single protected attribute ρ(xi ) (say ethnicity
from a pool of other available protected attribute). Let the protected attribute takes
values from the set of m values denoted by [m]. The number of distinct protected
attribute values is finite and much smaller than the size of X .2 Furthermore, let
d : X × X → R+ be a distance metric defined on X that measures the dissimilarity
between features. Additionally, we are also given a vector τ = {τ�}m�=1, where each
component τ� satisfies 0 ≤ τ� ≤ 1

k . The τ vector denotes the fraction of data points
from the protected attribute value � ∈ [m] required to be present in each cluster. An
end-user can specify an m-dimensional vector with values between 0 and 1/k as the
fairness target. Also, let us denote X� and n� as set and number of points respectively
corresponding to the points having protected attribute value � in X . Let I(.) denote
the indicator function. Vanilla (an unconstrained) clustering algorithm determines the
cluster centers to minimize the following clustering objective cost:

Definition 1 (Objective cost). Given p > 0, the cluster objective cost with respect to
the metric space (X , d) is defined as:

1 Throughout the paper, for simplicity, we call a k-clustering algorithm as a clustering algorithm.
2 Otherwise, the problem is uninteresting as the balanced clustering may not be feasible.
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L p(X ,C, φ) =
⎛
⎝∑

xi∈X

∑
j∈[k]

I(φ(xi ) = j)d(xi , c j )
p

⎞
⎠

1
p

(1)

Different values of p will result in different objective costs: p = 1 for k-median,
p = 2 for k-means, and p = ∞ for k-center. We aim to develop an algorithm that
minimizes the objective cost irrespective of p while ensuring fairness.

Group Fairness Notions: We begin with first defining the most popular notion of
group fairness Balance. The notion was first put forward for binary protected groups
by Chierichetti et al. (2017) and extended to multi-valued group by Bera et al. (2019);
Ziko et al. (2021). The balanced fairness notion is defined as follows.

Definition 2 (Balance). (Chierichetti et al. 2017) The Balance of an assignment func-
tion φ is defined as

Balance(φ) = min
j∈[k]

(
min

(∑
xi∈X I(φ(xi ) = j)I(ρ(xi ) = a)∑
xi∈X I(φ(xi ) = j)I(ρ(xi ) = b)

))
∀a, b ∈ [m]

(2)

Balance is computed by finding the minimum possible ratio of one value of the
protected attribute (say, male) to the other value of the protected attribute (say, female)
over all clusters. Any fair clustering algorithm using Balance as a measure of fairness
would produce clusters that maximize the Balance. Note that the maximum Balance
achieved by an algorithm is equal to the ratio of points available in the dataset having a
and b as the protected attribute values and is known as dataset ratio. Further, the clusters
maximizing the Balance are not unique. Bera et al. (2019) proposed a generalization
of the Balance notion to multi-valued protected attributes in terms of cluster sizes by
providing the lower and upper bounds on the number of points from each group in
every cluster.

Definition 3 (Minority protection). A clustering C is τ - MP if

∑
xi∈X

I(φ(xi )= j)I(ρ(xi )=�)≥τ�

∑
xi∈X

I(φ(xi )= j) ∀� ∈ [m],∀ j ∈ [k]

(3)

Definition 4 (Restricted dominance) A clustering C is τ - RD if

∑
xi∈X

I(φ(xi )= j)I(ρ(xi )=�)≤τ�

∑
xi∈X

I(φ(xi )= j) ∀� ∈ [m],∀ j ∈ [k] (4)

We remark here that minority protection provides the lower bound on the number
of points from each protected group in every cluster, whereas restricted dominance
provides the upper bound. For binary protected attribute with τa = τb = mina,b

na
nb
,

satisfying τ -RD and τ -MP together is same as obtaining a Balance property. We now
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define our proposed τ -ratio fairness notion, which ensures that each cluster is assigned
at least a predefined fractionof points for eachprotected attribute value. τ -ratio requires
only priorly known dataset composition, which helps achieve polynomial-time algo-
rithms.
Definition 5 (τ -ratio fairness) An assignment function φ satisfies τ -ratio fairness if

∑
xi∈X

I(φ(xi )= j)I(ρ(xi )=�)≥τ�

∑
xi∈X

I(ρ(xi )=�) ∀ j ∈ [k] and ∀� ∈ [m] (5)

Our first theorem (Theorem 4) in Sect. 5 shows that an algorithm satisfying τ -ratio
fairness notion produces a set of clusters that maximizes the Balance. In particular,
when τ� = 1

k , then τ -ratio fairness achieves the Balance equal to the dataset ratio.
We also show that a maximally balanced cluster need not imply τ -ratio fairness for
arbitrary τ (Lemma 6 in Sect. 5). Hence τ -ratio is a more generalized fairness notion.
We now define the fair clustering problem for the proposed fairness notion:

Definition 6 (τ -ratio fair clustering problem) The objective of a τ -ratio fair clustering
problem I is to estimate C = (C, φ) that minimizes the objective cost L p(X ,C, φ)

subject to the τ -ratio fairness guarantee. The optimal objective cost of a τ -ratio fair
clustering problem is denoted by OPT clust (I).

A solution to this problem is to rearrange the points (learn a new φ) with respect
to the cluster centers obtained from a vanilla clustering algorithm to guarantee τ -ratio
fairness. The problem of rearrangement of points with respect to the fixed centers is
known as the fair assignment problem, which we define below:

Definition 7 (τ -ratio fair assignment problem)Given X andC = {c j }kj=1, the solution
to the fair assignment problem T produces an assignment φ : X → [k] that ensures
τ -ratio fairness and minimizes L p(X ,C, φ). The optimal objective function value to
a τ -ratio fair assignment problem is denoted by OPT assign(T ).

However, this transformation of the fair clustering problem I into a fair assignment
problem T should ensure that OPT assign(T ) is not too far from OPT clust (I). The
connection between fair clustering and fair assignment problem is established through
the following lemma.

Lemma 1 Let I be an instance of a fair clustering problem and T an instance of τ -
ratio fair assignment problem after applying an α-approximate solution to the vanilla
clustering problem, then OPT assign(T ) ≤ (α + 2)OPT clust (I).

Proof LetC be the cluster centers obtained by running a vanilla clustering algorithmon
instance I. We prove the lemma by constructing a τ -ratio assignment φ′ that satisfies
L p(X ,C, φ′) ≤ (α + 2)OPT clust (I) 
⇒ OPT assign(T ) ≤ L p(X ,C, φ′) ≤
(α + 2)OPT clust (I).

Construction of φ′: Let (C∗, φ∗) denote the optimal solution to I. Define φ′ as
follows: for every c∗ ∈ C∗, let nrst(c∗) = argminc∈Cd(c, c∗) be the nearest center to
c∗. Then, for every xi ∈ X , define φ′(xi ) = nrst(φ∗(xi )). Then we have the following
two claims:
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Claim 2 φ′ satisfies τ -ratio fairness.

Proof Let the set of points having protected attribute value � in cluster c∗ ∈ C∗ be
n�(c∗). Since (C∗, φ∗) satisfy τ -ratio fairness then using Definition 5 we have

|n�(c
∗)| ≥ τ�n� ∀c∗ ∈ C∗.

Now, for any center c ∈ C belonging to vanilla clustering, we will find the set of
all centers in optimal solution (C∗) that are nearest to c. Let us denote this set by
N (c) = {c∗ ∈ C∗ : nrst(c∗) = c} Then the way φ′ is defined, we have, ∀c:

|{xi ∈ X� : φ′(x) = c}| = | ∪c∗∈N (c) n�(c
∗)|

Now as each center c∗ satisfies τ -ratio fairness, so the union over combined assign-
ments will also satisfy τ -ratio fairness i.e. | ∪c∗∈N (c) n�(c∗)| ≥ n�τ�. ��
Claim 3 L p(X ,C, φ′) ≤ (α + 2)OPT clust (I).

