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Abstract
We study the problem of efficiently mining statistically-significant sequential patterns
from large datasets, under different null models.We consider one null model presented
in the literature, and introduce two new ones that preserve different properties of the
observed dataset. We describe SPEck, a generic framework for significant sequential
pattern mining, that can be instantiated with any null model, when given a procedure
for sampling datasets according to the null distribution. For the previously-proposed
model, we introduce a novel procedure that samples exactly according to the null
distribution, while existing procedures are approximate samplers. Our exact sampler is
alsomore computationally efficient andmuch faster in practice. For the null models we
introduce, we give exact and/or almost uniform samplers. Our experimental evaluation
shows how exact samplers can be orders of magnitude faster than approximate ones,
and scale well.
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1 Introduction

Representing data as sets of sequences of elements is natural for many processes.
Finding interesting patterns in a dataset of sequences is an important knowledge dis-
covery task with many applications: web log analysis, finance modelling, monitoring
of athletes’ vitals and performance (Hrovat et al. 2015), and processing of satellite
images (Méger et al. 2015). As already observed for other kinds of patterns (Hämäläi-
nen and Webb 2019; Pellegrina et al. 2019a), support (or frequency), i.e., how many
times a pattern appears in a dataset, falls short from being a good measure of inter-
estingness: a sequential pattern may be frequent just because it is composed of many
frequent items, but it may not be interesting in itself. For this reason, many other
measures of interestingness have been proposed, e.g., based onMinimum Description
Length (Lam et al. 2014) or on different statistical assumptions (Fumarola et al. 2016;
Feremans et al. 2018; Petitjean et al. 2016; Tatti 2015; Raïssi et al. 2008; Gwadera and
Crestani 2010; Low-Kam et al. 2013; Tonon and Vandin 2019; Pinxteren and Calders
2021). A natural way to find interesting sequential patterns is to perform statistical
hypothesis tests on the patterns, under the assumption of a user-specified null model
that captures properties of the data generating process as expressed in the observed
dataset (see Sect. 3.1 for formal definitions). Sequences that “pass the test” are deemed
interesting, and marked as (statistically-)significant. It is of key importance that the
testing procedure corrects for the fact that multiple hypotheses are being tested, which
is usually done by ensuring that the Family-Wise Error Rate (FWER)—i.e., the prob-
ability that the collection of patterns marked as significant contains a pattern that is
not really significant—is bounded by a user-specified quantity δ ∈ (0, 1).

Different from, e.g., the collection of frequent sequences, the set of significant
sequential patterns is not uniquely defined: it depends on the null model that the user
chooses to assume. Many null models for sequential patterns have been defined in
the literature (see Sect. 2). The choice of a null model must be very deliberate, and
depends on what is known (and should be modeled) about the process that generates
data. Informally, finding the collection of significant sequential patterns can lead to
the discovery of properties of the data generation process that are not captured by
the assumed model. It is therefore important to have efficient methods for significant
sequential pattern mining that can handle different null models.

A key step in hypothesis testing for sequences is the computation of the p-value
(Sect. 3.1), i.e., the probability that, under the null model, the support of the pattern is
as high or higher than in the observed dataset. Computing the p-value exactly is usually
impossible, except in restricted cases (Pinxteren and Calders 2021). Thus, algorithms
for significant sequence mining rely on estimating p-values by randomly sampling
datasets from the null model. Sampled datasets are also used in Monte-Carlo methods
such as the Westfall-Young approach (Westfall and Young 1993) for computing the
adjusted critical value used for controlling the FWER (see Sect. 3.1). It is therefore
crucially important to have efficient procedures for sampling datasets from the null
model, where efficiency is considered both along the axis of computation (in terms
of the time complexity to generate a dataset) and along the axis of probability, i.e.,
how close to the desired null distribution is the output distribution of the sampling
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procedures: exact samplers that are computationally efficient should be preferred to
samplers whose outputs approximately follow the null distribution.
Contributions We study the problem of mining statistically significant sequential pat-
terns from a large transactional dataset, with statistical guarantees and as efficiently
as possible. Our contributions are the following.

– We present SPEck (Alg. 1), a generic framework for mining significant sequential
patterns according to different null models. Our framework uses the Westfall-
Young resampling approach (Westfall and Young 1993), and generalizes the
ProMiSe algorithm by Tonon and Vandin (2019).

– SPEck’s instantiation for a null model requires a procedure to sample datasets
according to the null distribution. For a popular null model (Sect. 4.2.1), previous
work (Tonon and Vandin 2019) gave an approximate sampling procedure (specif-
ically, an ε-Almost Uniform Sampler (ε-AUS), see Sect. 3.2). We introduce the
first Exact Uniform Sampler (EUS) for this null model. In addition to being bet-
ter on probabilistic grounds, our EUS is computationally more efficient than the
ε-AUS, thus it should be preferred. As a byproduct of our approach, we also show
an improved mixing time for the ε-AUS by Tonon and Vandin (2019).

– We focus on market basket data, i.e., binary sequential datasets (see Sect. 3), but
most of what we say can be extended to richer sequential datasets, such as those
used for mining high-utility sequential patterns (Truong-Chi and Fournier-Viger
2019).

– We introduce two novel null models (Sect. 4.2.2 and 4.2.3) preserving different
properties of the observed dataset, and we give EUS’s and/or ε-AUS’s for each of
them. This contribution enriches the set of null models available to practitioners.

– We implement SPEck and our EUS’s and ε-AUS’s, and evaluate their performance
on real and artificial datasets (Sect. 5) in termsof the timeneeded to sample a dataset
from the null model and the time to mine significant patterns. The results show
that our EUS’s are faster than ε-AUS’s for the same null model, by up to 26 times,
and thus that they should be preferred for the task at hand.

2 Related work

Frequency/support was the first interestingness measure for sequences (Agrawal and
Srikant 1995), and efficient algorithms are readily available, both exact (Pei et al.
2004; Fournier-Viger et al. 2014) and approximate (Raïssi and Poncelet 2007; Servan-
Schreiber et al. 2020). The limitations of this measure were soon understood, and
the knowledge discovery community shifted its focus to developing other ways of
assessing the interestingness of sequential patterns, based, for example, on Mini-
mum Description Length (Lam et al. 2014), exceptional model mining (Mollenhauer
and Atzmueller 2020) or on different statistical models (Fumarola et al. 2016; Fere-
mans et al. 2018; Petitjean et al. 2016; Tatti 2015; Raïssi et al. 2008; Gwadera and
Crestani 2010; Low-Kam et al. 2013; Tonon and Vandin 2019; Pinxteren and Calders
2021). This shift is similar to that observed for other kinds of patterns (e.g., item-
sets (Gionis et al. 2007; Pellegrina et al. 2019b), subgraphs (Sugiyama et al. 2015)),
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and subgroups (Duivesteijn and Knobbe 2011). We refer the reader to the survey by
Hämäläinen andWebb (2019) and the tutorial by Pellegrina et al. (2019a) for in-depth
treatments of this field. In the interest of brevity and clarity, we discuss here onlyworks
dealing with sequential patterns in an unlabeled dataset, i.e., when the transactions
are not associated to a class label (Pellegrina and Vandin (2020) discuss the labeled
setting).

