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Abstract
Recent technological advancements have spurred the usage of machine learning based
applications in sports science and healthcare. Using wearable sensors and video cam-
eras to analyze and improve the performance of athletes, has become widely popular.
Physiotherapists, sports coaches and athletes actively look to incorporate the latest
technologies in order to further improve performance and avoid injuries. While wear-
able sensors are very popular, their use is hindered by constraints on battery power and
sensor calibration, especially for use cases which require multiple sensors to be placed
on the body. Hence, there is renewed interest in video-based data capture and analysis
for sports science. In this paper, we present the application of classifying strength and
conditioning exercises using video. We focus on the popular Military Press exercise,
where the execution is captured with a video-camera using a mobile device, such as
a mobile phone, and the goal is to classify the execution into different types. Since
video recordings need a lot of storage and computation, this use case requires data
reduction, while preserving the classification accuracy and enabling fast prediction.
To this end, we propose an approach named BodyMTS to turn video into time series
by employing body pose tracking, followed by training and prediction usingmultivari-
ate time series classifiers. We analyze the accuracy and robustness of BodyMTS and
show that it is robust to different types of noise caused by either video quality or pose
estimation factors. We compare BodyMTS to state-of-the-art deep learning methods
which classify human activity directly from videos and show that BodyMTS achieves
similar accuracy, but with reduced running time and model engineering effort. Finally,
we discuss some of the practical aspects of employing BodyMTS in this application
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in terms of accuracy and robustness under reduced data quality and size. We show that
BodyMTS achieves an average accuracy of 87%, which is significantly higher than
the accuracy of human domain experts.

Keywords Video-based exercise classification · Strength and conditioning · Body
pose tracking · Time series classification

1 Introduction

Recent years have seen a tremendous growth of the use of machine learning for sports
science and healthcare applications. This is mainly due to the increased usage of
wearable sensors and video-based tracking devices (Ahmadi et al. 2014; O’Reilly
et al. 2015, 2017, 2018; Fawaz et al. 2019; Kwon et al. 2020; Choutas et al. 2018) to
capture data that is utilized for rehabilitation or to assess the performance of athletes
(Richter et al. 2021).

Human exercise performance classification is a sub-field of human activity recogni-
tion (HAR)where the goal is to classify the execution of an exercise into predetermined
classes. Most research in this field has focused on utilizing inertial sensors for data
capture (Ahmadi et al. 2014; O’Reilly et al. 2015, 2017, 2018; Fawaz et al. 2019),
which commonly involves extracting domain-specific or predefined statistical features
from sensor data and applying supervised machine learning methods. However, using
sensors to collect human activity data has some notable limitations: sensor-based data
collection is error-prone and time-consuming as sensors require careful positioning
on the body, as well as calibration for the specific task (Whelan et al. 2016; Kwon
et al. 2020).

This work focuses on classifying physical exercise execution by using video data
capture. Video data helps to alleviate some of the above problems, as videos can
be easily captured through available smartphones and data capture does not require
multiple specialized sensor devices to be worn on the body, thus avoiding issues
such as discomfort and impending the ease of movement (Kwon et al. 2020). In this
paper, we work with video recordings of participants executing the Military Press
(MP) exercise. MP is an important exercise in strength and conditioning, injury risk
screening, and rehabilitation (Whelan et al. 2016). The main objective is to classify
exercise performance in terms of differentiating between correct and different aberrant
executions of the exercise. Incorrect execution may lead to muscoskeletal injuries and
impede performance (Baechle and Earle 2008), therefore, automated and accurate
feedback on execution is important to avoid injuries and maximize the performance of
the user. While this is an important exercise, it is also a difficult one to classify, with
human inter-rater agreement at about 60% (Whelan et al. 2019).

Our previous work (Singh et al. 2020) proposed an approach for interpretable
classification of Military Press exercises using videos as time series. We showed that a
body pose estimationmethod, OpenPose (Cao et al. 2019), combinedwithmultivariate
time series classifiers (MTSC) can be used to accurately classify and interpret correct
and incorrect executions. We henceforth name this approach BodyMTS (for Body
tracking Multivariate Time Series). Figure 1 shows the overall flow of BodyMTS: (1)
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Fig. 1 Overview of the BodyMTS approach for the Military Press strength and conditioning exercise
classification. Left-to-right flow: rawvideo, extracting and tracking body parts using human pose estimation,
preparing the resulting data for multivariate time series classification and interpretation

pose estimation identifies and tracks multiple body parts over the video frames, (2)
the (X ,Y ) location coordinates of body parts for each frame are extracted resulting in
multivariate time series, (3) a multivariate time series classifier is trained to classify
the execution of the exercise into pre-defined classes.

In this paper, we extend our prior work with an extensive analysis of the robustness
of BodyMTS to different sources of data noise, as well as a side-by-side comparison
with state-of-the-art deep learning methods for human activity classification directly
from videos. Our hypothesis is that body pose estimation provides a strong prior for
the classifier which now focuses on the pose information important for the task, not
on other details in the video, e.g., background. This is contrasted to direct end-to-
end video classification with deep learning, where noisy data may affect the model
robustness and accuracy, and generalisation beyond benchmarks is known to be a
challenge1 (Azulay and Weiss 2019). In our experiments, we show that deep learning
models require pre-training on large amounts of data, with a gap of 60% in accuracy
between training from scratch and pre-trained models.

Although BodyMTS in its current form is a proof-of-concept, we demonstrate its
applicability and feasibility by considering the key factors that may influence perfor-
mance, such as the impact of realistic noise types on the classifier accuracy and running
time, as well as the computational resources and storage space used by the data and
models. We focus our attention on noise coming from changes in video quality, pose
estimation quality, or time series data pre-processing.

While research on assessing the performance of athletes using sensors has been suc-
cessfully deployed,2 there are currently not many approaches to classify the execution
of strength and conditioning exercises using videos. In our search, we have identified
software such as Kinovea (Adnan et al. 2018; Puig-Diví et al. 2019) and DartFish
(Fathallah Elalem 2016; Faro and Rui 2016), which seem to work through manual

1 https://www.nature.com/articles/d41586-019-03013-5.
2 Two of the co-authors of this paper have successfully launched Output Sports, a start-up built on com-
mercialising research results on single sensor systems: https://www.outputsports.com.
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analysis at a very low frame rate. Despite providing a vast number of features, these
systems are not equipped with automatic classification of physical exercises (Adnan
et al. 2018; Puig-Diví et al. 2019).

Existing research on human activity recognition from videos is based on applying
complex deep learning architectures (Ji et al. 2010; Simonyan and Zisserman 2014;
Tran et al. 2015; Feichtenhofer et al. 2019). Despite the competitive performance
on benchmarks, this is achieved at the cost of heavy computation resources such as
several hours of training and testing on high-end GPU hardware. Besides the need for
high-end hardware, this also has a negative environmental effect. Furthermore, these
models are trained and tested on datasets such as UCF-101 (Soomro et al. 2012) and
Kinetics-400 (Kay et al. 2017), which contain long duration videos and a wide range
of activities. For instance, in Kinetics-400 the average duration of a clip is 10 s and
the number of samples is around 300k. In our setting, a single clip is of 3 s duration on
average and the differences between the classes are subtle, making the classification
task more challenging, e.g., cycling versus walking in contrast to executing the MP
with/without an arch in the back. Our dataset is also small (a few thousand samples for
training and validation) when compared to these large benchmarks. We have found no
prior work that uses videos for strength and conditioning exercise classification and
works with this type of smaller data scale and fine-grained classification.

Our main contributions in this paper can be summarized as follows:

– We present and extensively evaluate BodyMTS, an end-to-end video-as-timeseries
human exercise performance classification method. We study the impact of
improvements in body pose estimationmethods (e.g., OpenPose, (Cao et al. 2019))
and recent multivariate time series classifiers (e.g., ROCKET Dempster et al.
(2020) and MiniROCKET (Dempster et al. 2021)) on the overall classification
accuracy. We show improvements in accuracy with an average of 87% classifica-
tion accuracy for the Military Press exercise.

– We analyze the robustness of BodyMTS against different types of realistic noise
and measure the impact on the classifier performance. We consider three common
sources of noise in our application setting: video capture quality, pose estimation
quality and time series pre-processing steps.

– We conduct an extensive empirical study comparing BodyMTS to state-of-the-art
deep learning approaches for human activity recognition directly from videos. We
compare all methods in terms of accuracy, training/testing time and computation
resources. We show that BodyMTS is robust to lower quality data captured at
prediction time and has fast training and prediction.

– To support our paper, all of our code, data and detailed results are available at:
https://github.com/mlgig/BodyMTS_2021.git.

The paper is organized as follows. In Sect. 2we discuss the application and technical
requirements of BodyMTS. In Sect. 3, we give an overview of the related literature on
human activity recognition, human pose estimation, strength and conditioning exer-
cises and multivariate time series classification. Section 4 describes the data collection
process and the Military Press dataset. Section 5, presents our methodology for classi-
fyingMP exercises from videos and Sect. 6 describes themain datamining challenges.
In Sect. 7, we analyze the robustness of BodyMTS against different sources of noise
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and compare its performance with state-of-the-art deep learning methods. In Sect. 8,
we describe the lessons learned from this study, as well as limitations and future work.
In Sect. 9 we summarise our recommendations for practitioners working on similar
tasks and we conclude in Sect. 10.

