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Abstract
We present XEM, an eXplainable-by-design Ensemble method for Multivariate time
series classification. XEM relies on a new hybrid ensemble method that combines
an explicit boosting-bagging approach to handle the bias-variance trade-off faced by
machine learning models and an implicit divide-and-conquer approach to individual-
ize classifier errors on different parts of the training data. Our evaluation shows that
XEM outperforms the state-of-the-art MTS classifiers on the public UEA datasets.
Furthermore, XEM provides faithful explainability-by-design and manifests robust
performance when faced with challenges arising from continuous data collection (dif-
ferent MTS length, missing data and noise).

Keywords Classification · Ensemble learning · Explainability · Multivariate time
series

1 Introduction

The prevalent deployment and usage of sensors in a wide range of sectors gener-
ate an abundance of multivariate data which has been proven to be instrumental
for researches, businesses and policies (Esteva et al. 2019; Ransbotham et al. 2019;
Cussins Newman 2019). In particular, multivariate data that integrates temporal evo-
lution has received significant interests over the past decade, driven by automatic

Responsible editor: Panagiotis Papapetrou.

B Kevin Fauvel
kevin.fauvel@inria.fr

1 Inria, Univ Rennes, CNRS, IRISA, Rennes, France

2 Univ Rennes, IUF, Inria, CNRS, IRISA, Rennes, France

3 PEGASE, INRAE, AGROCAMPUS OUEST, Rennes, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10618-022-00823-6&domain=pdf


918 K. Fauvel et al.

and high-resolution monitoring applications (e.g., healthcare (Li et al. 2018), mobil-
ity (Jiang et al. 2019), natural disasters (Fauvel et al. 2020a)).

In our study, we focus on the issue ofmultivariate data classification, which consists
of learning the relationship between a multivariate sample and its label. Specifically,
we study the Multivariate Time Series (MTS) classification setting. A time series is a
sequence of real values ordered according to time; and when a set of coevolving time
series are recorded simultaneously by a set of sensors, it is called an MTS.

In addition to prediction performance, machine learning methods have to be
assessed on how they can support their predictions with explanations in many cases
(e.g., decision support, legal requirement, model validation). In particular, machine
learning methods have to be assessed on how they can provide faithful explanations.
Faithfulness is critical as it corresponds to the level of trust an end-user can have
in the explanations of model predictions, i.e. the level of relatedness of the explana-
tions to what the model actually computes. The best performing state-of-the-art MTS
classifiers on the public UEA archive (Bagnall et al. 2018) are “black-box” models
(MLSTM-FCN (Karim et al. 2019), WEASEL+MUSE (Schäfer and Leser 2017)), i.e.
complicated-to-understandmodels (Lipton 2016). Nonetheless, black-boxmodels like
MLSTM-FCN and WEASEL+MUSE cannot support their predictions with faithful
explanations as they can only rely on explainability methods providing explanations
from anymachine learningmodel (Rudin 2019) (post hoc model-agnostic explainabil-
ity methods). Therefore, we propose a newMTS classifier that combines performance
and faithful explainability. Our new approach generates features which enable it to
outperform the state-of-the-art MTS classifiers on the UEA datasets, while providing
faithful explainability-by-design through identifying the time window used to classify
the whole MTS.

Some feature-based MTS classifiers exist in the state-of-the-art (gRSF (Karlsson
et al. 2016), LPS (Baydogan and Runger 2016), mv-ARF (Tuncel and Baydogan
2018), SMTS (Baydogan and Runger 2014) and WEASEL+ MUSE (Schäfer and
Leser 2017)). However, the features generated by these MTS classifiers cannot be
used as explanations to support the models’ predictions as they do not allow, by
design, the identification of the regions of the input data that are important for predic-
tions. First, the shapelet-based approach gRSF creates a black-box classifier (a forest
of decision trees) over randomly extracted subsequences (shapelets), which prevents
the direct extraction from the model of shapelets important for predictions. Then, the
bag-of-words approaches (LPS, mv-ARF, SMTS, WEASEL+MUSE) convert time
series into a bag of discrete words, and use a histogram of words representation to
perform the classification. The bag of discrete words generated by these approaches
(symbolic representations from decision trees predictions, unigrams/bigrams extrac-
tion following a Symbolic Fourier Approximation (Schäfer and Högqvist 2012)) are
difficult to understand and cannot be mapped to the regions of the input data that are
important for predictions. Therefore, we propose a new MTS classifier that generates
features allowing the direct identification of the MTS time window that is important
for prediction. These features correspond to the confidence levels of a classifier on
each MTS subsequence of a predefined length. The subsequence where the classifier
is the most confident is used for classification and provided to the end-user as faithful
explanation to support the MTS prediction. Thus, our newMTS classifier relies on the

123



XEM: An explainable-by-design ensemble method for MTS classification 919

development of a well-performing classifier that is applied to MTS subsequences. As
in Baydogan and Runger (2014), we have chosen a tabular classifier because it fulfills
two needs simultaneously: first, the need to handle the relationship between the vari-
ables; second, the need to handle really small time series according to the predefined
time window length of interest (e.g., time series length of 2). Most MTS classifiers
fail to meet the second need.

To undertake the task of the tabular multivariate classification, no single classi-
fier can claim to be superior to any of the others (Wolpert 1996) (known as the “No
Free Lunch theorem"). Thus, the combination of different classifiers—an ensemble
method—is often considered a good method to obtain a better generalizing classifier.
There are three main reasons that justify the use of ensembles over single classi-
fiers (Dietterich 2000): statistical (reduce the risk of choosing the wrong classifier by
averaging when the amount of training data available is too small compared to the size
of the hypothesis space), computational (local search from many different starting
points may provide a better approximation to the true unknown function than any of
the individual classifier), and representational (expansion of the space of representable
functions).

The construction of an ensemble method involves combining accurate and diverse
individual classifiers. There are two complementary ways to generate diverse clas-
sifiers. First, each individual classifier can be set to learn a different part of the
original training data (Masoudnia and Ebrahimpour 2014). For example, Local Cas-
cade (LC) (Gama and Brazdil 2000) is a state-of-the-art method adopting this first
diversification way. LC learns different part of the training data to capture new rela-
tionships that cannot be discovered globally based on a divide-and-conquer strategy
(a decision tree). Then, LC manages the bias-variance trade-off faced by machine
learning models through the use, at each level of the tree, of classifiers with different
behaviors. However, methods relying on learning different parts of the training data
like LC do not benefit from the second diversification way, which consists of generat-
ing classifiers by perturbing the distribution of the original training data (Sharkey and
Sharkey 1997). Sharkey et al. argued that training classifiers using different training
sets produces lowcorrelated errors.Within thisway, there are twowell-knownmethods
that modify the distribution of the original training data with complementary effects on
the bias-variance trade-off: bagging (Breiman 1996) (variance reduction) and boost-
ing (Schapire 1990) (bias reduction). We call an ensemble method which fully adopts
these two ways to generate diverse classifiers a hybrid ensemble method. As far as we
have seen, we have developed in Fauvel et al. (2019) the first hybrid ensemble method
(Local Cascade Ensemble—LCE). The new hybrid ensemble method combines a
boosting-bagging approach to handle the bias-variance trade-off (second diversifi-
cation way) and, as LC, a divide-and-conquer approach—a decision tree—to learn
different parts of the training data (first diversification way).

However, Fauvel et al. (2019) does not show how LCE behaves on public tabular
multivariate datasets (e.g., UCI repository) since it was only applied to a proprietary
dataset. Therefore, in this paper, we first present in detail and thoroughly examine the
behavior of LCE. Then, we present how LCE is used to form an eXplainable Ensem-
ble method for MTS classification (XEM) combining both performance and faithful
explainability. Finally, we highlight some interesting properties of XEM, and in partic-
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ular that XEM is robust with varying MTS input data quality (different MTS length,
missing data and noise), which often arises in continuous data collection systems.
Summarizing our main contributions:

• We detail the presentation of LCE algorithm introduced in Fauvel et al. (2019), in
particular with regard to its properties and time complexity;

• We examine the behavior of LCE on a public benchmark, as LCEwas only applied
to a proprietary dataset in Fauvel et al. (2019). Our study shows that LCE outper-
forms the state-of-the-art tabular classifiers on the public UCI datasets (Dua and
Graff 2017);

• Leveraging LCE, we present a new eXplainable Ensemble method for MTS
classification (XEM) combining performance and faithful explainability. XEM
outperforms the state-of-the-art MTS classifiers on the public UEA datasets (Bag-
nall et al. 2018) and provides faithful explainability-by-design through identifying
the time window used to classify the whole MTS;

• We show that XEM manifests robust performance when faced with challenges
arising from continuous data collection (different MTS length, missing data and
noise).

The rest of this paper is organized as follows: Sect. 2 presents the related work
concerning classification, MTS classification and explainability; Sect. 3 details LCE
and XEM; Sect. 4 presents our evaluation method; and finally, Sect. 5 discusses our
results.

2 Background and related work

In this section we first introduce the background of our study. Then, we present the
state-of-the-art tabular classification methods on which we position our algorithm
LCE, and we end with a similar presentation for MTS classification.

2.1 Background

We address the issue of supervised learning for classification. Classification consists
of learning a function that maps an input data to its label: given an input space X ,
an output space Y , an unknown distribution P over X ×Y , a training set sampled from
P , and a 0–1 loss function �0−1 compute function h∗ as follows:

h∗ = argmin
h

E(x,y)∼P
[
�0−1(h, (x, y))

]
(1)

Our classifier LCE is based on a new way to handle the bias-variance trade-off in
ensemble methods. The bias-variance trade-off defines the capacity of the learning
algorithm to generalize beyond the training set. The bias is the component of the
classification error that results from systematic errors of the learning algorithm. A high
bias means that the learning algorithm is not able to capture the underlying structure
of the training set (underfitting). The variancemeasures the sensitivity of the learning
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algorithm to changes in the training set. A high variance means that the algorithm is
learning too closely the training set (overfitting). The objective is to minimize both
the bias and variance.

We perform classification on two types of datasets: traditional (tabular) multivariate
data and MTS. In the traditional multivariate data setting, in contrast to the MTS one,
there is no explicit relationship among samples or variables and every sample has
the same set of variables (also called attributes or dimensions). A Multivariate Time
Series (MTS) M = {x1, ..., xd} ∈ Rd∗l is an ordered sequence of d ∈ N streams with
xi = (xi,1, ..., xi,l), where l is the length of the time series and d is the number of
multivariate dimensions. We address MTS generated from automatic sensors with a
fixed and synchronized sampling along all dimensions. An example of anMTS dataset
is given at the top of Fig. 2. This dataset contains n MTS with 2 dimensions and a time
series length of 5.

2.2 Classification

In machine learning, the most popular (and often best performing) classifiers belong
to the following classes: regularized logistic regressions, support vector machines,
neural networks and ensemble methods. As previously discussed, ensemble methods
are usually well generalizing classifiers and thus, we position our approach into this
class. The other classes constitute our competitors and the algorithms evaluated are
presented in Sect. 4.2.1.

