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Abstract
The representation of objects is crucial for the learning process, often having a large
impact on the application performance. The dissimilarity space (DS) is one of such
representations, which is built by applying a dissimilarity measure between objects
(e.g., Euclidean distance). However, other measures can be applied to generate more
informative data representations. This paper focuses on the application of second-
order dissimilarity measures, namely the Shared Nearest Neighbor (SNN) and the
Dissimilarity Increments (Dinc), to produce new DSs that lead to a better description
of the data, by reducing the overlap of the classes and by increasing the discriminative
power of features. Experimental results show that the application of the proposed DSs
provide significant benefits for unsupervised learning tasks. When compared with
Feature and Euclidean space, the proposed SNN and Dinc spaces allow improving
the performance of traditional hierarchical clustering algorithms, and also help in the
visualization task, by leading to higher area under the precision/recall curve values.

Keywords Dissimilarity representation · Dissimilarity increments · Shared nearest
neighbor · Geometrical complexity · Clustering · Visualization

1 Introduction

Many different algorithms and methods have been proposed to solve multiple learn-
ing problems (Duda et al. 2001; Jain et al. 2000), usually supported on traditional
feature-based data representations. Hence, many approaches disregard the way data is
structured and presented to the learning algorithms. However, this may constrain the

Responsible editor: Johannes Fürnkranz, Ian Davidson.

B Helena Aidos
haidos@ciencias.ulisboa.pt

1 LASIGE, Departamento de Informática, Faculdade de Ciências, Universidade de Lisboa, Lisbon,
Portugal

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10618-022-00836-1&domain=pdf
http://orcid.org/0000-0001-6827-4217


1372 H. Aidos

effectiveness of such algorithms, since an efficient data representationmay increase its
discrimination power, decrease class overlap, and transform class boundaries, making
it easier for the learning algorithms.

Typically, objects are represented by a set of features, which should be able to char-
acterize them and be relevant to discriminate among the classes. The most popular
representation is the Euclidean space (Duda et al. 2001). However, defining features to
obtain a complete description of objects and with a high discriminant power may be a
challenging task, since different objects may have the same feature-based representa-
tion, but still be different due to characteristics not considered in the chosen feature set.
That difficulty emerges due to high-dimensional data or the need to describe objects
using continuous and categorical variables, which may cause class overlap, leading to
poor learning performances.

A dissimilarity representation, constructed from the comparison of objects, may be
used to overcome the limitations raised by feature vectors (Pekalska and Duin 2002),
solving the problem of class overlap, since only identical objects have a dissimilarity
of zero.

Moreover, the dissimilarity representation has some attractive and promising advan-
tages: the potential informativeness of non-Euclidean spaces (Duin andPekalska 2010)
or even non-metric dissimilaritymeasures (Duin and Pekalska 2010; Plasencia-Calaña
et al. 2013). A large set of advantages of the dissimilarity representation, as an alterna-
tive to the classical feature approach, was investigated within the EU-FP7 SIMBAD1

project, as reported in Pelillo (2013).
The construction of a dissimilarity representation can be based on metric learning

(Duin et al. 2014) or a previously existing distancemeasure or function, which can dis-
criminate between relevant and irrelevant objects, where relevant objects are defined
as the ones closer to the reference object than irrelevant ones. Hence, relevant objects
are the ones belonging to the same class as the reference, whereas irrelevant objects
belong to a different class. In pattern recognition, dissimilarities have been used for
many applications, e.g. cluster analysis (Theodoridis and Koutroumbas 2009) and
visualization (Lee and Verleysen 2010). Moreover, based on the work of Pekalska and
Duin (2005), some classification methods for dissimilarity data have been proposed
(Duin and Pekalska 2010; Schleif et al. 2012; Chen et al. 2009), which are useful to
tackle problems in computer vision, bioinformatics, among others (Liao and Noble
2003). More specifically, dissimilarity representations have been used as a labeled
graph classifier in an optimized dissimilarity space embedding system (Livi 2017), or
as a dissimilarity-based ensemble classification method for multiple instance learning
(Cheplygina et al. 2016). Dissimilarity approaches are considered in the design of sig-
nature verification systems (Eskander et al. 2013; Batista et al. 2010); in frameworks
that allow any person re-identification, (Satta et al. 2012); in systems for pose-based
human action recognition (Theodorakopoulos et al. 2014); or even, in odour classifica-
tion (Bicego 2005). Moreover, dissimilarity spaces have been used in biology-related
applications, namely protein function classification (DeSantis et al. 2018) or radiomics
data classification (Cao et al. 2018). Also, dissimilarity-based classification techniques
are used to schizophrenia classification using MRI (Ulas et al. 2011), and for ECG

1 Similarity-based Pattern Analysis and Recognition project: http://simbad-fp7.eu.
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Exploiting second-order dissimilarity representations 1373

biometrics (Marques et al. 2015; Batista et al. 2018). The dynamic time warping dis-
tance was used to construct a dissimilarity space to classify seismic volcanic patterns
(Orozco-Alzate et al. 2015). Finally, frameworks based on multiple classifiers on dis-
similarity space are proposed either to identify images of forest species (Martins et al.
2015) or for text categorization (Pinheiro et al. 2017).

Such works are based on first-order or primary dissimilarity measures, e.g. the
Euclidean distance, to construct the dissimilarity representation, either by direct com-
parison of objects or by computing it over feature vectors. However, most first-order
measures are sensible to variations within data distribution or the dimensionality of
the data space. An interesting alternative are second-order or secondary measures,
often based on rankings induced by a specified first-order measure. For instance, one
can consider the shared nearest neighbor similarity measure proposed by Jarvis and
Patrick (1973) and its variants. This measure was used to improve clustering, to find
the most representative items in a set of objects (Ertöz et al. 2003), to enhance audio
similarity (Pohle et al. 2006), or for outlier detection (Jin et al. 2006). Finally, in the
context of topic segmentation, a third-order similarity measure or weighted second-
order measure was proposed (Moreno et al. 2013).

We herein propose two novel dissimilarity representations of data, based on second-
order measures: one consists of the information given by shared nearest neighbors
(Jarvis and Patrick 1973), and the other consists of triplets of nearest neighbors (Fred
and Leitão 2003). The first space, called Shared Nearest Neighbor space (SNN space),
is built upon the concept of “overlap” between the neighborhoods of two objects. The
other space, called Dissimilarity Increments space (Dinc space), is built by the incre-
ment in dissimilarity between an object and a set of representative objects (composed
by edges between prototypes and its nearest neighbor).

