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Abstract

The burgeoning age of IoT has reinforced the need for robust time series anomaly
detection. While there are hundreds of anomaly detection methods in the literature,
one definition, time series discords, has emerged as a competitive and popular choice
for practitioners. Time series discords are subsequences of a time series that are max-
imally far away from their nearest neighbors. Perhaps the most attractive feature of
discords is their simplicity. Unlike many of the parameter-laden methods proposed,
discords require only a single parameter to be set by the user: the subsequence length.
We believe that the utility of discords is reduced by sensitivity to even this single
user choice. The obvious solution to this problem, computing discords of all lengths
then selecting the best anomalies (under some measure), appears at first glance to be
computationally untenable. However, in this work we discuss MERLIN, a recently
introduced algorithm that can efficiently and exactly find discords of all lengths in
massive time series archives. By exploiting computational redundancies, MERLIN is
two orders of magnitude faster than comparable algorithms. Moreover, we show that
by exploiting a little-known indexing technique called Orchard’s algorithm, we can
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create a new algorithm called MERLIN++, which is an order of magnitude faster than
MERLIN, yet produces identical results. We demonstrate the utility of our ideas on
a large and diverse set of experiments and show that MERLIN++ can discover subtle
anomalies that defy existing algorithms or even careful human inspection. We further
compare to five state-of-the-art rival methods, on the largest benchmark dataset for
this task, and show that MERLIN++ is superior in terms of accuracy and speed.

Keywords Time series - Anomaly detection - Multi-scale

1 Introduction

Humans measure things, and with rare exceptions, things change over time, producing
time series. Time series data is ubiquitous in industrial, medical, and scientific settings.
One of the most basic time series analytical tasks is to simply spot anomalous regions.
In some cases, this may be the end goal of the analytics. In other cases, it may be
simply a preprocessing step for a downstream task, for example precursor discovery
or data cleaning. There are at least hundreds of algorithms for finding anomalies, but
which should we use?

Since their introduction, Time Series Discords have emerged as a competitive
approach for discovering anomalies (Lin et al. 2005). For example, Kumar and col-
leagues conducted an extensive empirical comparison concluding that “on 19 data sets,
comparing 9 different techniques (time series discords) is the best overall” (Chandola
et. al 2009). We attribute much of this success to the simplicity of the definition. Time
series discords are intuitively defined as the subsequences of a time series that are
maximally far away from their nearest neighbors. This definition only requires a sin-
gle user specified parameter, the subsequence length. With only a single parameter to
fit,! it is harder to overfit, and overfitting seems to be a major source of false positives
for this task (Chandola et. al 2009; Hundman et al. 2018).

To help the reader appreciate the importance of the subsequence length in anomaly
discovery, let us consider an excerpt of the Gasoil Plant Heating Loop Data Set (Filonov
et. al 2016). This data set had a simulated cyber-attack introduced at the time indicated
by the red dashed line shown in Fig. 1.7op.

We computed the anomaly scores for every subsequence for three different lengths.
For the shortest length of 1000, it is unsurprising that we get many spurious anomalies.
This system transitions between discrete temperature states, giving it a “staircase”
effect. If the subsequence length is less than the length of a step, the z-normalization
“blows up” the subsequence and produces unstable results. At the longer length of
4000 the curse of dimensionality is beginning to dominate. As noted by Beyer et. al.
“as dimensionality increases, the distance to the nearest data point approaches the
distance to the farthest data point” in (Beyer et al. 1999).

However, consider the plot for subsequences of length 2000 shown in Fig. 1. There
is a clear peak at the correct location. Moreover, it is significantly larger than the mean

! Note that some algorithms that discover discords may have other parameters, the discord representation
itself requires just a single parameter.
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Fig. 1 Top An excerpt from Filonov’s Gasoil dataset, a reading from RT_temp . T (Filonov et al. 2016).
Bottom The discord scores for three lengths, 1000, 2000 and 4000. The higher the score, the more anomalous
the corresponding subsequence is

value of the scores, giving a clear visual signal that this is a true anomaly. This example
shows that there is a “sweet spot” (or rather, sweet range) for subsequence length when
performing anomaly discovery. In some cases, the analyst may have a first-principles-
model or experience to suggest a good value, but recall that anomaly/novelty discovery
is often exploratory by nature.