Ensemble methods are structured around two approaches (explicit, implicit) which
have their own strengths and limitations. Therefore a hybrid ensemble method is
encouraged (Masoudnia and Ebrahimpour 2014). The implicit approach involves cre-
ating diverse classifiers on the original training data, whereas the explicit approach
emphasizes classifiers diversity through the creation of different training sets by prob-
abilistically changing the distribution of the original training data.

There are two methods adopting an implicit approach: Mixture of Experts
(ME) (Jacobs et al. 1991) and Negative Correlation Learning (NCL) (Liu and Yao
1999). ME uses a divide-and-conquer algorithm to split the problem space, and each
individual classifier learns a part of the training data. The advantage of this method
is that each individual classifier is concerned with its own individual error. However,
individual classifiers are trained independently so there is no control over the bias-
variance trade-off. Next, NCL is an ensemble method which is trained on the entire
training data simultaneously and interactively to adjust the bias-variance trade-off.
Individual classifiers interact through the correlation penalty terms of their error func-
tions. The correlation penalty term is a regularization term that is integrated into the
error function of each individual classifier. This term quantifies the amount of error
correlation and is minimized during the training, which leads to negatively correlated
individual classifiers and balances the bias-variance trade-off. The disadvantage of this
method is that each classifier is concerned with the whole ensemble error due to the
training of each classifier on the same data. Some studies like Local Cascade (Gama
and Brazdil 2000) combine NCL and ME features to address their limitations.
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However, a combinationof implicit approaches does not benefit from thediversifica-
tion of generating classifiers by perturbing the distribution of the original training data
(explicit approach). There are two methods adopting an explicit approach with com-
plementary effects on the bias-variance trade-off (bagging (Breiman 1996)—variance
reduction, boosting (Schapire 1990)—bias reduction). Bagging is a method for gen-
erating multiple versions of a predictor (bootstrap replicates) and using these to get an
aggregated predictor. Boosting is a method for iteratively learning weak classifiers and
adding them to create a final strong classifier. After a weak learner is added, the data
weights are readjusted, allowing future weak learners to focus more on the examples
that previous weak learners misclassified. Bagging and boosting methods have been
combined (Kotsiantis and Pintelas 2005) but without integrating the diversification
benefit of an implicit approach.

There is a study which combines the explicit boosting method with the implicit ME
divide-and-conquer principle (Ebrahimpour et al. 2012). Nonetheless, the only bias
reduction distribution change of boosting does not ensure a bias-variance trade-off.
Hence, we propose the first hybrid ensemble method called Local Cascade Ensemble
(LCE). LCE combines an explicit boosting-bagging approach to handle the bias-
variance trade-off and an implicit divide-and-conquer approach (decision tree) to learn
different parts of the training data.

Therefore, in this work we choose to evaluate the performance of the first hybrid
ensemble method LCE in comparison to:

• A simple ensemble method on the original data combining some state-of-the-art
classifiers with a majority vote (Naïve Bayes (Zhang 2004), Elastic Net (Zou and
Hastie 2005), CART (Breiman et al. 1984));

• The state-of-the-art ensemble methods adopting an explicit approach (Random
Forest (Breiman 2001), Extreme Gradient Boosting (Chen and Guestrin 2016)
and the combination of bagging and boosting (Kotsiantis and Pintelas 2005));

• The state-of-the-art implicit approach Local Cascade (Gama and Brazdil 2000)
(starting point of LCE—detailed in Sect. 3);

• The state-of-the-art ensemblemethod combining the explicit boostingmethodwith
the implicit ME divide-and-conquer principle (Boost-Wise Pre-Loaded Mixture
of Experts (Ebrahimpour et al. 2012));

• The best-in-class of the other classes (regularized logistic regressions, support
vector machines and neural networks) as presented in Sect. 4.2.1.

2.3 MTS classification

MTS classifiersWe can categorize the state-of-the-art MTS classifiers into three fam-
ilies: similarity-based, feature-based and deep learning methods.

Similarity-based methods make use of similarity measures (e.g., Euclidean dis-
tance) to compare two MTS. Dynamic Time Warping (DTW) has been shown to be
the best similarity measure to use along k-NN (Seto et al. 2015), this approach is called
kNN-DTW. There are two versions of kNN-DTW for MTS: dependent (DTWD) and
independent (DTWI ). Neither dominates over the other (Shokoohi-Yekta et al. 2017).
DTWI measures the cumulative distances of all dimensions independently measured
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under DTW. DTWD uses a similar calculation with single-dimensional time series; it
considers the squared Euclidean cumulated distance over the multiple dimensions.

Feature-based methods include shapelets and bag-of-words (BoW) models.
Shapelets models use subsequences (shapelets) to transform the original time series
into a lower-dimensional space that is easier to classify. gRSF (Karlsson et al. 2016)
and UFS (Wistuba et al. 2015) are the current state-of-the-art shapelets models in
MTS classification. They relax the major limiting factor of the time to find dis-
criminative subsequences in multiple dimensions (shapelet discovery) by randomly
selecting shapelets. gRSF creates decision trees over randomly extracted shapelets
and shows better performance than UFS on average (14 MTS datasets) (Karlsson
et al. 2016). On the other hand, BoW models (LPS (Baydogan and Runger 2016),
mv-ARF (Tuncel and Baydogan 2018), SMTS (Baydogan and Runger 2014) and
WEASEL+MUSE (Schäfer and Leser 2017)) convert time series into a bag of dis-
crete words, and use a histogram of words representation to perform the classification.
WEASEL+MUSE shows better results compared to gRSF, LPS, mv-ARF and SMTS
on average (20 MTS datasets) (Schäfer and Leser 2017). WEASEL+MUSE generates
a BoW representation by applying various sliding windows with different sizes on
each discretized dimension (Symbolic Fourier Approximation (Schäfer and Högqvist
2012)) to capture features (unigrams, bigrams, dimension idenfication). Following a
feature selection with chi-square test, it classifies the MTS based on a logistic regres-
sion.

Finally, deep learning methods (FCN (Wang et al. 2017), MLSTM-FCN (Karim
et al. 2019), ResNet (He et al. 2016), TapNet (Zhang et al. 2020) and TST (Zerveas
et al. 2021)) use Long-Short TermMemory (LSTM), Convolutional Neural Networks
(CNN) or Transformers. According to the results published and our experiments, the
current state-of-the-art model (MLSTM-FCN) is proposed in Karim et al. (2019) and
consists of a LSTM layer and a stacked CNN layer along with squeeze-and-excitation
blocks to generate latent features. A recent network, TapNet (Zhang et al. 2020),
also consists of a LSTM layer and a stacked CNN layer, followed by an attentional
prototype network. However, TapNet shows lower accuracy results1 on average on the
30 public UEAMTS datasets than MLSTM-FCN (MLSTM-FCN results presented in
Table 7).

Therefore, in this work we choose to evaluate the performance of XEM in com-
parison to the similarity-based methods results published in the UEA archive (ED,
DTWD , DTWI ) (Bagnall et al. 2018) and to the best-in-class for each feature-based
and deep learning category (WEASEL+MUSE and MLSTM-FCN classifiers). As a
method aggregating features which are the output of multiple predictors, XEM can be
categorized as an ensemble method.

As previously introduced, in addition to meeting the performance requirement,
MTS classifiers are facing two particular challenges: the lack of faithful explainability
supporting their predictions and the varying input data quality (different TS length,
missing data, noise).

Explainability There is no mathematical definition of explainability. A definition
proposed by Miller (2019) states that the higher the explainability of a machine learn-

1 https://github.com/xuczhang/xuczhang.github.io/blob/master/papers/aaai20_tapnet_full.pdf
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ing algorithm, the easier it is for someone to comprehend why certain decisions or
predictions have been made. Three categories of explainability methods are usually
recognized: explainability-by-design, post hoc model-specific explainability and post
hoc model-agnostic explainability (Du et al. 2020). First, some machine learning
models provide explainability-by-design. These self-explanatory models incorporate
explainability directly to their structures. This category includes, for example, decision
trees, rule-based models and linear models. Next, post hoc model-specific explainabil-
ity methods are specifically designed to extract explanations for a particular model.
These methods usually derive explanations by examining internal model structures
and parameters. For example, a method has been designed to identify the regions of
input data that are important for predictions in CNNs using the class-specific gradient
information (Selvaraju et al. 2019). Finally, post hoc model-agnostic explainability
methods provide explanations from any machine learning model. These methods
treat the model as a black-box and does not inspect internal model parameters. The
main line of work consists in approximating the decision surface of a model using
an explainable one (e.g., LIME (Ribeiro et al. 2016), SHAP (Lundberg and Lee
2017), Anchors (Ribeiro et al. 2018), LORE (Guidotti et al. 2019)). These differ-
ent explainability methods come with their own form of explanations. Therefore,
we have proposed in Fauvel et al. (2020b) a framework to assess and benchmark
machine learning methods with respect to their performance and explainability. The
framework details a set of characteristics (performance, model comprehensibility,
granularity of the explanations, information type, faithfulness and user category) that
systematize the performance-explainability assessment of machine learning methods.
According to this framework, none of the state-of-the-art MTS classifiers reconciles
performance and faithful explainability. Similarity-based methods provide faithful
explainability-by-design but they are often less accurate than other MTS classification
methods. WEASEL+MUSE and MLSTM-FCN classifiers show better performance
than similarity-based methods but they are not explainable-by-design and, as far as we
have seen, they do not have a post hoc model-specific explainability method. Thus,
WEASEL+MUSE and MLSTM-FCN cannot provide faithful explanations as they
can only rely on post hoc model-agnostic explainability methods (Rudin 2019), which
could prevent their use on numerous applications. Our approach XEM proposes to
reconcile performance and faithful explainability (by design) through identifying the
time window used to classify the whole MTS. We detail the assessment of XEM in
the performance-explainability framework and identify ways to further enhance XEM
explainability in Sect. 5.2.5.

Input data quality Finally, none of the state-of-the-art MTS classifiers handles the
three varying data quality aspects (different TS length, missing data, noise).

Table 1 presents an overview of the challenges addressed by the state-of-the-art
MTS classifiers and how we position our new ensemble method XEM. We evaluate
the classification performance of XEM and its ability to handle the challenges MTS
classification faces in Sect. 5.2.
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Table 1 Overview of the state-of-the-art MTS classifiers

Similarity based Deep learning Feature based Ensemble
ED DTW MLSTM FCN WEASEL+ MUSE XEM

Output

Performance � � �
Faithful explainability � � �
Input

Varying TS length � � � �
Missing data �
Noise � �

3 Algorithm

We first explain how the hybrid ensemble method LCE has been designed and then
how LCE is used to form the MTS classifier XEM. Finally, we detail XEM properties
and implementation.

3.1 LCE

First of all, LCE is an improved hybrid (explicit and implicit) version of an implicit
cascade generalization approach (Sesmero et al. 2015): LocalCascade (LC) (Gamaand
Brazdil 2000). Among the implicit approaches, LC is one of the easiest to augment
with explicit techniques. LC uses a decision tree as a divide-and-conquer method,
which is compatible with the explicit bagging/boosting approaches. This criteria has
motivated the choice of LC algorithm as the starting point for our hybrid ensemble
method. We present in this section LC and our proposed LCE. Figure 1 illustrates the
algorithms.