Gwadera and Crestani (2010) propose a two-parts probabilistic model for the
sequences in the dataset, based on a model for just the lengths of the sequences and
a maximum-entropy null model for the itemsets in the sequences. Testing for signif-
icance this way is particularly inefficient for longer patterns. Our approach does not
suffer from this issue. Additionally, Gwadera and Crestani’s model does not exactly
preserve some important properties of the observed dataset, which is a desirable fea-
ture of null models. All null models we study (Sect. 4.2) exactly preserve one or
more properties, e.g., the multi-set of transaction lengths or their item-lengths, or the
multi-support of the itemsets (see definitions in Sect. 3).

Low-Kam et al. (2013) introduce SigSpan, an algorithm for mining statistically
significant sequential patterns. In their model, each itemset appears in a transaction
with a probability equal to its frequency in the original dataset, and independently from
any other event. The frequency is therefore preserved only in expectation. The null
models we study preserve exactly other important properties of the original dataset.
Additionally, Low-Kam et al. use the Bonferroni correction (Bonferroni 1936) to
control for the Family-Wise Error Rate (FWER, see Sect. 3) and only consider the
frequent patterns in the observed dataset as the set of hypotheses. We instead use
the resampling approach by Westfall and Young (1993), which tends to have more
statistical power because it takes into consideration the correlation between the tested
hypotheses (i.e., patterns). Furthermore, our approach considers the class of all patterns
that may be frequent in any dataset from the null model, which is statistically more
appropriate.

Tonon andVandin (2019) present ProMiSe, an algorithm thatmines significant fre-
quent sequential patterns under two different null models while controlling the FWER
using the Westfall-Young Monte-Carlo resampling approach. SPEck generalizes this
algorithm. For one of the null models they propose, we show an exact sampler, which
is preferable both probabilistically and computationally to the approximate sampler
they propose. We also introduce two novel null models that are not considered in their
work.

Pinxteren and Calders (2021) have developed PS2, an algorithm to rank the sig-
nificance of sequential patterns according to the specific null model that considers
only permutations of itemsets within a transaction, not across different transactions.
This model was previously presented by Tonon and Vandin (2019). PS2 only works
in the case where all itemsets in a transaction have length one and there are no
repeated itemsets in a transaction. These assumptions are made to avoid what they
call multiple-distribution sensitivity, the assumption that all sequences come from the
same distribution. By considering all permutations of each sequence, PS2 computes
the fraction of permutations in which a sequential pattern appears, thus allowing for
the exact computation of the p-value. We study different null models, without impos-
ing the above restrictions, but the spirit of our work is similar in the sense that we are
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developing efficient methods for computing (approximate) p-values of patterns under
interesting null models.

3 Preliminaries

We now formally define the main concepts used in this work. To keep the presentation
focused, we only cover the case of binary sequential datasets, but what we say can
also be extended to the richer datasets used for high-utility sequence mining (Truong-
Chi and Fournier-Viger 2019). A ground set (or alphabet) A is a finite set of items
A .= {a1, . . . , an}, for some n > 1. An itemset A ⊆ A is a non-empty subset ofA. A
sequential pattern, or sequence S = 〈A1, . . . , A�〉 for some � ≥ 1, is a finite ordered
list of itemsets, i.e., Ai ⊆ A, 1 ≤ i ≤ �. We say that these itemsets participate in the
sequence and denote this fact with Ai ∈ S. The itemset A may be repeated more than
once in a sequence (e.g., S = 〈A, B, A〉). The length |S| of a sequence S is the number
of itemsets participating in S, and the item-length ‖S‖ of S is defined as

∑
A∈S |A|. For

example, S = 〈{a, b}, {b, c, d}, {a, f }〉has length |S| = 3 and item-length‖S‖ = 7.A
sequence S = 〈S1, S2, . . . , Sy〉 is a subsequence of a sequence T = 〈T1, T2, . . . , Tw〉
(denoted S 	 T ) iff there exist integers 1 ≤ i1 < i2 < · · · < iy ≤ w such that
S1 ⊆ Ti1, S2 ⊆ Ti2 , . . . , Sy ⊆ Tiy . A transactional dataset D is a bag of sequences.
Each sequence in D is also called, in this context, a transaction. The support σD(S)

of a sequence S in D is the number of transactions in D of which S is a subsequence.
The support σD(A) of an itemset A in D is the number of transactions t of D in which
A participates, i.e., for which A ∈ t . The multi-support ρD(A) of an itemset A in D is
the number of times that A is repeated in total in the transactions of D. For example,
if D = {〈A, B〉, 〈A, C, A〉, 〈B, C〉}, it holds σD(A) = 2 and ρD(A) = 3.

Let S be the (infinite) set of all possible sequences built on itemsets with ground
set A. Given a minimum support threshold θ ∈ [1, |D|] (where |D| is the number of
transactions in D), the set FD(θ) of θ -frequent sequences in D is the set of sequences
with support at least θ in D, i.e.,

FD(θ)
.= {S ∈ S : σD(S) ≥ θ} .

3.1 Significant patterns and hypothesis testing

Given an observed dataset D, whose transactions are built on the alphabet A, a null
model Π is a pair Π

.= (Z, π) where Z is a subset of the set of all possible datasets
with |D| transactions built on A, and π is a probability distribution over Z . In this
work, it is always the case that π is the uniform distribution over Z , i.e., π

.= U(Z).
The setZ is usually defined by including all and only the datasets as above that exhibit
some property thatD also exhibits (thus,D ∈ Z). For example,Z may contain all and
only the datasets for which ρD′(A) = ρD(A), for every D′ ∈ Z , and every itemset
A ⊆ A (i.e., the multi-support of every itemset is the same in all datasets in Z). In
Sect. 4, we study several null models preserving different properties.
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Given a null model Π = (Z, π), the expected support μΠ(S) of a sequence S ∈ S

under Π is the expectation of the support of S w.r.t. π , i.e.,

μΠ(S)
.= ED∼π [σD(S)] .

We restrict π = U(Z), and Z is finite, thus we can equivalently write

μΠ(S) = 1

|Z|
∑

D∈Z
σD(S).

In this work, given a datasetD, a minimum support threshold θ , and a null modelΠ =
(Z, π), we are interested in finding a subset of FD(θ) containing only sequenceswhose
support in D is significantly different than their expected support under Π , where
significance is determined using hypothesis testing. Specifically, for each sequence S,
we consider the null hypothesis

HS
.= “μΠ(S) = σD(S)” .1

1 The p-value pD′(S) of S in D′ is the probability, conditioned on HS (i.e., under Π ),
that, in a dataset D′′ drawn from Z according to π , one observes σD′′(S) ≥ σD′(S),
i.e., a support of S at least as large as its support in D′. The p-value pD(S) is used to
assess whether the observed dataset D gives evidence for the null hypothesis HS to
be false: informally, a small pD(S) (e.g., not larger than a critical value α) is taken
as suggesting that there is such evidence. When the p-value pD(S) is such that this
evidence seems present, the null hypothesis HS is rejected and the sequence S is
marked as significant. The p-value of S in D may be low even if the null hypothesis
is true, thus there is the possibility that marking S as significant is a false discovery,
or, equivalently, that S is a false positive. For example, if we decide to mark S as
significant whenever pD(S) is not larger than a critical value α, then the probability
(considered over repetitions of the experiment, i.e., over different observed datasets)
to make a false discovery involving S is at most α.