Although the herein proposed Dinc space has some similarities with the feature
lines approach proposed in Orozco-Alzate et al. (2009), the later representation has
limited applicability to correlated datasets with a moderately nonlinear structure,
as specifically pointed out by the authors. In contrast, the dissimilarity increments
measure yields different values for each configuration of objects mentioned, and the
proposed Dinc space shows to provide good representations for a wide set of unsuper-
vised learning applications, including clustering and visualization (see Sects .5 and 6
, respectively). Thus, the main contributions of this paper are:

– The development of twonewdissimilarity spaces based on already existing second-
order dissimilarity measures. Although second-order dissimilarity measures have
been used to compare objects in clustering or classification algorithms to improve
accuracy (Aidos and Fred 2012; Aidos et al. 2012; Jarvis and Patrick 1973), to
the best of our knowledge, they have not been used to construct feature-based
dissimilarity representations.

– A characterization of each second-order dissimilarity space by applying measures
of geometrical complexity of classification problems (Ho et al. 2006), thus pro-
viding insightful information about the geometry, topology, and density of the
proposed spaces. By following the work from Pekalska and Duin (2005) a set of
measures are applied to evaluate the metricity and the Euclidean behavior of each
space.
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1374 H. Aidos

– An evaluation of the computational cost to build each space when varying the
number of objects of the original feature space. This study shows that, although
the proposed second-order dissimilarity representations are more time consuming
than their counterparts (the first-order dissimilarity measures), the proposed data
representations are still computationally feasible while bringing advantages over
the first-order dissimilarity space.

– Validation of the proposed spaces in the context of clustering problems by relying
on traditional hierarchical techniques. Experimental results on a set of 20 datasets
with different sizes and characteristics show average 9.9% relative improvement
in the consistency index regarding the original feature space and 8.6% relative
improvement regarding the Euclidean space.

– Validation of the proposed spaces in different types of datasets, namely, time-series,
categorical and graph data. Experimental results show average 3.1%, 11.9% and
2.4% relative improvement for time-series, categorical and graph data, respec-
tively, in the consistency index regarding the original feature space. Moreover,
there are a relative improvement with SNN space of 14.1%, 18.2% and 2.3% in
the consistency index for time-series, categorical and graph data, respectively,
regarding the original feature space.

– Evaluation of the proposed spaces for visualization problems. Hence, four embed-
ding algorithms are used to reveal that, regarding the original feature space, the
proposed second-order spaces allow for an area under the curve (AUC) relative
improvement of around 26.8%.

The remainder of this paper is organized as follows: Section 2 explains how to build
dissimilarity spaces, and proposes two new spaces based on second-order measures—
the shared nearest neighbor and the dissimilarity increments. Section 3 describes the
datasets used throughout this paper. Section 4 presents a characterization for each dis-
similarity space. Sections 5 and 6 evaluate the application of the proposed dissimilarity
spaces for clustering and visualization tasks, respectively, while the final remarks and
conclusions are drawn in Sect. 7.

2 Dissimilarity representation

To introduce the proposed dissimilarity representations, consider an input dataset
X = {x1, . . . , xn} of n generic objects. Although such an object can represent an
image, a signal, or any other object type, without loss of generality, it is herein assumed
that xi is a feature vector inRp, represented as xi = [xi1 . . . xip]. Furthermore assume
that the cardinality of a set is defined as card(·), such that card(X ) = n. Also let
R = {o1, . . . , om} be the set of representative objects, with card(R) = m, such that
card(R) ≤ card(X ). The set of representative objects R can be either a subset of
X (i.e., R ⊆ X ) or a set of prototypes obtained through some prototype selection
method, e.g. (García et al. 2012; Calvo-Zaragoza et al. 2016).

A dissimilarity space (Pekalska and Duin 2005) can be defined as the data-
dependent mapping D(·,R) : X → R

m . Each object xi is described by an
m-dimensional vector
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Exploiting second-order dissimilarity representations 1375

D(xi ,R) = [d(xi , o1) . . . d(xi , om)], (1)

where d(·, ·) represents a dissimilarity measure. The dissimilarity space is therefore
characterized by the n ×m dissimilarity matrix D, where D(xi ,R) is the i-th row of
D. Moreover, each vector oi represents a direction from the dissimilarity space, whose
dimension is card(R). For simplicity, assume that R corresponds to the entire set X ,
meaning that the dissimilarity space is represented as an n × n dissimilarity matrix.
Hence, the dissimilarity space is defined as a vector space Y , where the i-th element
corresponds to the vector D(xi ,R).

When taking d(·, ·) in (1) as the Euclidean distance

d(xi , o j ) =
( p∑

l=1

(xil − o jl)
2

)1/2

, (2)

we obtain the so-called Euclidean dissimilarity space, which will be herein referred
as Euclidean Space, for simplicity.

In this paper, two different spaces are proposed based on second-order dissimilarity
measures, namely the shared nearest neighbor space and the dissimilarity increments
space. The following subsections introduce such spaces.

2.1 Shared nearest neighbor space

Traditional (dis)similarity measures are pairwise or first-order measures, whichmeans
they are computed over pairs of objects. By relying on one of such first-order
(dis)similarity measures, second-order measures can be defined (such as those based
on rankings). In this manuscript, the first of such measures being presented builds on
the shared nearest neighbor (SNN) information (Jarvis and Patrick 1973), which is
built upon the concept of “overlap” between the neighborhoods of object pairs. The
neighborhoods of each object are determined by any first-order measure (e.g., the L p

norm or the cosine similarity) and do not even impose the requirement for data objects
to be represented as vectors. By relying on such a concept, a dissimilarity representa-
tion of data is herein proposed, which discovers natural groupings of different point
densities, and handles noise and outliers.

To present such dissimilarity representation of data, let NNk(xi ) ⊆ X be the set
of k-nearest neighbors (k ∈ N) of xi ∈ X , determined by a first-order (dis)similarity
measure. The overlap between objects xi and o j is defined to be the intersection size

SNNk(xi , o j ) = card(NNk(xi ) ∩ NNk(o j )), (3)

which produces a similarity measure between pairs of objects. Although there are
several ways to transform it into a dissimilarity measure, a linear approach is herein
adopted, such that the dissimilarity between an object xi and a object representative
o j is defined as:

D(xi , o j ) = k − SNNk(xi , o j ). (4)
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1376 H. Aidos

Hence, a dissimilaritymatrix D is obtained that represents a dissimilarity space, which
will be henceforth referred to as SNN Space.

The characteristics of the proposed dissimilarity space are evaluated by considering
the Euclidean distance as the first-order dissimilarity measure to obtain NNk(xi ), the
set of nearest neighbors of an object xi . However, it should be noticed that depending
on application characteristics and requirements, other application-specific measures
can potentially be employed.

2.2 Dissimilarity increments space

The dissimilarity increments (DIs) is another second-order measure, built upon the
concept of triplets of points, that can be used to construct a dissimilarity space (Aidos
and Fred 2015b). However, to properly present such a space let us begin with the
definition and properties of this measure. The actual definition of the DIs space, herein
simply referred to as Dinc Space, will be performed in Sect. 2.2.2.