Local cascade LC is a combined implicit approach (negative correlation learning
and mixture of experts) based on a cascade generalization. Cascade generalization
uses a set of classifiers sequentially and at each stage adds new attributes to the
original dataset. The new attributes are derived from the class probabilities given by a
classifier, called a base classifier (e.g., class probabilities H0(D), H1(D01) in Fig. 1).
The bias-variance trade-off is obtained by negative correlation learning: at each stage
of the sequence, classifiers with different behaviors are selected. It is recommended in
cascade generalization to beginwith a low variance algorithm likeNaïveBayes (Zhang
2004) to draw stable decision surfaces (H0 in Fig. 1) and then use a low bias algorithm
like boosting (Freund and Schapire 1996) to fit more complex ones (H1 in Fig. 1). LC
applies cascade generalization locally following a divide-and-conquer strategy based
on mixture of experts. The objective of this approach is to capture new relationships
that cannot be discovered globally. The LC divide-and-conquer method is a decision
tree. When growing the tree, new attributes (class probabilities from a base classifier)
are computed at each decision node and propagated down the tree. In order to be
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Fig. 1 Local cascade (LC) versus local cascade ensemble (LCE). Hi—base classifier trained on a dataset
at a tree depth of i (Hb: eXtreme Gradient Boosting [Chen et al., 2016]), Di—dataset at a tree depth
of i augmented with the class probabilities of the base classifier Hi , NCL–negative correlation learning,
ME–mixture of experts

applied as a predictor, local cascade stores, in each node, the model generated by the
base classifier.

Local cascade ensemble The contribution of LCE intervenes in the explicit manner
of handling the bias-variance trade-off. Whereas LC approach is implicit, alternating
between base classifiers behaviors (bias reduction, variance reduction) at each level
of the tree, LCE is a hybrid ensemble method which combines an explicit boosting-
bagging approach to handle the bias-variance trade-off and, as LC, an implicit divide-
and-conquer approach—a decision tree. Firstly, LCE reduces bias across decision
tree divide-and-conquer approach through the use of boosting-based classifiers as
base classifiers (Hb in Fig. 1). A boosting-based classifier iteratively changes the
data distribution with its reweighting scheme which decreases the bias. We adopt the
best performing state-of-the-art boosting algorithm (eXtreme Gradient Boosting—
XGB (Chen and Guestrin 2016)) as base classifier. In addition, boosting is propagated
down the tree by adding the class probabilities of the base classifier as new attributes
to the dataset. Class probabilities indicate the ability of the base classifier to correctly
classify a sample. At the next tree level, class probabilities added to the dataset are
exploited by the base classifier as a weighting scheme to focus more on previously
misclassified samples. Then, the overfitting generated by the boosted decision tree
is mitigated by the use of bagging. Bagging provides variance reduction by creating
multiple predictors from random sampling with replacement of the original dataset
(see D1…Dn in Fig. 1). Trees are aggregated with a simple majority vote.

The hybrid ensemblemethodLCEallows to balance bias and variancewhile benefit-
ing from the improvedgeneralization ability of explicitly creatingdifferent training sets
(bagging, boosting). Furthermore, LCE implicit divide-and-conquer method ensures
that classifiers are learned on different parts of the training data.
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3.2 XEM

As previously introduced, MTS classification has received significant interests over
the past decade driven by automatic and high-resolution monitoring applications. A
subset of the MTS can be characteristic of the event we aim to predict and can be
adequate for the prediction. Thus, we propose to leverage LCE tabular classifier to
identify the discriminative part of anMTS and form an eXplainable-by-design Ensem-
ble method for MTS classification (XEM) combining both performance and faithful
explainability. We have chosen a tabular classifier as the classifier of the MTS subse-
quences needs to learn the relation between the variables and potentially handle small
time windows (e.g., length of 2), which prevents the use of most MTS classifiers. Plus,
we have selected LCE as it outperforms the state-of-the-art tabular classifiers on the
publicUCI datasets (see Sect. 5.1). The timewindow size is set as a parameter ofXEM,
which gives the estimated size of the discriminative part of an MTS. In our evaluation,
without having prior knowledge on the time window size which would suit the clas-
sification tasks, we set the time window size using grid search with cross-validation
(see Sect. 4.3). In the following sections, we first present how dividing the time series
into time windows is used to help XEM classify MTS based on their discriminative
part and then, how it provides explainability-by-design.

3.2.1 MTS dataset transformation

XEM trains LCE on subsequences ofMTS to identify the discriminative time window,
which requires a transformation of the original MTS dataset. This transformation is
presented in Fig. 2.Using a slidingwindow, all subsequences corresponding to the time
window size are generated (MTS length − time window size + 1 subsequences). The
time aspect ismanaged by setting the different timestamps as columndimensions. Each
subsequence is considered as a new sample, labeled as the original MTS. For example
in Fig. 2, 4 subsequences (samples) are generated from the first MTS, composed of
2 timestamps (time window size) with 2 dimensions each (4 attributes columns). The
4 subsequences are calculated as: 5 (MTS length) − 2 (time window size) + 1. We
present in the next sections how we compute the classification performance with the
transformed dataset and how this configuration allows explainability.

3.2.2 Classification

As seen in the previous section, XEM trains LCE on samples corresponding to subse-
quences of MTS which sizes are controlled by the time window size parameter. Then,
XEM assigns LCE class probabilities to all subsequences of the MTS. For example,
on the upper part of Fig. 3, XEM assigns LCE class probabilities for each of the 4
subsequences of an MTS. Finally, XEM determines the class of an MTS based on
the subsequence on which LCE is the most confident. For each MTS, the maximum
class probability over the different subsequences is selected to determine the whole
MTS classification output. For example, on the middle part of Fig. 3, we can observe
that XEM assigns the class 1 to the first MTS (MTS ID=1) based on the highest class
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Fig. 2 The dataset transformation (from original MTS to a flat dataset). AttributeX—value of attribute X,
d— number of attributes, ID—sample identifier, MTS ID—MTS identifier, n—number of MTS, T—time
series length, win_size—time window size. In this example: T=5, d=2 and win_size=2

probability (0.95 versus 0.6 and 0.7) obtained with the classification of the third sub-
sequence of the MTS. In the case where XEM is the most confident for a subsequence
of an MTS which is not discriminative, it means that the time window size value
is not suited for the classification problem and it would lead to poor classification
accuracy of XEM on the training set. A time window size better suited for the classi-
fication problem would lead to better accuracy on the training set and would therefore
be selected. The transformation presented and the performance evaluation procedure
allow any traditional (tabular) classifier to perform MTS classification. Therefore, we
compare in Sect. 5.2.1 the performance of XEM to the best two state-of-the-art tabular
classifiers applying the same transformation as LCE and to the state-of-the-art MTS
classifiers.

3.2.3 Explainability

XEM prediction for an MTS is based on the subsequence that has the highest class
probability—the subsequence on which LCE is the most confident. Thus, XEM pro-
vides explainability-by-design through the identification of the time window used to
classify the MTS. We illustrate the explainability of XEM with the previous section
example in the lower part of Fig. 3. We observe that for the first MTS (MTS ID=1),
after performing a grouping by MTS ID and taking the maximum, class 1 has the
highest probability (0.95). We can trace back to the subsequence from which XEM is
predicting this class probability (third subsequence), and show it to the end-user. This
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Fig. 3 XEM prediction computation on the example from Fig. 2 with the identification of the discriminative
time window for the MTS 1. And, an illustration of the explanation provided to the end-user to support
XEM prediction for this MTS (highlighted in bold)

subsequence can help the end-user to understand why the MTS classifier attributed
a particular label to the whole MTS (explainability). In this case, the subsequence
associated with XEM prediction of the first MTS contains a steep increase of attribute
2 (black line—Fig. 3), which surpasses attribute 1 (blue line—Fig. 3). We further
illustrate the explainability property of XEM in Sect. 5.2.2 on a synthetic and two
UEA datasets.

3.3 Properties

In addition to its explainability-by-design, XEMhas other interesting properties: phase
invariance, interplay of dimensions, different MTS length compatibility, missing data
management, noise robustness and scalability.

• Phase Invariance: XEM is not sensitive to the position of the discriminative sub-
sequence in theMTS due to the selection of the subsequence which has the highest
class probability to classify the whole MTS. This property improves the general-
ization ability of the algorithm: in the possible cases when the sequences of events
in an MTS change, the classification result is not modified. For example, the clas-
sification result would be the same if the discriminative subsequence appears at
the beginning or at the end of the MTS;
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• Interplay of Dimensions: XEM exploits the relationships among the dimensions
through the use of boosting-based classifier as base classifier. It allows XEM to
exploit complex interactions among dimensions at different timestamps to perform
classification;

• Different MTS Length Compatibility: XEM handles it in two different ways. If an
MTS length is inferior to the maximum length of the MTS in a dataset multiplied
by thewindow size selected,XEMuses padding of 0 values. Otherwise, no padding
is necessary, less samples are generated per MTS but the performance evaluation
procedure presented in 3.2.2 remains valid;

• Missing Data Management: XEM naturally handles missing data through its tree-
based learning (Breiman et al. 1984). Similar to extreme gradient boosting (Chen
and Guestrin 2016), XEM excludes missing values for the split and uses block
propagation. During a node split, block propagation sends all sampleswithmissing
data to the side minimizing the error, i.e. the node (left or right) which gets the
highest score (accuracy score in this paper). We evaluate this property in our
experiments in Sect. 5.2.3;

• Noise Robustness: the bagging component of XEM provides noise robustness
through variance reduction by creating multiple predictors from random sampling
with replacement of the original dataset. We discuss this property in our experi-
ments in Sect. 5.2.4;

• Scalability: as a tree-based ensemblemethod,XEM is scalable. Its time complexity
is detailed in Sect. 3.4.

Most of the properties of XEM are coming from LCE. The properties shared
between LCE and XEM are interplay of dimensions, missing data management, noise
robustness and scalability.