Before continuing, we will take the time to reiterate the utility of discord discovery
in the vast space of anomaly detection techniques (Chandola et al. 2009; Filonov
et al. 2016; Laptev and Amizadeh 2015; Vasheghani-Farahani et al. 2019; Ddubener
et al. 2019; Barz et al. 2017; Doan et al. 2015; Hundman et al. 2018; Ahmad et al.
2017; Keogh et al. 2005; Bu et al. 2009). In essence, we want to answer the following
question: “why make an effort to address the noted weakness of discords, rather than
invent or use a different method?” Fig. 2 shows the discord scores computed for
a benchmark dataset that has been considered in over one hundred research efforts
(Ahmad et al. 2017).

Note that the discords discovered have different causes. Some are predictable hol-
idays, some are caused by ad-hoc events, like the hastily organized BLM march, and
some are severe weather events. One anomaly is simply a bookkeeping error; setting

New York Taxi Demand
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Fig. 2 Top Six months of taxi demand in New York City. Bottom The discord scores for subsequence length
of one day. Most of the discords discovered have an intuitive meaning
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the clock back by one hour for daylight saving time (DST) made it appear as if the
taxi demand doubled just after midnight.?

Vasheghani and colleagues also consider this dataset (Vasheghani-Farahani et al.
2019). While they find some true positives, they also find many false positives. More
importantly, however, they tell us that “the parameters for this experiment are w = 30,
k=6,qg=5 hl = — 357 and h2 = — 4.28.” Thus, to find these anomalies, they
had to set five parameters, two of them to three significant digits. Similarly, there are
many research efforts on deep learning anomaly detection. One recent paper using an
LSTM model also considers this taxi dataset (Zhang 2019). It does find Xmas, New
Year, and the blizzard but fails to find Thanksgiving, the BLM march, or the (obvious
even to the human eye) daylight-savings-time anomaly.

These two comparisons highlight the attractiveness of discords for practitioners. It
is hard to imagine that most practitioners would be able and willing to carefully set
the five parameters of the Markov Chain approach (Vasheghani-Farahani et al. 2019),
or the dozen or so parameters/choices for a LSTM model (Hundman et al. 2018).
Moreover, even if they did so, with so many parameters to fit on a small dataset,
avoiding overfitting would be very challenging.

Because the effectiveness of discords is central to our work, we will take the time
to consider just one more motivating example. A recent paper conducted a “bake-off”
with eight diverse representatives of the state-of-the-art anomaly detection algorithms
(as opposed to simply minor variants of a single approach) (Ddubener et al. 2019).
Figure 3 contrasts the results on one benchmark (Yahoo) dataset with time series
discords.

The authors of this study noted, “None of the algorithms tested can correctly identify
the first five anomalies, ... AdVec generates seven false positives...” In contrast to these
eight approaches, the discord approach performs perfectly on this task, assuming only
that its one parameter is a reasonable value. The goal of this research effort is to remove
the need to set even that sole parameter. We call our proposed algorithm MERLIN.3
MERLIN can efficiently and exactly discover discords of every possible length and
then either report all of them or just the top-K-discords under an arbitrary user defined
scoring metric.

To summarize this section, we have chosen to fix flaws and optimize discord dis-
covery because time series discords are already widely used, in astronomy (Daigavane
et al. 2020), energy management (Nichiforov et al. 2020), medicine etc. There is no
forceful evidence that any of the more recently proposed algorithms are generally
better (Wu and Keogh 2021; Huet et al. 2022; Kim et al. 2022; Hwang et al. 2022),
and there is at least anecdotal evidence that setting the expected anomaly length is a
major pain point for many practitioners.

2 Note that this DST anomaly is misidentified in the original work that introduced this dataset as the
NY-Marathon anomaly (Ahmad et al. 2017). This misidentification has since been repeated in dozens of
papers. We are confident that our labeling is correct. If we correctly process the data with the standard DST
algorithm count(1-2am) = %2 apparent count(1-am), then the apparent anomaly disappears.