2.2.1 Dissimilarity increments: definition and properties

Assume that (xi , x j , xk) is a triplet of nearest neighbors in X , obtained as

(xi , x j , xk) − nearest neighbor triplet

x j : j = argmin
l

{d(xl , xi ), l �= i}
xk : k = argmin

l
{d(xl , x j ), l �= i, l �= j}.

The dissimilarity increments (Fred and Leitão 2003) between neighboring patterns is
defined as

dinc(xi , x j , xk) = ∣∣d(xi , x j ) − d(x j , xk)
∣∣ , (5)

where d(·, ·) represents the pairwise dissimilarity between two objects, which can
be obtained by applying any first-order dissimilarity measure. As in the case of the
SNN space, multiple measures could be adopted depending on application charac-
teristics. However, to make the comparison between alternative data representation
spaces consistent, the Euclidean distance is adopted.

The advantage of the DIs regarding the first-order pairwise measure is that it pro-
vides relevant information about the structure of a dataset. However, before presenting
such space, it is important to remark the DIs properties (Aidos and Fred 2015a):

– The DIs is non-negative, hence dinc(xi , x j , xk) ≥ 0 and dinc(xi , x j , xk) = 0 	⇒
d(xi , x j ) = d(x j , xk)

– It works with different data representations. The increment can be computed using
a feature space and some (dis)similarity measure or using a dissimilarity represen-
tation of the objects when no features are available.
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Exploiting second-order dissimilarity representations 1377

Fig. 1 Example of a set of objects to illustrate how to compute elements from the Dinc space D and to
demonstrate its asymmetry. If a is a prototype, ea is the representative object constructed as an edge between
a and its nearest neighbor b. Then, D(c, ea) is the dissimilarity increment between c and the representative
object, ea , computed from (7). D(c, ea) �= D(a, ec) since different triplets of patterns are used to compute
D. Adapted from Aidos and Fred (2015b)

– It has a smooth evolution. Inside a cluster or class, abrupt changes in theDIs should
not occur. If abrupt changes take place, it indicates that we are in the presence of
a different cluster or class.

– It identifies sparse clusters.Whilemost of the distances used in the literature discard
samples that are far apart in a sparse cluster, this measure can easily identify those
patterns as belonging to the same cluster.

– It is invariant to shape features or orientation. The dissimilarity increment can be
applied to identify the clusters with odd shapes since it only takes into account the
nearest neighbors.

2.2.2 Dinc space

Based on the previous definition and properties of dissimilarity increment, it is possible
to build a novel second-order dissimilarity space. Hence, like in the previous cases,
each object in the second-order space is described by an n-dimensional dissimilarity
vector D(xi ,R), which is computed by evaluating the dissimilarity increment between
each object xi and the set of representative objects, {o1, · · · , om} ∈ R. For the DIs
space, each representative object o j is constructed by considering the edge between a
prototype v j (a sample of the dataset) and its nearest neighbor xv j . Thus, the distance
between an object xi and the representative object o j is given by

d(xi , o j ) = min{d(xi , v j ), d(xi , xv j )}, (6)

and the (i, j)-th element of our Dinc space is defined as

D(xi , o j ) = |d(xi , o j ) − d(o j )|. (7)

By adopting such Dinc space representation, it is ensured that the matrix D is non-
negative (from (7)) and asymmetric. To illustrate the asymmetric property, consider a
set of objects distributed as shown in Fig. 1(left). If a is a prototype, then ea is an edge
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between a and its nearest neighbor b, and, accordingly, ea will be the representative
object. Now, the dissimilarity increment between c and the representative object, ea , is
D(c, ea). On the other hand,when c is a prototype (see Fig. 1(right)), the representative
object, ec, is the edge between c and its nearest neighbor d, and, thus, D(a, ec) is the
dissimilarity increment betweena and the representative object. Therefore, D(c, ea) �=
D(a, ec) (see Fig. 1).

3 Datasets

The remainder of this paper is focused on characterizing the proposed dissimilarity
spaces and applying them in unsupervised problems. In that sense, a total of 20 bench-
mark datasets is used from the UCI Machine Learning Repository2. The considered
datasets were chosen to represent a large set of problems, including those with differ-
ent space dimensionalities, number of samples and/or classes, and covering balanced
and unbalanced classes.

Such diversity can also be perceived from the dimensionality of the feature space
(ranging from 4 to 4096), and by the number of classes in the datasets, which ranges
from 2 to 18. Moreover, while the classes in some datasets have a uniform size, in
others the classes size are highly heterogeneous. To quantify such an effect, we use
the coefficient of variation (CV ) defined as the ratio between the standard deviation
and the mean of the number of objects per class, i.e.,

CV =
(

1
nc−1

∑nc
i=1(card(ci ) − μ)2

)1/2
1
nc

∑nc
i=1 card(ci )

, (8)

where nc is the total number of classes and card(ci ) is the number of elements in
class ci . Hence, CV is a measure of the dispersion degree of a random distribution
and is a dimensionless number that allows the comparison of populations that have
significantly different mean values. In general, a CV of zero means that the dataset is
composed of balanced classes, whereas higher values of CV mean that the dataset is
composed of a set of classes with a great variability in the number of objects. As can
be concluded by analyzing the fifth column of Table 1, the datasets used in this paper
have a CV between 0 and 0.811, indicating a high variability in some datasets.

4 Characterization of dissimilarity spaces

To evaluate the quality of the spaces proposed and defined in Sect. 2, a set of geometri-
cal complexity measures proposed by Ho et al. (2006), and Duin and Pekalska (2010)
will be used to characterize such spaces regarding metricity and non-Euclideaness,
geometry, topology, and class separability. Furthermore, an analysis of time complex-
ity to build each dissimilarity space is performed to evaluate their applicability in
time-constrained applications.