3.4 Time complexity

XEM time complexity corresponds to LCE time complexity plus the dataset transfor-
mation which is linear in the number of samples. LCE time complexity is determined
by the time complexity of multiple decision trees learning and extreme gradient boost-
ing. The time complexity of building a single tree is O(ndDt ), where n is the number
of samples, d is the number of dimensions and Dt is themaximum depth of the tree. So
the time complexity of creating multiple decision trees with bagging is O(NtndDt ),
where Nt is the number of trees. Extreme gradient boosting has a time complexity of
O(NbDb‖x‖0 log(n)) where Nb is the number of trees, Db is the maximum depth of
the trees and ‖x‖0 is the number of non-missing entries in the data. Therefore, LCE
has a time complexity of O(NtndDt2Dt NbDb‖x‖0 log(n)), where 2Dt represents the
maximum number of nodes in a binary tree. Table 2 shows the time complexity of
LCE in comparison with RF, XGB and LC.
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Table 2 Time complexities of
the ensemble methods

Algorithm Time complexity

RF O(Nnd ′D)

XGB O(N log(n)‖x‖0D)

LC O(ndD2DTBase)

LCE O(NndD2DTBase)

d—number of dimensions, d ′—number of dimensions in RF subset
of dimensions, D—maximum depth of a tree, n—number of samples,
N—number of trees, TBase - time complexity of a base classifier,
‖x‖0—number of non-missing entries in the data

Algorithm 1 XEM
Require: A dataset D, a set of classifiers H , time window size win_si ze, maximum depth of a tree

max_depth, number of trees n_trees
1: function XEM(D, H , win_si ze, n_trees, max_depth)
2: D′ ← Dataset_Transformation(D, win_si ze)
3: F ← ∅
4: for each i in [1, n_trees] do
5: S ← A bootstrap sample from D′
6: t ← XEM_Tree(S, H , max_depth, 0)
7: F ← F ∪ t
8: return F
9: function XEM_Tree(D, H , max_depth, depth)
10: if max_depth or uniform class then
11: return leaf
12: else
13: D′ ← Concatenate(D, Hdepth(D))
14: Split D′ on attribute maximizing Gini criterion
15: depth ← depth + 1
16: for D′( j) ∈ P(D′) do
17: Tree j = XEM_Tree(D′( j), H , max_depth, depth)

18: return tree containing one decision node, storing classifier Hdepth(D) and descendant subtrees
Tree j

3.5 Implementation

We present XEM pseudocode in Algorithm 1 andmake available our implementation2

in Python 3.6. A function (XEM_Tree) builds a tree and the second one (XEM) builds
the forest of trees through bagging, after having transformed the dataset. There are 2
stopping criteria during a tree building phase: when a node has an unique class or when
the tree reaches themaximum depth.We set the range of tree depth from 0 to 2 in XEM
as in LCE. This hyperparameter is used to control overfitting. Low bias boosting-based
classifier as base classifier justifies the maximum depth of 2. The set of low bias base
boosting-based classifiers is limited to the best performing state-of-the-art boosting
algorithm (XGB (Chen and Guestrin 2016)).

2 https://github.com/XAIseries/XEM
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4 Evaluation

In this section, we present the methodology employed (datasets, algorithms, hyperpa-
rameters and metrics) to evaluate LCE and XEM.

4.1 Datasets

4.1.1 Multivariate data

In the experiments, we benchmarked LCE on the UCI datasets (Dua and Graff 2017).
We randomly selected one dataset per category available on the repository and obtained
26 UCI datasets. The categories are defined according to the number of instances (less
than 100, 100 to 1,000 and greater than 1,000) and the number of dimensions (less than
10, 10 to 100 and greater than 100). The characteristics of each dataset are presented
in Table 3. There is no train/test split provided on the repository so we decided to
perform a stratified 3-fold cross-validation. Table 3 also shows the values of LCE
hyperparameters (n_trees,max_depth) set by grid search for each dataset during our
experiments (see Sect. 4.3 for hyperparameters optimization).

4.1.2 Multivariate time series

We benchmarked XEM on the 30 currently available UEA MTS datasets (Bagnall
et al. 2018). We kept the train/test splits provided in the archive. The characteristics
of each dataset are presented in Table 4. Table 4 also shows the values of XEM
hyperparameters (n_trees,max_depth,win_si ze) set by grid search for each dataset
during our experiments (see Sect. 4.3 for hyperparameters optimization).

4.2 Algorithms

4.2.1 Classifiers

As presented in Sect. 2.2, we evaluate the performance of LCE in comparison to:

• Bagging and Boosting—BB (ensemble method—explicit): we implemented the
algorithm based on the description of the paper (Kotsiantis and Pintelas 2005) with
25 sub-classifiers for both bagging and boosting. We used the BaggingClassifier3

with the DecisionTreeClassifier4 and the AdaBoostClassifier5 public implemen-
tations (Pedregosa et al. 2011);

• Boost-Wise Pre-Loaded Mixture of Experts—BP (ensemble method - explicit
boosting + implicit): we implemented the algorithm based on the description of
the paper (Ebrahimpour et al. 2012), with one hidden layer per MLP expert and
the recommended learning rates (experts: 0.1, gating network: 0.05). We used the

3 sklearn.ensemble.BaggingClassifier.
4 sklearn.tree.DecisionTreeClassifier.
5 sklearn.ensemble.AdaBoostClassifier.
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Table 3 UCI datasets

Datasets Instances Dims Classes LCE parameters
Trees Depth

Absenteeism at work 740 19 19 100 2

Banknote authentification 1372 4 2 5 1

Breast cancer Coimbra 116 9 2 60 0

CNAE-9 1080 856 9 20 2

Congressional voting 435 16 2 1 1

Drug consumption (quantified) 1185 12 7 5 2

Electrical grid stability 10,000 13 2 40 1

Gas sensor 58 432 4 100 0

HTRU2 17,898 8 2 60 2

Iris 150 4 3 20 2

Leaf 340 13 30 5 0

LSVT voice rehabilitation 126 310 2 5 0

Lung cancer 32 56 3 60 1

Mice protein expression 1080 77 8 60 1

Musk V1 476 166 2 5 2

Musk V2 6598 166 2 5 2

p53 mutants 31,159 5408 2 10 1

Page blocks classification 5473 10 5 80 2

Parkinson disease 756 753 2 5 2

Semeion handwritten digit 1593 256 10 20 2

Ultrasonic flowmeter 181 43 4 60 1

User knowledge modeling 403 5 5 40 2

Wholesale customers 440 6 2 40 0

Wine 178 13 3 100 0

Wine quality 1599 11 6 100 2

Yeast 1484 8 10 80 2

Dims—Dimensions

AdaBoostClassifier5 (Pedregosa et al. 2011) and the Keras8 public implementa-
tions;

• Elastic Net—EN (regularized logistic regression): the logistic regression com-
bining L1 and L2 regularization methods. We used the SGDClassifier6 public
implementation (Pedregosa et al. 2011);

• Local Cascade—LC (ensemblemethod—implicit): we implemented the algorithm
based on the description of the paper (Gama and Brazdil 2000) (hyperparameter:
maximum depth of the tree [0, 5]). The low bias base classifier is set to XGB11

and the low variance base classifier to Naïve Bayes7 (Pedregosa et al. 2011);

6 sklearn.linear_model.SGDClassifier.
7 sklearn.naive_bayes.GaussianNB.
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Table 4 UEA MTS datasets

Datasets Type Train Test L Di C Parameters
W T De

Articulary word recognition Motion 275 300 144 9 25 40 5 1

Atrial fibrilation ECG 15 15 640 2 3 20 1 0

Basic motions HAR 40 40 100 6 4 20 1 0

Character trajectories Motion 1422 1436 182 3 20 80 10 2

Cricket HAR 108 72 1197 6 12 40 20 0

Duck duck geese AS 60 40 270 1345 5 100 20 0

Eigen worms Motion 128 131 17,984 6 5 100 20 1

Epilepsy HAR 137 138 206 3 4 20 1 1

Ering HAR 30 30 65 4 6 20 1 2

Ethanol concentration Other 261 263 1751 3 4 20 1 2

Face detection EEG/MEG 5890 3524 62 144 2 100 5 2

Finger movements EEG/MEG 316 100 50 28 2 60 5 2

Hand movement direction EEG/MEG 320 147 400 10 4 80 20 2

Handwriting HAR 150 850 152 3 26 20 10 2

Heartbeat AS 204 205 405 61 2 80 10 0

Insect Wingbeat AS 30,000 20,000 200 30 10 100 10 1

Japanese Vowels AS 270 370 29 12 9 40 5 1

Libras HAR 180 180 45 2 15 40 60 1

LSST Other 2459 2466 36 6 14 60 10 2

Motor Imagery EEG/MEG 278 100 3000 64 2 100 20 1

NATOPS HAR 180 180 51 24 6 40 10 0

PenDigits Motion 7494 3498 8 2 10 80 80 2

PEMS-SF Other 267 173 144 963 7 100 20 1

Phoneme AS 3315 3353 217 11 39 80 1 2

Racket sports HAR 151 152 30 6 4 60 20 0

Self regulation SCP1 EEG/MEG 268 293 896 6 2 100 5 2

Self regulation SCP2 EEG/MEG 200 180 1152 7 2 100 20 2

Spoken arabic digits AS 6599 2199 93 13 10 80 10 1

Stand walk jump ECG 12 15 2,500 4 3 20 1 1

U wave gesture library HAR 120 320 315 3 8 60 1 0

AS—Audio spectra, C—Number of classes, De—Depth, Di—Dimensions, ECG - Electrocardiogram,
EEG—Electroencephalogram, HAR—Human Activity Recognition, L—Time Series Length, MEG—
Magnetoencephalography, Parameters—XEM Parameters, T—Number of trees, W—Time Window (%)

• Local Cascade Ensemble—LCE (ensemble method—hybrid): the algorithm has
been implemented in Python 3.62 (hyperparameters: n_trees
{1, 5, 10, 20, 40, 60, 80, 100}, max_depth {0, 1, 2}). The base classifier is set to
XGB11;

• Multilayer Perceptron—MLP (neural network): we consider small MLPs due to
the limited size of the datasets and the absence of pretrained networks. We used
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the implementation available in the package Keras8 and limit the neural network
architecture to 3 layers;

• Random Forest—RF (ensemble method—explicit): we used the RandomForest-
Classifier9 public implementation (Pedregosa et al. 2011);

• SimpleEnsembleMethod—SE:weused theDecisionTreeClassifier4,GaussianNB7

and SGDClassifier6 public implementations (Pedregosa et al. 2011);
• Support Vector Machine—SVM: we used the SVC10 public
implementation (Pedregosa et al. 2011);

• Extreme Gradient Boosting—XGB (ensemble method—explicit): we used the
implementation available in the xgboost package for Python.11

4.2.2 MTS classifiers

We compare our algorithm XEM to the best two tabular classifiers from the previous
evaluation applying the same transformation as LCE and to the state-of-the-art MTS
classifiers.

• DTWD , DTWI and ED—with andwithout normalization (n): we report the results
published in the UEA archive (Bagnall et al. 2018);

• MLSTM-FCN: we used the implementation available12 and ran it with the param-
eter settings recommended by the authors in the paper (Karim et al. 2019)
(128-256-128 filters, kernel sizes 8/5/3, initialization of convolution kernels Uni-
form He, reduction ratio of 16, 250 training epochs, dropout of 0.8, Adam
optimizer) and with the following hyperparameters: batch size {8, 64, 128}, num-
ber of LSTM cells {8, 64, 128};

• RFM:RandomForest forMultivariate time series classification.Weused the public
implementation9 with the transformation presented in Sect. 3.2.1;

• WEASEL+MUSE: we used the implementation available13 and ran it with the
parameter settings recommended by the authors in the paper (Schäfer and Leser
2017) (chi=2, bias=1, p=0.1, c=5 and L2R_LR_DUAL solver) and with the fol-
lowing hyperparameters: SFA word lengths {2, 4, 6}, SFA quantization method
{equi-depth, equi-frequency}, windows length [4, max(MTS length)];

• XEM: the algorithm has been implemented in Python 3.62 with the following
hyperparameters: n_trees {1, 5, 10, 20, 40, 60, 80, 100}, max_depth {0, 1, 2},
win_si ze {20%, 40%, 60%, 80%, 100%};

• XGBM: Extreme Gradient Boosting forMultivariate time series classification.We
used the public implementation11 with the transformation presented in Sect. 3.2.1.