2 Application requirements

In this section, we discuss the required BodyMTS features and the corresponding
application and technical requirements.We note that BodyMTS is currently a proof-of-
concept and the actual deployment scenario and requirements may change depending
upon the business case and the end-user requirements.

The aim of BodyMTS is to provide a scalable system that can accurately measure
and evaluate end-user performance of strength and conditioning (S&C) exercises, with
a view to provide feedback in near real-time. This, in turn can guide physiotherapists,
trainers, and elite and recreational athletes to perform exercises correctly and therefore
minimise injury risk and enhance performance. We devised the following list of appli-
cation requirements based on previous research in which we consulted with end users,
clinicians, and strength and conditioning experts on the design, implementation and
evaluation of interactive feedback systems for exercise (Brennan et al. 2020; Argent
et al. 2019, 2018; Giggins and Caulfield 2015; O’Reilly et al. 2017):

– Be able to accurately monitor the body parts movement, accounting for the critical
body segments involved in the exercise in question.

– Detect when deviations from normal movement profile have occurred, and which
kind of deviation has occurred in each case.

– Provide clear and simple feedback to the end user, in near real-time.
– Simple data capture based on ubiquitous sensor technology (e.g, single phone).
– Coverage of wide range of S&C or rehabilitation exercises.

Table 1 summarizes the application features and the corresponding application and
technical requirements for such a system.

There are two main components of BodyMTS:

– Client side mobile application which the end-user uses to record their execution.
The recorded videos are then pre-processed before sending them to the server side
running on the cloud.

– Server side application which stores the pre-trained model. Each repetition of
the clip is classified separately using the stored model. The final results are then
returned back to the client side mobile application.

Figure 1 shows the overall workflow of BodyMTS. Before the user starts using the
client side mobile component of BodyMTS, we expect the following requirements to
be fulfilled:

– The mobile camera used for recording the execution should be placed on a static
surface before the start of the execution.
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– The view of the camera will vary depending upon the type of exercise (e.g., front
view forMilitary Press). This is static information thatwill be already storedwithin
the application for each type of exercise.

– The mobile application will use a bounding box to centralize the user with respect
to each frame.

These are quality control requirements that are evaluated before and during the execu-
tion. The video and pose estimation have to be of sufficient quality, otherwise the data
will be rejected by the application. After the above conditions are fulfilled, the user
will activate the application and start recording the video using the mobile application.
At the end of the workout, the client side application will pre-process the data. The
recorded video will be pre-processed to centralize the participant and to remove the
audio. Further, it will be compressed to reduce the total size and will be sent to the
server side application where further processing takes place. At the server side, the
compressed videos undergo pose estimation followed by segmentation and classifica-
tion steps. Finally, the classification results are returned back to the client side mobile
application.

3 Related work

In this section we present an overview of existing approaches for strength and
conditioning exercise classification, human action recognition from videos, human
pose estimation and multivariate time series classification.

3.1 Strength and conditioning exercise classification

The purpose of S&C exercises is to improve the performance of athletes in terms
of strength, speed, flexibility, agility (Trejo and Yuan 2018; O’Reilly et al. 2015,
2018; Chu et al. 2019). S&C exercises span multiple types of exercises or movement
sequences that target different parts of the body and different functional goals. In some
cases, the person interacts with a weight or mechanical apparatus, whereas in others
the person performs a free body movement without any interaction with an external
system or force (e.g., jump). Recent advances in technology have spurred the usage
of high tech solutions to maximize the performance of athletes. These can be divided
into three broad categories: optical motion capture, wearable inertial sensors and video
(Singh et al. 2020; Puig-Diví et al. 2019; Faro and Rui 2016; Fathallah Elalem 2016).

The most popular optical motion capture system is Microsoft Kinect. The work of
(Trejo and Yuan 2018; Zerpa et al. 2015; Ressman et al. 2020; Decroos et al. 2018;
Dajime et al. 2020) has investigated the use of Microsoft Kinect for rehabilitation
exercises, movement quality assessment and gait analysis. However, despite their high
performance, these systems are expensive, need high maintenance, require significant
time to set up and are mostly limited to controlled clinical trials.

Wearable inertial sensors-based approaches consist of fitting Inertial Measurement
Units (IMU) (O’Reilly et al. 2018; Chu et al. 2019; Espinosa et al. 2015) on different
parts of the body. The sensor data is analyzed to evaluate performance using supervised
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machine learning methods, visualization or manual techniques. The number of inertial
sensors required and their positions vary from exercise to exercise (Espinosa et al.
2015; Whelan et al. 2016; O’Reilly et al. 2017, 2018). Research methods and also
commercial systems have been deployed using such inertial sensors. Still, sensors can
be expensive, they may hinder the ease of movement particularly when applied over
many body parts and over longer periods of time, and the annotation process can be
time-consuming (Whelan et al. 2016; Kwon et al. 2020; Dajime et al. 2020).

The third category uses video-based devices such as dedicated cameras (DSLR) or
smartphone cameras to capture data. Proprietary software such as Dartfish (Fathal-
lah Elalem 2016; Faro and Rui 2016) and open-source software such as Kinovea
(Adnan et al. 2018; Puig-Diví et al. 2019; Moral-Muñoz et al. 2015) are used to ana-
lyze performance by providing the option of slow-motion replay at a very low frame
rate. However, these systems are less accurate and require fitting body markers of
different color to the background. Recent work (Slembrouck et al. 2020; Nakano et al.
2020a; Stamm andHeimann-Steinert 2020) utilizing pose estimation for motion track-
ing has paved the way for alternative approaches to IMUs and optical motion capture
systems. We found no prior work that utilizes video to classify S&C exercises.

3.2 Human activity recognition

Video-based Human Activity Recognition (HAR) is a core area of computer vision.
HAR methods can be broadly classified into two categories. First are methods based
on handcrafted features such as bags of visual words (Wang and Schmid 2013; Dalal
et al. 2006; Peng et al. 2014; Sánchez et al. 2013). These include finding local
spatio-temporal features such as motion boundary histograms (Dalal et al. 2006) and
trajectories (Wang and Schmid 2013), followed by feeding them to a classifier. These
methods have been shown to provide competitive performance on benchmark datasets
(Carreira et al. 2018; Sigurdsson et al. 2016; Soomro et al. 2012) before the emergence
of deep learning methods. The second category includes deep learning methods, in
particular convolutional neural networks. The recent success of 2D-CNN (Krizhevsky
et al. 2012a) in image classification has motivated researchers to employ these models
for action recognition in video. Several models, e.g., 3D-CNN (Ji et al. 2010), two
stream convolutional networks (Simonyan and Zisserman 2014), I3D (Carreira and
Zisserman 2017) and Slowfast (Feichtenhofer et al. 2019) have achieved state-of-the-
art performance on benchmark datasets. These models are computationally expensive,
we found no studies evaluating these methods for strength and conditioning exercise
classification, under specific application constraints. It is also not clear how well these
methods work on real use cases.

3.3 Human pose estimation

Pose estimation refers to recognizing the postures of humans by detecting the body
parts from images. It is considered one of the hardest problems in computer vision due
to challenges such as occlusion, complex motion dynamics, interactions and back-
ground (Cao et al. 2019; Papandreou et al. 2017; Huang et al. 2017). Traditional
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approaches (Andriluka et al. 2009; Gkioxari et al. 2013; Sapp and Taskar 2013; Dan-
tone et al. 2013) were based on extracting handcrafted features. Current methods based
on deep learning architectures (Cao et al. 2019; Papandreou et al. 2017; He et al. 2017;
Newell et al. 2017) have achieved remarkable results on this task.

Recent approaches include methods such as OpenPose (Newell et al. 2017; Insa-
futdinov et al. 2016; Cao et al. 2019), which work by first finding the body joints and
associating themusing affinity fields, andDeepCut (Pishchulin et al. 2015), which uses
a partitioning and labeling formulation of a set of body-part hypotheses generated with
CNN-based part detectors.

OpenPose can detect and track multiple body points in real-time and with high
accuracy. The most recent version of OpenPose (Cao et al. 2019) can detect 25 body
parts in an input image in under 1 second with average accuracy ranging from 75.6 to
79% on recent 2D pose estimation benchmarks.

3.4 Multivariate time series classification

Time series classification is a form of supervised classification where the data is
ordered. For multivariate time series classification (MTSC), each sample has multiple
dimensions and a class label.

We can group existing methods for MTSC into five broad categories (Ruiz et al.
2021; Dhariyal et al. 2020): distance-based, feature-based, ensemble based, linear
models and deep learning. These methods have mostly been evaluated on the UEA
MTSC (Bagnall et al. 2018) archive, which contains 30 multivariate datasets. Among
the methods evaluated, linear classifiers and deep learning methods have achieved
high accuracy, with low running time and excellent scalability, hence we focus on this
subset here.

Linear classifiers ROCKET (Dempster et al. 2019b) (RandOm Convolutional KErnel
Transform) is the current state-of-the-art for both univariate and multivariate TSC in
terms of accuracy and scalability. It uses a large number of random convolutional
kernels in conjunction with a linear classifier. MINIROCKET (Dempster et al. 2021)
is a recent extension of ROCKET. It is deterministic, faster and more efficient than
ROCKET. Unlike ROCKET, MINIROCKET implicitly normalizes the time series,
thus it is scale invariant, which for our application proves to be a weakness; for MP
the magnitude of the signal plays an important role in the classification task and thus
the signal should not be normalized.