3 This name is a play on the fact that the first paper on time series discords was titled “Approximations to
Magic” (Lin et al. 2005). Merlin was the magician of the Arthurian legend. In addition, Mitsubishi Electric
Corporation’s subsidiary in the USA is called MERL (Mitsubishi Electric Research Laboratory, Boston).
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Fig. 3 Top A screen capture from (Ddubener et al. 2019) showing the performance of eight state-of-the-art
anomaly detectors on one of the Yahoo benchmarks (Laptev and Amizadeh, 2015). Bottom Time series
discords (here, of length 8) have a perfect score on this problem, with only the mildest of assumptions

The rest of this paper is organized as follows. In Sect. 2, we introduce background
material and related work. Section 3 reviews the MERLIN algorithm before introduc-
ing MERLIN++ , an extension that is an order of magnitude faster, while producing
the exact same results. We offer an extensive empirical evaluation in Sect. 4, before
concluding with a discussion of our findings in Sect. 5.

2 Background and related work

In this section, we introduce all the necessary definitions and notations, including a
review of an existing algorithm for discord discovery that we will use as a starting
point for our research. We will also consider related work to put our ideas in context
(Yankov et al. 2008).

2.1 Time series notation

We begin by defining the data type of interest Time Series:
Definition 1: A Time Series T =1y, t2, ..., t,, is a sequence of n real values.

Our distance measures quantify the distance between two time series based on local
subsections called subsequences:

Definition 2: A subsequence T; , is a contiguous set of L values starting from position
i in time series T the subsequence T; 1, is of the form T; 1 = ¢;, tiy1, ..., tiyr-1 Where
(1 <i <n-L+1)andL is a user-defined subsequence length with value in range
of 3 <L <|T].
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Here we allow L to be as short as three, although that value is pathologically short
for almost any domains.

Many time series analytical algorithms need to compare subsequences using some
distance measure Dist; here we use the z-normalized Euclidean distance. As pointed
out by the original authors of the discord definition, we must be careful to exclude
certain trivial matches from any meaningful definitions of subsequence similarity.
Effectively, an exclusion zone is place around each subsequence query T, ; such
that only subsequences T, ; satisfying Ip — g|> L are compared to T, ;. Rephrased,
nearest neighbor subsequences are non-overlapping. We can now use this definition
of non-self matches to define time series discords:

Definition 3: Time Series Discord: Given a time series T, the subsequence T; ; of
length L beginning at position i is said to be the discord of T if T; 1 has the largest dis-
tance to its nearest neighbor T,,; . Thatis, V pairs of nearest neighbor subsequences
T; p and Ty,; 1 of T, Dist(T; 1, Typi, ) > Dist(T; 1, Typj, ).

The starting location of the discord is recorded in index and its distance to its
nearest neighbor is recorded in distance. All previous efforts to find discords
considered only a single length. However, we plan to consider all lengths in a given
range; thus producing an array of discords indexed by the length L, discord ;=
[index;, distancer].

For simplicity, we define only the top-1 discord, the generalization to top-K is trivial
(Yankov et al. 2008). Having defined discords, we will next review an algorithm to
discover them.

2.2 Areview of the SOTA discord discovery algorithm

Our proposed algorithm makes repeated use of the discord discovery algorithm intro-
duced in (Yankov et al. 2008). The algorithm was unnamed in that work, so for clarity
we will call it DRAG, which is both a truncated version of the inventor’s name and a
backronym that stands for Discord Range-Aware Gathering.

Why generalize DRAG? As shown in the introduction (and forcefully shown
in Sect. 4.10) time series discords are still state-of-the-art for time series anomaly
detection. However, time series discords do require the user to set one unintuitive
parameter, the subsequence length L. Our work is motivated by the observation
that the most obvious way to bypass that difficulty is to simply find discords at all
possible lengths. Then the choice of the time series discords to consider can be left
to a post-hoc algorithm that has access to all the information it needs. For example,
if an algorithm (or human) noted that for all possible lengths, the anomaly was in
a single location, it can just report that single location. The Mars Rover example
in Fig. 15 is such an example. A downstream algorithm could report “Anomaly
is at location 2400”. In contrast, a downstream algorithm examining the
NY-Taxi data shown in Fig. 16 could report “In the range of 5 to 10 h,
there is an anomaly on November 2™¢; in the range 11 hto
96 h, there is an anomaly beginning November 27th”. To the
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best of our knowledge, no existing anomaly detection algorithm has this multi-scale
ability.