8 https://keras.io/
9 sklearn.ensemble.RandomForestClassifier.
10 sklearn.svm.SVC.
11 https://xgboost.readthedocs.io/en/latest/python/
12 https://github.com/houshd/MLSTM-FCN
13 https://github.com/patrickzib/SFA
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4.3 Hyperparameters optimization

Classifiers and MTS classifiers hyperparameters have been set for each dataset based
on a stratified 3-fold cross-validation on the training sets. More specifically, hyper-
parameters of LC, LCE, MLSTM-FCN and XEM have been set by grid search.
WEASEL+MUSE hyperparameters are set by the solver L2R_LR_DUAL as rec-
ommended by the authors. Then, the hyperparameters of all the other classifiers (BB,
BP, EN, MLP, SE, SVM, RF, XGB) are set by hyperopt, a sequential model-based
optimization using a tree of Parzen estimators search algorithm (Bergstra et al. 2011).
Hyperopt chooses the next hyperparameters decision from both the previous choices
and a tree-based optimization algorithm. Tree of Parzen estimators meet or exceed
grid search and random search performance for hyperparameters setting. We use the
implementation available in the Python package hyperopt14 and hyperas15 wrapper
for Keras.

4.4 Metrics

For each dataset, we compute the classification accuracy. Then, we present the aver-
age rank and the number of wins/ties to compare the different classifiers on the same
datasets. Finally, we present the critical difference diagram (Demšar 2006), the statisti-
cal comparison of multiple classifiers on multiple datasets based on the nonparametric
Friedman test, to show the overall performance of LCE and XEM. The diagram repre-
sents the average rank of the classifiers, and the classifiers whose performance are not
significantly different (inferior to the critical difference) are linked by a bar. An exam-
ple of critical difference diagram can be seen in Fig. 4. We use the implementation
available in R package scmamp.16

5 Results

In this section, we begin by evaluating the performance of LCE compared to the state-
of-the-art classifiers. Next, we compare the performance of XEM to the other MTS
classifiers. Then, we show that the explainability of XEM can give insights to the
end-user about XEM predictions. Finally, we assess the robustness of XEM (missing
data, noise) and position it into the performance-explainability framework introduced
in Fauvel et al. (2020b).

5.1 LCE

Table 5 shows the classification results of the 10 classifiers on the 26 UCI datasets.
The best accuracy for each dataset is denoted in boldface. We observe that the top 3

14 https://github.com/hyperopt/hyperopt
15 https://github.com/maxpumperla/hyperas
16 https://www.rdocumentation.org/packages/scmamp/versions/0.2.55/topics/plotCD
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Table 5 Accuracy results on the UCI datasets

Datasets LCE LC XB RF SE BB BP MP SV EN

Absenteeism at work 42.7 27.6 44.2 42.0 29.9 38.1 21.8 28.3 28.7 31.7

Banknote authentification 99.3 98.9 99.6 99.1 97.7 99.1 98.9 89.5 100 98.8

Breast cancer coimbra 71.4 65.5 64.6 64.5 49.2 57.8 54.3 48.4 55.2 57.5

CNAE-9 86.2 51.0 84.1 91.6 90.9 87.4 95.5 95.6 30.4 92.2

Congressional voting 97.0 94.0 96.8 96.6 95.2 96.8 91.7 79.5 87.8 91.7

Drug consumption (quantified) 34.6 27.9 37.8 38.5 27.3 37.2 40.2 40.3 40.3 39.3

Electrical grid stability 100 99.9 100 100 98.4 99.9 94.9 88.5 79.3 96.8

Gas sensor 74.4 63.3 74.6 89.6 88.1 86.1 75.6 78.7 61.5 70.4

HTRU2 97.9 97.8 97.9 97.8 97.8 97.8 97.5 96.8 91.1 97.6

Iris 96.7 90.2 96.7 96.7 96.1 96.7 75.4 44.4 95.4 83.0

Leaf 52.5 48.7 61.6 71.7 30.6 37.9 10.2 8.5 35.2 56.0

LSVT voice rehabilitation 81.0 57.1 77.0 81.0 69.0 76.9 66.7 66.7 66.7 66.7

Lung cancer 41.1 47.2 34.4 37.2 45.6 45.6 46.1 37.2 36.7 52.8

Mice protein expression 56.7 40.1 43.1 53.1 35.9 46.1 35.1 13.9 14.4 42.9

Musk V1 73.3 63.5 76.1 72.5 70.6 75.2 66.8 57.4 56.5 72.3

Musk V2 78.8 74.5 78.4 77.5 78.6 77.2 78.3 84.6 84.7 76.3

p53 mutants 96.6 82.7 94.8 95.6 83.8 91.1 85.4 99.5 86.5 81.7

Page blocks classification 97.3 90.8 96.5 96.0 94.2 95.4 93.6 90.4 91.1 94.2

Parkinson disease 82.7 74.2 82.5 83.2 75.5 82.4 74.6 58.2 74.6 41.4

Semeion handwritten digit 90.3 43.2 90.0 92.2 77.3 83.9 90.8 92.1 36.4 75.8

Ultrasonic flowmeter 59.0 40.2 45.2 49.6 42.8 48.4 36.9 24.4 29.8 45.1

User Knowledge Modeling 85.6 80.4 85.6 85.6 79.4 85.9 57.8 29.8 80.4 74.6

Wholesale customers 91.8 88.6 92.5 91.6 85.2 91.6 76.3 77.0 67.7 83.0

Wine 92.8 96.1 91.1 92.8 89.4 87.6 39.9 35.4 42.7 75.4

Wine quality 55.5 49.2 54.5 56.9 46.7 53.7 46.9 42.1 41.9 45.9

Yeast 57.1 35.3 59.2 59.6 47.6 57.5 34.1 28.9 58.9 53.2

Average rank 2.8 6.8 3.3 3.0 6.0 4.1 7.0 7.6 7.3 6.5

Wins/ties 9 1 6 9 0 2 0 3 3 1

MP—MLP, SV—SVM, XB—XGB
Bold values denotes the best accuracy for each dataset

classifiers are ensemble methods: LCE obtains the best average rank (2.8), followed
by RF in second position (rank: 3.0) and XGB in third position (rank: 3.3).

First of all, LCE obtains the best average rank with the first position on 35% of the
datasets (9 wins/ties). Based on the categorization of the UCI datasets presented in
Table 3, we do not observe any influence of the number of instances, dimensions or
classes on the performance of LCE relative to other classifiers.

Then, we observe that the second ranked classifier RF obtains the same number of
wins/ties as LCE (9 win/ties). RF gets around 60% of its wins/ties on small datasets
(train size < 1000). We can infer that the bagging only (variance reduction) of RF
can provide better generalization than LCE bagging-boosting combination on small
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Table 6 Average accuracy score of LCE versus LC on test sets of the UCI datasets with the corresponding
standard error

Trees 1 5 10 20 40 60 80

LCE 71.8 ±4.6 74.1±4.3 73.6±4.4 72.8±4.4 73.2±4.5 74.9±4.1 73.9±4.2

LC 65.9 ± 4.8

datasets (wins/ties on small datasets—54% of the datasets: LCE 5, RF 5). The third
ranked classifier XGB gets 6 wins/ties. We do not see any influence of the different
dataset categories on XGB wins/ties relative to LCE. Therefore, we conclude that
LCE bagging and boosting combination to handle the bias-variance trade-off exhibits
better generalization on average than the bagging only (RF) and boosting only (XGB)
algorithms on the UCI datasets.

Next, LC algorithm gets the fifth rank with one win/tie.We do not see any particular
influence of the different dataset categories on LC performance. So, the outperfor-
mance of LCE compared to LC on the UCI datasets confirms the better generalization
ability of a hybrid (explicit and implicit) versus an implicit only approach. The com-
parison in Table 6 aims to underline the superior performance of LCE compared to LC
on the UCI datasets. In order to be comparable, the depth of a tree is set to 1 for LC and
LCE and, as presented in Sect. 4.2.1, the low bias base classifier in LC and LCE is the
best performing state-of-the-art boosting algorithm—XGB. The results correspond to
the average accuracy on test sets with the corresponding standard error. Results show a
comparable accuracy variability of LCE compared to LC when the number of trees is
set to 1 (standard error of 4.6% versus 4.8%). However, LCE on 1 tree exhibits a higher
accuracy than LC (71.8% versus 65.9%). Additionally, through bagging, we observe
LCE variability reduction as well as an increase of accuracy (71.8±4.6 with 1 tree
versus 74.9±4.1 with 60 trees versus 65.9±4.8 with LC). Therefore, this comparison
affirms the superiority of our explicit bias-variance trade-off approach compared to
the implicit approach of LC on the UCI datasets.

Moreover, LCEhybrid approach shows better average performance than the remain-
ing ensemble methods, and in particular the combination of explicit methods—BB, as
well as the combination of the explicit boosting method with an implicit approach—
BP (rank: LCE 2.8 , BB 4.1, SE 6.0, BP 7.0). LCE outperforms BB, SE and BP on
both small (rank: LCE 2.5, BB 3.4, SE 5.6, BP 7.6) and large datasets (rank: LCE 3.2,
BB 4.9, SE 6.5, BP 6.2).

Concerning the other classifiers, EN obtains only one win/tie but gets a better rank
on average than SVM (3 wins/ties) and MLP (3 wins/ties).

Finally, we analyze a statistical test to evaluate the performance of LCE compared
to other classifiers. We present in Fig. 4 the critical difference plot with alpha equals
to 0.05 from results shown in Table 5. The values correspond to the average rank and
the classifiers linked by a bar do not have a statistically significant difference. The
plot confirms the top 3 ranking as presented before (LCE: 1, RF: 2, XGB: 3). We
also observe that LCE and RF have a significant performance difference compared
to SE. Therefore, considering that LCE transformation to multivariate time series
classification is also applicable to other traditional (tabular) classifiers, we evaluate
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Fig. 4 Critical difference plot of the classifiers on the UCI datasets with alpha equals to 0.05

the performance of RF and XGB with the same transformation as LCE in comparison
to the state-of-the-art MTS classifiers in the next section.

5.2 XEM

5.2.1 Classification performance

The classification results of the 11MTS classifiers are presented in Table 7. A blank in
the table indicates that the approach ran out of memory or the accuracy is not reported
(Bagnall et al. 2018). The best accuracy for each dataset is denoted in boldface. We
observe that XEM obtains the best average rank (3.0), followed by RFM in second
position (rank: 3.7) and MLSTM-FCN in third position (rank: 3.8).

XEM gets the first position in one third of the datasets. Using the categorization
of the datasets published in the archive website17, we do not see any influence from
the different train set sizes, MTS lengths, dimensions and number of classes on XEM
performance relative to the other classifiers on the UEA datasets. Nonetheless, XEM
exhibits weaker performance on average on human activity recognition (rank: 3.6,
30% of all datasets) and motion classification (rank: 5.0, 13% of all datasets) datasets.