Under the null models we consider, computing the p-value pD′(S) exactly is not
possible: even if π is uniform over Z , the support of S, seen as a random variable, has
a complicated distribution. We then estimate the p-value pD′(S) using the following
Monte-Carlo procedure (Tonon and Vandin 2019, Sect. II.D). Let D1, . . . ,DT be T
datasets sampled independently from π . We estimate pD′(S) as the fraction p̃D′(S)

of the datasets D′,D1, . . . ,DT where the support of S was at least σD′(S), i.e.,

p̃D′(S)
.= 1

T + 1

(

1 +
T∑

i=1

1[σDi (S) ≥ σD′(S)]
)

, (1)

where 1[·] is the indicator function for the condition between brackets.

1 This null hypothesis is one of many that could be considered: one could equally test any hypothesis
for which the pattern support (or actually any pattern-specific function of the dataset) is a reasonable test
statistic.
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In this work we develop methods for finding a subset Q of FD(θ) such that the
probability that any sequence in Q is a false positive is at most δ, for a user-specified
parameter δ ∈ (0, 1). In statistical terms, we want to develop methods that output a
set Q while controlling the Family-Wise Error Rate (FWER) at level δ.

A classic way to control the FWER at level δ is the Bonferroni correction (Bon-
ferroni 1936) (later slightly improved by many, e.g., Holm (1979)). The idea is
that, when testing a set H of hypotheses, one should use the adjusted critical value
αB(δ,H)

.= δ
/|H| to test each hypothesis (i.e., compare each p-value to αB). This

approach suffers from many defects: (1) as the number k of hypotheses grows, it
becomes harder to reject false null hypotheses, i.e., this approach suffers from low sta-
tistical power; (2) it does not take into account any “structure” or correlation between
the different hypotheses; and (3), it cannot be applied when the number of hypotheses
being tested is not known in advance, or is infinite. The first two issues affect all appli-
cations of the Bonferroni approach, and already make it quite unattractive, but it is the
third one that really prevents us from using this technique to control the FWER for
the task in which we are interested. Indeed, under the null model, we have to consider
the set H of the hypotheses associated with all sequences S for which there exists a
D′ ∈ Z such that σD′(S) ≥ θ (Tonon and Vandin 2019, Sect. I.B). While the set of
these hypotheses is well defined, its size is not readily available, thus precluding the
use of the Bonferroni correction for this task.

The Westfall-Young method (Westfall and Young 1993) for multiple hypothesis
correction relies on an empirical approximation of the distribution of the minimum
p-value across all sampled datasets to determine an adjusted critical value αWY(δ,H)

as follows. Let D1, . . . ,DP be P datasets sampled independently from π . Let

p̌i
.= min{pDi (S) : HS ∈ H}, 1 ≤ i ≤ P (2)

be the minimum p-value onDi of any null hypothesis inH. Then, the Westfall-Young
adjusted critical value is

αWY(δ,H)
.= max

{

α : 1

P

P∑

i=1

1[ p̌i ≤ α] ≤ δ

}

. (3)

Except in restricted settings (Pinxteren and Calders 2021), pDi (S) cannot be easily
computed, so p̃Di

(S) can be used in its place in (2) (Tonon and Vandin 2019).

3.2 Uniform and "almost-uniform samplers

In this work we discuss procedures to draw samples from a finite domainΩ , according
to a distributionπ . To bemore precise, the procedures take an input x from some space,
and draw a sample from a finite domain Ω(x) that depends on x , based on π . In the
specific case of significant sequential pattern mining, x is the observed datasetD, and
Ω(x) is the set Z of datasets considered in the null model Π = (Z, π), where, as
mentioned in Sect. 3.1, π is uniform over Z , and Z depends on the observed dataset
D because the datasets in Z preserve specific properties of D.
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We study two kinds of sampling procedures: exact-π samplers and ε-almost-π
samplers. Since in this work π will always be the uniform distribution over Ω(x), we
actually talk about Exact Uniform Samplers (EUS) and ε-Almost Uniform Samplers
(ε-AUS). EUS’s, as the name implies, are algorithms that, givenΩ(x) return a sample
from Ω(x) that is distributed perfectly uniformly in Ω(x). We only consider EUS’s
that run in time polynomial in the size of the input x .

An ε-AUS (Mitzenmacher and Upfal 2005, Sect. 10.3) is instead an algorithm A
that takes in input x and a parameter ε ∈ (0, 1), and outputs a sample w from Ω(x)

such that the total variation distance d(ψA, π) between π and the distribution ψA of
the output w, when A is run with input x and parameter ε, is at most ε, i.e.,

d(ψA, π)
.= max

S⊆Ω(x)

∣
∣
∣
∣
∣
∣
∣
∣

ψA(S) − π(S)

.= |S|
|Ω(x)|

∣
∣
∣
∣
∣
∣
∣
∣

≤ ε.

We only consider ε-AUS’s that run in time polynomial in ln ε−1 and in the size of x
(also known as “Fully-Polynomial ε-AUS’s”).

It should be evident that an EUS is always preferable to an ε-AUS in probabilistic
terms, but the computational complexity must also be taken into consideration. In this
work we show that it is possible to develop EUS’s that are faster than ε-AUS’s, thus
making the former the obvious choice for the task at hand.
Markov-Chain-Monte-Carlo ε-AUS and mixing times Many ε-AUS’s are based on
Markov-Chain-Monte-Carlo (MCMC) methods (Mitzenmacher and Upfal 2005, Ch.
10). These methods use a Markov chain whose states are the elements of the domain
Ω(x) and whose unique stationary distribution is the uniform distribution. Samples
are taken by running the Markov chain long enough that the distribution of the state of
theMarkov chain has a total-variation distance at most ε from the uniform distribution.
The number of steps needed for this condition to hold may depend on the starting state
s ∈ Ω(x) from which the chain starts. For any s ∈ Ω(x), let pt

s be the distribution
of the state of the chain starting at s after t steps. The mixing time τ(ε) for a Markov
chain is the minimum number of steps t such that the maximum, over the choice of the
starting state s, of the total variation distance between pt

s and the stationary distribution
π of the chain is at most ε:

τ(ε)
.= min

{

t : max
s∈Ω(x)

d(pt
s, π) ≤ ε

}

.

A Markov chain is said to be rapidly mixing if the mixing time is polynomial in
log(1/ε) and in the size of x . It is important to remark that τ(ε) is a function of ε,
and, unless ε = 0, it is not the time needed for the distribution of the state of the
chain to be exactly the stationary distribution. That is, τ(ε) is not a strong stationary
time (Levin and Peres 2017, Ch. 6) (which is a random variable), nor in general an
upper bound to such a time. Many techniques exist to bound the mixing time τ(ε), for
example coupling and path coupling which give upper bounds that depend on both ε

and the size of x . Often, in the derivation of such bounds, ε is fixed to a constant, e.g.,
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1
/
4, as τ(ε) ≤ �log2 ε−1τ(1

/
4) (Levin and Peres 2017, Eq. 4.34). The monograph

by Levin and Peres (2017) contains an in-depth discussion of Markov chains, mixing
and (strong) stationary times, and (path) coupling.