2 http://archive.ics.uci.edu/ml.
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Table 1 Summary of the datasets used in the analysis of dissimilarity spaces

N p nc CV Nmin Nmax Navg

1. 80x 45 8 3 0 15 15 15

2. austra 690 15 2 0.156 307 383 345

3. auto-mpg 398 6 2 0.213 169 229 199

4. biomed 194 5 2 0.437 67 127 97

5. breast 683 9 2 0.424 268 500 341.5

6. derm 366 11 6 0.499 20 112 61

7. diabetes 768 8 2 0.427 268 500 384

8. ecoli 272 7 3 0.519 52 143 90.7

9. german 1000 24 2 0.566 300 700 500

10. heart 297 13 2 0.110 137 160 148.5

11. house-votes 232 16 2 0.098 108 124 116

12. imox 192 8 4 0 48 48 48

13. iris 150 4 3 0 50 50 50

14. kimia 216 4096 18 0 12 12 12

15. liver 345 6 2 0.225 145 200 172.5

16. lvqdata 3655 20 13 0.811 106 956 281.2

17. mfeat-pix 2000 240 10 0 200 200 200

18. sonar 208 60 2 0.095 97 111 104

19. std-yeast 384 17 5 0.440 52 135 76.8

20. wine 178 13 3 0.194 48 71 59.3

N is the number of samples, p the dimension of the feature space, nc the number of classes, and CV
the coefficient of variation given by (8). Nmin = min

i=1,...,nc
{card(ci )}, Nmax = max

i=1,...,nc
{card(ci )} and

Navg = ∑nc
i=1 card(ci )/nc, with card(ci ) the number of samples in ci

4.1 Non-Euclidean and non-metric spaces

A pseudo-Euclidean space is a vector space defined by the Cartesian product of two
real spaces: E = R

r × R
s (Pekalska and Duin 2005). This space is equipped with

an inner product defined as 〈x, y〉E = xTJrsy, where Jrs = [
Ir×r 0; 0 − Is×s

]
,

and I is the identity matrix. This inner product is positive definite on Rr and negative
definite onRs . It is possible to embed a symmetric n×n dissimilarity matrix D into a
(n−1)-dimensional pseudo-Euclidean space, by eigenvalue decomposition. However,
that eigenvalue decomposition produces r positive and s negative eigenvalues, such
that r + s = n − 1, and the corresponding eigenvectors. Accordingly, a measure of
the non-Euclidean behavior of the data, the negative eigenfraction (NEF) (Duin and
Pekalska 2010), is defined as

NEF =
∑r+s

i=r+1 |λi |∑r+s
i=1 |λi |

, (9)
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Table 2 Non-metric and
non-Euclidean measures for the
three dissimilarity spaces
considered in this paper:
Euclidean (Eucl), shared nearest
neighbor (SNN), and
dissimilarity increments (Dinc)

Trineq NEF
Eucl SNN Dinc Eucl SNN Dinc

Med 0 0 0.047 4e-16 0.135 0.191

Max 0 0 0.141 2e-15 0.157 0.281

Min 0 0 0.004 0 0.081 0.054

Q1 0 0 0.029 2e-16 0.124 0.148

Q3 0 0 0.073 9e-16 0.141 0.243

Trineq stands for the fraction of triangle inequalities violations, and
NEF for negative eigenfraction. The values presented correspond to
the median (Med), maximum (Max), minimum (Min), first and third
quartiles (Q1 and Q3, respectively)

with λi the eigenvalues obtained from the eigenvalue decomposition. This measure
indicates the amount of non-Euclidean influence in the dissimilarity matrix since it
takes values in [0, 1], and NEF = 0 indicates Euclidean behavior.

Table 2 presents the results of two measures over the 20 datasets from Sect. 3: one
corresponds to the fraction of triangle inequalities violations (Trineq), and the other to
the negative eigenfraction (NEF). The first measure provides information about the
metricity of the dissimilarity matrix, while NEF tells us if the dissimilarity matrix
has an Euclidean behavior or not. Recall that since the Dinc space is asymmetric (see
Sect. 2.2.2), in this section, it is made symmetric by averaging with its transpose and
normalized by the average off-diagonal dissimilarity to compute the corresponding
eigenvalues.

As expected the Euclidean space is metric and has a Euclidean behavior, since
NEF has a near zero median value (in practice the non-zero values arise due to
noise or errors; consequently, the negative eigenvalues may be neglected (Duin and
Pekalska 2010)). On the other hand, the two second-order dissimilarity spaces are non-
Euclidean, with a median NEF value of 0.135 and 0.191 for SNN space and Dinc
space, respectively. Thus, the negative eigenvalues in those spaces may be relevant
and used to improve learning tasks (Duin and Pekalska 2010). Moreover, analyzing
the fraction of triangle inequalities violations, we can conclude that the Dinc space is
non-metric, while the SNN space is a metric space.

4.2 Measures of geometrical complexity

To characterize the geometrical complexity of classification problems, Ho et al. (2006)
developed some measures based on the analysis of different classifiers, leading to a
better understanding of the geometry, topology, and density of manifolds. Accord-
ingly, those measures will be applied to the dissimilarity spaces to understand if the
learning process becomes easier in those spaces than in the original feature space. The
considered set of metrics is categorized and presented in the following paragraphs.

Measures of overlaps in feature values from different classes focus on how good
the features are in separating the classes, by examining the range and spread of values
in the dataset within each class and checking for overlaps among different classes.
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Two measures are considered: (i) maximum Fisher’s discriminant ratio (F1), and (ii)
collective feature efficiency (F2). F1 computes the maximum discriminant power of
each feature, with high values indicating that at least one of the features provides
valuable information to ease the process of separating the objects among different
classes. F2 computes the discriminative power of all the features.

Measures of separability of classes evaluate, based on the existence and shape of
the class boundary, to what extent two classes are separable: (i) training error of a
linear classifier (L2), (ii) ratio of average intra/inter-class nearest neighbor distance
(N2), (iii) fraction of points on the class boundary (N1), and (iv) leave-one-out error
rate of the one-nearest neighbor classifier (N3). L2 allows evaluating if the classes of
the training data are linearly separable, by returning the error rate of such classifier.
N2 compares the within class distances to the nearest neighbors of other classes, with
higher values indicating that samples of the same class are dispersed. N1 gives an
estimate of the length of the class boundary, and high values indicate that the majority
of the points lay closely to the class boundary. N3 verifies how close the objects of
different classes are, with lower values showing that there is a high gap in the class
boundary.

Measures of geometry, topology, and density of manifolds characterize classes,
assuming that each class is composed by a single or multiple manifolds, and their
shape and position determines how well two classes are separated. Two measures are
used to evaluate these characteristics: (i) nonlinearity of a linear classifier (L1), and
(ii) nonlinearity of the one-nearest neighbor classifier (N4). L1 measures, for linearly
separable problems, the alignment of the decision surface of linear classifiers with the
class boundary. N4 measures the alignment of the nearest neighbor boundary with the
shape of the gap or overlap between the convex hulls of the classes.

It should be noticed that some of the presented measures are designed for two-class
problems. To overcome this issue, the average across all cases is considered whenever
the dataset is composed of more than two classes.

4.2.1 SNN space: influence of the number of neighbors k

To analyze the proposed spaces, we start by studying the influence of the number of
nearest neighbors (k) in the SNN space. Hence, several values of k were considered,
namely {5, 8, 11, 14, 17, 20, 23, 26}. For each case, the value of the presented geo-
metrical measures was computed and a Nemenyi test (Demšar 2006) was performed
with a significance level of α = 0.10, to evaluate whether each k-SNN space is signif-
icantly different from another. Figure 2 visually presents the results of the Nemenyi
test for each geometrical measure, by considering the mean rank over the datasets
for each k-SNN space (lower rank is better). The red line (critical difference) allows
determining which points are significantly different, i.e., any point outside the corre-
sponding critical difference area is significantly different from the ones inside the red
line (lower rank better, higher rank worse).