Then, we observe that the better generalization of LCE bagging-boosting combina-
tion compared to bagging only (RF) and boosting only (XGB) is also valid on theMTS
datasets (average rank: XEM 3.0, RFM 3.7, XGBM 4.8). The adaptation of ensemble
methods to the MTS datasets (see Sect. 3.2.1) is well performing: the three ensemble
methods obtain the highest number of wins/ties (ensemble methods forMTS: 17–57%
of all datasets, MLSTM-FCN: 11–37% of all datasets, WEASEL+MUSE: 4–13% of
all datasets). The 6 wins/ties of RFM are obtained on small datasets (train size< 500).
As seen in Sect. 5.1, we can infer that the bagging only (variance reduction) of RFM
can provide better generalization than XEM bagging-boosting combination on small
datasets (wins/ties on small datasets—77% of the datasets: XEM 8, RFM 6). On the
timewindow sizes used, we observe that the choice of XEM timewindow is a trade-off
between its bagging and boosting components. XEM and XGBM use the same time
window size on 70% of the datasets. When the time window size is different, XEM
obtains a better accuracy than XGBM on 90% of the cases. Moreover, XEM employs
the same time window size as RFM on half of the UEA datasets. On the other half of

17 http://www.timeseriesclassification.com/dataset.php
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Table 7 Accuracy results on the UEA MTS datasets

Datasets XM XG RM MF WM ED DI DD ED (n) DI (n) DD (n)

Articulary word recognition 99.3 99.0 99.0 98.6 99.3 97.0 98.0 98.7 97.0 98.0 98.7

Atrial fibrilation 46.7 40.0 33.3 20.0 26.7 26.7 26.7 20.0 26.7 26.7 22.0

Basic motions 100 100 100 100 100 67.5 100 97.5 67.6 100 97.5

Character trajectories 97.9 98.3 98.5 99.3 99.0 96.4 96.9 99.0 96.4 96.9 98.9

Cricket 98.6 97.2 98.6 98.6 98.6 94.4 98.6 100 94.4 98.6 100

Duck duck geese 37.5 40.0 40.0 67.5 57.5 27.5 55.0 60.0 27.5 55.0 60.0

Eigen worms 52.7 55.0 100 80.9 89.0 55.0 60.3 61.8 54.9 61.8

Epilepsy 98.6 97.8 98.6 96.4 99.3 66.7 97.8 96.4 66.6 97.8 96.4

Ering 20.0 13.3 13.3 13.3 13.3 13.3 13.3 13.3 13.3 13.3 13.3

Ethanol concentration 37.2 42.2 43.3 29.4 31.6 29.3 30.4 32.3 29.3 30.4 32.3

Face detection 61.4 62.9 61.4 57.4 54.5 51.9 51.3 52.9 51.9 52.9

Finger movements 59.0 53.0 56.0 61.0 54.0 55.0 52.0 53.0 55.0 52.0 53.0

Hand movement direction 64.9 54.1 50.0 37.8 37.8 27.9 30.6 23.1 27.8 30.6 23.1

Handwriting 28.7 26.7 26.7 54.9 53.1 37.1 50.9 60.7 20.0 31.6 28.6

Heartbeat 76.1 69.3 80.0 71.4 72.7 62.0 65.9 71.7 61.9 65.8 71.7

Insect wingbeat 22.8 23.7 22.4 10.5 12.8 11.5 12.8

Japanese vowels 97.8 96.8 97.0 99.2 97.8 92.4 95.9 94.9 92.4 95.9 94.9

Libras 77.2 76.7 78.3 92.2 89.4 83.3 89.4 87.2 83.3 89.4 87.0

LSST 65.2 63.3 61.2 64.6 62.8 45.6 57.5 55.1 45.6 57.5 55.1

Motor imagery 60.0 46.0 55.0 53.0 50.0 51.0 39.0 50.0 51.0 50.0

NATOPS 91.6 90.0 91.1 96.7 88.3 85.0 85.0 88.3 85.0 85.0 88.3

PenDigits 97.7 95.1 95.1 99.0 96.9 97.3 93.9 97.7 97.3 93.9 97.7

PEMS-SF 94.2 98.3 98.3 69.9 70.5 73.4 71.1 70.5 73.4 71.1

Phoneme 28.8 18.7 22.2 27.5 19.0 10.4 15.1 15.1 10.4 15.1 15.1

Racket sports 94.1 92.8 92.1 89.4 91.4 86.4 84.2 80.3 86.8 84.2 80.3

Self regulation SCP1 83.9 82.9 82.6 86.7 74.4 77.1 76.5 77.5 77.1 76.5 77.5

Self regulation SCP2 55.0 48.3 47.8 52.2 52.2 48.3 53.3 53.9 48.3 53.3 53.9

Spoken arabic digits 97.3 97.0 96.8 99.4 98.2 96.7 96.0 96.3 96.7 95.9 96.3

Stand walk jump 40.0 33.3 46.7 46.7 33.3 20.0 33.3 20.0 20.0 33.3 20.0

U wave gesture library 89.7 89.4 90.0 86.3 90.3 88.1 86.9 90.3 88.1 86.8 90.3

Average rank 3.0 4.8 3.7 3.8 4.1 7.6 6.3 5.3 7.9 6.7 5.7

Wins/ties 10 4 6 11 4 0 1 3 0 1 2

DD—DTWD , DI—DTWI , MF - MLSTM-FCN, RM—RFM, WM—WEASEL+MUSE, XG—XGBM,
XM - XEM
Bold values denotes the best accuracy for each dataset

the datasets, RFM adopts a slightly bigger time window size than XEM. RFM uses a
bigger time window in 75% of the time with an average time window difference of
29% between XEM and RFM. The different choice of XEM time window size leads
to a better accuracy on 75% of the cases compared to RFM. These observations prove
that XEM bias-variance trade-off can refine the time window size of boosting only
and bagging only to obtain a better generalization ability on average.
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Fig. 5 XEM average relative accuracy drop across the UEA datasets when using other time window sizes
than the one used in the best configuration given in Table 4. The performance drop is presented across three
categories of datasets, defined according to XEM levels of accuracy shown in Table 7. Abbreviation: Acc -
Accuracy

Specifically, with regard to the hyperparameter win_si ze of XEM, Fig. 5 shows
the average relative drop in performance across the datasets when using the other time
window sizes than the one used in the best configuration given in Table 4. In order to
evaluate the relative impact with respect to the range of performance, we have defined
three categories of datasets: datasets with XEM original accuracy < 50%, datasets
with 50% ≤ accuracy < 90% and datasets with accuracy ≥ 90%. First, as expected,
we observe that the average relative impact of using suboptimal time window sizes
is higher when XEM level of performance is low (average relative drop in accuracy:
15.1% when XEM accuracy < 50% versus 4.5% when XEM accuracy ≥ 90%). Then,
the average relative drop in accuracy when using suboptimal time window sizes is not
negligible but remains limited in all the cases. This drop is below 16% on average on
the category where XEM has the lowest level of accuracy (15.1% ± 5.3%) and below
10% on average across all the datasets (9.9% ± 1.8%).

Concerning the state-of-the-art MTS classifiers, we observe a performance differ-
ence between the third (MLSTM-FCN) and fourth (WEASEL+MUSE) classifiers on
datasets sizes. MLSTM-FCN outperforms WEASEL+MUSE (rank: 2.6 versus 4.6
for WEASEL+MUSE) on the largest datasets (train size ≥ 500, 23% of all datasets)
whereas WEASEL+MUSE slightly outperforms MLSTM-FCN (rank 4.0 versus 4.2
for MLSTM-FCN) on the smallest datasets (train size < 500, 77% of all datasets).
XEM shows the same performance as MLSTM-FCN on the largest datasets (rank
2.6) while outperformingWEASEL+MUSE on the smallest datasets (rank: 3.2 versus
4.0 for WEASEL+MUSE). Therefore, XEM is better than the state-of-the-art MTS
classifiers on both the small and large UEA datasets. Last, similarity-based methods
obtain the lowest wins/ties counts. Euclidean distance is never in the first position on
the UEA datasets. The wins/ties of DTW (DTWD normalized: 2, DTWD: 3) stem
from their outperformance on human activity recognition datasets.

Next, we performed a statistical test to evaluate the performance of XEM compared
to other MTS classifiers. We present in Fig. 6 the critical difference plot with alpha
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Fig. 6 Critical difference plot of the MTS classifiers on the UEA datasets with alpha equals to 0.05

equals to 0.05 from results shown in Table 7. The values correspond to the average rank
and the classifiers linked by a bar do not have a statistically significant difference. The
plot confirms the top 3 ranking as presented before (XEM: 1, RFM: 2, MLSTM-FCN:
3). We notice that XEM is the only classifier with a significant performance difference
compared to DTWD normalized.

5.2.2 XEM explainability

This section presents XEM explainability-by-design results. First, we illustrate the
explainability of XEM on a synthetic dataset. The construction of a synthetic dataset
allows us to know the expected discriminative time window. Then we show which
windows have been used by XEM on the UEA datasets of Sect. 5.2.1 and present the
explainability results on two UEA datasets. We do not know the expected discrimina-
tive time windows on the UEA datasets so it is worth noting that the explanations
provided on these two UEA datasets are given as illustrative in nature. In addi-
tion, for each dataset, we compare XEM explainability-by-design results with the
ones from certain post hoc model-agnostic explainability methods. The current best
performing state-of-the-art MTS classifiers (MLSTM-FCN, WEASEL+MUSE) are
black-box classifiers, which can only rely on post hoc model-agnostic explain-
ability methods. Therefore, in order to emphasize the value coming from XEM
explainability-by-design, we study the difference between XEM explainability results
and the ones obtained from certain post hoc model-agnostic explainability methods
applied to XEM. Multiple post hoc model-agnostic explainability methods exist (e.g.,
LIME (Ribeiro et al. 2016), SHAP (Lundberg and Lee 2017), Anchors (Ribeiro et al.
2018), LORE (Guidotti et al. 2019), features tweaking (Karlsson et al. 2020)). Among
the post hoc model-agnostic explainability methods, we have chosen the type with
feature importance as it is the most popular one, and similarly to XEM, it identifies
the regions of the input data that are important for a particular prediction. Specifically,
we have chosen Local Interpretable Model-Agnostic Explanations (LIME) and SHap-
ley Additive exPlanations (SHAP), the current state-of-the-art methods offering local
explainability under the form of feature importance. Thesemethods use an explainable
surrogate model, a model that aims to mimic the predictions of the original one. More
specifically, LIME describes the local behavior of the model using a linearly weighted
combination of the input features, learned on perturbations of an instance. SHAP also
adopts a linear surrogate model: an additive feature attribution method that uses sim-
plified inputs (conditional expectations) assuming feature independence. Thus, these
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Fig. 7 The two MTS types of the synthetic dataset, with the XEM time window used for the classification
of MTS belonging to the positive class highlighted in bold, which serves as the explanation for the end-user
(win_si ze: 20%)

methods provide how much each variable (features+time) impacts predictions. We
cannot apply LIME and SHAP methods at a higher granularity to obtain explanations
at windows level (like XEM) as their surrogate models would combine information
from multiple windows to mimic the performance of XEM, when XEM only uses one
window to perform classification. For each dataset, in order to compare explainability
results, we represent on the input data the identified regions that are important for
predictions from XEM explainability-by-design, LIME and SHAP results.