Recall our question, why generalize DRAG? DRAG is still state-of-the-art, in terms
of speed, for discovering discords. However, its speed (but not its accuracy), critically
relies of the setting of a difficult to set parameter. For any user-given length, the
algorithm requires the input parameter r. This value should ideally be set such that it
is just a little less than the discord distance; that is, the distance between the discord and
its nearest neighbor. Of course, that distance is unknown at this point, so the user must
provide an estimate. If this estimate is accurate, just a little less than the eventually
discovered true discord value, then DRAG has a time and space complexity of just
O(nlL). If the estimate is much too small, the algorithm will give the correct result
but have a time and space complexity of O(rn?). In either case, we call any invocation
of DRAG that used an r value less than the eventually returned discord distance a
success.

In contrast, if the estimate for r is too large, the algorithm will return null, a situation
we denote as a failure. Of course, the situation can be remedied but requires the user
to reduce the r value and try again. This sensitivity to » parameter was largely glossed
over in the original paper (Yankov et al. 2008), but as we will show in Sect. 3 it is
a significant limitation of DRAG. However, as we will later explain, we have solved
this issue for MERLIN.

We refer the reader to (Yankov et al. 2008) for a detailed explanation of the DRAG
algorithm, but for completeness, we will give an overview. The DRAG algorithm is a
two-phase algorithm, with each phase being a pass across the time series.

e Phasel Asshownin Table 1 the algorithm initializes a set C, of candidate discords by
placing the first subsequence in C. The algorithm then “slides” along the time series
examining each subsequence. If the subsequence currently under consideration is
greater than r for any item in the set, then it may be the discord, so it is added to the
set. However, if any items in the set C are less than r from the subsequence under
consideration, we know that they could not be discords; thus, they are admissibly
pruned from the set. At the end of Phase I, the set C is guaranteed to contain the
true discord, possibly with some additional false positives.

Note that the algorithm can end in failure (line 14). Or, we can regard this situation
as successfully finding no discord greater than the threshold of r. If the user wants to
find the discord regardless of its eventual distance, she must run the algorithm again
with a smaller value for r. We will have more to say about this issue in Sect. 3.1.

After Phase I has built a set of candidate discords, we are now ready to run Phase
II to refine them.

e Phase Il As shown in Table 2, we again slide along the time series, this time refining
the candidates to remove the false positives. We simply consider each subsequence’s
distance to every member of our set, doing a best-so-far search for each candidate’s
nearest neighbor. The algorithm returns a sorted list of all discords with a distance
greater than r (there is guaranteed to be at least one). The largest such score is our
top-1 discord.

Given this review of the algorithm, it is easy to see why its performance depends
so critically on the user’s choice of r. A pessimistically small value for r will mean
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Table 1 Phase I, candidate selection algorithm

Procedure: CandidateSelection(T,L,r)
Input: Time series T, Subsequence length L, Range of discords r
Output: Candidate set of discords C

[l Ble Y N Y S

—_— = O
W= O

—
~

C={} // Start with empty set
fori=1to|T|-L+1 // Scan all subsequences
iscandidate = true
forjin C

if i and j are not trivial matches
if dist(T;z, Tjz) <r

Cc=C\j
iscandidate = false // We can prune this
if iscandidate
C=CU {i} // Add to candidate set
if not isemptyset()
return C // Implicitly return success
else
return failure // Explicitly return failure

Table 2 Phase I, discords refinement algorithm

Procedure: DiscordRefinement(C,T,L,r)
Input: Discord candidate set C, Time series T, Subsequence length L, Range of discords r
Output: Set of discords (index, distance) D

00 3 N L B W=

— = = O
N = O

D={} // Start with empty set
fori=1to|T|-L+1 // Scan all subsequences
isdiscord = true
forjin C // Scan all candidates

if i and j are not trivial matches
d = diSt(T,;L, T/',L)

ifd<r
C=C\j
isdiscord = false // Eliminate candidate
if isdiscord
D=D U {(j, L, d)} // Add to the set of true
return D // Return discord

that in Phase I most subsequences will be added to the candidate set, exploding the
time and space complexity to the O(n?) case. However, if r is chosen well, the size
of this set remains very small relative to n. For example, in (Yankov et al. 2008) they
show that even with a million subsequences, for a good value of r, the size of C does
not exceed fifty candidates, making the algorithm effectively O(nL).