The proof of this claim uses triangle inequality and is exactly same as claim 5 of Bera
et al. (2019). ��

A similar technique of converting fair clustering to a fair assignment problem
was proposed by Bera et al. (2019). However, Bera et al. (2019) proposed a linear
programming-based solution to obtain the Balance fair assignment. Although the solu-
tion is theoretically strong, the algorithm has two issues. Firstly, the time complexity is
high (as seen from the experiments in Sect. 7.4). Secondly, the solution obtained is not
easy to interpret.3 We propose a simple round-robin (easily interpretable) algorithm
for a fair assignment problem with a time complexity of O(kn log(n)).

4 Fair round-robin algorithm for clustering over end (FRACOE)

Fair Round-robin Algorithm for Clustering Over End (FRACOE ) first runs a vanilla
clustering algorithm to produce the initial clusters C = (C, φ). It then makes correc-
tions as follows: The algorithm first checks if τ -ratio fairness is met with the current
allocation φ, in which case it returns φ̂ = φ and Ĉ = C . If the assignment φ violates
the τ -ratio fairness, then the new assignment function φ̂ is computed according to
FairAssignment procedure in Algorithm 2.

Algorithm 2 iteratively allocates the data points concerning each protected attribute
value. To recollect X� and n� denote the set and the number of data points having �

as the protected attribute value, respectively. The algorithm allocates �τ�n�� number
of points4 to each cluster in a round-robin fashion as follows. Let {c1, c2, . . . , ck}
be a random ordering of the cluster centers. At each round t , each center c j picks

3 It is unclear why a certain assignment to a specific cluster helps maintain a fairness guarantee?
4 For the sake of simplicity, we assume τ�n� ∈ N and ignore the floor notation.
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Algorithm 1: τ -FRACOE

Input: set of datapoints X , number of clusters k, fairness requirement vector τ , range of protected
attribute values m, clustering objective norm p

Output: cluster centers Ĉ and assignment function φ̂

1 Solve the vanilla (k, p)-clustering problem and let (C, φ) be the solution obtained.
2 if τ -ratio fairness is met then
3 return (C, φ)

4 else
5 (Ĉ, φ̂) = FairAssignment(C, X , k, τ ,m, p, φ)

6 return (Ĉ, φ̂)

7 end
8 end

Algorithm 2: FairAssignment
Input: cluster centers C , set of datapoints X , number of clusters k, fairness requirement vector τ ,

range of protected attribute values m, clustering objective norm p, assignment function φ

Output: cluster centers Ĉ and assignment function φ̂

1 Fix a random ordering on centers and let the centers are numbered from 1 to k with respect to this
random ordering.

2 Initialize φ̂(xi ) ← 0 ∀xi ∈ X .
3 for � ← 1 to m do
4 n� ← number of datapoints having value of protected attribute �.
5 X� ← set of datapoints having value of protected attribute �.
6 for t ← 1 to τ�n� do
7 for j ← 1 to k do
8 xmin ← argminxi∈X�:φ̂(xi )=0d(xi , c j )

9 φ̂(xmin) = j
10 end
11 end
12 For all xi ∈ X� such that φ̂(xi ) = 0, set φ̂(xi ) = φ(xi )
13 end
14 Recompute the centers Ĉ with respect to the new allocation function φ̂.

15 Return (Ĉ, φ̂).

the point xi of its preferred choice from X� i.e. φ̂(xi ) = j . Once the τ� fraction of
points are assigned to the centers, i.e., after τ�n� number of rounds, the allocation
of remaining data points is set to its original assignment φ. Note that this algorithm
will certainly satisfy τ -ratio fairness as, in the end, the algorithm assures that at least
τ� fraction of points are allotted to each cluster for a protected attribute value �. We
defer to theoretical results to assert the quality of the clusters. The runtime complexity
of Algorithm 2 is O(kn log(n)) as step 4 requires the data points to be sorted in the
increasing order of their distances with the cluster centers.

5 Theoretical results

Our first result provides the relationship between the two notions of fairness, namely
τ -ratio fairness and Balance fairness.
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Theorem 4 Let a and b be two values of a given binary protected attribute, with na and
nb being the total number of data points, respectively. Suppose an allocation returned
by a clustering algorithm satisfies τ -ratio guarantee, then the Balance of the given
allocation is at least τana

nb(1−kτb+τb)
.

Proof Suppose an allocation satisfies τ -ratio fairness then for any cluster C j and
protected attribute value a, we have:

τana ≤
∑
xi∈X

I(φ(xi ) = j)I(ρ(xi ) = a) ≤ na(1 − kτa + τa)

Here, the lower bound comes directly from the fairness definition, and the upper bound
from the fact that all the clusters together will be allocated at least kτana number of
points. The extra points a particular cluster can take are upper bounded by na −knaτa .
Thus, the Balance of the cluster with respect to the two values a and b should follow

∑
xi∈X I(φ(xi ) = j)I(ρ(xi ) = a)∑
xi∈X I(φ(xi ) = j)I(ρ(xi ) = b)

≥ τana
nb(1 − kτb + τb)

��
We remark here that the notion of Balance is concerned with allocating the points

to clusters so that each cluster satisfies the dataset ratio. It is easy to see from the below
corollary that τ� = 1/k for all protected attribute values � ∈ [m] implies dataset ratio.

Corollary 5 For τa = τb = 1
k , τ -ratio fairness guarantee ensures the dataset ratio for

all the clusters.

This result follows trivially by replacing the attribute constraints in Theorem 4.
However, the converse is not true. That is, a clustering satisfying Balance (equal to
dataset ratio) can result in arbitrary bad τ -ratio fairness. Thus, τ -ratio fairness strictly
generalizes Balance as follows.

Lemma 6 There exists a fair clustering instance and an allocation of points such that
the allocation satisfies the Balance property and has arbitrarily low τ -ratio fairness.

Proof Consider a fair clustering instance with k = 2 and let the protected attribute
be binary; call them a and b. Further, let na = nb = n/2. It is easy to see that the
dataset ratio is 1. Consider the following allocation that satisfies the dataset ratio for
each cluster. Cluster 1 is assigned two points, one belonging to each protected attribute
value, and the remaining points are allocated to cluster 2. Note that for this allocation,
τa = τb = 1/na = 1/nb = 2/n. This value can be arbitrarily small for a large value
of n. ��

Along with Theorem 4, Lemma 6 shows that τ -ratio is a more general fairness
notion than Balance. Apart from the above technical difference, these fairness notions
differ conceptually in how they induce fair clustering. The Balance property requires a
certain minimum representation ratio guarantee to hold in each cluster. It does not put
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any additional constraint on the relative size of each cluster. This may lead to (poten-
tially) skewed cluster sizes. Under τ -ratio the algorithm can appropriately control the
minimum number of points assigned to each cluster. We now provide the theoreti-
cal guarantees of FRACOE with respect to τ -ratio fairness. We begin by providing
guarantees for a maximally balanced clusters i.e., τ� = 1/k ∀� ∈ [m].

5.1 Guarantees for FRACOE for �={1/k}ml=1

Theorem 7 Let k = 2 and τ� = 1
k for all � ∈ [m]. An allocation returned by FRACOE

guarantees τ -ratio fairness and satisfies a 2-approximation guarantee to an optimal
fair assignment up to an instance-dependent additive constant.

Proof Correctness and Fairness: Clear from the construction of the algorithm.
Proof of (approximate) Optimality:We will prove 2-approximation with respect to
each value � of protected attribute separately. In particular, we show that FRACOE (T )
≤ 2OPT assign(T ) + β, where FRACOE (T ) andOPT assign(T ) denote the objective
value of the solution returned by FRACOE and optimal assignment algorithm, respec-
tively, on given instance T = (C, X). And β := 2 supx,y∈X d(x, y) is the diameter of
the feature space. We begin with the following useful definition.

Definition 8 Let C1 and C2 represent the set of points assigned to c1 and c2 by optimal
assignment algorithm.5 The i th round (i.e. assignments gi to c1 and hi to c2) of
FRACOE is called

• 1-bad if exactly one of 1) gi /∈ C1 or 2) hi /∈ C2 is true, and
• 2-bad if both 1) and 2) above are true.