Synthetic Dataset First of all, we show that XEM uses and identifies the expected
time window to perform the classification on an MTS synthetic dataset. We design
a dataset composed of 20 MTS (50%/50% train/test split) with a length of 100, 2
dimensions and 2 balanced classes. The difference between the 10 MTS belonging to
the negative class and the one belonging to the positive class stems from a 20% time
window of the MTS. As illustrated in Fig. 7, negative class MTS are sine waves and
positive class MTS are sine waves with a square signal on 20% of the dimension 1
(see timestamps between 60 and 80).

The classification results show that XEM with a time window size parameter set
to 20% is enough to correctly classify the 10 MTS of the test set (accuracy: 100%
- n_trees: 10, max_depth: 1). Moreover, the classification results for the positive
class MTS are based on the 20% time window with a square signal on dimension
1. We observe that the maximum class probability for the MTS of positive class is
100% and this probability is reached for samples on the range [62,100] (maximum
class probability on the range [0,61]: 92.6%). This range is the expected range. As
explained in Sect. 3.2.1, all the samples of the dataset obtained with a 20% sliding
window have a piece of the square signal for the timestamps in the range [62,100],
which is the information sufficient to correctly classify the MTS in the positive class.
Furthermore, a time window size set below 20% also leads to 100% accuracy on the
test set as a piece of the square signal (20% of theMTS) is enough to correctly classify
the MTS of the positive class. For example, using the minimum window size (2%),
we observe that the maximum class probability obtained by XEM (accuracy: 100% -
n_trees: 10,max_depth: 1) for theMTS of positive class is 100% and this probability
is reached for samples in the range [61,81] (maximum class probability on the range
[0,60] and [82,100]: 97.8%). This is also the expected discriminative range. Therefore,
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Fig. 8 XEM with LIME and SHAP feature importance results from an MTS of the synthetic dataset
belonging to the positive class

XEMcan classify anMTS based on theminimal discriminative window; and by taking
all the samples of the dataset with the maximum class probability, XEM can identify
the full parts of the MTS which are characteristic of a class (e.g., the square signal on
20% of the dimension 1 in Fig. 7).

Then, we compare XEM explainability-by-design results with the ones from the
post hoc model-agnostic explainability methods LIME and SHAP applied to XEM.
Figure 8 shows the results from LIME and SHAP for a sample belonging to the pos-
itive class, with the darker the red color the higher the importance to the predictions.
First, we can see that, unlike XEM explainability-by-design (see Fig. 7), LIME and
SHAP do not homogeneously identify the discriminative square signal in Dimension 1
(interval [60,80]) as important to the prediction. SHAP identifies the timestamps at the
beginning and at the end of the discriminative window asmore important to the predic-
tion than the other ones, therefore explaining to the end-user that the interval [65,75]
is less discriminative to the prediction, which is not the expected result. A comparable
observation can be made on LIME results. Second, LIME and SHAP provide some
non-null importance values for theDimension 2, which is not discriminative as the sine
wave is common to both classes, therefore generating a misleading explanation for
the end-user. Thus, this example, based on the same XEMmodel and a known ground
truthwith regard to the expected explanation, emphasizes that the explanations coming
from the surrogate models of some post hoc model-agnostic explainability methods
like LIME and SHAP are not perfectly faithful, and demonstrates the interest to have
the combination of performance and explainability-by-design of XEMwhich provides
the discriminative time window as explanation.

Time window size percentages on UEA We then present the XEM explainability
results on the UEA datasets. We begin with illustrating in Fig. 9 the distribution of
the time window size percentage used by XEM on the UEA archive per dataset type.
We observe that XEM has a tendency to use particular time window size percentages
per dataset type. Most of audio spectra, EEG/MEG and motion datasets have been
classified on a time window size > 60% of the MTS lengths. Meanwhile, most ECG
and human activity recognition datasets have been classified on a time window size
≤ 60% of the MTS lengths. Therefore, we can induce that the information provided
by the whole MTS is useful to discriminate between the different classes on the audio
spectra, EEG/MEG and motion datasets. Concerning the ECG and human activity
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Fig. 9 Heatmap of the
proportion of the time window
size percentages (win_si ze)
used by XEM per UEA dataset
type

recognition datasets, we can infer that the discriminative information is located in a
particular part of the MTS.

Atrial fibrilation dataset For example, XEM obtains its best performance on the
two ECG datasets using a time window size of 20%. Therefore, we assume that the
information necessary for XEM to classify the MTS in ECG datasets are really con-
densed compared to the entireMTS available.We illustrate it in Fig. 10 by highlighting
the 20% time window of the first MTS sample per class in the Atrial Fibrilation test
set to gain insights on XEM classification result. Atrial Fibrilation dataset is com-
posed of two channels ECG on a 5 second period (128 samples per second). MTS are
labeled in 3 classes: non-terminating atrial fibrilation, atrial fibrilation terminates one
minute after and atrial fibrilation terminates immediately. XEM correctly predicts the
3 MTS based on the one second time window (20%) highlighted in Fig. 10. There is a
uniquewindow for eachMTSwith the highest class probability (class non-terminating
atrial fibrilation: 94.6%, atrial fibrilation terminates one minute after: 97.7%, atrial
fibrilation terminates immediately: 97.4%). We can observe in the non-terminating
atrial fibrilationMTS that the time window highlighted reveals an abnormal constant
increase on channel 2 (black line) during one second whereas the other channel keeps
the same motif as other windows. On the atrial fibrilation terminates one minute after
MTS, we observe a smaller decrease in channel 2 than in other windows and a low
peak in channel 1. These particular 20% timewindows inform the end-user aboutXEM
classification outcome, thus providing important information to domain experts.

Then, we also compare XEM explainability-by-design results presented in Fig. 10
with the ones from the post hoc model-agnostic explainability methods LIME and
SHAPapplied toXEM.Figure 11 shows the results fromLIMEandSHAP for a sample
belonging to the non-terminating atrial fibrilation class, with the darker the red color
the higher the importance to the predictions. As observed on the synthetic dataset,
the regions with high importance provided by LIME and SHAP are discontinued on
channel 2, rendering it difficult for the end-user to interpret this explanation.Moreover,
for both LIME and SHAP, only one or two points are identified as important on channel
1 without a clear interpretation associated to them, and can therefore be considered as
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Fig. 10 First MTS sample per class of Atrial Fibrilation test set with the XEM time window used for
classification highlighted in bold, which serves as explanation for the end-user (win_si ze: 20%)

Fig. 11 XEMwith LIME and SHAP feature importance results from the first MTS of the Atrial Fibrilation
test set belonging to the non-terminating atrial fibrilation class

noise. This example also supports the interest of XEM explainability-by-design which
provides the discriminative time window as explanation.

Racket sports dataset The second category of datasets where XEM obtains its best
results on a timewindow size≤ 60%of theMTS lengths is human activity recognition.
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Fig. 12 First MTS sample per class of Squash Racket Sports test set with the XEM time window used for
classification highlighted in bold, which serves as explanation for the end-user (win_si ze: 60%)

As previously done with Atrial Fibrilation, we illustrate it in Fig. 12 by highlighting
the 60% time window of the first MTS sample per class in the Racket Sports test
set to gain insights on XEM classification result. Racket Sports dataset is composed
of 6 dimensions, x/y/z coordinates for both the gyroscope and accelerometer of an
android phone, on a 3 second period (10 samples per second). MTS are labeled in
4 classes: badminton smash, badminton clear, squash forehand boast and squash
backhand boast. We illustrate the explainability of XEM on the two classes relative to
the squash: squash forehand boast and squash backhand boast. XEMcorrectly predicts
the 2 MTS based on the 1.8 seconds time window (60%) highlighted in Fig. 10. There
is a unique window for each MTS with the highest class probability (squash forehand
boast: 90.3%, squash backhand boast: 86.7%). We can observe that for these 2 MTS
the window highlighted well correspond to the period of the full movement. Then, we
can see a simultaneous steep peak on red and orange dimensions with a steep decrease
on green dimension for squash forehand boast. Whereas, we can see a simultaneous
steep decrease on red and orange dimensionswithout a particular variation on the green
dimension for squash backhand boast. These particular 60% time windows inform the
end-user about XEM classification outcome, thus providing important information to
domain experts.

Finally, we compare XEM explainability-by-design results presented in Fig. 12
with the ones from the post hoc model-agnostic explainability methods LIME and
SHAP applied to XEM. Figure 13 shows the results from LIME and SHAP for a
sample belonging to the squash forehand boast class, with the darker the red color the
higher the importance to the predictions. As observed on the synthetic dataset, LIME
and SHAP results only identify part of the discriminative features (e.g., do not identify
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Fig. 13 XEM with LIME and SHAP feature importance results from the first MTS of the Racket Sports
test set belonging to the squash forehand boast class

steep peak on red and orange dimensions) and put some importance on non relevant
parts of the time series (e.g., most of high LIME and SHAP importance values are
after timestamp 18—when the movement is finished). Such observations underline
the imperfect faithfulness limitation of some post hoc model-agnostic explainability
methods like LIME and SHAP, and the interest for XEM explainability-by-design.
Nonetheless, XEM explainability-by-design faces some limitations coming from the
use of a fixed-length time window, and these limitations are discussed in Sect. 5.3.

These two examples show how XEM outperforms other MTS classifiers (rank 1 on
Atrial Fibrilation and Racket Sports) while offering faithful explainability-by-design
on its predictions.

5.2.3 Effect of missing data

None of the state-of-the-art MTS classifiers handles missing data. Missing data are
interpolated, which adds a parameter to the problem. Similar to extreme gradient
boosting (Chen and Guestrin 2016), XEM excludes missing values for the split and
uses block propagation. Block propagation sends all samples with missing data to the
node maximizing the accuracy score.

We present in this section an experiment to illustrate the performance of XEM
in the case of missing data compared to the second and third ranked MTS classifiers
(RFMandMLSTM-FCN—seeTable 7)with an imputationmethod formissing values.
We have selected three datasets from the most representing type of UEA datasets
(human activity recognition, 30% of the datasets); it is also a type on which XEM
does not obtain the best performance comparing to the other classifiers (rank: 3.6). We
choose the three datasets according to the performance of XEM to show the evolution
of accuracies according to different starting points: Basic Motions (XEM accuracy:
100%, no error), Racket Sports (94.1%, ]0,10] percent of error) and U Wave Gesture
Library (89.7%, ]10,100] percent of error). Then, we randomly removed an increasing
proportion of the values for each time series ({5%, 10%, ..., 50%}) of the datasets
before transformation (see Sect. 3.2.1). For RFM and MLSTM-FCN, missing values
are filled with zeros. Classifiers are trained following the methodology described in
Sect. 4 and the error rates on test sets over 10 replications are presented in Fig. 14.