Deep learning classifiers Recent success on image classification (Simonyan and Zis-
serman 2015; Krizhevsky et al. 2012b) has motivated researchers to use deep learning
methods to classify time series data. Fawaz et al. (2019) presented a comprehensive
study of 9 deep learning models to classify univariate and multivariate time series.
Fully Convolutional Networks (FCN) and ResNet have shown state-of-the-art perfor-
mance without suffering from high time and memory complexity.
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4 Data collection

Crossfit workout dataset The data used for evaluating our approach consists of video
recordings of the execution of theMilitary Press exercise (MP).During this exercise the
barbell is lifted to shoulder height and then smoothly lifted overhead by extending the
elbows. The amount of weights lifted and time taken for each repetition may vary from
participant to participant. MP is an important exercise in strength and conditioning,
injury risk screening, and rehabilitation (Whelan et al. 2016).

Participants were asked to complete fixed repetitions of normal and aberrant forms
for this exercise.

Figure 2 shows some examples for the execution of the MP exercise.

Participants 53 healthy volunteers (31 males and 22 females, age: 26 ± 5 years,
height: 1.73 ± 0.09 m, body mass: 72 ± 15 kg) were recruited for the study. Par-
ticipants did not have a current or recent musculoskeletal injury that would impair
performance of multi-joint upper limb exercises. The Human Research Ethics Com-
mittee at University College Dublin approved the study protocol and written informed
consent was obtained from all participants before the study start.

Experiment protocol The testing protocol was explained to participants upon their
arrival at the laboratory. Participants completed 10 repetitions of the normal form and
10 repetitionswith induceddeviations. In order to ensure standardization, the technique
was considered acceptable if it was completed as defined by the National Strength and
Conditioning Association (NSCA) guidelines. The induced forms were chosen based
on common deviations listed in the NSCA guidelines (Baechle and Earle 2008) and
throughdiscussionwith sports physiotherapists and strength and conditioning coaches.
Participantswere allowed to familiarize themselves by completing practice repetitions.

All the performances were observed and labelled by an expert. If the performance
had degraded due to fatigue then this would have resulted in the data being excluded
at source. Each repetition was observed and if any repetition was not consistent with

Fig. 2 Single frames depicting the induced MP deviations for class A, Arch and R (left to right)
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the label (based on domain expert observation) it would have been excluded from the
data.

Two cameras (Sony Action Camera, Sony, Tokyo, Japan) were set up in front
and to the side of the participants to allow for recording in the frontal and lateral
planes simultaneously. The data is recorded at a rate of 30 frames per second with
720p resolution. Each of these individual video clips were then labeled according to
participant number, exercise completed and if they were completed in an acceptable
or aberrant manner. Each participant completed the set at their desired tempo.

Exercise technique and deviations The induced forms were further sub-categorized
depending upon the exercise. The deviated execution forms undermine the perfor-
mance of the participants leading to a higher chance of injury. Completing the exercises
with this aberrant technique means strength gains are not made as efficiently and can
increase the likelihood of injury. Below we describe the four classes of normal and
deviated execution forms for the MP exercise.

Exercise Classes. Normal (N): This class refers to the correct execution of the
exercise. The participant starts by lifting the bar from near shoulder to all the way
above the head until the arms are fully stretched and then bringing it back to shoulder
level with no arch in the back. The bar must be stable and parallel to the ground and the
back should be straight. Asymmetrical (A): This form refers to the execution when
the bar is lopsided and asymmetrical. Reduced Range (R): This form refers to the
execution when the bar is not brought down completely to the shoulder level. Arch
(Arch): This type of execution indicates that the participant arches their back.

5 Methods

In this section we present the BodyMTS pipeline and provide details about individual
components and data pre-processing steps. We give a description of OpenPose and
why it is considered above other pose estimation libraries. We also briefly explain
the process of obtaining multivariate time series data from videos using OpenPose,
segmenting the long time series to obtain individual time series for each repetition and
the methods chosen for the classification.

5.1 Methodology

BodyMTS is a novel end-to-end approach to classify video-based S&C exercises. It
consists of two main steps. The first step applies human pose estimation to extract
multivariate time series data from video. The time series data is obtained by applying
pose estimation, which tracks the location coordinates of multiple body parts over the
video frames. The second step applies multivariate time series classification methods.

Body pose estimation We select OpenPose (Cao et al. 2019) over other frameworks
such as R-CNN (Girshick et al. 2013) or Alpha-Pose (Fang et al. 2017), for the follow-
ing reasons: (1) it is robust against possible occlusions including during human-object
interaction; (2) it is a full-fledged system and does not require manual steps such
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Table 2 The 25 body parts
tracked by OpenPose (v1.7) in a
video frame (Cao et al. 2019)

0 Nose 8 Mid hip 16 Left eye

1 Neck 9 Right hip 17 Right ear

2 Right shoulder 10 Right knee 18 Left ear

3 Right elbow 11 Right ankle 19 Left big toe

4 Right wrist 12 Left hip 20 Left small toe

5 Left shoulder 13 Left knee 21 Left heel

6 Left elbow 14 Left ankle 22 Right big toe

7 Left wrist 15 Right eye 23 Right small toe

24 Right Heel

as generating all frames for videos, setting up a display to visualize the results and
saving the results in a desired format; (3) it can run on different platforms, including
Ubuntu, Windows, Mac OSX, and embedded systems; (4) the inference time of Open-
Pose outperforms all state-of-the-art methods, while preserving high-quality results.
OpenPose also provides a confidence score for each body part and each frame. The
confidence score ranges from 0.0 to 1.0, where a higher confidence value indicates a
higher probability of detecting a particular body part in that location. This score can
be utilized as a proxy to assess the accuracy of OpenPose.

Table 2 shows the list of body parts tracked by OpenPose. It outputs the X , Y
coordinates and detection confidence, for the detected body parts in a given input
frame.

The coordinates are obtained with origin as a reference at the top left side of
the image. The video is fed to OpenPose to obtain a sequence of X and Y location
coordinates for each body part and each video frame.

Each frame is considered a single time point in the output time series data. The
original videos require 813 MB of storage and after cropping and removing the audio
this reduces to 213 MB. After applying OpenPose and extracting the body parts time
series, the data size reduces to 30 MB, roughly a reduction of 7 times. Figure 3 shows
the use of pose estimation to track the coordinates of body parts over all the video
frames. The plot at the end shows the raw Y -coordinates for 8 upper body parts for
a single video from class N . The time series obtained for lower body parts such as
ankles, hips, etc., do not show much variability throughout the whole clip as these
body parts mostly remain static throughout the execution of the Military Press.

Multivariate time series data Each video records 10 repetitions for each exercise exe-
cution, resulting in a time series capturing the body pointsmovement for 10 repetitions.
Since each repetition is the record for a single exercise execution, segmentation of the
long time series is required to obtain the sequence for a single repetition. Each repeti-
tion forms a single time series sample for training and evaluating a classifier. We use
peak detection methods to segment the pose estimation time series data. We find the
location of local maxima in the signal using the scipy package.3 The body parts that
are considered for finding the peaks are elbows or wrists, as these are the only body
parts showing regularity in the patterns as shown in Fig. 3. We only keep the upper

3 https://github.com/scipy/scipy.
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Fig. 3 Extraction of time series data from video using OpenPose. Each frame in the video is considered as
a single time point in the resulting time series. Each tracked body part results in a single time series that
captures the movement of that body part. The whole motion is captured as a multivariate time series with
50 channels, two (X, Y) channels for each body part tracked (only 8 body parts with Y coordinate shown
above). A class label is associated with each such multivariate time series

body parts time series as suggested by the domain experts who carried out the data
collection.

The data for some body parts (nose, eyes) are ignored as OpenPose fails to track
these since the participant is not facing the camera. We also present results with
different subsets of dimensions to understand the impact of different body parts on
accuracy. We investigate using all the channels or using automated channel selection
methods (Sect. 7).

The time series obtained after this step have variable length since the time taken
to complete each repetition differs from participant to participant. Since the current
implementation ofROCKETand deep learningmethods cannot handle variable-length
time series, all time series have been re-sampled to the length of the longest time series
(with a length of 161). We use a 1D interpolation function with a cubic spline fit to
interpolate each time series to same length (Virtanen et al. 2020).

The final data contains time series corresponding to 8 body parts (elbows, shoulders,
wrists and hips) with 16 channels (X and Y coordinates). Lastly, as observed in our
prior work (Singh et al. 2020) the time series data is not normalized as normalization
leads to a substantial drop in accuracy. Through this application we learned that most
state-of-the-art time series classifiers only work with fixed-length time series and also
have an implicit step of normalizing the time series.While these algorithmic constraints
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Table 3 Total number of
samples per class in the train and
test datasets for one 70:30 split

Class Training Test Total

N 370 150 520

A 360 150 510

R 361 151 512

Arch 361 150 511

Total 1452 601 2053

seem harmless for clean TSC benchmarks, they prove problematic for real use cases.
Re-sampling the length changes the meaning of the time series, and similarly, default
or implicit normalization done within the algorithm, changes the meaning of the data
and affects the accuracy of the classifier.

Among the classifiers evaluated, only ROCKET exposes the option of data normal-
ization to the user, and this makes a 10 percentage points difference in accuracy for
our application.

Train/test split We perform repeated 70:30 splits on the full data set to obtain training
and test data. Each split is done based on the unique participant IDs to avoid leaking
information into the test data. By splitting on the ID level we make sure that all the
samples from a particular participant go into either the training or test data. The data
is overall balanced across all the classes. Table 3 shows the number of samples across
the four classes, for a single train/test split. There are roughly 1400 and 600 samples
in training and test data respectively.