Furthermore, a round is called bad if it is either 1-bad or 2-bad and called good
otherwise.

Let all incorrectly assigned points in a bad round be called bad assignments.We use
the following convention to distinguish between different bad assignments. If gi /∈ C1
holds, we refer to it as type 1 bad assignment, i.e., if point gi is currently assigned
to C1 but should belong to optimal clustering C2. Similarly, if hi /∈ C2 holds, it is a
type 2 bad assignment, i.e., hi should belong to optimal clustering C1 but is currently
assigned to c2. Hence a 2-bad round results in 2 bad assignments, one of each type. In
summary, each 1-bad round can have either type 1 or type 2 bad assignment and each
2−bad round will have two bad assignments each of type 1 and type 2. Finally, let B
be the set of all bad rounds and A be the set of all bad assignments.

Definition 9 (Complementary Assignment) An assignment z ∈ A of type (3 − t) is
called the complementary assignment of w ∈ A of type t if,

1) w and z are allocated in same round (i.e. in a 2-bad round) or
2) if w and z are allocated in i th and j th 1-bad rounds respectively with i < j ,

then z is the first bad assignment which has not been yet paired with a complementary
assignment.

5 Note that an optimal fair allocation need not be unique. Our result holds for any optimal fair allocation.
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Lemma 8 If n� is even, every bad assignment in the allocation returned by FRACOE

has a complementary assignment. If n� is odd, at most one bad assignment will be left
without a complementary assignment.

Proof Let B = B1 ∪ B2, where Bt is a set of t-bad rounds. Note that the claim is
trivially true if B1 = ∅. Hence, let |B1| > 0 and write B1 = B1,1 ∪ B1,2. Here
B1,t is a 1-bad round that resulted in type t bad assignment. Let H1,t be the set of
good assignments of type t (i.e., correctly assigned to the center ct ) allocated in 1-bad
rounds.

When n� is even, |C1| = |C2|we have |B1,2|+ |H1,1| = |B1,1|+ |H1,2|. This is true
because one can ignore good rounds and 2-bad rounds as every 2-bad round can be
converted into a good round by switching the assignments. Since in each 1-bad round,
FRACOE results in exactly one bad assignment and exactly one good assignment, we
have |H1,t | = |B1,(3−t)|. Together, we have |B1,1| = |B1,2|+|H1,1|

2 = |B1,2|. When n�

is odd, we might have one additional point left in the last 1-bad round without any
complementary assignment. This completes the proof of the lemma. ��

We will bound the optimality of 1-bad rounds and 2-bad rounds separately.
Bounding 1-badrounds:
When n� is even, fromLemma 8, there is an even number of 1-bad rounds; two for each
complimentary bad assignment. Let the 4 points of corresponding two 1-bad rounds
be Gi : (x, hi ) and G

′
i : (gi , y) as shown in Fig. 1a. Note that x ∈ C1 and y ∈ C2 i.e.

both are good assignments and gi /∈ C1, hi /∈ C2 are bad assignments. Now, consider
an instance Ti = {C, {x, hi , gi , y}}, then OPT assign(Ti ) = d(x, c1) + d(hi , c1) +
d(gi , c2) + d(y, c2). We consider, without loss of generality, that the round Gi takes
place before G

′
i in theexecution of FRACOE . For the other case, the proof is similar.

Fig. 1 Different cases for k = 2. a Shows two 1-bad rounds with four assignments such that x , y are good
assignments and allocated to the optimal center by algorithm, whereas gi and hi are bad assignments with
an arrow showing the direction to the optimal center from the assigned center. b Shows four bad points such
that gi , g

′
i are assigned to c1 but should belong to c2 in optimal clustering (the arrow depicts the direction

to optimal center). Similarly hi , h
′
i should belong to c1 in optimal clustering
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First note that sinceFRACOE assigns hi to cluster 2while both gi and ywere available,
we have

d(hi , c2) ≤ d(gi , c2) and d(hi , c2) ≤ d(y, c2) (6)

So,

FRACOE (Ti )
= d(x, c1)+d(hi , c2)+d(gi , c1)+d(y, c2)

≤ d(x, c1)+d(hi , c2)+d(gi , c2)+d(c1, c2)+d(y, c2) (triangle inequality)

≤ d(x, c1)+d(hi , c2)+d(gi , c2)+d(hi , c2)+d(hi , c1)+d(y, c2)

≤ d(x, c1)+d(y, c2)+d(gi , c2)+d(gi , c2)+d(hi , c1) + d(y, c2) ( Eqn. 6)

≤ d(x, c1) + 2d(y, c2) + 2d(gi , c2) + d(hi , c1)

≤ 2d(x, c1) + 2d(y, c2) + 2d(gi , c2) + 2d(hi , c1)

≤ 2 OPT assign(Ti )

If n� is odd, all the other rounds can be bounded using the above cases except one
extra 1-bad round. Let the two points corresponding to this round Gi be (gi , y). Thus,
FRACOE (Ti ) ≤ 2OPT assign(Ti ) + β. Here β=2 supx,y∈X d(x, y) is the diameter of
the feature space.
Bounding 2-badrounds: First, assume that there is an even number of 2-bad rounds.
In this case consider the pairs of consecutive 2-bad rounds as Gi : (gi , hi ) and
G

′
i = (g′

i , h
′
i ) with G

′
i bad round followed by Gi (Fig. 1b). Note that gi , g′

i ∈ C2 and
hi , h′

i ∈ C1. Now consider instance Ti = {C, {gi , g′
i , hi , h

′
i }}, then,OPT assign(Ti ) =

d(hi , c1) + d(h′
i , c1) + d(gi , c2) + d(g′

i , c2). As a consequence of the allocation rule
used by FRACOE we haves

d(gi , c1) ≤ d(hi , c1), d(g′
i , c1) ≤ d(h′

i , c1), d(hi , c2) ≤ d(g′
i , c2) and

d(hi , c2) ≤ d(h′
i , c2).

(7)

Furthermore,

FRACOE (Ti ) = d(gi , c1) + d(g′
i , c1) + d(hi , c2) + d(h′

i , c2)

≤ d(hi , c1) + d(h′
i , c1) + d(g′

i , c2) + d(h′
i , c2) (using Eqn. 7)

≤ d(hi , c1) + d(h′
i , c1) + d(g′

i , c2)

+ d(h′
i , c1) + d(c1, c2) (triangle inequality)

≤ d(hi , c1) + d(h′
i , c1) + d(g′

i , c2) + d(h′
i , c1) + d(gi , c1)

+ d(gi , c2) (triangle inequality)

≤ d(hi , c1) + d(h′
i , c1) + d(g′

i , c2) + d(h′
i , c1) + d(hi , c1)

+ d(gi , c2) (Using Eqn. 7)

≤ 2d(hi , c1) + 2d(h′
i , c1) + d(gi , c2) + d(g′

i , c2)

≤ 2d(hi , c1) + 2d(h′
i , c1) + 2d(gi , c2) + 2d(g′

i , c2)

≤ 2OPT assign(Ti )
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If there are odd number of 2-bad rounds then, let G = (gi , hi ) be the last 2-bad
round. It is easy to see that FRACOE (Ti ) −OPT assign(Ti ) = d(gi , c1) + d(hi , c2) −
d(gi , c2) − d(hi , c1) ≤ d(gi , c1) + d(hi , c2) ≤ β. Thus,

FRACOE (T ) =
{∑r/2

i=1 FRACOE (Ti ) if even no. of 2 − bad rounds∑�r/2�
i=1 FRACOE (Ti ) + β Otherwise

≤ 2
�r/2�∑
i=1

OPT assign(Ti ) + β = 2OPT assign(T ) + β

Here, r is the number of 2-bad rounds. and β=2 supx,y∈X d(x, y) is the diameter of
the feature space. ��
Corollary 9 For k = 2 and τ� = 1

k for all � ∈ [m], we have FRACOE(I)
≤ (2(α + 2)OPT clust (I) + β)-approximate where α is approximation factor for
vanilla clustering problem for any given instance I.