4 Mining significant sequential patterns efficiently

In this sectionwefirst describeSPEck, our framework formining significant sequential
patterns, and then (Sect. 4.2) discuss different null models, some of them novel, and
show procedures to efficiently sample from them.

4.1 SPECK

We now present SPEck (pseudocode in Alg. 1), a generic framework for mining
significant sequential patterns, using the Westfall-Young approach. The framework
closely follows ProMiSe by Tonon and Vandin (2019, Alg. 2), but we make it capable
of handling any null model by making the null model part of the input, (see below)
and we make SPEck use a single set of T datasets to estimate all the p-values, rather
than having to sample a new set every time. This last change allows for a higher level
of parallelism when the algorithm is implemented, and makes no difference from a
correctness point of view.

The input parameters are: a dataset D, a minimum support threshold θ ∈ [1, |D|],
a null model Π = (Z, π), an acceptable FWER δ ∈ (0, 1), and two integers T and P ,
that respectively specify the number of datasets fromΠ to use for estimating p-values,
and the number of datasets from Π to use for computing the adjusted critical value
αWY. The output is a collection Q ⊆ FD(θ), with the following properties.

Lemma 1 With probability at least 1− δ (over the runs of the algorithm), Q contains
only sequences S for which the null hypothesis HS (w.r.t. Π ) is false.

Equivalently, SPEck controls the FWER at level δ. The proof of this result is
immediate from the description and the correctness of the Westfall-Young approach.

We assumeSPEck has access to a standard frequent sequencemining algorithm (Pei
et al. 2004; Fournier-Viger et al. 2014). It starts by creating an array F of size T (line
1), initially empty. This array is populated so that its i-th element, 1 ≤ i ≤ T , is the
collection of θ -frequent sequences of a dataset D(i)

e sampled independently from Π

(lines 3–4). The collectionF is used later in the algorithm for estimating the p-values
of patterns, as in (1). The function sampleDataset samples a single dataset from
Z . It takes D as input because Z depends on D (Sect. 3.2). SPEck then creates an
array P of size P , initialized to contain all ones (line 5). This array will store samples
from the minimum p-value distribution, from which the adjusted critical value αWY
is computed. This value is then used to determine the patterns to include in Q. The
value in P[i], 1 ≤ i ≤ P is computed as follows. First, a datasetD(i)

c is sampled from
Π (lines 7). Then, the arrayF is used to estimate the p-value onD(i)

c of each frequent
sequence S ∈ FD(i)

c
(θ) (lines 8–9). If the estimated p-value p̃S(D(i)

c ) is less than P[i],
this latter quantity is updated to be p̃S(D(i)

c ) (line 10). This way, P[i] will contain the
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Algorithm 1: SPEck: a framework for mining significant sequential patterns
Input : Dataset D, min. supp. thres. θ ∈ [1, |D|], null model Π = (Z, π), acceptable FWER

δ ∈ (0, 1), no. of datasets for p-value estimation T , no. of datasets for critical value
computation P

Output: Set Q ⊆ FD(θ), with no false positive, with prob. ≥ 1 − δ

1 F ← array of size T ;
2 for i ← 1 to T do

3 D(i)
e ← sampleDataset(D, Π);

4 F [i] ← FD(i)
e

(θ);

5 P ← array of size P of all 1’s;
6 for i ← 1 to P do

7 D(i)
c ← sampleDataset(D, Π);

8 foreach S ∈ FD(i)
c

(θ) do

9 p̃S(D(i)
c ) ← estimatePValue(F , σD(i)

c
(S));

10 P[i] ← min
{
P[i], p̃S(D(i)

c )
}
;

11 αWY ← adjustCriticalValue(P , δ);
12 Q ← ∅;
13 foreach S ∈ FD(θ) do
14 p̃S(D) ← estimatePValue(F , σD(S));
15 if p̃S(D) ≤ αWY then Q ← Q ∪ {S}
16 return Q

minimum estimated p-value on D(i)
c among all θ -frequent sequences in D(i)

c . Once
all the elements of P have been computed, the algorithm obtains the adjusted critical
value αWY as in (2) (line 11). SPEck then mines the original dataset D and, for each
S ∈ FD(θ), it estimates its p-value usingF (line 14). If this quantity is not larger than
the adjusted critical value, S is added to the output set Q (line 15), which is returned
at the end.

SPEck offersmany possibilities for parallelization, in away similar to the ProMiSe
algorithm (Tonon and Vandin 2019, Sect. III.B).

4.2 Sampling datasets from the null model

SPEck requires a procedure (functionsampleDataset inAlg. 1) to sample a dataset
from the null model Π . We now discuss how to perform this operation efficiently in
both computational and “probabilistic” terms, for different null models. For one of
the null models we study (Sect. 4.2.1), an ε-AUS (Sect. 3.2) was proposed in the
literature (Tonon and Vandin 2019). We introduce an EUS for this model, which is
also much faster than the existing ε-AUS. We also discuss other null models that we
deem particularly interesting and have not been studied before, and give EUS’s and/or
ε-AUS’s for them (Sect. 4.2.2 and 4.2.3).
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4.2.1 Null model #1: fixedmulti-supports and transaction lengths

We start by studying a null model Π = (Z, π) proposed by Tonon and Vandin
(2019, Sect. II.B), and for which they give an ε-AUS (see below). This null model
can be seen as an extension of the null model proposed by Gionis et al. (2007) from
itemsets to sequential patterns. Given the observed datasetD, fix an arbitrary ordering
t1, . . . , t|D| of its transactions. The null setZ is the set of all datasetsD′ with |D′| = |D|
transactions such that:

1. the transactions t ′1, . . . , t ′|D| of D′ are such that |t ′i | = |ti |, 1 ≤ i ≤ |D|, i.e., the
lengths of the transactions of D, as imposed by the fixed arbitrary ordering, are
preserved; and

2. for every itemset A participating in at least one transaction t , it holds ρD′(A) =
ρD(A), i.e., the multi-supports of itemsets participating in the transactions are
preserved.2

The distribution π is uniform over Z , as it is always the case in this work. It is
important to remark that in this model, two different datasets satisfying both the above
requirements may differ from each other only in the ordering (in the datasets) of
transactions of the same length, even if both datasets are identical bags of transactions.
For example, the following two datasets

D .=
〈C, A〉
〈B〉
〈A〉

and D′ .=
〈C, A〉
〈A〉
〈B〉

, (4)

where A, B, andC are itemsets, are different datasets, both inZ . Without this assump-
tion, i.e., if we consider the two above datasets the same dataset, theMCMC algorithm
proposed by Tonon and Vandin (2019) would not be an ε-AUS for the null model.
Since we want to show an EUS for the null model proposed by Tonon and Vandin
(2019), we make the same assumption.

Tonon and Vandin (2019, Sect. III.A) present an ε-AUS for sampling datasets
fromZ almost uniformly, taking an MCMC approach. The idea is to start fromD and
perform a number of itemsets swaps, i.e., swap an itemset A from a transaction tA ∈ D
with another itemset B from another (or the same) transaction tB , where A and B are
chosen uniformly at random with replacement from the bag of the m

.= ∑
t∈D |t |

itemsets participating in the transactions in D. The resulting Markov chain, where
states are datasets in Z and there is an edge from D′ to D′′ iff D′′ can be obtained
from D′ with a single swap, has a uniform stationary distribution over Z . Tonon and
Vandin (2019, Thm. 2) show an upper bound O(m2 logm

/
ε) to the mixing time τ(ε)

of the Markov chain, i.e., the number of itemsets swaps needed for the distribution of
the obtained dataset to have total-variation distance at most ε from the desired uniform
stationary distribution.