2.3 Related work

In the previous section we claimed DRAG is the state-of-the-art in discord discovery
(we are not (yet) claiming it is state-of-the-art in anomaly detection). The reader may
be surprised to find that we did not list the more recent Matrix Profile (MP) algorithms
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as state-of-the-art (Yeh et al. 2016). The MP algorithms (SCRIMP etc.) surely are state-
of-the-art for motif discovery, and as a side-effect of motif discovery, they happen to
also compute discords. However, the MP algorithms are all O(n?). It is impressive that
their time complexity is independent of L, as almost all algorithms in this space scale
poorly with L, the classic curse of dimensionality. Nevertheless, for our purposes these
algorithms compute much more information than is needed and are thus much slower
than what we can achieve for the limited task-at-hand.

There are also algorithms that discover discords by discretizing the time series,
typically using SAX, and hashing the symbolic words that correspond to subsequences
(Lin et al. 2005; Keogh et al. 2005). The basic idea being that a lack of collision for a
word is evidence that the word might be unique hence corresponding to a discord. After
the candidates have been identified this way, an algorithm similar to Phase II in Table
2 can be used to refine them. These algorithms can be competitive with DRAG but
only if three parameters for SAX are very carefully set (Keogh et al. 2005). Moreover,
such algorithms based on discretizing the space are always approximate relative to the
original data.

The more general area of anomaly detection is increasingly difficult to review. In
particular there has been a recent explosion of papers on deep learning for anomaly
detection (Filonov et. al 2016; Vasheghani-Farahani et al. 2019; Zhang 2019; Didubener
et al. 2019; Hundman et al. 2018; Ahmad et al. 2017; Bu et al. 2009). This is a diverse
group of research efforts; the one thing that they have in common from our point of view
is that they all require many critical parameters to be set. For example, (Vasheghani-
Farahani et al. 2019) explicitly lists five parameters (and perhaps has a few more in the
background), the LSTM network in (Hundman et al. 2018) requires eight parameters.
Clearly deep learning has had an enormous impact in image processing, NLP etc.
However, as we hinted at in Figs. 2, 3, and 15 as we will later empirically show, it
is not obvious that deep learning outperforms simpler and more direct shape-based
methods for anomaly detection.

A recent work surveyed the literature and concluded “The state-of-the-art solu-
tions for subsequence anomaly detection (are) discords” (Boniol et al. 2021). While
acclaiming the basic distance-based approach of discords, this work then goes on to
suggest that discords have two weaknesses: “(i) the number of anomalies present in
a dataset is usually more than one and is not known in advance; and (ii) often times
anomalous subsequences repeat themselves (approximately the same) in the same
dataset.”

However, in Figs. 16, 17, 18, 19, 20, and 22, we show that MERLIN is capable
of finding multiple anomalies in a single dataset. Moreover, recall that Fig. 3.bottom
offers strong evidence that even if we confine our attention to single-length discords,
the top-K discords can discover K different anomalies.

As to the second point raised by (Boniol et al. 2021), this problem has been noted
before, and called the “twin freaks” problem (Wei et al. 2006). To be clear, the issue
is that a single occurrence of a strange shape would be a high scoring discord, but if
it happened again, the two occurrences would be mutual nearest neighbors and, thus,
have a low discord score.