The above corollary is a direct consequence of Lemma 1 and the fact that
FRACOE (Ĉ, X ) ≤ FRACOE (C, X ). Here, C, Ĉ are centers of vanilla clustering and
fair clustering obtained by FRACOE respectively. The result can easily be extended
for k clusters to directly obtain 2k−1-approximate solution with respect to τ -ratio fair
assignment problem.

Theorem 10 When τ� = 1
k for all � ∈ [m], an allocation returned by FRACOE for

given centers and data points is τ -ratio fair and satisfies 2k−1-approximation guar-
antee with respect to an optimal τ -ratio fair assignment up to an instance-dependent
additive constant.

Proof In the previous proof, we considered two-length cycles. Two 1-bad assignments
resulted in one type of cycle, and one 2-bad assignment resulted in another type of
cycle. When the number of clusters is greater than two, then any 2 ≤ q ≤ k length
cycles can be formed. Without loss of generality, let us denote {c1, c2, . . . , cq} as the
centers that are involved in forming such cycles. Further, denote by set X j

i to be the
set of points allotted to cluster i by FRACOE but should have been allotted to cluster
j in an optimal fair clustering. The q length cycle can then be visualized in Fig. 2 with
an arrow pointing towards the optimal cluster. As the cycle is formed with respect to
these points, we have |Xq

1 | = |X1
2| = . . . = |Xq−1

q |. The cost by FRACOE algorithm
is then given as:

q∑
i=2

∑

x∈Xi−1
i

d(x, ci ) +
∑

x∈Xq
1

d(x, c1)

≤ 2

⎛
⎜⎝

∑

x∈X1
2

d(x, c1) +
∑

x∈Xq
1

d(x, c2) + β

⎞
⎟⎠ +

q∑
i=3

∑

x∈Xi−1
i

d(x, ci )
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Fig. 2 Visual representation of set X j
i and cycle of length q for Theorem 10. The arrow represents the

direction from the assigned center to the center in optimal clustering. Thus, for each set X j
i we have ci as

the currently assigned center and c j as the center in optimal assignment

≤ 2(
∑

x∈X1
2

d(x, c1) + β) + 22

⎛
⎜⎝

∑

x∈X2
3

d(x, c2) +
∑

x∈Xq
1

d(x, c3) + β

⎞
⎟⎠

+
q∑

i=4

∑

x∈Xi−1
i

d(x, ci )

≤ 2q−1

⎛
⎜⎝

q∑
i=2

∑

x∈Xi−1
i

d(x, ci−1) +
∑

x∈Xq
1

d(x, cq)

⎞
⎟⎠ + 2qβ

Here, the first inequality follows by exchanging the points in X1
2 and X

q
1 usingTheorem

7. As the maximum length cycle possible is k, we straight away get the proof of 2k−1-
approximation. ��
Next, in contrast with Theorem 10, which guarantees a 4-approximation for k = 3,
we show that one can achieve a 2-approximation guarantee. The proof of this result
relies on explicit case analysis. As the number of cases increases exponentially with
k, one needs a better proof technique for larger values of k. We leave this analysis as
an interesting future work.

Theorem 11 For k=3 and τ� =
1
k allocation returned by FRACOE with arbitrary cen-

ters and data points is a 2-approximate with respect to optimal τ -ratio fair assignment.

Proof Wewill find the approximation for k = 3using a number of possible caseswhere
one can have a cycle of length three. Let the centers involved in this 3-length cycle be
denoted by ci , c j , and ck . Note that if only one cycle involves these three centers, it
will lead to only constant factor approximation. The challenge is when multiple such
cycles are involved. Unlike k = 2 proof, here we bound the cost corresponding to each
cycle with respect to the cost of another cycle. The three cases shown in Fig. 3 depict
multiple roundswhen the two3-length cycles can be formed. In the figure, if ci is taking
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Fig. 3 Different use cases for 3-length cycle involving k=3 clusters a Case 1: Two-three length cycle pair
(Gi , Hi ) and (G

′
i , H

′
i ) b Case 2: Second possibility of two-three length cycle pair (Gi , Hi ) and (G

′
i , H

′
i ) c

Case 3: Three length cycle pair (Gi ,G
′
i )

a point from c j , it is denoted using an arrow from ci to c j . It can further be shown that
it is enough to consider these three cases. Further, let Ti = {C, {xi , x j , xk, gi , g j , gk}}
and T ′

i = {C, {yi , y j , yk, g′
i , g

′
j , g

′
k}} denote the two cycles.

Case 1: In this case we bound the rounds shown in Fig. 3a. Let, one cycle completes
in rounds Gi , Hi (i.e. using points from Ti ) and another cycle completes in rounds
G ′

i , H
′
i (using points from T ′

i ). Then,

OPT assign(Ti )=d(xi , c j )+d(x j , ck)+d(gk, ck)+d(gi , ci )+d(g j , c j )+d(xk, ci )

OPT assign(T ′
i )=d(yi , c j )+d(y j , ck)+d(g′

k, ck)+d(g′
i , ci )+d(g′

j , c j )+d(yk, ci )

Further,

FRACOE (Ti )=d(xi , ci )+d(x j , c j )+d(gk, ck)+d(gi , ci )+d(g j , c j )+d(xk, ck)

≤ d(g′
i , ci )+d(g′

j , c j )+d(gk, ck)+d(gi , ci )+d(g j , c j )+d(xk, ck)

Now,

d(xk, ck) ≤ d(xk, ci ) + d(ci , ck) ≤ d(xk, ci ) + d(ci , c j ) + d(c j , ck)

≤ d(xk, ci ) + d(xi , ci ) + d(xi , c j ) + d(x j , c j ) + d(x j , ck)

≤ d(xk, ci ) + d(yk, ci ) + d(xi , c j ) + d(yi , c j ) + d(x j , ck)

Combining the above two, we get:

FRACOE (Ti ) ≤ d(g′
i , ci )+d(g′

j , c j )+d(gk, ck)+d(gi , ci )+d(g j , c j )+d(xk, ci )

+d(yk, ci )+d(xi , c j )+d(yi , c j )+d(x j , ck)
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≤ d(g′
i , ci )+d(g′

j , c j )+d(gk, ck)+d(gi , ci )+d(g j , c j )+d(xk, ci )+d(yk, ci )

+d(xi , c j )+d(yi , c j )+d(x j , ck)+d(y j , ck)+d(g′
k, ck)

FRACOE (Ti ) ≤ OPT assign(Ti ) + OPT assign(T ′
i )

Thus, the cost of each cycle can be bounded by the sum of optimal cost of its own and
the optimal cost of the next cycle. If we take sum over all such cycles, we will get a
2-approximation result plus a constant due to the last remaining cycle.

Case 2: In this case we bound the rounds shown in Fig. 3b. The optimal assignments
will be

OPT assign(Ti )=d(xi , c j )+d(g j , c j )+d(gk, ck)+d(gi , ci )+d(x j , ck)+d(xk, ci )

OPT assign(T
′
i )=d(yi , c j )+d(g′

j , c j )+d(g′
k, ck)+d(g′

i , ci )+d(y j , ck)+d(yk, ci )

Also, we know that

FRACOE (Ti )=d(xi , ci )+d(g j , c j )+d(gk, ck)+d(gi , ci )+d(x j , c j )+d(xk, ck)

≤ d(g′
i , ci )+d(g j , c j )+d(gk, ck)+d(gi , ci )+d(yk, c j )+d(xk, ck)

≤ d(g′
i , ci )+d(g j , c j )+d(gk, ck)+d(gi , ci )+d(yk, c j )+d(y j , ck)

≤ d(g′
i , ci )+d(g j , c j )+d(gk, ck)+d(gi , ci )+d(yk, ci )+d(ci , c j )

+d(y j , ck)

≤ d(g′
i , ci )+d(g j , c j )+d(gk, ck)+d(gi , ci )+d(yk, ci )+d(xi , ci )

+d(xi , c j )+d(y j , ck)

≤ d(g′
i , ci )+d(g j , c j )+d(gk, ck)+d(gi , ci )+d(yk, ci )+d(xk, ci )

+d(xi , c j )+d(y j , ck)

≤ d(g′
i , ci )+d(g j , c j )+d(gk, ck)+d(gi , ci )+d(yk, ci )+d(xk, ci )

+d(xi , c j )+d(y j , ck)+d(x j , ck)+d(yi , c j )+d(g′
j , c j )+d(g′

k, ck)

Combining the above two, we get:

FRACOE (Ti ) ≤ OPT assign(Ti ) + OPT assign(T ′
i )

Case 3: Here again we will have two allocation rounds namely Gi ,G
′
i as shown in

Fig. 3c. It is easy to see that for this case,

FRACOE (Ti ) ≤ OPT assign(T ′
i )

This completes the proof for k = 3. ��
The following proposition proves that 2-approximation guarantee is tight with

respect to FRACOE algorithm.