We now discuss a different way to look at sampling of datasets fromZ . We first use
this new point of view to derive a better upper bound to the mixing time τ(ε) of the

2 This constraint is not the same as requiring the multi-supports of all itemsets be preserved.
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“itemset-swaps” ε-AUS. Afterwards, we present an EUS for this null model, which,
in addition to giving “perfect” samples, is much more computationally efficient than
the ε-AUS (even with the improved mixing time), both theoretically (see below), and
experimentally, as we show in Sect. 5.

The idea is to look at any dataset D′ ∈ Z as an m-dimensional vector of itemsets,
as follows. Let t ′1, . . . , t ′|D′| be the transactions inD′ (recall that, in addition to holding
|t ′|i = |t |i , 1 ≤ i ≤ |D|, the ordering of these transactions is also fixed, in the
null model, to differentiate datasets built over the same set of transactions). We can
representD′ as the vector v(D′) that has as the first |t ′1| components, the corresponding
itemsets from t1, in the order they appear in this transaction, followed, as the successive
|t ′2| components, by the itemsets in t ′2, in the order they appear in this transaction, and
so on, until the m-th component is the last itemset participating in t ′|D′|. The vector
v(D) of the observed dataset can be computed with a single pass over it, and, given a
vector, obtaining the corresponding dataset is equally efficient.

Fact 1 For any two distinct D′,D′′ ∈ Z , it holds v(D′) �= v(D′′).

Fact 2 Let D′ ∈ Z (possibly D′ = D). Then v(D′) is a permutation of v(D).

Fact 3 Let D′ ∈ Z . Any permutation of the order of the components of v(D′) gives a
vector w such that there exists a D′′ ∈ Z (potentially D′′ = D′) for which v(D′′) = w.

When there is at least one itemset A with ρD(A) > 1, there are many permutations
that map v(D) to v(D′).

Facts 1 to 3 imply that the setS of allm! permutations of the order of the components
of v(D) (from now on, we say “permutations of v(D)” to refer to the permutations of
the order of its components) is partitioned into equivalence classes in such a way that
there is an equivalence class CD′ for each and only the datasets D′ ∈ Z (potentially
D′ = D) such that CD′ contains all and only the permutations of v(D) that result in
D′. We now show a key result (Lemma 2) about the sizes of these equivalence classes,
which is at the core of our improvedmixing time bound for Tonon andVandin (2019)’s
ε-AUS, and of our EUS.

Lemma 2 All classes have the same size, i.e., |CD| = |CD′ |, for any D′ ∈ Z .

Proof Any permutation g in CD maps v(D) to itself by only permuting components
that have identical itemsets (potentially permuting each component with itself, thus
the identity permutation is in CD). That is, if g(i) = j , 1 ≤ i, j ≤ m, i �= j , then it
must be that the itemset at index i of v(D) is identical to the itemset at index j .

Let D′ ∈ Z and fix g ∈ CD′ . Any r ∈ CD′ can be seen as the composition of g
with some h ∈ CD (i.e., r(i) = g(h(i)), 1 ≤ i ≤ m), specifically with h such that
h(i) = g−1(r(i)), 1 ≤ i ≤ m. The permutation h belongs to CD because, since both g
and r belong to CD′ , applying g−1 (which exists because g is a permutation) to v(D′)
must result in v(D).

From the above paragraph, it must be |CD′ | ≤ |CD|. Conversely, for every different
h ∈ CD, we obtain a different r ∈ CD′ when we compose g with h. Thus it must also
be |CD′ | ≥ |CD|, and our proof is complete. ��
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We then have the following equivalence between drawing datasets from Z and
drawing permutations of v(D).

Corollary 1 Let g be a permutation of v(D) drawn uniformly at random from all
permutations of v(D). Then the dataset D′ corresponding to the vector w obtained by
applying g to v(D) is drawn uniformly at random from Z .

This equivalence allows us to give a better analysis of the mixing time of the
“itemset-swap” ε-AUS by Tonon and Vandin (2019), by drawing from the rich litera-
ture on card shuffling (Levin and Peres 2017, Ch. 8). Indeed the idea of shuffling a deck
of cards (i.e., obtaining a uniform randompermutation of the set of cards) by repeatedly
swapping two cards chosen uniformly at random has been studied deeply. Diaconis
and Saloff-Coste (1993, Example 4A) show a O(m logm log ε−1) upper bound to the
number of swaps needed (see also (Jonasson 2012, Sect. 1)), which is optimal (Wilson
2004), and directly applies to the mixing time of the itemset-swap ε-AUS by Tonon
and Vandin (2019), thus improving their O(m2 logm

/
ε) bound. This improved bound

may also help explaining why, in their experiments, Tonon and Vandin (2019, Sect.
IV.C) observed the Markov chain converging to the uniform distribution much faster
than explained by their bound.

The restriction that the random permutation of v(D) can only be obtained by per-
forming itemset swaps starting from v(D) is unnecessary: there is no reason to impose
such constraint. Drawing a permutation of v(D) uniformly at randomcan be done using
the Fisher-Yates shuffle (Knuth 1998, Sect. 3.4.2) with input v(D). The output will be
a vector w that is obtained by applying a uniformly-chosen permutation to v(D). The
Fisher-Yates shuffle runs in time O(m). Parallel algorithms outputting such a w are
also available (Bacher et al. 2015). The dataset D′ corresponding to w is the dataset
whose first transaction t ′1 contains exactly, in order, the first |t1| components of w, in
the same order as they appear in w, and whose second transaction t ′2 contains exactly,
in order, the successive |t2| components, and so on. In conclusion, we have a EUS for
this first null model, which is more efficient than the existing ε-AUS in both proba-
bilistic and computational terms, and thus should be preferred. In Sect. 5 we show that
our EUS is faster also in practice.

4.2.2 Null model #2: fixedmulti-supports, and transaction lengths and item-lengths

We now introduce a first novel null model. As in Sect. 4.2.1, we fix an arbitrary
ordering of the transactions t1, . . . , t|D| of the observed dataset D, and will consider
two datasets to be different even if they only differ by the ordering of their transactions.
The null set Z contains all and only the datasetsD′ with |D| transactions such that, in
addition to meeting the constraints from null model #1 (Sect. 4.2.1), also satisfy the
condition that the transactions t ′1, . . . , t ′|D| of D′ have ‖t ′i ‖ = ‖ti‖, 1 ≤ i ≤ |D|, i.e.,
the item-lengths of the transactions of D are preserved. The null distribution π is the
uniform distribution over Z .