However, recall the famous quote from Anna Karenina, “All happy families are
alike; each unhappy family is unhappy in its own way”. A time series version of this
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might be: all normal behaviors are alike, each anomaly is anomalous in its own way.
For example, there might be only one or very few ways to have a normal bipedal gait
of walking. However, there are essentially an infinite number of ways to stumble,
slip, topple, trip, tumble, flounder, lurch, reel, stagger, sway, teeter or fall. As such, we
claim that repeated shape conversed anomalies are rare. It is telling that a paper that
wanted to introduce an anomaly detection method that was invariant to “twin freaks”
had to resort to copying and pasting data to contrive the situation (Bu et al. 2009), but
was unable to find a single real example. In any case, this issue seems to be essentially
moot, as it can be solved by changing the first nearest neighbor (Definition 4) to the
kth nearest neighbor. However, given that in practice this rarely seems to be an issue,
in this work we use only the simple first nearest neighbor.

Finally, recently there has been a spate of papers that suggest that because of flaws
in both benchmark datasets (Wu and Keogh 2021), and in evaluation metrics, much
of the literature on time series anomaly detection is unreliable (Wu and Keogh 2021;
Huet et al. 2022; Kim et al. 2022; Hwang et al. 2022). We will not wade too deep into
this debate, other than to note that we have taken great care to ensure that our datasets
are not trivial, and our evaluation metric cannot be “gamed”.

2.4 Why distance based anomaly detection?

An extraordinary number of approaches have been applied to the problem of anomaly
detection in time series, including: Isolation Forests, One-Class Support Vector
Machines, Convolutional Neural Networks, Residual Neural Networks, Long Short
Term Memory networks, Gated Recurrent Units, Autoencoders, Multi-Layer Per-
ceptrons, ARIMA models, Markov models, Minimal Description Length, Bayesian
techniques, Rule-Based Systems etc. Indeed, it is difficult to think of a single machine
learning or signal processing tool that has not been advocated as at least part of a time
series anomaly detection solution. Given the plethora of possible approaches, why do
we so strongly advocate a distance-based approach?

Part of the answer is simply that distance-based methods offer highly competitive
performance, as we shall demonstrate in Sect. 4. Another reason is the dearth of
parameters that need to be set, as few as one, or for MERLIN, none. However, there
is another important and practical reason. In the last twenty years, distance-based
methods have been highly competitive for time series classification. Because of this,
the community knows a lot about time series distance measures, and this knowledge
can be directly exploited here. For example:

e Suppose that we have years of experience with pedestrian traffic anomaly detection
with a data source that happens to be sampled twice an hour (see Figs. 18 and 19).
Further suppose that we have managed to learn a threshold T for sounding an alert,
any discord score that is greater than 15.2 is a significant anomaly that warrants
attention. Now imagine that we learn that in the new year an upgraded sensor will
produce the data at a four times finer sampling rate of eight times an hour. We know
from published results that we can find the new threshold as Tpey = 15.2 % V4
(Linardi et al. 2020). For all the other methods mentioned above, it is not clear how
we should adjust a threshold or if that is even possible.
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680 T. Nakamura

e Suppose once more that we are tasked with monitoring pedestrian traffic anomaly
detection. This time the traffic engineer tells us “It only makes sense to compare
midnight to midnight, and anything that happens between 3 and 5am is twice as
important as anything that happens at any other time”. We can trivially support this
domain information with distance-based measures. Indeed, if using the MASS to
compute the distance we only have to change two lines of code (Mueen 2015). As
before, it is not clear how we “tell” most other approaches the relative importance
of various time periods.

To summarize, in the last two decades the community has gathered a vast store
of knowledge about time series distance measures. We understand how to deal with
time series data that has wandering baselines, missing values, uncertain values, non-
constant noise levels, uniform scaling, etc. by either adjusting the distance measure or
by preprocessing the data before calling the distance measure (often, these are logically
equivalent). In contrast, for most other approaches it is not clear how we can exploit
our understanding of the domain. For this reason alone, distance-based measures are
very attractive to practitioners.

3 The MERLIN++ algorithm

We begin by illustrating some novel observations about the sensitivity of DRAG to
the r parameter.

3.1 Exploitable observations about DRAG

Consider the small synthetic dataset shown in Fig. 4: it is simply a slightly noisy sine
wave with an obvious “anomaly” embedded in it starting at location 1,000.