When analyzing the results for the measures of overlap (Fig. 2(top)), it can be
observed that there was no statistically significant difference inside three differ-
ent groups of F1 measure of k-SNN space, with k ∈ {5, 8, 11}, {11, 14, 17}, and
{14, 17, 20, 23, 26}. Moreover, in F2 measure, one can notice that k = 5 is statistical
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1382 H. Aidos

Fig. 2 Comparison of SNN space with different k values (k ∈ {5, 8, 11, 14, 17, 23, 26}) with the Nemenyi
test. The values are mean ranks over the datasets, and the lower value is better. All spaces with ranks outside
the marked interval (red line) are significantly different (α = 0.10) from the ones inside the marked interval
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different from k = 23, 26. In fact, the significant difference occurs between small and
large k values, with small k values having the worst ranks, indicating that these spaces
have a lower discriminant power of features.

For the measures of class separability (Fig. 2(middle)), one can observe no statis-
tically significant difference between the several spaces.

Finally, when considering the measures of geometry (Fig. 2(bottom)), it can be
observed that a significantly better result could only be obtained for the N4 measure
with k = 5, 8, 11. While for the L1 measure, the best results are achieved with k ∈
{11, 23, 17, 20, 14, 8} with no statistical difference among the spaces.

Since this paper focuses on evaluating the proposed spaces in a more general way,
in the remainder of the manuscript, we will assume that the SNN space is built with
k = 20 to obtain a good balance between all of the referred measures. However, any
choice between 14 and 23 will be acceptable to construct the SNN space. Finally,
choosing lower values of k (e.g., 5, 8, or 11) will have an impact in the nonlinearity
of the one-nearest-neighbor classifier (N4 measure), however, selecting one of such
values would result in a poor performance according to several other measures.

4.2.2 Analysis of geometrical complexity measures

Figure 3 presents the results of the geometrical complexity measures described in
this section, for the Feature space and the three dissimilarity spaces considered in this
paper. Note that the SNN space has higher median value of F1 comparing to the other
spaces, meaning that at least one feature has a high discriminant power, which turns
the problem of separating the classes easier. Moreover, all three dissimilarity spaces
have a high discriminant power of features in separating the classes (higher values
of F2). Both Dinc and Eucl spaces have lowest values of F1 and highest values of
F2, compared to the SNN space, indicating that a single feature does not have a high
discriminant power in separating the classes, but the union of some features together
have. Note also that there is a significantly statistical difference between Dinc space
and the Feature space for F2.

When considering the measures of class separability, in particular measures L2 and
N2, it can be observed that the Feature space have higher values than the dissimilarity
spaces, especially the second-order dissimilarity spaces (Dinc and SNN). This means
that the training data of the Feature space is not linearly separable and the objects
from a class are dispersed, while in the second-order spaces, the classes boundaries
become more linear and the classes denser. Moreover, the Euclidean and SNN spaces
have higher values of N1 and N3, which means that, when compared to the Feature
space, most of the objects lay closer to the class boundary and the gap between classes
is lower.

Finally, the Feature space has higher values of L1, i.e. the alignment of the decision
surface of linear classifiers with the class boundary is difficult. On the other hand,
second-order dissimilaritymeasures have lower values ofL1, since the classes aremore
linearly separable and denser. Furthermore, for L1, it is observed that theDinc andSNN
spaces are statistically different from the Feature space, and SNN is also statistically
different from the Euclidean space. Thus, overall the datasets are better described in
the second-order dissimilarity spaces, even with the increase of dimensionality on
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Fig. 3 Measures to characterize the geometrical complexity of classification problems in the original feature
space (Feat), and in dissimilarity spaces, namely Euclidean space (Eucl), SNN space (SNN) and Dinc space
(Dinc). Comparison of SNN and Dinc spaces against the others two spaces with Bonferroni-Dunn test. The
values are mean ranks over the datasets, and the lower value is better. All spaces with ranks outside the
marked interval are significantly different (α = 0.10) from the control space, either SNN space (red line)
or Dinc space (blue line). The values presented on the right correspond to median values over all datasets,
and high values for F1 and F2 is better, while lower values for the remaining measures is better
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Fig. 4 Time complexity to build each dissimilarity space for varying number of points. The datasets were
randomly generated from a 20-dimensional standard normal distribution

those spaces, compared to the Feature space. Finally, there exists less overlap between
the classes from the training data of second-order dissimilarity spaces, which may
facilitate the learner to separate the samples of different classes.

4.3 Time complexity

A final characterization of the spaces takes into account its application in real prob-
lems, and in particular, its impact in the algorithm execution time. Since the proposed
dissimilarity representations are based on second-order dissimilarity measures, which
are constructed on top of a first-ordermeasure, it is expected for these spaces to be char-
acterized with longer execution times. However, to properly characterize this effect,
a simple program was written in C language to build the Euclidean, Dinc and SNN
spaces for different datasets, according to the definitions presented in Sect. 2, and com-
piled using the Intel Compiler 13.0, with auto-parallelizer and -O3 flag enabled. The
datasets are composed of normally distributed objects (zero mean vector, covariance
equal to the identity matrix) on a 20-dimensional space, with the number of objects
(nz) for dataset z being determined according to nz = 100 × 1.1z (z = {0, · · · , 55}).

The devised benchmark was run on an Intel Core i7 5960X operating at 3GHz
(32GBofRAMmemory) running Fedora 21,with the execution times being accurately
measured by relying on system functions to access hardware performance counters.
The execution time for each dataset is presented in Fig. 4, by considering an average
across five runs and 20 neighbors for the SNN space.

As it can be observed, by analyzing Fig. 4, the generation of the Dinc and SNN
spaces take more time than the generation of the Euclidean space. Nonetheless, even
for the largest dataset, composed of 18905 objects, only 6.0s and 12.4s are required
to generate the Dinc and SNN spaces, respectively, which correspond to a time of
around 0.32ms and 0.66ms per object on the second-order spaces. Hence, it is not
expected that the increase in execution time constrains the application of the proposed
dissimilarity spaces on large datasets, especially when considering that they provide
substantial quality improvements in several learning tasks, as shownwith the presented
space characterization and complemented by the set of experimental results in Sects. 5
and 6 .
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5 Clustering in dissimilarity spaces

Although the previously presented dissimilarity space characterization already shows
significant differences between the proposed second-order spaces and the feature and
Euclidean spaces, a more in-depth evaluation is provided in this section by evaluating
each spacewhen applied to typical hierarchical clustering problems.Hence,we applied
seven linkage algorithms to the mentioned datasets (see Sect. 3), namely: unweighted
pair group method average or average-link (AL), weighted pair group method aver-
age or weighted-link (WeL), unweighted pair group method centroid or centroid-link
(CeL), weighted pair group method centroid or median-link (MeL), single-link (SL),
complete-link (CL) and Ward’s linkage (WL) (Theodoridis and Koutroumbas 2009).
Additionally, we set the number of clusters in each clustering algorithm as being equal
to the true number of classes (see Table 1).