Proposition 12 There is an instance with arbitrary centers and data points on which
FRACOE achieves a 2-approximation with respect to optimal assignment.
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Fig. 4 The worst case example for fair clustering instance

Proof The worst case for any fair clustering instance is when the center, rather than
choosing the points from its own optimal set, prefers points from sets of other centers.
One example is depicted in Fig. 4. In this example, we consider k centers. For each
of these centers, we have a set of n optimal points denoted by Xi for center ci at a
negligible distance (say zero) except the last center ck . The set of optimal points for
center ck is located at a distance �= (k − 1)δ where δ is the distance between all the
centers. Now we will approximate the tightest bound on the cost. The optimal cost
will sum up as

OPT assign =
∑
xi∈X1

d(xi , c1) +
∑
xi∈X2

d(xi , c2) + . . . +
∑
xi∈Xk

d(xi , ck)

= 0 + 0 + 0 + n�

Suppose one uses round-robin-based FRACOE to solve the assignment problem.
Then at the start of the t = 0th round, each set Xi has n points. Since � is quite large
compared to δ so ck will prefer to choose points from the set of the previous center
ck−1. The remaining centers will take points from their respective set of optimal points
as those points will have the least cost. Such assignments will continue until all the
points in set Xk−1 get exhausted. Thus the cost after n/2 rounds will be

Cost1 =
∑
xi∈X1

d(xi , c1) + . . . +
∑

xi∈Xk−1

d(xi , ck−1) +
∑

xi∈Xk−1

d(xi , ck)

= 0 + 0 + 0 + nδ

2

Now, as all the points in set Xk−1 are exhausted, both ck−1 and ck will prefer to choose
the points from set Xk−2. The other centers will continue to choose the points from
their respective optimal sets. It should be noted that now n

2 points are left with the
center Xk−2 that are being distributed amongst 3 clusters. Such assignments will take
place for the next n

6 rounds, and after that, the set Xk−2 will get exhausted. The cost
incurred to different centers in such an assignment will be
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Cost2 =
∑
xi∈X1

d(xi , c1) + . . . +
∑

xi∈Xk−2

d(xi , ck−2) +
∑

xi∈Xk−2

d(xi , ck−1)

+
∑

xi∈Xk−2

d(xi , ck)

= nδ

6
+ 2nδ

6

= 3nδ

6
= nδ

2

It is easy to see that the additional cost that is incurred at each phase will be nδ
2

until the only left-out points are from Xk . The total number of such phases will be
k − 1. Thus, exhibiting a cost of n(k−1)δ

2 . Further, at the last round all the points from
Xk need to be equally distributed amongst X1, X2, . . . , Xk , incurring the total cost of
((k − 1)δ +�+ (k − 2)δ +�+ . . .+ δ +�+�) nk . Thus, the total cost by FRACOE

is given as:

CostFRACOE = n(k − 1)δ

2
+ ((k − 1)δ + � + (k − 2)δ + � + . . . + δ + � + �)

n

k

= n(k − 1)δ

2
+ nk(k − 1)δ

2k
+ nk�

k
= n(k − 1)δ + n�

= 2n�

��
Research gap: Theorem 10 suggests that the approximation ratio to the number

of clusters k can be exponentially bad. However, our experiments show—agreeing
with our finding on small values of k(≤ 3)—that the performance of FRACOE does
not degrade with k. To assert a 2-approximation bound for general k, a novel proof
technique is needed, and we leave this analysis as an interesting future work. We
conclude with the following conjecture.

Conjecture 13 FRACOE is an 2-approximate with respect to optimal τ -ratio fair
assignment problem for any value of k.

We note that FRACOE uses vanilla k-means/k-median algorithm followed by one
round of fair assignment procedure. It is left to show that the output of the returned by
the FRACOE algorithm indeed converges to approximately optimal τ -ratio allocation
in finite time. Convergence guarantees of vanilla clustering algorithms are well known
in the literature (Bottou and Bengio 1994; Kalyanakrishnan 2016; Krause 2016). As a
fair assignment procedure performs corrections for all available data points only once.
Thus, FRACOE is bound to converge leading us to the following lemma.

Lemma 14 FRACOE algorithm converges.
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5.2 Guarantees for FRACOE for general �

Given an instance T , centers C , and set of points X , we start with a simple obser-
vation that the problem of solving τ -ratio fair assignment can be divided into two
subproblems:

1. Solving optimal 1/k-ratio fair assignment problem on subset of points X1 ∈ X
such that |X1| = ∑

�∈[m] kτ�n�.
2. Solving optimal fair assignment problem on X2 ∈ X\X1 without any fairness

constraint.

Let us denote the first instance by T 1/k and second instance with T 0, i.e. T 1/k =
{X1,C, τ } with τ�= 1/k and T 0 = {X2,C, τ } with τ�= 0 for all � ∈ [m].
Lemma 15 For any given fair assignment instance T on dataset X with centers C,
there exists a partition of X into X1 and X2 and corresponding fair assignment
instances T 1/k and T 0 with τ� = 1/k and τ� = 0 for all � ∈ [m] respectively
such that

OPT assign(T ) = OPT assign(T 1/k) + OPT assign(T 0).

Proof Let Opt be an optimal assignment of data points in X for fair clustering
instance T . To construct X1 and X2, assign τ�n� points from each cluster j in Opt
to X1 and the remaining points to X2. If there is any cluster that is assigned exactly∑m

�=1 τ�n�, then all of its point will be moved to X1. Therefore, we will precisely
have, |X1| = ∑k

j=1
∑m

�=1 τ�n� and |X2| = |X | − |X1|. The existence of X1, X2

follows from the feasibility condition of Opt. Further define the OPT assign(T )|X1

and OPT assign(T )|X2 to be the optimal cost by Opt on sets X1 and X2 respectively.
Consider the following fair assignment instances,T 1/k = {X1,C, τ }with τ� = 1/k

for all � ∈ [m] and T 0 = {X2,C, τ } with τ� = 0 for all � ∈ [m]. Let us further
denote the points in X1 with a protected attribute value � as {x1i , x2i , . . . , xki }τ�n�

i=1 .

Thus, x j
i denote the xi point allocated to cluster center c j by optimal assign-

ment on instance T . We will now prove the following: OPT assign(T )|X1 =
OPT assign(T 1/k). If the optimal assignment on T 1/k results in the same assign-
ment as T , we have OPT assign(T )|X1 = OPT assign(T 1/k) as stated. Otherwise,
there is a sequence of assignments (a cycle) denoted by {xα1

i1
, xα2

i2
, . . . , x

αq−1
iq−1

, xα1
iq

}
such that the optimal assignment on T 1/k is in a way that the point x

α j
i1

is

assigned to center cα j+1 for j ∈ {1, 2, . . . , q − 1} and x
αq
i1

to center cα1 such

that OPT assign(T )|X1 > OPT assign(T 1/k). Such a cycle however will contra-
dict the optimality of Opt .6 Following the similar arguments, it can be shown that
OPT assign(T )|X2 = OPT assign(T 0). ��

Let X f
1 be the set of points allocated in line number 4 by Algorithm 2. Further,

let T 1/k
f be an instance to τ -ratio fair assignment problem with τ = {1/k}m�=1 and

6 This cycle would have resulted in further reduction of cost with respect to the points in the cycle.
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Fig. 5 Set of points X divided into instance T 1/k and T 0. Further the instances T 1/k
f and T 0

f are depicted
in the same set of points X leading to formation of regions P, Q, R

consisting of points X f
1 and T 0

f be instance when τ={0}m�=1 by FRACOE (depicted in
Fig. 5). Then, our next lemma shows that the partition returned by FRACOE is the
optimal one.