We now give an EUS for this null model. Consider the m itemsets in D, and let �

be the length of the longest one. Consider the � vectors z1, . . . , z�, each zi containing
all and only the itemsets of length i appearing in D, in the same order as they appear
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in the vector v(D) as defined in Sect. 4.2.2. Let zi be the number of components of zi ,
1 ≤ i ≤ � (the sum of the zi ’s is m). Let pi , 1 ≤ i ≤ �, be a vector of zi components,
whose j th component is the index of the component of v(D) where the itemsets zi [ j]
appears, 1 ≤ j ≤ zi . All these vectors can be computed in a single pass over the
dataset, and can be re-used by the procedure for multiple samples. Our method first
permutes, uniformly at random, each vector zi , 1 ≤ i ≤ �, then creates a vectorw ofm
components by iterating over each pi and setting the component at index pi [ j] ofw to
the itemset zi [ j] (i.e., the itemset in component j of the permuted zi ), 1 ≤ j ≤ zi . A
first “temporary” dataset T is obtained from the vectorw, as we did in Sect. 4.2.1. The
order of the itemsets in each transaction in T is then permuted uniformly at random
to obtain the output dataset D′′. This permutation is necessary to ensure that only the
desired constraints are satisfied.3

Let us now show that this procedure is an EUS for the null model. Consider the set
S .= S1 × · · · × S�, where each Si is the set of all zi ! permutations of zi , 1 ≤ i ≤ �,
and the set Q .= Q1 × · · · × Q|D|, were each Qi is the set of all |ti |! permutations
of transaction ti , 1 ≤ i ≤ |D|. Our algorithm can be seen as choosing an element
r

.= ((r1, . . . , r�), (q1, . . . , q|D|)) from S×Q uniformly at random, by choosing each
permutation ri uniformly at random from Si , 1 ≤ i ≤ �, and each permutation qi from
Qi 1 ≤ i ≤ |D|. The set S × Q is therefore partitioned into equivalence classes, one
and only one class CD′ for each dataset D′ ∈ Z , containing all and only the elements
of S × Q that, when the ri ’s are applied to the vectors zi , 1 ≤ i ≤ �, and then the
qi ’s are applied to the resulting transactions of the “temporary’ dataset T , make our
procedure output the dataset D′.

Lemma 3 The classes have all the same size, i.e., |CD′ | = |CD|, for every D′ ∈ Z .

The proof follows the steps similar to the one for Lemma 2, but taking into account
the different nature of the elements in the classes (vectors of permutations in this case,
not single permutations).

Corollary 2 The procedure is an EUS for the null model.

One can easily obtain an ε-AUS for this null model by repeatedly swapping itemsets
of the same length: first a vector zi is chosen with a probability proportional to zi ,
then two itemsets, chosen uniformly at random with replacement among those in zi

are swapped. We use this ε-AUS as a baseline for the experimental evaluation of our
EUS in Sect. 5.

4.2.3 Null model #3: fixed itemset supports andmulti-supports, and fixed
transaction lengths

In this null model, we still assume a fixed ordering of the transactions t1, . . . , t|D| of
the observed datasetD, but, differently from the previous models, we will not consider
two datasets different when they only differ by the ordering of transactions of the same

3 One can avoid this step and obtain a uniform sample froma nullmodel that, in addition to all the constraints
we defined, also preserves the order of the lengths of the itemsets in the transactions of D.
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length (see below for how to reintroduce this constraint, if so desired). E.g., the two
datasets from (4) are the same dataset in this null model. The null setZ contains all and
only the datasetsD′ with |D| transactions that, in addition to satisfying the constraints
from Sect. 4.2.1, are also such that, for every itemset A participating in at least one
transaction t , it holds that σD′(A) = σD(A), i.e., the supports of itemsets participating
in the transactions are preserved.4 Recall that σD′(A) is the number of transactions
in which A participates, with no consideration as to whether a transaction contains
multiple copies of A. The difference between null model #1 (Sect. 4.2.1) and this one
is that the former only preserves the multi-support, while this one also preserves the
support. We give an ε-AUS for this null model, based on repeated itemset swaps as
follows.

Consider the vector v(D) corresponding to D. Starting from w = v(D), our sam-
pling procedure repeatedly selects a pair (i, j) where i and j are drawn uniformly
at random, with replacement, from [1, m], and obtains a new vector w′ by swapping
the itemsets I and J in the i th and j th component of w, iff the resulting vector w′ is
such that the supports of I and J in the dataset corresponding to w′ are the same as
in D. This condition is easy to check: let Dw be the dataset corresponding to w, and
let tI (resp. tJ ) be the transaction of Dw that contains I (resp. J ) at the i th (resp. j th)
component of w. Swapping I and J is allowed iff the following condition holds:5

((tI contains a single copy of I ∧ tJ contains no copy of I )

∨ both tI and tJ contain multiple copies of I )

∧((tJ contains a single copy of J ∧ tI contains no copy of J )

∨ both tJ and tI contain multiple copies of J ) .

If this condition is not satisfied, then no swap is performed, and w′ = w. Then the
procedure sets w = w′ and iterates. After O(m2 logm

/
ε) iterations (see Lemma 5),

the dataset D′ corresponding to the last w′ is returned in output as the sample.
We now move to show that this procedure is a (fully-polynomial) ε-AUS. Consider

the Markov chain C whose set of states is Z and whose transition probabilities arise
from the procedure. We first show that it has a uniform stationary distribution (Lemma
4), and then show an upper bound to its mixing time τ(ε) (Lemma 5).

Lemma 4 The Markov chain C has a unique uniform stationary distribution.

Proof The Markov chain C is clearly aperiodic, because drawing a pair (i, i) keeps
the chain in the same state. It is also irreducible, as it is possible go from any dataset
D′ ∈ Z to any other datasetD′′ ∈ Z with a sequence of itemset swaps as above. Thus
C has a unique stationary distribution.

For any ordered pair (D′,D′′) of not-necessarily distinct states, let (a, b) be any
pair in {(i, j) : 1 ≤ i, j ≤ m} such that the corresponding itemset swap moves the
chain fromD′ toD′′, if such a pair (a, b) exists. If it exists, the same pair would move
the chain from D′′ to D′. In this case, the transition probability from D′ to D′′ must

4 This constraint is not the same as requiring that the supports of all itemsets are preserved.
5 We denote with “∧“ the logical AND, and with “∨” the logical OR.
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be the same as the one from D′′ to D′. If (a, b) does not exist, then these transition
probabilitiesmust both be zero. Therefore, the transitionmatrix ofC is clearly symmet-
rical. A symmetrical transition matrix is doubly-stochastic, and aMarkov chain with a
doubly-stochastic transition matrix has the uniform stationary distribution (Motwani
and Raghavan 1995, Probl. 6.6). ��
Lemma 5 Let ε ∈ [0, 1]. For the Markov chain C, it holds τ(ε) = O(m2 logm

/
ε).