6 Datamining challenges and solutions in the context of BodyMTS

In this section we present the data mining challenges posed in the context of this
application’s requirements. We discuss the challenges and solutions for each stage of
BodyMTS as shown in the Fig. 1.

– Data sizeVideo data is large and requires extensive memory and storage resources
as well as high end computation machines.
Solution: We investigate approaches to reduce the video size, such as frame
cropping and centering, increasing the video compression ratio (using CRF) and
reducing the video to time series. We find that there are settings that give a signifi-
cant data reduction (70%), and still preserve classification accuracy. Experiments
investigating this challenge are presented in Sect. 7.2.

– Noisy data The steps of video data capture and reduction, pose estimation or
time series pre-processing can reduce the quality of the data by introducing noise.
BodyMTS as well as deep learning methods that work directly with video are
affected by the level of data noise (e.g., blurred, poor quality videos). The accu-
racy of OpenPose is also directly impacted by video quality.
Solution:We examine the impact caused by data reduction on accuracy. We eval-
uate different settings for training and predicting on high quality data, as well
as training on high quality, and predicting on lower quality data (more noise) to
simulate realistic use cases. We also evaluate different settings for pose estimation
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and time series processing. We find that there are data and model settings that are
robust to noise, preserve classification accuracy and have near real-time prediction.
Experiments investigating this challenge are presented in Sect. 7.2.
High dimensionality of multivariate time series and scalability of existing clas-
sifiers Pose estimation libraries such as OpenPose track multiple key-points on a
human body (25 for OpenPose), which may lead to large scale multi-dimensional
time series data.
Solution We overcome this challenge by consulting domain experts as well as
evaluating recent approaches to automatically select useful channels. Out of 25
body parts, we show that involving only 8 upper body parts achieves an accuracy of
87% on average for Military Press. We also explored techniques such as skipping
frames in the input video during pose estimation. We examine recent scalable
multivariate time series classifiers and find that ROCKET behaves the best among
state-of-the-artmethods, with regard to both accuracy and training/prediction time.
Experiments investigating this challenge are presented in Sect. 7.3.

– Segmentation of time series The input video is a sequence of 10 repetitions of
one exercise, which simulates actual use cases. The classification is done on each
individual repetition, thus a segmentation step is required to break down the data
into single reps. The current method utilizes peak detection on pose estimation
time series to obtain data for each repetition. This approach is prone to noisy fluc-
tuations (due to pose estimation errors) and may lead to incomplete repetitions.
Additionally, it is not known in advance which body parts to utilize for segmenta-
tion.
Solution:We investigate different channel selection methods to capture the subset
of body parts that is more relevant for the target exercise. We also analyse simple
segmentation techniques directly on video, versus segmentation based on pose
estimation time series data.We find that directly splitting the video into equal parts
works reasonably well, although it is less accurate than using peak detection on
pose estimation time series. Experiments investigating this challenge are presented
in Sect. 7.1.3.

– Data privacy and security Capturing video data comes with implicit chal-
lenges such as privacy and data security. It becomes absolutely critical to design
approaches that maintain the individual anonymity.
Solution: We turn videos into pose time series, which removes any visual clues
about the identity of users. Pose estimation could in principle be used for height
estimation, but this reveals little about the identity of users.

7 Experiments

This section presents an empirical evaluation of our method and is organized around
the data mining challenges discussed in the previous section. In Sect. 7.1 we compare
the performance of different deep learning methods for video classification versus
BodyMTS with regard to accuracy and computational efficiency. We also evaluate the
impact of two segmentation techniques on the performance of BodyMTS and the best
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deep learningmethod.We further compare the impact of video quality on the best deep
learning method versus BodyMTS. Section 7.2 addresses challenges raised by noisy
data and data size. We analyze the robustness of BodyMTS against different sources
of noise which can be broadly grouped into 3 categories: (1) video data capture; (2)
OpenPose parameters; (3) time series data pre-processing.

Section 7.3 addresses high dimensionality and scalability for time series classifi-
cation. We present the accuracy and compare the total execution time for different
classifiers. We further evaluate the impact of utilizing different subsets of body parts
on BodyMTS accuracy. The best results are highlighted in bold in the tables.

We have not included any experiments to address the issue of data privacy and
security as BodyMTS works directly on the multivariate time series data and hence
reasonably safeguards the identity of the user.

7.1 BodyMTS versus direct human action recognition classifiers

In this section, we compare BodyMTS with state-of-the-art methods for human activ-
ity recognition from videos. These methods employ deep learning architectures and
have shown good performance on several benchmark datasets such as UCF101,
Kinetics-400 and Kinetics-600. We selected a few methods based on their perfor-
mance, execution time and resources required. The following section provides a brief
overview of the selected methods.

– C2D (Fan et al. 2020) stands for 2D convolutional based model. All convolutions
are performed on each of the frame. ResNet-50 and ResNet-101 can be used as
the backbone architectures for C2D.

– I3D (Carreira and Zisserman 2017) stands for inflated 3D Convolutional network.
They work by inflating the kernels of C2Dmodels in order to capture the temporal
information. These models are computationally expensive due to an increased
number of computations.

– SlowFast (Feichtenhofer et al. 2019) architecture uses two pathways to perform
activity recognition from videos. The slow pathway captures the spatial informa-
tion at low frame rates and the fast pathway captures the temporal information
at high frame rates. The fast pathway requires less computation because it uses a
backbone network with reduced channel sizes, which is normally 8 times smaller
than slow path backbones. The information from both the pathways is fused by
lateral connection. The backbone architecture of SlowFast can be a 3DResNet-50,
3D ResNet-101, a Non-local Network or a combination of these.

– Non-local Network (Wang et al. 2017) is used to capture the long range depen-
dencies by enhancing the large receptive fields. They can be integrated as a
generic building block with most deep learning architectures. In the experiments
by (Feichtenhofer et al. 2019) they have been combined with existing standard
backbone models such as ResNet-50 or ResNet-101.

– X3D (Feichtenhofer 2020) progressively expands a 2DCNN alongmultiple axis in
space, time, width and depth. It uses the progressive forward expansion followed
by backward contraction. The axis is selected based on the performance of the
model.
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Table 4 Selected deep learning activity recognition models and their configurations

Model name Model config No. of frames Sampling rate Size

C2D C2D_8×8_R50 8 8 2242

I3D I3D_8×8_R50 8 8 2562

SlowFast SLOWFAST_4×16_R50 32 2 2562

SlowFast + NL SLOWFAST_NLN_4×16_R50 32 2 2562

X3D-M X3D_M 16 5 2562

7.1.1 Deepmodel architectures

We use the SlowFast library (Fan et al. 2020) to evaluate the above mentioned models.
Table 4 shows the number of frames, sampling rate and the frame cropping size for
these architectures. The column “Model Config” refers to the name of the config file in
the SlowFast repo.4 Allmodels are initializedwith theweights pre-trained onKinetics-
400. In column “Model config”, R50 indicates the ResNet-50 has been used as the
backbone architecture; the numeric values in the format X × Y where X indicates the
number of frames and Y indicates the sampling rate, e.g. C2D_8×8_R50 is a C2D
model which utilizes a total of 8 frames with sampling rate of 8 from a video clip.
All the experiments are executed on an Ubuntu machine with a single GPU (NVIDIA
TITANXP 12GB,Ubuntu 18.04.5 LTS, AMDRyzen 7 1700XEight-Core Processor).
We evaluate different values of batch size to utilize the maximum amount of GPU.
After multiple iterations we found a batch size of 5 suitable for all the architectures to
avoid getting out of memory errors.

We use 10% of training data as validation set. The validation set is chosen such that
participant ids of training and validation are not overlapping. Table 4 shows the selected
models: SlowFast, C2D, X3D, and I3D. In the case of testing, 10 frames are uniformly
sampled from each clip consisting of a single repetition along the temporal axis. Each
frame underwent top/left, middle and bottom/right cropping thus giving a total of 30
frames for each video. Thefinal softmax score is averaged over the 30 frames to give the
final prediction. We report the training and testing time for each of these architectures.
Please refer to (Feichtenhofer et al. 2019) for more details on the data pre-processing
and configurations.Note that directly running thesemodelswith the default parameters
given in the SlowFast repository does not lead to good results. A considerable amount
of engineering effort was spent in tuning the hyperparameters: learning rate, batch
size, epochs, warm-up epochs and weight decay. All other hyperparameters remain
unchanged. All the models are trained with Stochastic Gradient Descent (SGD) with
momentum 0.9 for 10 epochs.