Lemma 16 OPT assign(T ) = OPT assign(T 1/k
f ) + OPT assign(T 0

f ).

Proof Let optimal fair assignment on the set of points X create a partition along the
axis given by line �1 in Fig. 5. This partition gives us two set of instances T 1/k , T 0 (as
described earlier). Further, FRACOE achieves a partition along axis given by line �2

denotedbyT 1/k
f ,T 0

f .NowregionQ contains the points in the overlapofT 1/k andT 1/k
f .

As we are talking about the optimal assignment problem, these points will be assigned
to the samecenters; hence,we can ignore these points for further analysis. Let the points
allocated to any center c j in T 1/k

f by FRACOE in set R be R j = {x1, x2, x3, . . . , xm j }
and points allocated to c j in partition P be Pj = {y1, y2, y3, . . . , ym j }. Let g j be
a mapping function from R j → Pj which maps any point xi ∈ R j assigned to

center j with T 1/k
f to some point yi ∈ Pj assigned to same center when partition

under consideration is T 1/k . Then, we haveOPT assign(T 1/k
f ) ≤ FRACOE (T 1/k

f ) =∑k
j=1

∑m j
i=1 d(xi , c j ) ≤ ∑k

j=1
∑m j

i=1 d(g j (xi ), c j ) = ∑k
j=1

∑m j
i=1 d(yi , c j ) =

OPT assign(T 1/k). This is because, for each xi ∈ R j , ∃yi ∈ Pj such that despite point
g(xi ) being available to center c j , FRACOE chose the point xi . As other points have
no such constraint, we have, OPT assign(T 0

f ) ≤ OPT assign(T 0). Together we get,
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OPT assign(T 1/k
f )+OPT assign(T 0

f ) ≤ OPT assign(T 1/k)+OPT assign(T 0) for any

partitionT 1/k andT 0. Thus,OPT assign(T ) = OPT assign(T 1/k
f )+OPT assign(T 0

f ).
��

Theorem 17 For k=2, 3 and for any given τ vector with τ� ∈ [0, 1] for all � and∑
� τ� ≤ 1, an allocation returned by FRACOE guarantees τ -ratio fairness and

satisfies (2(α + 2)OPT clust ) approximation guarantee on clustering objective with
respect to an fair clustering problem where α is the approximation factor for vanilla
clustering problem.

Proof With the help ofLemma15 the cost ofFRACOE on instanceT f can be computed
as,

FRACOE (T ) = FRACOE (T 1/k
f ) + FRACOE (T 0

f ) (8)

Now, from Sect. 5.1, FRACOE (T 1/k
f ) ≤ 2OPT assign(T 1/k

f ).

Also, as T 0
f is solved for τ={0}m�=1 i.e. assignment is carried solely on the basis of

k-means clustering, we have FRACOE (T 0
f ) = OPT assign(T 0

f ) ≤ 2OPT assign(T 0
f ).

Equation8 becomes,

FRACOE (T ) ≤ 2OPT assign(T 1/k
f ) + 2OPT assign(T 0

f )

≤ 2OPT assign(T ) (using Lemma 15)

≤ 2(α + 2)OPT clust (I) (Using Lemma 1)

��

6 Fair round robin algorithm for clustering (FRAC): a heuristic
approach

Wenowpropose another in-processing algorithm, a general version ofFRACOE where
the fairness constraints are satisfied at each allocation round: Fair Round-Robin Algo-
rithm for Clustering FRAC (described in Algorithm 3). FRAC runs a fair assignment
problem at each iteration of a vanilla clustering algorithm. This may lead to the shuf-
fling of points, affecting the position of next-step cluster centers. Also, modifying
allocation does not preserve the convergence guarantee of the vanilla clustering algo-
rithm. Thus, making the theoretical analysis of FRAC to be really hard. However, in
experiments, we see that FRAC performs better than FRACOE on a wide range of
real-world datasets.

We experimentally show the convergence of both FRAC and FRACOE on real-
world datasets. We also show that FRAC achieves the best objective cost among all
the available algorithms in the literature. These empirical results suggest that either
the worst-case instances for FRAC are unrealistic or a significantly different proof
technique is needed to show the convergence guarantee.We leave this as an interesting
future direction. As both FRACOE and FRAC solve the fair assignment problem
through vanilla clustering problem, one can use them to find fair clustering for center-
based approaches, i.e., k-means and k-median.
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Algorithm 3: τ -FRAC
Input: set of datapoints X , number of clusters k, fairness requirement vector τ , range of protected

attribute m, clustering objective norm p
Output: cluster centers C and assignment function φ

1 Choose the random centers as C
2 while UntilConvergence do
3 for each xi ∈ X do
4 φ(xi ) = argmin j∈[k]d(xi , c j )

5 end
6 (C, φ) = FairAssignment(C, X , k, τ,m, p, φ)
7 end

7 Experimental result and discussion

We validate the performance of the proposed algorithms across many benchmark
datasets and compare them against the SOTA approaches. We observe in Sect. 7.3.1
that the performance of FRAC is better than FRACOE in terms of objective cost. It is
also evident that FRAC applies fairness constraints after each round.

The benchmarking datasets used in the study are

• Adult7 (Census)- The data set contains information of 32,562 individuals from
the 1994 census, of which 21,790 are males, and 10,771 are females. We
choose five attributes as the feature set: age, fnlwgt, education_num, capital_gain,
hours_per_week. The binary-valued protected attribute is sex, consistentwith prior
literature (Chierichetti et al. 2017; Bera et al. 2019; Backurs et al. 2019; Ziko et al.
2021). The dataset ratio is 0.49.

• Bank8- The dataset consists of marketing campaign data of a Portuguese bank. It
has data of 41,108 individuals, of which 24,928 are married, 11,568 are single, and
4612 are divorced. We choose six attributes as the feature set: age, duration, cam-
paign, cons.price.idx, euribor3m, nr.employed. The ternary-valued feature ‘martial
status’ is chosen as the protected attribute to be consistent with prior literature,
resulting in a Balance of 0.18 (Chierichetti et al. 2017; Bera et al. 2019; Backurs
et al. 2019; Ziko et al. 2021).

• Diabetes9- The dataset contains clinical records of 130UShospitals over ten years.
There are 54,708 and 47,055 hospital records of males and females, respectively.
Consistent with the prior literature, only two features: age, time_in_hospital are
used for the study (Chierichetti et al. 2017). Gender is treated as the binary-valued
protected attribute yielding a Balance of 0.86.

• Census II10- It is the largest dataset used in this study containing 2,458,285 records
from of US 1990 census, out of which 1,191,601 are males, and 1,266,684 are
females. We chose 24 attributes commonly used in prior literature for this study

7 https://archive.ics.uci.edu/ml/datasets/Adult
8 https://archive.ics.uci.edu/ml/datasets/Bank+Marketing
9 https://archive.ics.uci.edu/ml/datasets/Diabetes+130-US+hospitals+for+years+1999-2008
10 https://archive.ics.uci.edu/ml/datasets/US+Census+Data+%281990%29
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(Bera et al. 2019; Ziko et al. 2021). Sex is the binary-valued protected attribute.
The dataset ratio is 0.94.