The proof uses the path coupling technique (Levin and Peres 2017, Ch. 14) and
follows steps similar to that of (Tonon and Vandin 2019, Thm. 2).6

Proof Let D1 and D2 be two datasets whose corresponding vectors v(D1) and v(D2)

differ in exactly two components, w.l.o.g. those at indices a and b, 1 ≤ a ≤ b ≤ m.
We define the distance q(D′,D′′) between two datasets (i.e., states of the chain)
as the number of components of corresponding vectors in which they differ, thus
q(D1,D2) = 2. It must be that the itemsets at indices a and b can be swapped, i.e.,
there is a non-zero probability of moving along the Markov chain from D1 to D2 and
vice-versa. Consider now the following coupling where the first Markov chain C1 is
C and we assume it to be in state D1, and the second Markov chain C2 is assumed to
be in state D2 and its transitions are defined on the basis of the transitions of C1 as
follows. Suppose that C1 samples the indices (x, y) from {(i, j) : 1 ≤ i, j ≤ m}.
Let D′

1 be the state that C1 moves to after performing the action corresponding to
(x, y). The state D′

2 to which C2 moves from D2 is defined as follows: (i) if x = a
and y = b, then D′

2 = D2; (ii) if x = b and y = a, then D′
2 = D2; (iii) if x = y = a

or x = y = b then D′
2 = D1; (iv) otherwise the chain follows the same transition

that the original chain would have performed from D2 when sampling the pair (x, y).
In cases (i), (ii), and (iii), the distance q(D′

1,D′
2) is zero, while in case (iv) it could

either go stay at two, grow to four, or go to zero depending on whether the action
corresponding to (x, y) can be performed by neither of C1 and C2, both of them, or
only one of them (not respectively). The probability of any transition is the same in
both chains, and in particular the probability of being in one of the first three cases
is 4

/
m2. Thus the expectation of the distance between the next states of C1 and C2,

conditioned on them currently being in states at distance two, is at most 4(1− 4
/

m2).
We obtain the lemma through standard path coupling results (Levin and Peres 2017,
Coroll. 14.8), using the fact that the maximum distance between two states is m. ��

From Lemmas 4 and 5 we can conclude that our procedure is a (fully-polynomial)
ε-AUS for the null model we introduced.
Reintroducing the “different-ordering-different-datasets” constraint It may be desir-
able that datasets that only differ for the ordering of transactions of the same length
be different, e.g., that the two datasets from (4) be different, as was assumed in null
models #1 and #2. In this case, it is possible to obtain an ε-AUS by taking the output
D′′ of the procedure described above and permuting the order of transactions of the
same length (which is not the same as permuting the itemsets in each transaction),
uniformly at random among all possible orderings.

6 We conjecture that it should be possible to prove τ(ε) = O(m logm log ε−1).
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Table 1 Dataset properties, min. frequency threshold θ , and number of frequent sequences

Dataset |D| |A| avg. ‖t‖ repeated items in t θ |FD(θ)|
Bible 36369 13905 21.6 yes 0.1 174

Bike 21078 67 7.28 yes 0.025 163

Fifa 20450 2990 36.2 yes 0.275 182

Leviathan 5835 9025 33.8 yes 0.15 225

Sign 730 267 52.0 no 0.4 518

5 Experiments

We present here the results of our experimental evaluation of SPEck, instantiated with
the sampling procedures described in Sect. 4.2.
Goals EUS’s are always to be preferred to ε-AUS’s from a probabilistic point of view.
Thus, we focus on evaluating whether our EUS’s are faster than ε-AUS’s for the same
null model, by comparing them on the basis of the time needed to output a single
sample, and when used in SPEck. We also evaluate the scalability of the procedure
by measuring how the sampling time changes as a function of the number of itemsets
in the dataset (i.e., the quantity m). Finally, we evaluate the effects of the parameter θ

on the runtime of SPEck.
Implementation and environment We implement SPEck in Java 8, by modifying the
publicly-available implementation of ProMiSe (Tonon and Vandin 2019), which is
based on the Apache Spark framework.7 SPEck, like ProMiSe, is embarrassingly
parallel: the work on each sampled dataset can proceed independently from, thus in
parallel with, the work done on the other sampled datasets, with a final reduction that
uses the results from each sampled dataset to compute the collection of significant
sequences. We performed the experiments on an x86–64 machine with 2 Intel® Xeon®

4210R CPUs (40 threads in total), 348GB of RAM, running FreeBSD 14.
Datasets and parameters We use five real datasets, all publicly available:8

– Bible: a conversion of the bible. Each word is an itemset of length one and each
sentence is a transaction.

– Bike: data from Los Angeles Metro Bike Share. Each item is a bike station and a
transaction is the sequence of stations where a bike has been.

– Fifa: click-stream data from the website of the 1998 Fifa World Cup. An item
represents a unique web page.

– Leviathan: a conversion of T. Hobbes’s Leviathan. Each word is an itemset of
length one and each sentence is a transaction.

– Sign: a dataset of sign language utterance.

Themain dataset statistics are shown in Table 1, together with the minimum frequency
threshold θ weused for each dataset and the size of the collection of frequent sequences

7 Our code, including the data and scripts to reproduce all our results and figures, is available from https://
github.com/acdmammoths/SPEck-code.
8 https://github.com/VandinLab/PROMISE/tree/master/data.
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w.r.t. θ . When running SPEck, we use T = 10000 (which is a multiple of 40, the
number of processors we use) and P = 100. These numbers are in line with those
used by Tonon and Vandin (2019) for a similar set of experiments, and we verified
empirically that using larger values for them would have a negligible effect on the
approximations of the p-values and the adjusted critical values. There is no downside
to using even larger values, apart from a longer running time, which would be partially
offset by a higher level of parallelism. It is an interesting direction for future work to
incorporate the error in the approximation of the p-values and in the FWER due to
the use of finite values of T and P , in order to make the process of mining significant
patterns evenmore statistically rigorous.We fix the acceptable FWER δ to 0.05.When
using an ε-AUS to generate the samples, we use 2m as the number of swaps to perform
before taking each sample, which we checked experimentally to be sufficient for the
state distribution to be extremely close to uniform, by looking at the convergence of
the average relative difference between the frequency of a frequent sequence in the
observed dataset and the frequency in a random dataset, in the same way as done by
Tonon and Vandin (2019, Fig. 2).

To evaluate the scalability of the sampling procedures, we use artificial datasetswith
|D| ∈ {1000, 3162, 10000, 31623, 10000}, generated using the IBM Quest Dataset
Generator9 (Agrawal and Srikant 1994), run with the default parameters.

To evaluate the effect of the minimum frequency threshold θ on the runtime and
on the number of significant frequent patterns we use the publicly available BIBLE
dataset, with θ ∈ {0.031, 0.043, 0.06, 0.1}. The choice of these values is guided by
the number of frequent patterns w.r.t. θ (see Table 3, third column from the left).
Results on real datasets In Fig. 2 (one figure per null model) we report the relative
runtimes, on the five real datasets, of the EUS we introduce for that model (or ε-AUS,
in the case of Model #3 in Fig. 2c), and a baseline ε-AUS, when available (for Model
#1 it is Tonon and Vandin (2019)’s procedure; for Model #2 it is the “same-length-
itemset-swap” procedure described at the end of Sect. 4.2.1). The box-and-whiskers
plots show the minimum, first quartile, median, third quartile, and maximum of the
runtimes. The runtimes are normalized by the median, over 100 runs, of the ε-AUS’s
runtime, so, e.g., themedian of the ε-AUS’s runtimes is always on the 1.0 line.Absolute
runtimes for the median of the ε-AUS (i.e., the normalization factors) are reported in
parentheses under each dataset’s name.