7.1.2 Results of BodyMTS versus deep learning models

Table 5 reports the average accuracy and average running time of the deep learning
models evaluated. Note that this accuracy was obtained with significant model engi-

4 https://github.com/facebookresearch/SlowFast.
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Table 5 Average accuracy, total testing time, time per testing clip and total training time for different
architectures over 3 train/test splits

Model Accuracy Total test time (mins)/test
time per clip of 10 reps
(mins)

Training time (mins)

C2D 0.67 (±0.021) 23/0.38 19

I3D 0.79 (±0.036) 32/0.53 23

SlowFast 0.83 (±0.021) 29/0.48 52

SlowFast + NL 0.83 (±0.020) 27/0.45 59

X3D-M 0.78 (±0.012) 41/0.68 126

BodyMTS (frame-step=1) 0.87 (±0.026) 22/0.36 52

BodyMTS (frame-step=3) 0.85 (±0.029) 12/0.20 26

The average duration of all clips in training and testing is 65 mins and 30 mins respectively. All deep
learning models are pre-trained on Kinetics-400. For accuracy without pre-training, see Table 6

neering effort and with using pre-trained weights from the Kinetics-400 benchmark
for all the deepmodels. As seen fromTable 5, C2D performed theworst whereas Slow-
Fast and SlowFast + NL achieve the highest accuracy, followed by I3D and X3D-M.
We select the best architecture model which is SlowFast in this case and compare its
performance with BodyMTS. We use the short name SlowFast for this model in the
subsequent sections. In the test data there are a total of 60 clips eachwith 10 repetitions
on average. These clips were fed one by one to the pre-trained model. The testing time
for each model is the summation of total time taken for data pre-processing (which
includes segmentation), model loading and classification. Table 5 shows the total test-
ing time taken for 60 clips for each model. We also reported the average testing time
over single clips of 10 repetitions. The training time shown is the summation of time
taken for data pre-processing and model training for all the clips in the training data.

Accuracy Table 6 reports the average accuracy over three splits for SlowFast (0.83) and
BodyMTS (0.87). BodyMTS achieves higher accuracy with minimal model engineer-
ing effort. We note that the default architecture of SlowFast is meant for classifying
large scale video datasets such as UCF-101 or Kinetics-600 and so there is a higher
chance of overfitting. This is substantiated by observing that there is a very significant
drop in the accuracy of SlowFast when removing the pre-trained weights as shown in
Table 6, with the accuracy dropping by 60 percentage points, from 0.83 to 0.25. It is
only after using the pre-trained weights on Kinetics-400 and other model engineering
steps that SlowFast reaches an average accuracy of 0.83.

Execution time We report the total training and testing time for both the models in
Tables 5 and 6. The total duration of all the videos (both training and test) is 95 min.
We observe that the combined train/test time of BodyMTS (OpenPose + data pre-
processing + training/testing) is around 74 min whereas the combined train/test time
of SlowFast is around 86 min. Prediction time is 22 min for BodyMTS and 27 min
for SlowFast. This shows that BodyMTS is faster than SlowFast for both training
and prediction. Additionally, using a frame step of 3, the combined train/test time of
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Table 6 Comparison of SlowFast and BodyMTS approaches in terms of time taken and resources required

Step SlowFast BodyMTS (frame-step = 3)

Data size 213 MB (videos) 28 MB (time series)

Training time 59 mins 26 mins

Testing time 27 mins 12 mins

Average accuracy over three splits 0.83 (with pre-training on
Kinetics-400, epochs = 10)

0.25 (no pre-training,
epochs = 50)

0.85

Infrastructure GPU GPU or CPU

The total duration of all clips in training and testing is 65 mins and 30 mins respectively

BodyMTS goes down to 38 min which is significantly faster than the time taken for
SlowFast. Excluding the execution time of OpenPose, BodyMTS only takes a total of
2 min including both the training and testing time for the classifier. Additionally, for
a single clip consisting of 10 repetitions BodyMTS takes a total time of 12 s, whereas
SlowFast takes 29 s on average. Hence BodyMTS is overall faster than SlowFast and
can deliver near real-time predictions.

Cost All deep learning methods require the use of GPU. In our case, a single GPU
was utilized for the deep learning models to compare their performance. Increasing
the number of GPUs will lead to a reduced execution time but at the cost of expen-
sive infrastructure. However, running deep learning models without any GPU will
lead to significant increase in training/testing time. The CPU version of OpenPose
takes roughly about 15sec/frame (Cao et al. 2019), however, the recent lightweight
implementations of OpenPose makes it possible to reach real-time inference on CPU
with negligible accuracy drop (Osokin 2018). We recently found that libraries such
as OpenVINO5 makes it possible to execute OpenPose on the CPU machines and
TensorFlow Lite6 supports running pose estimation models directly on the mobile
phone in real-time.

This is interesting for future work, but a different workflow than the one we use
here. Therefore, it is possible to reduce the computation footprint of BodyMTS more
than the corresponding deep learning models for video-based exercise classification.

Storage space Table 6 shows the initial data size for SlowFast and BodyMTS. Because
of the large size of videos there is high cost involved to store the videos. However,
videos do not need to be stored for BodyMTS, once the time series are extracted.
Since the data is just a sequence of numbers (time series), there can be large savings
in storing this data.

Even when the data is sent to the cloud server, there can be large savings in terms
of bandwidth required to transfer the data.

5 https://docs.openvino.ai/2019_R1/_human_pose_estimation_0001_description_human_pose_estima
tion_0001.html.
6 https://www.tensorflow.org/lite/examples/pose_estimation/overview#performance_benchmarks.
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Table 7 Average accuracy obtained by SlowFast and BodyMTS for two different segmentation approaches
for three train/test splits

Segmentation approach SlowFast accuracy BodyMTS accuracy

With pose estimation 0.83 0.87

Without pose estimation 0.77 0.80

Practical aspects FromTables 5 and 6, we see that BodyMTS has higher accuracy than
the deep learning methods. Deep models may suffer from high training and test time
depending upon the data size as well as require high engineering effort to tune hyper
parameters such as the number of epochs, learning rate, etc. Increasing the number of
GPUs may lead to decrease in execution time for the deep learning models, however,
this may not be always possible due to cost. In contrast, due to the lightweight nature of
the time series classifier, BodyMTSdoes not requireGPU resources (using lightweight
OpenPose) and can be trained/tested within a fraction of the runtime of SlowFast, on
a single CPU machine (Dempster et al. 2019b; Osokin 2018).

7.1.3 Impact of segmentation

In this section we analyze the impact of two segmentation techniques on the accuracy
of BodyMTS and SlowFast. As stated earlier in the data pre-processing step, segmen-
tation of the video data is required to obtain the individual sample for each repetition
for train/test data. We consider two scenarios here:

– When the start and the end time of each repetition is known in advance. This infor-
mation can be utilized to easily segment the video data into individual repetitions.
To get this information we use pose estimation and peak detection techniques.

– When the number of repetitions are known in advance. Dividing the total duration
of the video clip by the total repetitions can approximately segment the individual
repetition assuming that the participant takes consistent time to complete each
repetition. This approach does not require pose estimation information.

Table 7 shows the average accuracy of SlowFast and BodyMTS using two different
segmentation approaches over three train/test splits. BodyMTS achieves 4 percentage
points higher accuracy than SlowFast when the data from pose estimation is utilized
for segmentation.When the segmentation is done by equally dividing the total duration
by the total number of repetitions, BodyMTS still achieves 3 percentage points higher
accuracy than SlowFast. Therefore, from the above results accuracy obtained is higher
when the repetitions are correctly segmented using pose estimation than the scenario
where the segmentation is performed by equally dividing the total duration with the
total number of repetitions. This suggests that repetitions may not be fully captured
as this is just an approximate way to obtain each repetition. The idle time at the start
or the end of the video clip as well as the variation in the duration of each repetition
can affect the segmentation.
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Table 8 Average accuracy
obtained by SlowFast and
BodyMTS for varying video
quality (CRF from 16 to 34)
over 3 train/test splits

CRF SlowFast accuracy BodyMTS accuracy

16 0.84 0.87

23 (default) 0.83 0.87

28 0.82 0.85

34 0.81 0.81

7.1.4 Impact of video quality noise

We now analyze the impact of video quality noise on the deep learning models, as
well as BodyMTS. We do this by changing the CRF video property as discussed in
detail in Sect. 7.2. Higher value of CRF leads to a drop in the quality of the video and
vice versa. We compare the accuracy at different values of CRF: the default is set at
23 and we test a higher quality of video at CRF 16 and degrading the quality of the
video all the way to CRF 34.

Table 8 shows the average accuracy obtained with SlowFast and BodyMTS at
differentCRFover three train/test splits.Weobserve that at the default value ofCRF23,
BodyMTS achieves higher accuracy than SlowFast by 4 percentage points. Reducing
the video quality by increasing the CRF affects both methods, with the accuracy
decreasing but still above 80% which is desirable as described in Sect. 2.

For future work, it would be interesting to study whether video quality metrics such
as VMAF Aaron et al. (2015) could also be used to identify an application specific
threshold beyond which the video quality is too poor for inclusion in this task. In the
Appendix,we investigate a fewvideo qualitymetrics and the correspondingBodyMTS
accuracy.

Takeaway The previous experiments suggest that BodyMTS is more accurate, signifi-
cantly faster and more cost-efficient when compared to the best deep learning method,
SlowFast.

7.2 Robustness analysis: impact of noise on BodyMTS

In this section, we analyze the robustness of BodyMTS against different sources of
noise that may occur in this application. These sources of noise can be broadly classi-
fied into 3 categories: (1) video data capture; (2) OpenPose parameters; (3) time series
data pre-processing.

While studying the impact of noise we address the following questions:

1. How does the noise from different sources such as video capture quality, OpenPose
estimation and data pre-processing affect the classifier accuracy?

2. Is it possible to reduce the quality of videos but still keep the same accuracy? Are
there possible benefits in terms of saving storage space by reducing the data size?