The dataset characteristics are summarized in Table 1. We compare the application
of FRAC and FRACOE to k-means and k-median against the following baseline and
SOTA approaches

• Vanilla k-means: An Euclidean distance-based k-means algorithm that does not
incorporate fairness constraints

• Vanilla k-median: An Euclidean distance-based k-median algorithm that does not
incorporate fairness constraints.

• Bera et al. (2019): The approach solves fair clustering through an LP formulation.
Fairness is added as an additional constraint in the LP by bounding the minimum
(minority protection, see Definition 3) and maximum (restricted dominance, see
Definition 4) fraction of points belonging to the particular protected group in each
cluster. Due to the high computational complexity of the k-median version of the
approach, we restrict the comparison to the k-means version. Furthermore, the
algorithm fails to converge within a reasonable amount of time when the number
of clusters is greater than 10 for larger datasets.

• Ziko et al. (2021): This approach formulates a regularized optimization function
incorporating objective cost and fairness error. It does not allow the user to give
an arbitrary fairness guarantee but computes the optimal trade-off by tuning a
hyper-parameter λ. We compare against both the k-means and k-median versions
of the algorithm. We observe that the hyper-parameter λ is extremely sensitive to
the datasets and the number of clusters. Further, tuning this hyper-parameter is
computationally expensive. We were able to tune the value of λ in a reasonable
amount of time only for Adult and Bank datasets for k-means clustering on varying
numbers of clusters (called tuned version). Due to the added complexity of k-
medians, we could fine-tune λ only for the Adult dataset. For the other cases, we
have used the hyper-parameter value reported by Ziko et al. (we refer to this as
Ziko et al. (2021) (untuned) version). In the untuned version, we use the same
value across a varying number of cluster centers. The paper does not report any
results for the Diabetes dataset; we have chosen the best λ value over a single run
of fine-tuning. This value is used across all experiments related to the Diabetes
dataset.

• Backurs et al. (2019): This approach computes the fair clusters using fairlets in an
efficient manner and is the extension of Chierichetti et al. (2017). This approach
can only be integrated with k-median clustering. Further, we could not compare
against k-median version of Chierichetti et al. (2017) due to high computational
(O(n2)) and space complexities. We offset this comparison using Backurs et al.
(2019) that outperforms Chierichetti et al. (2017).

We use the following popular metrics in the literature to measure the different
approaches’ performance.

• Objective Cost: We use the squared Euclidean distance (p = 2) as the objective
cost to estimate the cluster’s compactness (see Definition 1).

• Balance: The Balance is calculated using Definition 2
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Fig. 6 The plot in the first row shows the variation in evaluation metrics for k=10 clusters. The objective
cost is scaled against the vanilla objective cost. For Ziko et al. (2021), the λ values for k-means and k-median
are taken to be the same as in their paper. The second row comprises plots for the k-median setting on the
same k value. It should be noted that Backurs et al. (2019) do not work for the Bank dataset, which has a
ternary valued protected group. The target Balance of each dataset is evident from the plot’s axes. (Best
viewed in color) (Color figure online)

• Fairness Error (Ziko et al. 2021) It is the Kullback–Leibler (KL) divergence
between the required protected group proportion τ and achieved proportion within
the clusters:

FE(C) =
∑
C∈C

∑
�∈[m]

(
−τ� log

(
q�

τ�

))
where q� =

(∑
xi∈C I(ρ(xi ) = �)∑
xi∈X I(ρ(xi ) = �)

)

(9)

The τ vector in fairness error captures the target proportion in each cluster for
different protected groups � ∈ [m]. It is similar to the input vector τ for FRAC and
FRACOE . In Bera et al. (2019), the target vector is denoted by δ (refer Sect. 7.3.3
for details on the parameter δ). We report the average and standard deviation of the
performance measures across ten independent trials for every approach. The code for
all the experiments is publicly available.11 We begin the empirical analysis of various
approaches under both k-means and k-median settings for a fixed value of k (=10)
in line with the previous literature. The top and bottom rows in Fig. 6 summarize the
results obtained for the k-means and k-median settings, respectively.
Observation for k−means:
• Ziko et al. (2021) achieve the lowest objective cost but with poor performance on
both fairness measures.

• FRAC and FRACOE achieve maximum Balance and zero fairness error with
significantly lower objective costs compared to Bera et al. (2019).

11 https://github.com/shivi98g/Fair-k-means-Clustering-via-Algorithmic-Fairness

123

https://github.com/shivi98g/Fair-k-means-Clustering-via-Algorithmic-Fairness


1986 S. Gupta et al.

Fig. 7 The line plot shows variation of evaluation metrics over varying number of cluster center for
k-means setting. The hyper-tuned variation of Ziko et al. is available only for Adult and Bank dataset
due to expensive computational requirements. For other datasets the hyper-parameter λ is taken same as
that is reported in Ziko et al. paper ie. λ=9000, 6000, 6000, 500,000 for Adult, Bank, Diabetes and Census-II
dataset respectively. On the similar reasons Bera et al. results for Census-II are evaluated for k=5 and k=10.
(Best viewed in color) (Color figure online)

Observations for k−median setting:

• Backurs et al. (2019) result in fair clusters with high objective costs.
• Ziko et al. (2021) achieve better objective costs by trading off for fairness.
• FRAC and FRACOE obtain the least fairness error and a Balance that is equal to
the required dataset ratio (τ� = 1

k ) while having a comparable objective cost.

7.1 Comparison across varying number of clusters (k)

This experiment evaluates the k-means version of different approaches with varying
clusters from 2 to 40. Figure7 summarises the results obtained for 2, 5, 10, 15, 20, 30,
and 40 clusters on all datasets. For the most extensive dataset, Census-II, results are
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Fig. 8 The line plot shows variation of evaluation metrics over varying data set size for k(=10)-means
setting. The hyper-parameter λ = 500, 000 is taken same as that is reported in Ziko et al. paper for Census-II
dataset due to expensive computational requirements. On the similar reasons Bera et al. results for Census-II
are evaluated up to 500k. The target Balance for Census-II is evident from plot axes and complete dataset
size is 245.82 × 104. (Best viewed in color) (Color figure online)

obtained for only k = 5 and k = 10 due to the significant time complexity of solving
the LP problem (Bera et al. 2019).
Observations:

• Bera et al. (2019) maintain fairness but with a much higher objective cost and fails
to return any solution for k = 2.

• Ziko et al. (2021) (tuned) objective cost is close to vanilla k-means on the Adult
and Bank datasets but at a significant deterioration in fairness metrics.

• Ziko et al. (2021) (untuned) has high objective cost and fairness error indicating
the sensitivity to the hyper-parameter λ.

• FRAC gives the best result by maintaining a relatively low objective cost without
compromising fairness.

• FRACOE has a marginal cost difference from FRAC with the same fairness guar-
antees showing its efficacy.

• Theoretically, FRACOE shows an approximation factor of 2k−1, but the exper-
imental performance does not degrade with an increase in k. This validates our
conjecture.

7.2 Comparison across varying dataset sizes

In this experiment, we measure the performance of k(=10)-means version of different
approaches as the number of points in the data set increases. We use the largest data
set – Census-II, for this experiment. Figure8 shows the plots for evaluation metrics on
varying data set sizes increasing from10,000 to the total size of 2, 458, 285 data points.
Due to the high computation requirements for Bera et al. (2019) (refer Sect. 7.4), we
limit the results up to 500k data points. For Ziko et al. (2021), owning to high tuning
time (refer run time analysis Sect. 7.4), we use the hyper-parameter value for Census-II
as reported in Ziko et al. (2021) for complete data set, i.e., λ=500,000.
Observations:

• Bera et al. (2019) maintain strict fairness at higher objective costs.
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Fig. 9 The cost variation over the iterations for different approaches in k(=10)-means

• Initially, the objective cost in Ziko et al. (2021) increases with dataset size but
decreases on larger sizes (sensitive to hyper-parameter), but at significant degra-
dation in fairness metrics.

• FRAC and FRACOE achieve strict fairness guarantees with a slight increase in
objective cost from vanilla clustering.

7.3 Additional analysis on proposed algorithms

In this section we perform additional study on FRAC and FRACOE to illustrate their
effectiveness.