What would be an appropriate value of » here given that we wish to discover
discords of length 512? Even with significant experience with the DRAG algorithm,
it is not immediately obvious to us. To gain some intuition, in Fig. 5, we considered
every possible value of r from 1 to 40 in increments of 0.25, measuring both how long
DRAG takes and whether it ended in success or failure.

After the fact, we know that the true discord value is 10.27. The reader will appre-
ciate that this value, or rather, this value minus a tiny epsilon, is the optimal setting of
r (Yankov et al. 2008).

Suppose that we had guessed » = 10.25, then DRAG would have taken 1.48 s to
find the discord. However, had we guessed a value that was just 2.5% less, DRAG
would have taken 9.7 times longer. Had we guessed r = 1.0 (a perfectly reasonable
value on visually similar data), DRAG would have taken 98.9 times longer.
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Fig. 4 A slightly noisy sine wave with an anomaly embedded at location 1,000
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Fig. 5 The time taken for DRAG given values for r that range from 1.0 to 40.0. For any value greater than
10.27 the algorithm reports failure and must be restarted with a lower value

In the other direction, had we guessed any greater than 1% more, DRAG would
have failed. The time it takes to complete a failed run is about 1/6 the time of our
successful run when r = was set to the 10.25 guess. So, while failure is cheaper, it
is not free. This eliminates certain obvious algorithms to find a good value for r. For
example, we could have tried every integer from 40 downwards until success, but that
would have cost 29 time-for-failures plus one time-for-success with r = 10, which is
about 39.2 s or about 26 times worse than our “lucky” guess of r = 10.25.

Note that a failure lets us know that our guess for » was too high, but otherwise
does not appear to contain exploitable information as to a better value for r.

One might imagine that there is some simple heuristic for setting r. If there is,
it has eluded us (and, to the best of our knowledge, the rest of the community that
uses this algorithm (Chandola et. al 2009)). Even on datasets that are superficially
similar to each other, say two examples of ten minutes of healthy teenage female
electrocardiograms, the best value for r can differ by at least two orders of magnitude.

In summary, choosing a good value for r is critical for DRAG to be efficient, but
it is a very difficult parameter to set. However, for our task-at-hand, there is a ray of
hope. The best value for r, for discords of length L, is likely to be very similar to the
best value for r, for discords of length L -1. To see this, we measured the correlation
between the optimal r for discords with lengths differing by one, for all L from 16 to
512 for the example shown in Fig. 4. The correlation was 0.998.

It is important to ward off a possible misunderstanding, suggested by this very high
correlation; these differences are typically very small, but they are not necessarily all
positive. Because we are working with z-normalized Euclidean distance, when we
make the discord length longer, the discord score can increase, decrease or stay the
same. The blue line shown in Fig. 6 illustrates this fact.

As Fig. 6 makes clear, the obvious idea of using the last discord; distance to
set the value for r when attempting to discover discord;+; is a bad idea. In this
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green

Optimal value of r for discords of this length

/ v Mean of the five green values to the left,

/ minus two standard deviations of the five

green values to the left
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T T
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Length of Discords

Fig. 6 (Blue line) The discord score, which is also the optimal setting for r, for the dataset shown in Fig. 4.
The inset shows a zoom-in of the region from 64 to 100. Here we can more clearly see the blue line is
accompanied by a red line, which attempts to predict it, using only the five previous values (Color figure
online)

example, it would result in 45.4% of the runs ending in failure. Thus, we want the
value of r to be a “little less” than discord distance. The meaning of “little less” here
depends on the data and on the lengths currently considered, so we propose to learn it
by looking at the variance of the last few (say five) discord values.

Thus, we have an informal algorithm to set the value of r.

Compute the discords working from the minimum to the maximum length. At
each stage, compute the mean u, and standard deviation o, of the last five discord
distances, and for the next invocation of DRAG, use r = u — 20. If DRAG reports
failure, repeatedly subtract another o from the current value of r until it reports success.

Using this simple prediction algorithm on the dataset shown in Fig. 4, we would
have zero failures. Moreover, on average, the value predicted would be 99.03% of the
optimal value for r.