We address these questions by generating different types of noisy videos with
varying levels of noise. We degrade or enhance the quality of videos by changing
the resolution and bit rate. Also, we analyze the impact of OpenPose parameters that
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are most responsible for affecting the quality of estimation. In addition, we explore
parameters of OpenPose that can be tuned to reduce the overall execution time of
BodyMTS. We further analyze how much the quality of videos can be reduced by
changing the compression level without sacrificing accuracy.

We consider two scenarios: 1. Adding noise to both training and testing data. 2.
Adding noise to testing data and keeping the training data intact.

7.2.1 Data-capture noise

In this section, we study the impact of noise coming from data capture. This can be
further categorized into two types: video quality and the recording conditions. We
describe each of them in detail below.

Video quality The motivation behind studying the video quality is that videos captured
in the wild can range from very poor quality to high definition quality. For modern
smartphones the camera quality is much more efficient than it used to be 10 years ago.
Nevertheless, recorded videos can still have a low quality because of the compression
required to send the data to the cloud service where further processing takes place. We
generate varying quality of video data with different levels of noise by tweaking the
video properties such as the bit-rate and resolution. We use FFmpeg Tomar (2006) to
obtain noisy videos by modifying the above properties. This is an open-source, widely
used tool used for manipulating and modifying videos.

Additionally, OpenPose estimation confidence is directly proportional to the quality
of the video. Lower quality videos lead to low confidence of the body-parts location
estimation, which ultimately may affect the classifier accuracy.

– Resolution refers to the number of pixels in each image. The higher the resolu-
tion, the more pixels and hence the better video quality. In our experiments, we
downscale the original resolution of the videos to measure the impact on classifier
accuracy. Note that the original videos of the Military Press were recorded at HD
quality with 720p resolution.

– Bit-rate refers to the amount of information processed per second to represent a
video. Higher bit-rate means more information, which means better quality, but
also a higher video file size. We use the constant rate factor (CRF) Tomar (2006),
which is a rate control mode, to change the number of bits per frame. We examine
the impact of bit rate by changing the CRF property of videos. Higher CRF leads
to lower quality videos.

In addition to the above properties, we also alter the color space and frame rate to
analyze their impact on the BodyMTS accuracy.

Recording conditions Several factors during the video recording can affect the way a
video is recorded which ultimately can affect the confidence of OpenPose. We catego-
rize common recording conditions into different types and provide a brief description
below.

123



896 A. Singh et al.

– Camera settings This may include factors such as orientation, viewing angle,
zoom of the camera, distance between the participant and the camera or whether
the participant is centralized or not, etc.

– Background Depending upon the conditions such as whether the participant is exe-
cuting the exercise in an indoor or outdoor settings, this may influence the quality
of video. For instance, in a gym setting factors like multiple people, background
noise (pictures having humans), clothing (background color same as clothing) and
lighting may affect the final output of videos.

Apart from the above, there may be other unaccounted factors which can influence
the recording conditions. In our data, the distance to the camera and the background can
change, and these variations did not affect the accuracy of BodyMTS. Nevertheless,
we note that BodyMTS expects certain conditions to be met (e.g., regarding camera
being stable) as listed out in Sect. 2 before deploying.

7.2.2 OpenPose parameters

BodyMTS utilizes OpenPose to obtain the coordinates information for major key-
points in a human body. OpenPose is a full-fledged, 2D pose estimation system that
includes many parameters that affect accuracy, optimization, display and output for-
mat. Here the objective is to evaluate and tune the parameters which may influence the
accuracy and efficiency of OpenPose which ultimately affects the running time and
accuracy of BodyMTS. A short description of these parameters is provided below:

– Frame-step an integer value indicating the number of frames to skip during the
estimation.

– Net-resolution increasing this may increase the accuracy while also increasing the
execution time.

– Scale-number this parameter indicates the number of scales to average.

The parameters net-resolution, scale-number are directly responsible for the accu-
racy of OpenPose.

OpenPose fails to detect the body parts in case the person is not facing the camera or
the body part is cropped accidentally or the camera fails to capture the whole body. In
the Military Press execution, the participant is not facing the camera and so OpenPose
fails to detect the coordinates for eyes and nose. Nonetheless, these body parts are not
involved in the physical movement and so have no impact on the accuracy.

All the experiments are performed using the sktime (Löning et al. 2019) version
of ROCKET on an Ubuntu 18.04 system (16 GB RAM, Intel i7-4790 CPU @ 3.60
GHz).

7.2.3 Results for the impact of video quality on BodyMTS

In this section we analyze the impact of changing the video quality on the BodyMTS
accuracy.We start by changing the bit-rate and resolution both ofwhich are responsible
for determining the quality of video. We further present the total size of the video data
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Table 9 Average accuracy of BodyMTS on test data over three train/test splits for different video frame
resolution

Resolution Total size of videos (MB) BodyMTS accuracy

Default (420× 460) 213 0.87

One-half (210× 230) 48 0.82

One-third(140× 154) 27 0.75

Table 10 Average accuracy of BodyMTS on test data over three train/test splits for different values of CRF

CRF Total size of videos (MB) BodyMTS accuracy

Default (23) 213 0.87

16 398 0.87

22 208 0.87

28 76 0.85

34 34 0.81

At CRF 28 we save 70% of data storage and maintain similar accuracy

obtained after altering each property. We note that in the following experiments we
consider the case when both the train and the test data have been impacted by the
changes in video quality.

Reducing the resolution We reduce the original resolution in steps of one-half, one-
third of the original resolution and evaluate its impact on the classifier accuracy. Table
9 shows the impact of various resolutions on the classifier accuracy and data size.

Reducing the bit-rate We alter the CRF in order to modify the bit rate. CRF ranges
from 0 to 53 and the default value of CRF is 23. We change the value of CRF with a
step size of 6 as suggested in (Tomar 2006), starting from 16. Resolution remains the
same when changing the CRF. Table 10 shows the impact of changing the CRF (or
bit-rate) on the classifier accuracy.

Results and discussion We see in Table 9 that reducing the resolution has a negative
impact on the classifier accuracy. The reduction in average accuracy is more than 10
percentage points when the original resolution is reduced to one-third. This confirms
that degrading the quality of videos by reducing the resolution leads to a significant
drop in accuracy. We are interested in finding good trade-offs between saving storage
space and maintaining or only slightly sacrificing the accuracy.

Next we alter the CRF property in order to change the bit-rate. Increasing the CRF
leads to a drop in the bit-rate which leads to degraded quality of the videos and vice
versa. Table 10 shows that increasing the value of CRF leads to a drop in the classifier
accuracy whereas decreasing this value has no effect on the accuracy. Figure 4 shows
a single frame for class Normal at CRF 23 (default) and CRF 40 where the image
becomes too distorted to be usable.

The change in the video quality at CRF 22 and 23 is insignificant and hence the
accuracy remains consistent. We observe that setting the value of CRF to 28 has no
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Fig. 4 Single frame for class Normal at default resolution of 420× 460 and CRF 23 (default) versus CRF
40 (lower quality, distorted). The figure at CRF 40 (right) has a low resolution and hence looks blurrier than
the figure at CRF 23 (left)

major impact on the classifier accuracy. This suggests that it is possible to reduce the
total storage space of original videos while maintaining accuracy. The total size of
the original videos is 213 MB at CRF 23 but it is 76 MB at CRF 28, hence a saving
in storage space of 70%. Additionally, the size of final time series is 28 MB which
suggests further savings in storage space as compared to the original videos.

Takeaway Degrading the quality of videos by altering CRF to 28 makes it possible
to satisfy minimum accuracy requirements (e.g. above 80%) as listed in Table 1 with
70% savings in storage space.

7.2.4 Results for impact of noise due to OpenPose parameters

In this section, we analyze the impact of changing the OpenPose parameters as dis-
cussed in the previous section. Table 11 shows the accuracy for different parameter
values and the total training and testing time of BodyMTS. Training time includes time
taken for runningOpenPose, data pre-processing and training themodel, similarly test-
ing time includes time taken for running OpenPose, data pre-processing and testing
the model. Note that the impact of changing OpenPose parameters has been evaluated
on the original dataset (default video settings for resolution and CRF). There are a
total of 205 clips (2053 repetitions) of Military Press with a total combined duration
of 1 h 35 mins.

Results and discussion From Table 11 we observe that increasing the frame-step from
1 (using every frame) to 3 (every third frame), leads to a small drop in accuracy of 2
percentage points, but a significant reduction in run-time of OpenPose.

We further observe that increasing the values of the parameters net-resolution and
scale, which are mainly responsible for the confidence of OpenPose, produce no
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Table 11 Average accuracy on test data over three train/test splits for different OpenPose parameters

OpenPose parameters BodyMTS accuracy Training/testing time (mins)

default (frame-step = 1, net-resolution = −1× 368,
scale-number = 1)

0.87 52/22

frame-step = 2 0.86 37/17

frame-step = 3 0.85 26/12

net-resolution = 640 0.85 174/76

net-resolution = 720 0.82 234/105

scale-number = 4 0.82 140/63

The total duration of all clips including training and testing clips is 95 mins

Table 12 Average accuracy on poor quality test data at CRF 28 over three train/test splits for different
OpenPose parameters

OpenPose parameters BodyMTS accuracy

default (frame-step = 1, net-resolution = −1× 368, scale-number = 1) 0.85

net-resolution = −1× 640, scale-number = 4 scale-gap = 0.25 0.85

net-resolution = −1× 720, scale-number = 4 scale-gap = 0.25 0.84

improvement on the accuracy, but rather leads to an increase in the overall run-time
and a drop in the accuracy. These results suggest that the default values of these
parameters are enough to give a reasonable accuracy using OpenPose. Table 11 also
shows the total running time of OpenPose. Increasing the frame-stepmakes OpenPose
faster since it is not processing all the frames and so skipping some frames leads to
faster execution time. The accuracy obtained by setting frame-step to 3 is still above
the minimum desired accuracy of 80% listed in Table 1, which means that for pose
estimation we do not need to consider every frame, and using every third frame is
enough to capture the movement of body parts relevant for this classification task.