5.1 Evaluationmetrics

The performance of each partition given by a clustering algorithm is assessed through
the consistency index (CI) (Fred 2001), which is the percentage of correctly classified
samples, i.e.,

C I (P, Pgt ) = 1

N

∑
k′=match(k)

|Ck ∩ Cgt
k′ |, (10)

where P = {C1, . . . ,CK } is the partition given by a clustering algorithm and Pgt =
{Cgt

1 , . . . ,Cgt
K ′ } the true labelling.

Moreover, the normalized mutual information (NMI) is used to measure the infor-
mation shared between P , the partition given by a clustering algorithm and the true
labelling, while the adjusted rand index (ARI) measures the similarity, corrected-by-
chance, between the two partitions.

5.2 Clustering results for fixed k in SNN space

Figure 5 presents a comparison of the averageCI between feature and dissimilarity rep-
resentations, the number of datasets won by each representation and by each clustering
algorithm as well as the average clustering improvement of the spaces, for the cases
where the winner leads to a better classification than the remaining representations.

When analyzing the presented results, it can be observed that, for the average-link,
the SNN space has the highest average CI (74.2%) and Dinc space the second highest
score (68.1%). Also, SNN is better in 50% of the datasets (10 out of 20) with an
average improvement over the remaining spaces on those datasets of 17.3%. On the
other hand, Dinc space is better in 15% of the datasets and an average improvement
on CI over those datasets of 7.6%. In contrast, the original feature space has the lowest
average CI (65.1%), is better on 25% of the datasets and has an average improvement
on CI on those datasets of 6.9%.
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Fig. 5 Comparisons between each dissimilarity representation and the feature space, in seven clustering
algorithms. On the top, average consistency index over the 20 datasets. In the middle, the number of wins
for each space, each number corresponds to a dataset in Table 1, and the color indicates the best space for a
given dataset (white color means ties between two or more spaces), according to the clustering algorithm.
On the bottom, the average improvement in consistency index on the datasets won by one space over the
remaining spaces (Color figure online)
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Similar conclusions can be taken for weighted-link, single-link and complete-link,
i.e., SNN has the highest average CI, with 70.2%, 59.2% and 69.9%, respectively.
Also, it is better in the majority of the datasets, winning 45% in weighted-link, 55% in
single-link, and 45% in complete-link. The only difference in results is in the average
improvement on CI on those datasets. For instance, for the weighted-link, the feature
space has highest values, leaving the SNN space with the third highest improvement
of 10.7%. On the other two algorithms the SNN space has again the highest average
improvement on CI over the remaining spaces.

Regarding centroid-link and median-link, the Dinc space attains the highest aver-
age CI value, 65.5% and 64.2%, respectively. Also, the Dinc space is better in 25%
and 35% of the datasets using centroid-link and weighted-link, respectively, and an
average improvement of CI over those datasets of 9.7% and 19.1%. Accordingly, the
Euclidean and SNN space are the second best representation when using centroid-link
and median-link, respectively. SNN wins 25% and 40% of the datasets with centroid-
link and median-link, respectively.

Finally, in ward’s linkage, feature space is the one with the highest average CI value
(73.9%), winning 35% of the datasets, followed by SNN space with an average CI
of 73.2% and winning 25% of the datasets. However, the average improvement over
those datasets is higher for SNN space (11.6%) compared to the feature space (8.9%).

Table 3 presents the results for the averageNMI and averageARI for each space and
each clustering algorithm. As it can be observed, the NMI and ARI scores are highly
consistent with those obtained with the CI. In particular, the SNN space has the highest
CI, NMI and ARI scores for average-link, weighted-link, single-link and complete-
link, while the Dinc space attains the highest CI, NMI and ARI for centroid-link and
median-link. The ward’s linkage algorithm has the highest CI for the feature space,
however the highest NMI and ARI belongs to the SNN space, with the difference in
the three metrics for the two spaces being very small. Moreover, the best pair space
and clustering algorithm is the SNN space with the average-link, with scores of 74.2%,
0.475 and 0.461 for the CI, NMI and ARI, respectively.

Overall, the proposed second-order spaces have a better average CI, NMI and ARI,
and average improvementwhen the spacewins compared to the other spaces for almost
all clustering algorithms. Also, the number of datasets won by each space is higher
for SNN and Dinc or Euclidean spaces in almost all clustering algorithms. The only
exception is for ward’s linkage where the feature space presents higher average CI
values and has won 35% of the datasets, even though SNN space presents identical
but better NMI and ARI values. Finally, the SNN space presents the better results in
average-link, weighted-link, single-link and complete-link, while in centroid-link and
median-link, the Dinc space shows a better performance.

To complete the above analysis, Table 4 presents, for each dataset, the best CI values
in the dissimilarity spaces, the corresponding clustering algorithm, and space. Also,
it presents the CI values in the feature space for the same clustering algorithm and the
gain of the dissimilarity representation over the feature space. We computed the gain
in the CI, for each dataset i , as

Gain(i) = C I (y)(P, Pgt ) − C I Feat (P, Pgt )

C I Feat (P, Pgt )
, (11)
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Table 3 Average consistency index (CI), normalized mutual information (NMI) and adjusted rand index
(ARI) for each dissimilarity representation and the feature space, in seven hierarchical clustering algorithms

AL WeL CeL MeL SL CL WL

Feature space CI 65.1% 65.4% 59.0% 53.2% 49.3% 66.0% 73.9%

NMI 0.371 0.374 0.301 0.208 0.127 0.370 0.454

ARI 0.311 0.308 0.226 0.117 0.045 0.302 0.426

Euclidean space CI 66.2% 61.8% 64.9% 57.1% 50.8% 62.3% 72.2%

NMI 0.400 0.332 0.387 0.265 0.144 0.327 0.447

ARI 0.332 0.250 0.307 0.168 0.068 0.241 0.413

SNN space CI 74.2% 70.2% 63.1% 59.9% 59.2% 69.9% 73.2%

NMI 0.475 0.462 0.307 0.245 0.298 0.426 0.455

ARI 0.461 0.409 0.266 0.198 0.231 0.371 0.428

Dinc space CI 68.1% 66.7% 65.5% 64.2% 53.2% 65.7% 71.9%

NMI 0.414 0.395 0.394 0.343 0.186 0.367 0.438

ARI 0.356 0.318 0.319 0.276 0.105 0.290 0.394

Best results for each clustering algorithm are shown in bold and the best overall are highlighted in underline

with (y) representing one of the dissimilarity spaces (Euclidean, SNN or Dinc), P
corresponds to the partition given by one of the clustering algorithms, {AL, WeL,
CeL, MeL, SL, CL, WL}, and Pgt corresponds to the ground truth partition.