This idea leaves just one thing unspecified. How do we set r for the first five discord
lengths? We do have an upper bound as to the largest possible discord distance for
time series of length L, it is simply the largest possible distance between any pair of
z-normalized subsequences of length L, which is 2+/L (Marcus and Minc et al. 1992).
So, for the first length of discord we attempt to discover, we can set r = 2+/L and
keep halving it until we get a success. In general, 2+/L is a very weak bound and
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Table 3 The MERLIN Algorithm

Procedure: MERLIN (T, MinL,MaxL)
Input: Time series T, Minimum subsequence length MinL, Maximum subsequence length MaxL
Output: Set of discords (index, length, distance) D
1 r=2 xsqrt (MinL) // Set r to its largest possible value
2 | distancepin, = -inf // Allow entry into loop
3 while distancein. <0 // Find first discord
4 [indexgint, distanceyin] = DRAG (T, MinL, r)
5 r=rx% // if loop repeats, make » smaller
6 for L = MinL + 1 to MinL + 4 // Find next 4 discords
7 distance;, = -inf // Allow entry into loop
8 r=0.99 x distancey .1
9 while distance, < 0 // Make r a little smaller till success
10 [index;, distance;] = DRAG (T,L,r)
11 r=rx0.99 // if loop repeats, decrease r in 1% steps
12 | for L = MinL + 5 to MaxL // Find all remaining discords
13 M = mean (distancey, -1 to L-5) // Use local info about..
14 | S=STD (distance;, -1 to L-5) // ..the mean and STD..
15 r=M—(2xS) /I ..to predict good value for
16 [indexy, distance;] = DRAG (T,L,r)
17 | while distance, <0 // 1ooks like our 7 was too high..
18 [indexy, distancer] = DRAG (T,L,r) //..s0 let us reduce..
19 r=r—S // until success

likely to produce many failures. So, we do not want to do this for the next four items.
Here instead, we can use the previous discord distance, minus an epsilon, say 1%. In
the very unlikely event that this was too conservative and resulted in a failure, we can
keep subtracting an additional 1% until we get a success.

Table 3 formalizes this algorithm.

The algorithm has an apparently arbitrary choice. Why work from the minimum to
the maximum length rather than the other way around? Recall that it is only for the
first invocation of DRAG that we are completely uncertain about a good value for r,
and we may have multiple failure runs and/or invoke DRAG with too small of a value
for r, making it run slow. It is much faster to do this single unoptimized run on the
shorter subsequence lengths.

The memory complexity for MERLIN is the same as that of DRAG, as MERLIN
is essentially comprised of repeated runs of DRAG. The only information shared
between the iterations of MERLIN is a single real number, r. Recall that a very poor
choice of r, that is, a pessimistically small value, would mean that in Phase I many
subsequences will be added to the candidate set, resulting in a space complexity of
O(nz). However, if r is chosen well, the candidate set remains small relative to n. For
example, in (Yankov et al. 2008) they show that even with a time series of length one
million, and subsequences of length 128, provided they have a good value for r, the
size of the candidate set does not exceed fifty candidates, or 0.64% memory overhead.

Of course, that assumes a good value for r. This was difficult to achieve for DRAG,
but trivial for MERLIN, in all iterations but the first. However, in just the first iteration,
we creep up on the value of r by decreasing a value that is guaranteed to be too large.
This may cause more failure runs (line 14 of Table 1) than an inspired guess, but we
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are only doing this once, and we do it when the cost of failure is relatively cheap, as
the subsequence length is the shortest value that we need to consider.

For all the experiments conducted in this paper, the memory overhead was never
greater than 3%, thus we do not show experiments discussing memory demands.

3.2 Is there some other way to set r?

Our work is motivated by the claim that there is no heuristic to set a good value for
r for DRAG in the general case, i.e., in the single run of the DRAG algorithm case.
It is difficult to prove a negative, but below we will discuss why we think it is very
unlikely that any such heuristic could exist.

To see this, let us imagine that such a heuristic H is claimed. Suppose we test H
on a long time series T, and it predicts a value for r. For concreteness, let us say that
T was a much longer version of the data in Fig. 4, a slightly noisy sine wave with
a significant anomaly embedded. Recall that this optimal value of r must be a “little
less” than the true