Takeaway By using a frame-step size of 3 along with default values of the remaining
parameters for OpenPose, it is possible to noticeably reduce the training and test-
ing time without a major drop in accuracy and still satisfy the minimum accuracy
requirements in Table 1.

We further tried tuning the net-resolution on lower quality video at CRF 28. Table
12 shows the accuracy over different parameters of OpenPose for video quality at
CRF 28. We observe no major improvement over the previous accuracy of 0.85. This
also suggests that video quality plays a crucial role in determining the accuracy of
BodyMTS as tuning OpenPose parameters alone is not sufficient to achieve good
performance.

7.2.5 Training on good quality videos and testing on poor quality videos

Previous results shown in Tables 9, 10 and 12, considered the scenario when both the
train and test video data are impacted by the same degree of level of noise. In this
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Table 13 Average accuracy of BodyMTS on test data for different values of CRF over three train/test splits

CRF BodyMTS accuracy Total size of videos (MB)

Original data (CRF = 23) 0.87 213

28 0.85 76

30 0.83 56

34 0.78 34

The training is performed on original data (CRF = 23), while the testing is performed on poor quality video
by altering the CRF from 23 to 34

section, we consider another scenario when training is performed using the original
high quality video whereas testing is performed using poor quality video. The poor
quality videos are generated by altering the CRF value. Table 13 shows the accuracy
of BodyMTS when trained on high quality videos and tested on poor quality videos.

Results and discussionWeobserve fromTable 13 that BodyMTS accuracy drops when
trained on high quality videos and tested on poor quality videos after CRF 30. From
the above results it is clear that a threshold of CRF 30 can be chosen to reduce the data
size while still satisfying the minimum accuracy requirements as listed in the Table 1.
As previously observed in Table 10 we save 70% in storage space at CRF 28 without
compromising on the accuracy.

7.2.6 Discussion on impact of video quality and OpenPose parameters on BodyMTS

In the above experiments, we studied the impact of two major sources of noise from
video quality and theOpenPose parameters on the accuracy ofBodyMTS.Weobserved
that the quality of the videos has a large impact on the classifier accuracy. We also
found that degrading the quality of videos by introducing a small amount of noise (at
CRF 28) can lead to large savings for the storage space (from 213 to 76 MB), at a
very small drop in accuracy (from 87 to 85%). This can be essential for applications
deployed on low memory devices such as mobile phones, as well as where bandwidth
is a constraint. From the pose estimation side we observed that the default values of
OpenPose parameters are sufficient for good accuracy. The total duration of the original
videos is 1 h 38 min, whereas OpenPose took 1 h 12 min using default parameters and
this was further reduced to 38 min by utilizing every third frame during the estimation
with a very small drop in accuracy (from 87 to 85%). Thus we can save both storage
space and run-time, which is very promising given the constraints and requirements
of this application. We note that there are many other types of video noise we can
investigate, but we focused here on a subset of the most relevant sources for this
application.

7.3 Robustness analysis: time series classification in BodyMTS

In this section, we evaluate several multivariate time series classifiers and report the
average accuracy over 3 train/test splits.
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Table 14 Average accuracy on test data over 3 splits for multivariate time series classifiers trained with
time series extracted with OpenPose version 1.4 and version 1.7

Time series classifier Accuracy OpenPose (v1.7) Accuracy OpenPose (v1.4)

FCN 0.82 (±0.012) 0.72 (±0.043)

ResNet 0.76 (±0.040) 0.73 (±0.028)

ROCKET 0.87 (±0.026) 0.81 (±0.03)

MINIROCKET 0.81 (±0.030) 0.75 (±1.644)

Table 15 Average time taken for training and testing over 3 splits for the selected methods

Time series classifier Training time (mins) Testing time (mins)

FCN 85 28

ResNet 115 28

ROCKET 52 22

MINIROCKET 50 20

Note that training and testing time shown here is inclusive of the time taken for OpenPose and data pre-
processing. The total duration of all clips in training and testing is around 65 mins and 30 mins respectively

We present results using both the previous version of OpenPose (v1.4) and the latest
version (v1.7 at the time of writing). We are interested to see if the improvements in
OpenPose lead to a significant improvement in the classification accuracy. For FCN
and ResNet, we did not tune any hyperparameters and used the defaults as mentioned
in the original papers (Fawaz et al. 2019). We observe that for ROCKET (Dempster
et al. 2020) changing the number of kernels (default=10000) did not produce any
significant change on the accuracy, hence we kept the defaults as recommended by
the authors. Where the algorithm allows it by exposing this option to the user, we
disable the time series normalisation step. We show detailed results for varying data
pre-processing in the Appendix.

We also present results for different subsets of time series dimensions (i.e., body
parts). We utilize the ECP method (Dhariyal et al. 2021) for automated dimension
selection due to the large number of possible combinations from the 25 body parts
(50 dimensions). We use both the left and right parts for a single body part unless
otherwise stated. We further compare this with the number of dimensions suggested
by the domain experts who carried out the data collection.

Results and discussion Table 14 shows the average accuracy and standard deviation
obtained on the test data over three data splits. ROCKET achieved the highest accuracy
for both versions of OpenPose, followed by the deep learning models. The standard
deviation values are generally small, which means accuracy generally remains con-
sistent over different splits. We further observe that there is a notable increase of 6
percentage points in the accuracy of ROCKET transitioning from the older version to
the latest version of OpenPose (v1.7 at the time of writing this paper). We think that
further improvements in OpenPose and time series classifiers can further improve the
performance on this task. With an average accuracy of 87%, it confirms that Open-
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Table 16 Average accuracy of ROCKET using OpenPose v1.7 on test data for different subsets of body
parts over 3 train/test splits

Number of body parts Body parts ROCKET accuracy

25 body parts All 0.83 (±0.028)

8 upper body parts (domain expert) Wrists, elbows, shoulders and hips 0.87 (±0.026)

8 body parts (Dhariyal et al. 2021) Wrists, elbows, big toes and small toes 0.81 (±0.012)

6 upper body parts Wrists, elbows and shoulders 0.87 (±0.021)

4 upper body parts Wrists and elbows 0.85 (±0.012)

Pose coupled with ROCKET can surpass the minimum accuracy requirement of 80%
as listed in Table 1.

Table 15 shows the training time and testing time for the selected methods. We
observe that MINIROCKET takes the least amount of time for training and testing
followed by ROCKET and deep learning methods. However, despite MINIROCKET
being faster than ROCKET in total time taken, it is less accurate than ROCKET as
shown in Table 14.

Based on the above results, we choose ROCKET as the classifier in BodyMTS
as it the most accurate and scalable method among the classifiers investigated. In
Table 16 we observe the results using different subsets of body parts selected from the
multivariate time series.Wenote that careful selectionof the bodyparts has a significant
impact on the accuracy of the classifier, with the upper body parts recommended by the
domain expert achieving the highest accuracy among alternative subsets considered.
The automated selection method proposed by (Dhariyal et al. 2021) also selects 8
body parts, but seems to be affected by data noise in selecting lower information body
parts such as toes, which do not play a role in accurately classifying the movement.

8 Lessons learned and limitations of the BodyMTS approach

BodyMTS achieves an accuracy of about 87% on the Military Press video dataset.
Based on these results, it is possible to use videos as an alternative to sensor-based
approaches for human exercise classification. However, further work is needed to ana-
lyze the generalizability of BodyMTS by including other strength and conditioning
exercises. We analyzed the robustness of BodyMTS against common sources of noise,
particularly the video quality and OpenPose parameters. We observed that video qual-
ity plays a critical role in determining the classification accuracy. We showed that
video quality can be degraded to a CRF value of 28 without a significant drop in
accuracy, whilst achieving savings in terms of storage space. We observed that the
subset of channels (i.e., body parts) has a large impact on classier accuracy, which
necessitates further investigation. We have also seen that improvements in the body
pose estimation method (from OpenPose v1.4 to v1.7) have resulted in higher accu-
racy, which is encouraging. Furthermore, in case of data pre-processing, segmentation
plays a crucial role, as incorrect peak detection due to a noisy signal may lead to
incorrect capturing of a repetition, which in turn affects the classifier accuracy. Lastly,
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due to the choice of ROCKET as a classifier, BodyMTS does not involve tuning too
many parameters. Hence BodyMTS as an application requires setting fewer parame-
ters. Finally, we compared BodyMTS with state-of-the-art deep learning methods and
observed that BodyMTS achieves better accuracy while requiring fewer computation
resources. Additionally, a lot of engineering effort is required to tune the deep learning
models.

Below we discuss some of the limitations and mitigations for this approach.