7.3.1 FRAC vs FRACOE

FRAC uses round-robin allocation after every clustering iteration. On the contrary,
FRACOE applies the round-robin allocation only at the end of clustering. Both
approaches will result in a fair allocation but might exhibit different objective costs.
We experiment with the k(=10)-means setting to study the difference in the objective
costs for the two approaches. Like other experiments, we conduct this experiment over
ten independent runs and plot the mean objective cost (line) and standard deviation
(shaded region) at each iteration over different runs.

Observations: The plots in Fig. 9 indicate that FRAC has a lower objective cost
at convergence than FRACOE . The plot for FRACOE follows the same cost variation
as that of vanilla k-means in the initial phase, but at the end, we see a sudden jump
overshooting the cost of FRAC (to accommodate fairness constraints). Thus, applying
fairness constraints after every iteration is better than applying them only once at the
end. The plot also helps us experimentally visualize the convergence of both FRAC
andFRACOE algorithms. Itmay be observed that the change in objective cost becomes
negligible after a certain number of iterations.
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Fig. 10 aBar plot shows the variance in objective cost over different 100 random permutations of converged
centers returned by vanilla k-means clustering in FRACOE . b k-means runtime analysis of different SOTA
approaches on Adult dataset for k=10 (Color figure online)

7.3.2 Impact of order in which the centers pick the data points

FRAC assumes an arbitrary order of the centers for allocating data points at every
iteration. We experiment with varying the order of the centers to see the impact on
the objective cost for the k(=10)-means clustering version. We report the objective
cost variance computed across 100 permutations of the ten centers. Applying the
permutations at every iteration in FRAC is an expensive proposition. Hence we restrict
the experiment to the FRACOE version. The variance of the 100 final converged
objective costs (averaged over ten trials) is shown in Fig. 10a.

Observations: It is evident from the plot that the variance is consistently negligible
for all datasets. Thus, we conclude thatFRACOE (and FRAC by extension) is invariant
to the order in which the centers pick the data points.

7.3.3 Comparison for �-ratio on fixed number of clusters(k)

All the experiments till now considered the Balance to be the same as the dataset
ratio (τ� = 1

k ). But FRAC and FRACOE can be used to obtain any desired τ -ratio
fairness constraints other than dataset ratio. The results for other τ vector values on
k=10 number of clusters are reported in Table 2. We compare the performance of the
proposed approach against Bera et al. It is the only SOTA approach that allows for
the desired τ -ratio fairness in a restrictive manner. Bera et al. reduce the degree of
freedom using a δ parameter that controls the lower and upper bound on the number
of points needed in each cluster belonging to a protected group. Experimentally δ can
take values only in terms of dataset proportion r� for protected group � ∈ [m], i.e.,
with lower bound as r�(1 − δ) and upper bound as r�

(1−δ)
. Further, δ needs to be the

same across all the protected groups making it infeasible to achieve different lower
bound for each protected group. Thus Bera et al. cannot be used to have any general
fairness constraints for each protected group and can act as a baseline only for certain
τ� values. In Table 2, we present results for the τ corresponding to δ=0.2, 0.8.
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Observation: Our algorithms can achieve any generalized τ vectors like
[0.25, 0.12]. Such vectors make more sense in real-world applications, like requiring
at least 25% male and 12% female points in each cluster. The objective cost obtained
by FRAC and FRACOE is comparable to Bera et al. (2019), but the work by Bera
et al. (2019) is extendible to the multiple protected attributes.

7.4 Run-time analysis

Finally, we compare the runtime of the different approaches for the k(=10)-means
clustering versions on the Adult dataset. The average runtime over ten different runs
is reported in Fig. 10b.
Observations:

• Runtime of FRAC is significantly better than the fair SOTA approaches.
• Ziko et al. (2021) (tuned) runtime is quite high due to hyper-parameter tuning.
• Ziko et al. (2021) (untuned) is comparable to vanilla clustering but with a deteri-
oration in fairness (seen in previous sections).

• FRACOE has a marginal difference from vanilla runtime as it applies a single
round of fair assignment.

• Bera et al. (2019) being LP formulation has higher complexity and requires double
the time of FRAC.

Motivated by Kriegel et al. (2017), we further study the runtime behavior across a
varying number of data points and a varying number of clusters. For the scalability
study, we perform the analysis using Census-II as it is the largest dataset. We use the
same hyper-parameter value (λ=500,000) for Ziko et al. (2021) in this study.

7.4.1 Runtime comparison with number of cluster(k)

In this study, we experiment to find the variation in runtime as the number of clusters
k varies from 2 to 40. We observe the results for 2, 5, 10, 15, 20, 30, and 40. From the
results summarized in Fig. 11, we can observe that Bera et al. (2019) has a significantly
high execution time. Thus, we limit the results to k(=5, 10)-clustering. As pointed out
in the previous section Bera et al. (2019), LP fails to converge for k=2.
Observations:

• FRACOE has a runtime close to vanilla clustering.
• Ziko et al. (2021), even in the untuned version, the runtime is close to FRAC.
Tuning will result in a significant increase in overall runtime.

• Bera et al. (2019) have a significantly higher runtime.

7.4.2 Runtime comparison across varying data set size

We study the scalability of different approaches with the increased data set size
for k=10. For Bera et al. (2019), plots in Fig. 12 reveal that the run time significantly
increases even with 500k points in the dataset. So we limit the study to this size.
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Fig. 11 The line plot shows runtime variation over varying number of clusters(k) for k-means setting on
complete dataset. The hyper-parameter λ = 500,000 is taken the same as that reported in Ziko et al. paper
for the Census-II dataset due to expensive computational requirements. For similar reasons, Bera et al.
results for Census-II are evaluated for k=5 and k=10. For better visualization the results are zoomed out for
approaches other than Bera et al. (Best viewed in color) (Color figure online)

Fig. 12 The line plot shows runtime variation over varying dataset sizes (upto the total dataset size of
245.82×104) for k=10-means setting. The hyper-parameter λ = 500,000 is taken the same as that reported
in Ziko et al. paper for the Census-II dataset due to expensive computational requirements. For similar
reasons, Bera et al. results for Census-II are evaluated for dataset sizes of 10k, 50k and 100k. (Best viewed
in color)

Observations:

• Ziko et al. (2021) (untuned) runtime is close to vanilla clustering. However, the
gap increases after a certain dataset size.

• FRACOE follows a trend slightly close to vanilla clustering and does not deterio-
rate with the size showing its efficiency.

• FRAC has a run time larger than vanilla clustering but is comparable to untuned
Ziko et al. (2021).

• Tuning Ziko et al. (2021) will result in additional overhead.
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8 Discussion

We proposed a novel τ -ratio fairness notion. The new notion generalizes the existing
Balance notion and admits an efficient round-robin algorithm to the corresponding
fair assignment problem. We also showed that our proposed algorithm, FRACOE ,
(i) achieves a 2(α + 2)-approximate solution up to three clusters, and (ii) achieves
2k−1(α + 2)-approximate guarantees to general k with τ={1/k}m�=1. Current proof
techniques for k ≤ 3 requires intricate case analysis, which becomes intractable for
larger k. However, our experiments show that FRACOE and FRAC outperforms SOTA
approaches in terms of objective cost and fairness measures even for k >3. We also
prove the cost approximation for the general τ vector and show convergence analysis
for FRACOE . An immediate future direction is to analytically prove a 2(α + 2)-
approximation guarantee for general k.

It is worth noting that the τ -ratio fairness ensures the Balance property. However,
if one uses Balance as a constraint, one could get a better approximation guarantee.
Surprisingly, we observe from our experiments that this is not the case. We leave the
theoretical and experimental analysis of these two notions of fairness in the presence
of large data as an interesting future work.

Apart from the immediate future directions mentioned above, extending the current
work to multi-valued multiple protected attributes similar to the one proposed by Bera
et al. (2019), or achieving the notion of individual fairness while maintaining group
fairness are interesting research problems.
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