For Models #1 and #2, it is evident that the EUS’s are much faster than the ε-
AUS’s, which confirms that our EUS’s should be preferred on both probabilistic and
computational grounds. A comparison of themedian runtimes reveals speed-up factors
between 5.08 (for Sign, on Model #2) and 26.7 (for FIFA, on Model #1). We can also
appreciate from the figures that, in general, the runtime of EUS’s has lower variance
than the runtime of ε-AUS’s. The exception in this case is Sign, which is a relatively
small dataset (see Table 1)–even the ε-AUS takes only a few milliseconds to sample a
dataset from the null models when given this dataset as input, so a larger variance in the
runtimes is to be expected, and is mostly due to outliers (see also the next experiment).

In Table 2 we report, for each null model and each real dataset, the running time of
SPEck usingEUS’s and ε-AUS’s. The reduction in runtimewhen using exact sampling

9 Available from https://github.com/acdmammoths/datasetgenerator.
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Table 2 Runtime of SPEck with different sampling procedures. EUS’s, when available, are much faster
than ε-AUS’s, in addition to be preferrable from a probabilistic point of view

Null Model Method Runtime on Dataset (s)
Bible Bike Fifa Leviathan Sign

#1 EUS 2454 343 2308 432 90

ε-AUS 4139 432 3341 582 72

#2 EUS 3386 552 3447 774 128

ε-AUS 8494 1268 5702 1132 157

#3 ε-AUS 4950 559 7249 1594 272

procedures over approximate ones is significant. The reason the speedups are not the
same as when evaluating the runtimes of the sampling procedures in isolation (as we
did above), is that a large portion of SPEck’s runtime is spent on operations other than
sampling datasets (e.g., computing the frequent sequences of the sampled datasets),
which are not impacted by the choice of sampling procedure. We remark that it is not
very interesting to compare the runtimes across different null models: the meaning of
significant pattern changes with the model, and the choice of model should be very
deliberate on the user’s side, depending on the desired meaning. Thus it should not
be surprising that the sampling procedures are different and take different amounts of
time.
Scalability Fig. 1 compare how well the EUS’s and ε-AUS’s scale as the total number
m of itemsets grows. We used our artificial datasets in this experiment, and repeated it
100 times. The figures show the absolute runtimes of the various sampling methods.
The shaded areas go from the minimum to the maximum runtime over 100 runs, and
we also report the median (dashed lines). We can see how both EUS’s and ε-AUS’s
scale in a similar way, with EUS’s remaining much faster. We can appreciate again
how the variance in the runtimes decreases as m grows. This experiment confirms that
the EUS’s we present should be preferred over ε-AUS’s.
Impact of the minimum frequency threshold We used θ ∈ {0.031, 0.043, 0.06, 0.1} to
study its impact on the runtime and on the number of significant frequent patterns.
The choice of values is guided by the number of frequent patterns in BIBLE w.r.t. θ
(third column from the left in Table 3).

Figure 3 shows that as the value of θ increases, the runtimeof SPEckdecreases. This
behavior is expected, as more time is required to mine a dataset at a lower threshold.
Indeed the behavior is essentially linear with the number of frequent patterns. The
runtime variance is explained with the next set of results.

We also studied the number of Significant Frequent Sequential Patterns (SFSPs) in
Bible output by SPEck for different values of θ . We performed each experiment five
times, and report the results in Table 3 (we remind the reader, once again, that results
for different null models should not be compared to each other). For relatively small
values of θ , SPEck reported, in some runs, no significant patterns. We remark that
outputting no significant patterns is perfectly fine and in line with the guarantees on
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Fig. 1 Distribution of the relative runtimes on real datasets, normalized by the median, over 100 runs, of the
runtime for the ε-AUS (which therefore corresponds to the 1.0 line; the absolute runtimes for this median
are shown under the dataset name). The whiskers corresponds to minimum and maximum, the extremes of
the box to 1st and 3rd quartile, and the line crossing the box to the median
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Table 3 No. of SFSPs in BIBLE returned by SPEck for different values of θ over five iterations

Method θ |FD(θ)| SFSPs in iteration #
1 2 3 4 5

Null model #1 —EUS 0.031 2074 0 0 0 0 0

0.043 1035 786 0 787 0 787

0.06 507 366 0 0 366 0

0.1 174 119 120 120 121 119

Null model #2 —EUS 0.031 2074 0 0 0 0 0

0.043 1035 0 787 0 788 787

0.06 507 367 366 367 365 0

0.1 174 119 120 120 119 121

the FWER,10 and it is just a sign of low statistical power. As discussed in Sect. 3.1, we
use the Westfall-Young method to control the FWER, which provides more statistical
power than the Bonferroni correction would. However, when θ is small, the set of
hypotheses that even the Westfall-Young method has to consider is large, because
it is related to the number of patterns in the observed dataset that have a frequency
(in the observed dataset) lower-than-but-close-to θ , and this number increases with
θ . Any A of these patterns may have, in one Di of the P sampled datasets used to
compute the adjusted critical value αWY (see (3)), a frequency not smaller than θ ,
but A may not have such a frequency in any of the T datasets used to estimate A’s
p-value p̃Di (A) inDi (see (1)). This fact in turn leads to the lowest possible minimum
p-value p̌i = 1/(T + 1) for Di (see (2)), and thus to a low adjusted critical value
αWY = 1/(T + 1), when there are such A’s in a fraction at least δ of the P datasets.
Since this value is the minimum possible (empirical) p-value that a pattern may have,
no pattern can actually be marked as significant by SPEck. In other words, SPEck’s
statistical power decreases with θ .

We remark that this behavior is not specific of SPEck, but it affects anymethod that
uses an empirical estimate of the p-values, and an empirical estimate of the minimum
p-value distribution, whichmake the p-values and the adjusted critical value only take
discrete values. On one hand, this issue cannot be avoided, becausewe are forced to use
empirical estimations for these quantities and distributions, as they cannot be derived
exactly, on the other hand, intuitively, this issue could be mitigated by increasing T
and P . As our results for θ = 0.06 and θ = 0.043 show, SPEck does not always
report zero significant patterns: it really depends on the datasets sampled in each
iteration. Developing methods that (1) have high statistical power in all situations; and
(2) control the FWER, is the “holy grail” of researchers in this field, and a natural (if
challenging) direction for future work.

10 The easiest way for an algorithm to offer guarantees on the FWER is to never report anything as
significant. It would not be a very useful algorithm though.
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Fig. 2 Absolute runtimes on artificial datasets as function of the total number m of itemsets. The median is
over 100 runs and the shaded area goes from the minimum to the maximum runtime. The EUS’s scale as
well as the ε-AUS’s
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Fig. 3 Runtimes of SPEck on BIBLE for θ ∈ {0.031, 0.043, 0.06, 0.1} (see text for rationale)

6 Conclusion

We presented SPEck, a framework for mining statistically-significant sequential
patterns from large datasets under different null models, using the Westfall-Young
resampling approach. We study a null model first proposed by Tonon and Vandin
(2019) and introduce two novel null models that preserve different properties of the
observed dataset. Our main algorithmic contributions are new methods to sample
datasets from the null model. For the previously-studied model, we give an Exact
Uniform Sampler (EUS) that greatly improves, both in probabilistic and computa-
tional terms, over the existing ε-Almost Uniform Sampler (ε-AUS), for which we also
present an improved analysis of the mixing time. For the novel models we introduce,
we give EUS’s and/or ε-AUS’s. The results of our experimental evaluation show that
our EUS’s are much faster than ε-AUS’s, and thus they should be preferred.
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