As can be seen, second-order dissimilarity spaces are the best approach overall,
with the SNN space winning 11 times, the Dinc space 5 times, the Euclidean space 3
times and the original feature space wins 3 times (as can be seen by the negative gain).
In particular, the gain over the feature space can go as high as 100.7% (see dataset
17), since the SNN space with AL has a CI of 96.2%, while in the feature space, it is
47.9% with the same algorithm. Moreover, the best clustering algorithms are AL and
WL chosen 6 times each, followed by WeL and MeL chosen 4 times each.

5.3 Automated k-selection for the SNN space

In the previous section the number of neighbors k to construct the SNN space was
fixed to 20. However, the value of k can be automatically selected by relying on an
internal validation metric (e.g., silhouette or Calinski-Harabasz indexes). Hence, in
this section, different SNN spaces, corresponding to k ∈ {5, 8, 11, 14, 17, 20, 23, 26},
are constructed and all seven hierarchical clustering algorithms are applied to each
space. Afterwards, the value of k is selected according to the silhouette index, as this
is one of the most widely used internal metrics.

Table 5 presents the average CI, NMI and ARI for the best SNN space according to
the silhouette index. As can be seen, the three metrics have increased their correspond-
ing values when the number of neighbors to construct the SNN space is selected with
the silhouette index. For instance, the CI values increased on average 2.5% regarding
the SNN space with fixed k = 20. Naturally, if the value of k is optimally selected
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even better results can be achieved. In particular, the CI values can go as high as 79.1%
on average with the weighted-link (an average increase of 3.5%). Similar conclusions
can be observed from the other two metrics, NMI and ARI. Overall the best algorithm
is still the average-link, however, the ward’s link, when k is chosen with the silhouette
score, has a CI of 74.3%, which is better than the one obtained by the feature space in
Table 3.

5.4 Other dataset types

To better understand the advantages of such second-order spaces in hierarchical
clustering algorithms, a new set of datasets are used. These consist in categorical
data retrieved from the UCI Machine Learning Repository (car, chess, lymphogra-
phy and nursery), multivariate time-series data from Baydogan and Runger (2016)
(CMU_MOCAP_S16, Japanese Vowels, KickvsPunch and Libras) and graph data
from Rossi and Ahmed (2015) (citeseer, DD497 and TerroristRel). From the previ-
ous section and as reported in the literature, the average-link and ward’s linkage are
generally the best linkage algorithms for real-world datasets, usually outperforming
the remaining hierarchical clustering algorithms. Hence, only this two algorithms are
applied, but over four different spaces:

– the original feature space, but using application-specific measures to determine
the merge of clusters;

– a first-order space, where an application-specific measure is used to obtain the
dissimilarity space, and then the Euclidean distance is used to determine the merge
of clusters;

– the SNN and Dinc spaces, where an application-specific measure is used as first-
order dissimilarity, and then the Euclidean distance is used to determine the merge
of clusters.

The selected application-specific measures depends on the type of data, namely the
Gower distance3 is used for categorical data; the Dynamic Time Warping (DTW)
distance (Tavenard et al. 2020) for time-series data; and the SimRank similarity (Jeh
andWidom 2002) for graph data. Finally, for SNN space, the best number of neighbors
to obtain the space is chosen accordingly to the silhouette index (also from the set
{5, 8, 11, 14, 17, 20, 23, 26}), as mentioned in the previous section.

Table 6 presents the results of average CI, NMI and ARI in the three different
types of data mentioned above, namely time-series data, categorical data and graph
data. As can be seen, SNN space is robust to the type of data used, outperforming
the remaining space representations of data. The only exception occurs in the graph
data when average-link is applied, where Dinc space as a higher CI value, however,
the difference between Dinc and SNN spaces is small. Furthermore, the CI gain of
SNN space over the feature representation can go up to 23.1% for the Ward’s linkage
in categorical data, while in graph data, the gain can only go up to 2.3% for the
average-link.

3 From the package Python gower: https://pypi.org/project/gower/.
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Table 6 Average consistency index (CI), normalized mutual information (NMI) and adjusted rand index
(ARI) for each dissimilarity representation and the feature space, in average-link (AL) and Ward’s linkage
(WL)

Time-series data Categorical data Graph data
AL WL AL WL AL WL

Feature space CI 56.9% 66.8% 50.1% 46.4% 37.1% 38.2%

NMI 0.369 0.493 0.095 0.044 0.023 0.116

ARI 0.231 0.376 0.053 0.020 0.000 -0.005

First-order space CI 52.1% 62.1% 47.9% 48.8% 37.8% 38.5%

NMI 0.312 0.411 0.057 0.064 0.043 0.113

ARI 0.173 0.292 0.035 0.047 -0.005 -0.016

SNN space CI 69.7% 70.6% 56.8% 57.1% 38.0% 39.0%

NMI 0.532 0.528 0.145 0.140 0.047 0.072

ARI 0.396 0.392 0.098 0.094 0.003 0.063

Dinc space CI 51.5% 62.7% 52.5% 49.3% 38.8% 38.4%

NMI 0.297 0.416 0.109 0.057 0.040 0.044

ARI 0.161 0.294 0.073 0.050 0.004 0.004

First-order dissimilarity spaces are obtained by using an application-specific measure, namely Gower dis-
tance for categorical data, the dynamic time warping for time-series and the SimRank for graph data. Best
results for each clustering algorithm are shown in bold

6 Visualization of dissimilarity spaces

To better understand the advantages of the proposed dissimilarity representations, we
apply embeddingmethods to each dissimilarity representation aswell as to the original
Feature space. Specifically, methods following different paradigms were applied (Lee
and Verleysen 2010): variance preservation (such as principal component analysis—
PCA), distance preservation (such as Isomap), topological mapping (such as locally
linear embedding—LLE), and similarity preservation (such as t-distributed stochastic
neighbor embedding—t-SNE).