– Types of exercises and pose estimation BodyMTS may fail in case of exercises
where the participants may have to lie down, e.g., for exercises like push-ups and
sit-ups. In such cases, videos may fail to capture the full motion or the pose esti-
mation may fail due to body parts occlusion. Further, we observed in the previous
experiments (Singh et al. 2020) that the classifier struggles to classify some sam-
ples from class Normal and Arch for Military Press, which is due to the fact that
the front view may not be able to fully capture the lateral motion. Techniques
like extending the 2D information to 3D through triangulation techniques (Kwon
et al. 2020; Nakano et al. 2020b) can be used to capture the depth information.
BodyMTS is also limited by the number of body parts detected by OpenPose.
Physical exercises which require tracking of certain body parts not supported by
OpenPose may not be well suited for this approach. For instance, for an exercise
which requires to track all vertebrae of the spine, it may not be possible with this
approach as OpenPose does not currently track each vertebra of the spine. How-
ever, most types of Strength and Conditioning exercises involve majorly the upper
or lower body parts movements which are tracked well with OpenPose.

– Video data capture Factors such as lighting, viewing angle, stability and position
of the camera, camera quality, clothing of the participants, background, location,
etc., can possibly influence the video recordings of the exercise. OpenPose may
fail to detect some body parts if the body part is not fully captured in the video
recordings. Additionally, the confidence of OpenPose is directly related to the
video quality. The lower quality of the videos leads to decrease in the accuracy of
OpenPose and hence low quality of final data. However, issues like video quality
can be easily overcome by usage of smartphones that have a reasonable quality
camera, whereas accidental cropping of body parts as well as positioning and
the viewing angle can be avoided by requirements for the video recordings as
mentioned in Sect. 2. OpenPose is robust against occlusions including during
human-object interaction Cao et al. (2019). Moreover, lightweight versions of
OpenPose (Osokin 2018) and TensorFlow Lite7 makes it possible to run pose
estimation frameworks on resource-constrained devices such as smartphones as
well as on a single CPU without sacrificing the accuracy. Lastly, recent works
based on preserving the privacy and security of participants (Hinojosa et al. 2021)
do not require participants to be completely visible in front of the cameras thus
preserving their privacy which is in contrast to the deep learning methods that
might require that participants be completely visible.

7 https://www.tensorflow.org/lite/examples/pose_estimation/overview#performance_benchmarks.
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– Data pre-processingBodyMTS uses peak detection to segment the individual time
series from multiple repetitions to obtain single repetitions. Due to noise, jittering
and depending on the accuracy of OpenPose, segmentation may not always be
correct and hencemay lead to loss of some repetitions.Additionally, the duration of
a single repetition cannot be generalized as it varies from participant to participant.
In our experiments only a few samples were dropped due to incorrect segmentation
without having a substantial impact on the accuracy.

Despite these limitations, our experiments show that BodyMTS is a very promis-
ing approach. Advancements in body pose estimation and time series classification
may help in further improving the performance of BodyMTS. An interesting future
direction concerns the development of time series classification algorithms that are
more flexible and do not require strict pre-processing steps such as length re-sampling
or normalisation. Additionally, the data produced by OpenPose has associated pose
estimation confidence values, and this raises interesting research questions of how
the classifier may benefit from knowledge of uncertainty in the data to improve the
accuracy.

9 Recommendations for practitioners

We divide this section into three parts: video data, pose estimation and time series
classification.Weprovide recommendations for each of these based on the experiments
performed and our findings.

– Using videos as data source for S&C exercise classification We recommend the
use of videos as an alternative source to sensors, for S&C exercise classification.
The large storage and computation requirements of video can be addressed by
changing the bit rate property, which reduces the video quality and size. In the
case of Military Press, a CRF up to about 28 to 30, reduces the data size by 70%
without affecting the accuracy.
Certain application requirements on the video quality and data capture process
need to be met. For example, the requirement of a stable camera, as well as the
participant being fully captured in each frame are important to ensure the quality of
the follow up steps.We have detailed such requirements in Sect. 2.We recommend
that the recorded videos are then pre-processed to remove any audio, background,
and centralize the participants using a bounding box, followed by changing the
video CRF value which results in saving storage space.

– Pose estimation We recommend the use of OpenPose for human pose estimation.
It can process video faster than real-time, and has parameters such as frame-rate
which allows skipping frames during processing. We have found that skipping 1-2
frames further improves speed and does not affect the accuracy of the classification
step. The body parts detection and tracking is sufficiently accurate to enable the
followup classification step. We found that improvements in pose estimation in
v1.7 have also lead to improvements in classification.
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Libraries such as OpenVINO8 make it possible to execute OpenPose on CPU, and
TensorFlow Lite9 supports running pose estimation models directly on a mobile
phone in real-time, so there is a lot of promise in current developments for pose
estimation.

– Data pre-processing and multivariate time series classifiersWe recommend using
pose estimation information to obtain the human motion time series and then
segment the multiple repetitions of the exercise. This is more accurate than other
heuristics for segmenting the reps.
Before segmentation, it helps if the full signal is smoothed using a Savgol filter
followed by peak detection. We recommend to not normalise the data of each
repetition, as this can change the meaning of the data and also decreases the
classification accuracy.
We found that length re-sampling does not impact the final classification accuracy.
We recommend ROCKET for the multivariate time series classification step, as it
is very fast and most accurate among the classifiers evaluated.

10 Conclusion

In this work we have analyzed the performance and robustness of BodyMTS, an
approach for exercise classification using videos as time series. We presented the
required features and associated technical requirements for this kind of application.
We evaluated BodyMTS on a real-world dataset for the Military Press exercise and
achieved an average accuracy of 87%.We further showed that the latest improvements
in body pose estimation with OpenPose can improve the performance of BodyMTS.
We observed that the subset of channels (i.e., body parts) has a large impact on clas-
sifier accuracy, which necessitates further investigation in future work. We compared
the robustness of BodyMTS against different sources of noise particularly related to
variations in video quality and OpenPose parameters. We observed that BodyMTS
can achieve good performance at different levels of video quality.

We showed that by decreasing the quality of videos, a major portion of storage cost
can be reduced (70%), with a very small drop in accuracy (2 percentage points). This
leads to less computation as well as savings in terms of storage cost.We further noticed
that changing the parameters ofOpenPose has less impact on the classifier accuracy, but
can lead to large savings in running time. Lastly, we compare the BodyMTS approach
with deep learning-based methods for human activity recognition from videos. We
considered several aspects such as performance, storage space and practicality. We
observed that BodyMTS can achieve better performance than deep learning methods
in terms of total time and accuracy, without the use of heavy computing resources. For
future work, we plan to carry out extensive experiments to analyze how BodyMTS
generalises to more strength and conditioning exercises. Additionally, we plan to com-
pare the performance of BodyMTSwith sensors-only based approaches. Furthermore,

8 https://docs.openvino.ai/2019_R1/_human_pose_estimation_0001_description_human_pose_estimat
ion_0001.html.
9 https://www.tensorflow.org/lite/examples/pose_estimation/overview#performance_benchmarks.
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we plan to work on the classification interpretation aspect, where the goal is to provide
useful prediction explanation feedback to the end-user.
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Foundation Ireland under Grant numbers [12/RC/2289_P2, SFI/16/RC/3835].

Appendix

Time series data pre-processing and classification

We consider the impact of time series length re-sampling and data normalization here.
We use a single split of data consisting of only y coordinates of 8 body parts here for
faster execution.

– Re-sampling Each time series has been re-sampled to the same length since most
time series classifiers cannot handle variable-length data.

– Normalization The magnitude of the signal is important for this application, as
shown in the experiment here.

Results and discussion Table 17 shows the impact of changing the re-sampling length
on the BodyMTS accuracy. We see that there is almost no effect of length re-sampling
on the classifier accuracy. Furthermore, reducing the length of the data also leads to
reduced execution time of BodyMTS. We also experimented with the parameters of
the ROCKET classifier such as number of kernels (10000) and normalization (False).
While changing the number of kernels did not produce any impact on the accuracy,
setting the normalization to FALSE lead to a big increase in the accuracy as shown in
Table 18. We believe that this is due to the loss of magnitude information which is a
key element in the classification for this type of problem. We further experimented by
converting the color scale of videos to gray and observed no change in the accuracy
of BodyMTS.

Table 17 Accuracy on test data
over a single train/test split for
different values of time series
length

Re-sampling length BodyMTS accuracy

50 0.81

100 0.83

161 0.83

225 0.83

300 0.83

500 0.83

Quantifying video quality noise using video quality metrics

We further quantify the impact of noise on the classifier accuracy by using video
quality metrics. We use three scores: VMAF (Aaron et al. 2015), PSNR, and SSIM.
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Table 18 Impact of
normalization on accuracy using
test data over 3 train/test split

Normalized data BodyMTS accuracy

True 0.84

False 0.88

Table 19 Accuracy and video quality metrics score on test data over a single train/test split for different
values of CRF

CRF Average VMAF score Average PSNR Average SSIM BodyMTS accuracy

16 97.03 48.14 0.998 0.83

22 95.54 44.51 0.996 0.83

28 91.21 39.85 0.990 0.82

34 87.76 36.52 0.979 0.75

40 67.94 33.09 0.954 0.69

FFmpeg has been utilized to calculate these metrics for different CRF values. We
report the average metric score over all the clips for each value of CRF. Table 19
shows the average score over all the clips and the accuracy obtained using a particular
value of CRF.

Results and discussion We observe that the VMAF score is more useful than other
scores for estimating the quality of videos. Higher VMAF, indicates a better quality of
videos. There is a big drop in the average VMAF score by changing the CRF values.
Based on these results the threshold of VMAF can be set at around 90 which can be
used to exclude those videos whose VMAF score is less than 90.
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