The performance of each embedding method for visualizing the data was assessed
with the precision and recall. The curveswere plotted byfixing the 20nearest neighbors
of a point in the original data as the set of relevant items, and then varying the number of
neighbors retrieved from the visualization between 1 and 100, plotting mean precision
and recall for each number. The average area under the precision/recall curves (AUC)
over the 20 datasets presented in Sect. 3 was used to make pairwise comparisons of
spaces in each method. Moreover, trustworthiness and continuity are used to measure
visualization quality, since they are a trade-off between precision and recall (Kaski
et al. 2003). A visualization is said to be trustworthy when the nearest neighbors of a
point in the low-dimensional space are also close in the original space. On the other
hand, a visualization on the lower space is said to be continuous when points near
to each other in the original space are also nearby in the output space. These two
measures are computed using 20 nearest neighbors of a point.
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Fig. 6 Comparison between each dissimilarity representation and the feature space, in four embedding
algorithms. On the top, average area under the curve (AUC) over the 20 datasets. On the bottom the number
of wins for each space, each number corresponds to a dataset in Table 1

The parameters of all embedding methods were chosen such as to maximize the
F-measure, which is the harmonic mean of the precision and recall. Thus, the param-
eter space was swept to find the best resulting embedding. Many of the methods have
a parameter k denoting the number of nearest neighbors for constructing a neigh-
borhood graph; for each method and each dataset we tested values of k from the set
{5, 9, 13, 17, 21, 25, 29, 33, 37} and chose the value that produced the best F-measure.
Methods that may have local optima were run five times with different random initial-
izations and the best run, regarding the F-measure, was selected.

Figure 6 presents, for each embedding method, a comparison between feature and
each dissimilarity representation according to the average AUC over the datasets, as
well as the datasets won by each space.

When analyzing the presented results, it can be observed that, for PCA and LLE,
Dinc space has the highest average AUC (with 0.58 and 0.61, respectively) and wins
more than 50% of the datasets in each embedding algorithm. For the remaining algo-
rithms, SNN space has highest averageAUC (with 0.85 for t-SNE and 0.68 for Isomap)
and wins more than 45% of datasets, in fact with t-SNE, SNN has the highest AUC
for all datasets, i.e., it wins all the datasets. Moreover, the feature space has the lowest
average AUC values for all the algorithms compared to any dissimilarity representa-
tion considered. In fact, only amaximum of 20% of the datasets are winning by feature
and Euclidean space for PCA, and a lower percentage is achieved in the remaining
algorithms (where the feature space never gets a higher AUC in any dataset).

To further analyze the visualization, the trustworthiness and continuity measures
were computed and the results are presented in Fig. 7. Note that the best performance
is located at the top right corner of the plot. As can be seen, t-SNE combined with the
SNN or Dinc spaces is the best method for visualizing the data, followed by t-SNE
with Euclidean space and Isomap in both second-order dissimilarity spaces (SNN and
Dinc). The worst combination of embedding method and data representation is PCA
or LLEwith the original feature space. This results corroborate the ones in Fig. 6 since
the application of PCA and LLE over the original feature space achieves the lowest
average AUC of all (with 0.43 and 0.45, respectively). Also, t-SNE combined with
second-order spaces has the highest average AUC of all (with 0.85 for SNN space
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Fig. 7 Average trustworthiness and continuity over the 20 datasets plotted for the feature space and each
dissimilarity representation, in the four embedding methods considered. The best performance is in the top
right corner

and 0.81 for Dinc space) consistent with the position in the top right corner of the
trustworthiness and continuity plot.

To complete the above analysis, Table 7 presents, for each dataset, the best and
second best AUC values in the dissimilarity spaces, the corresponding embedding
method, and space. Also, it presents the best AUC values in the feature space with the
corresponding embeddingmethod and theAUCgain of the dissimilarity representation
over the feature space. Similar to the gain in the CI (see (11)), the gain in the AUC,
for each dataset i , is given by

GainAUC(i) = AUC (y)(ξ) − AUCFeat (ζ )

AUCFeat (ζ )
, (12)

with (y) is one of the dissimilarity spaces (Euclidean, SNN or Dinc), and ξ and ζ

corresponds to the best of the embedding methods considered.
As can be seen, the SNN space is the best dissimilarity representation achieving

highest AUC when combined with t-SNE. The only exception occur for 80x, auto-
mpg andwine datasets, where Isomap is the best embeddingmethod and the Euclidean
space is the best dissimilarity representation for two of those datasets. The gain inAUC
over the best algorithm in the feature space can go up to 75.7%. Moreover, the Dinc
space is the second best dissimilarity representation also combined with t-SNE. In
this case, only kimia dataset is better with the Euclidean space, and 80x, auto-mpg,
biomed and wine have better results with the Dinc space and Isomap as embedding
method. Also, the gain in AUC over the best algorithm in feature space can go up to
53.2%.
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Overall, second-order dissimilarity spaces are the best approach, and t-SNE is
the best associated embedding method. Therefore, we may conclude that, although
we are increasing the dimensionality of the space in the second-order dissimilarity
representations, we obtain less overlap in the classes, helping the learner to identify
classes better.

7 Discussion and conclusions

Novel dissimilarity representations of data based on second-order dissimilarity mea-
sures were proposed, leading to a better description of data regarding separability of
classes as well as the discriminative power of features. Thus, two measures were used,
namely the shared nearest neighbor (SNN) and the dissimilarity increments (Dinc).
The first one is built upon the concept of “overlap” between the neighborhoods cen-
tered on each pair, while the latter is based on the increment in dissimilarity between
an object and a set of representative objects, defined as an edge between a prototype
object and its nearest neighbor.

The characterization of each dissimilarity representation of data is performed, by
relying onmeasures of geometrical complexity of classification problems. Thosemea-
sures give insightful information about geometry, topology, and density of the spaces.
Thus, in a second-order dissimilarity representation, the datasets present less overlap
between classes and have at least one feature with a high discriminant power. Further-
more, the proposed dissimilarity spaces have a non-Euclidean behavior, but not all
are metric. For instance, the SNN space is metric, while the dissimilarity increments
space violates the triangle inequality property.

The proposed dissimilarity representations were evaluated in two different scenar-
ios: clustering and visualization. In the first, clustering algorithms were applied to
second-order dissimilarity spaces, to the Euclidean space and to the original feature
space. For the centroid-link and median-link the Dinc space performs better than any
other space considered. In particular, for median-link, it allows improving the aver-
age CI in 20.7% and 12.4% regarding feature and Euclidean spaces, respectively,
and for centroid-link, it improves the average CI in 11.0% and 0.9%. On the other
hand, for average-link, weighted-link, single-link and complete-link the SNN space
is the best overall, with an improved 17.4% and 15.4% average CI regarding feature
and Euclidean spaces, respectively, when the average-link is applied, and 14.8% and
21.5% when the weighted-link is applied. Moreover, the proposed dissimilarity repre-
sentations were also applied to other dataset types (time-series, categorical and graph
data), showing consistently better results than the feature and first-order spaces.

For the visualization scenario, embedding techniques were applied to the same
spaces and the area under the precision/recall curves were obtained. It is noteworthy
that theSNNspacewith t-SNEperformedbetter in all the datasets,while theDinc space
is a better representation for the principal component analysis (PCA) and locally linear
embedding (LLE). Also, the application of t-SNE to the Dinc space is the second best
visualization technique of all. Overall, results show that the second-order dissimilarity
spaces are a better representation of data.
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