First, we observe that missing data does not have an effect on XEM performance
(100% accuracy) on the dataset Basic Motions. On the other two datasets, the error
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Fig. 14 Evolution of XEM, RFM and MLSTM-FCN error rates with standard errors according to the
proportion of missing values on three Human Activity Recognition datasets

rates of XEM increase progressively with the proportion of missing data. The error
rate induced by missing data never exceeds 5% on these 2 datasets when half the data
is missing (accuracy difference from 0 to 50% missing data: Racket Sports +3.7%
and U Wave Gesture Library +1.9%). Finally, XEM performance is stable: the error
rates remain roughly the same across the 10 replications on all proportions of missing
values (mean of standard error across Racket Sports/UWave Gesture Library: 0.34%).

Then, we can see that missing data has a stronger effect on RFM classification
performance than XEM on the three datasets (error difference from 0 to 50% missing
data: Basic Motions +0.25% versus 0%, Racket Sports +6.4% versus +3.7% and
U Wave Gesture Library +3.2% versus +1.9%). Nonetheless, the effect of missing
data on XEM and RFM performance remains below 10%. This observation is not
applicable to MLSTM-FCN which is highly impacted by the missing data. MLSTM-
FCN performance drops sharply on all datasets and it is not able to learn anymore
from the data when the proportion of missing values exceed 25% (same performance
as a random classifier—accuracy of one over the number of classes). Considering
that MLSTM-FCN and RFM have the same imputation method, we can assume that
using the window on which RFM is the most confident for prediction confers a higher
robustness to missing values.

Therefore, this experiment highlights the interest of classifying based on the sub-
sequence on which XEM is the most confident and the advantage conferred by its
natural way to handle missing values compared to its competitors.

5.2.4 Effect of Gaussian noise

In this section, we evaluate the robustness of XEM to Gaussian noise compared to the
second and third ranked MTS classifiers. Therefore, we compare the performance of
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Fig. 15 Evolution of the top three MTS classifiers average error rates with standard errors on three Human
Activity Recognition datasets (Basic Motions, Racket Sports, U Wave Gesture Library) according to the
level of noise

XEM to RFM and MLSTM-FCN, with RFM proven to be robust to noise based on
bagging (Breiman 1996).

Following the same logic as the section on missing values, we performed an exper-
iment on the same three datasets. These three datasets are from the most representing
type of UEA datasets (human activity recognition, 30% of the datasets) and from
different XEM accuracy categories: Basic Motions (XEM accuracy: 100%, no error),
Racket Sports (94.1%, ]0,10] percent of error) and U Wave Gesture Library (89.7%,
]10,100] percent of error). Then, after z-normalization of these datasets on each dimen-
sion (standard deviation of 1), we added an increasing Gaussian noise with a standard
deviation of 0 to 1 to each dimension, which is equivalent to noise levels of 0% to
100%.The average error rateswith standard errors on these three datasets are presented
in Fig. 15.

We observe that XEM fully exploits its bagging component and is as robust to
noise as RFM. XEM shows lower error rates than RFM on 60% of the noise levels,
without having a greater variability across the datasets (average standard error: XEM
3.7% versus RFM 3.5%). Moreover, XEM is more robust to noise than MLSTM-
FCN. XEM exhibits lower error rates than MLTSM-FCN on 80% of the noise levels
with a lower variability across the datasets (average standard error: XEM 3.7% versus
MLSTM-FCN 5.3%).

5.2.5 Performance-explainability framework

As previously presented, XEM is the first MTS classifier reconciling performance
and faithful explainability. In this section, we position XEM in the performance-
explainability framework (Fauvel et al. 2020b) in comparison with the state-of-the-art
MTS classifiers (DTWI /DTWD , MLTSM-FCN and WEASEL+MUSE), and identify
ways to further enhance XEM explainability.

The performance-explainability framework details a set of 6 characteristics (per-
formance, model comprehensibility, granularity of the explanations, information type,
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Fig. 16 Parallel coordinates plot of XEM and the state-of-the-art MTS classifiers. Performance evalua-
tion method: predefined train/test splits and an arithmetic mean of the accuracies on the 30 public UEA
datasets (Bagnall et al. 2018). As presented in Sect. 2.3, the models evaluated in the benchmark are: DTWD ,
DTWI , FCN, gRSF, LPS, MLSTM-FCN, mv-ARF, ResNet, SMTS, TapNet, UFS, WEASEL+MUSE and
XEM

faithfulness and user category) to assess and benchmark machine learning methods.
The results of the framework are represented in a parallel coordinates plot in Fig. 16.

Firstly, DTWI classifies MTS samples based on the label of their nearest sample.
The similarity is calculated as the cumulative distances of all dimensions indepen-
dently measured under DTW. For an individual MTS, the explanations supporting the
prediction are the ranking of features and timestamps in decreasing order of their DTW
distance with the nearest MTS. Based on the results presented in Sect. 5.2.1, DTWI

underperforms the current state-of-the-art MTS classifiers (Performance: Below) as it
has a statistically significant lower performance than MLSTM-FCN. In addition, the
model DTWI conveys limited information (Information:Features+Time) that needs to
be analyzed by a domain expert to ensure that they are meaningful for the application
(User: Domain Expert). However, DTWI model is comprehensible (Comprehensi-
bility: White-Box) and provides faithful explanations (Faithfulness: Perfect) for each
MTS (Granularity: Local).

Then, MLTSM-FCN and WEASEL+MUSE can be analyzed together. First, based
on the results presented in Sect. 5.2.1, MLSTM-FCN exhibits the third best per-
formance followed by WEASEL+MUSE without showing a statistically significant
performance difference with XEM (Performance: Similar). Second, they are both
“black-box” classifiers without providing explainability-by-design or, as far we
have seen, having a post hoc model-specific explainability method. Therefore, their
explainability characteristics depend on the choice of the post hoc model-agnostic
explainability method. Using the popular state-of-the-art post hoc model-agnostic
explainability method SHAP, it allows WEASEL+MUSE and MLSTM-FCN to out-
perform DTWI while reaching explanations with a comparable level of information

123



952 K. Fauvel et al.

(Information: Features+Time, DTWI : Features+Time), in the meantime remaining
accessible to a domain expert (User: Domain Expert, DTWI : Domain Expert). How-
ever, as opposed to DTWI , SHAP as a surrogate model does not provide perfectly
faithful explanations (Faithfulness: Imperfect, DTWI : Perfect).

Finally, XEM exhibits the best performance (Performance: Best) while providing
faithful (Faithfulness: Perfect, MLSTM-FCN/WEASEL+MUSE: Imperfect, DTWI :
Perfect) andmore informative explanations as it provides the timewindowused to clas-
sify the wholeMTS (Information:Uni Sequences, MLSTM-FCN/WEASEL+MUSE:
Features+Time, DTWI : Features+Time). However, the explanations supporting XEM
predictions are only available per MTS (Granularity: Local) and the level of informa-
tion could be further enhanced. It would be interesting to analyze the time windows
characteristic of each class in the training set in order to determine if they contain
some common multidimensional sequences (Information: Multi Sequences, Granu-
larity: Both Global & Local). Such patterns could also broaden the audience as they
would synthesize the important information in the discriminative time windows.

5.3 Discussion

We have presented our new eXplainable Ensemble method for MTS classification
(XEM), which relies on the new hybrid ensemble method LCE. We have shown that
LCE outperforms the state-of-the-art classifiers on the UCI datasets and that XEM
outperforms the state-of-the-art MTS classifiers on the UEA datasets. In addition,
XEM provides faithful explainability-by-design and manifests robust performance
when faced with challenges arising from continuous data collection (different MTS
length, missing data and noise). However, our new method XEM has some limitations
due to the use of a fixed-length time window to classify an MTS.

Firstly, some limitations arise from the consideration of only one window. Depend-
ing on the dataset, XEM can face (i) a drop in the precision of the explanation or
(ii) fail to identify the discriminant window. Specifically, (i) XEM can face a drop
in the precision of the explanation in case of discriminative features located on non-
consecutive timewindows. The precision can be defined as the fraction of explanations
that is relevant to the prediction. XEM uses one window to identify the discrimina-
tive part of an MTS. Nevertheless, some MTS can be solely distinguished based on
the combination of several non-consecutive time windows. In this case, in order to
include all discriminative information to correctly perform the classification, XEM
selects a time window covering all necessary non-consecutive time windows, there-
fore altering the precision of the explanation provided to the end-user by including
some unnecessary information. We illustrate this scenario based on the experiment
performed on the synthetic dataset in Sect. 5.2.2. Here, the difference between the 10
MTS belonging to the negative class and the one belonging to the positive class stems
from the presence of one (t1=9) or two square signals (t1=9 and t2=72, see Fig. 17).
Each square signal is of size 12, therefore a window size below 63% (72-9) does not
allow the discrimination between the twoMTS classes; a window covering both square
signals is necessary to perform this task. We observe that XEM correctly identifies the
discriminative time window by obtaining a 100% accuracy using an 80% time win-
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Fig. 17 Two MTS samples of the synthetic dataset with the positive class having two square signals

dow (accuracy of 50% with a time window in {20%, 40%, 60%}). Nonetheless, the
explanation communicated to the end-user (80% time window [5,85]) to support the
prediction contains 56 timestamps which are not relevant—sine wave, inducing a drop
in the precision of the explanation (precision: 30% = 2*12/80 versus 100% in the case
of consecutive discriminative parts). Therefore, to circumvent this limitation, it would
be interesting to develop a method that would synthetize under the form of patterns
the time windows characteristic of each class (as suggested in the previous section
as well), and so provide to the end-user solely the discriminative parts of an MTS as
explanation. In addition, (ii) XEM can fail to identify the discriminative time window
in case of a window with high proximity to another class. XEM predicts the class of
an MTS based on the window on which it is the most confident, without considering
the predictions on the other windows. Some datasets can contain MTS with different
windows close to the characteristics of different classes. Therefore, XEM can have
high class probabilities on multiple windows; and when the window on which XEM
is the most confident is characteristic of another class than the expected one, XEM
incorrectly classifies the MTS. To illustrate it, we present in Fig. 14 two MTS of the
UEA Libras test set. XEM performed poorly on this dataset and obtained the rank
10/11 (see Sect. 5.2.1). The Libras dataset contains 15 classes of 24 instances each,
where each class references a hand movement type in the Brazilian sign language
Libras. The hand movement is represented as a bi-dimensional curve performed by
the hand in a period of time. We can observe in Fig. 18 that the two MTS belonging to
the same class have comparable evolution across time but XEM classifies them into
two different classes. The first MTS is correctly classified based on the time window
[23,40] with a class probability equals to 93.5%. We can assume that the evolution
on this window is characteristic of the class 6 (circle movement). The second MTS
also contains a comparable window on the range [23,40] but is incorrectly classified
based on another window (range [0,17]) with a class probability of 94.5%. Therefore,
XEM is the most confident on a window characteristic of another class (class 4: anti-
clockwise arc). XEM did not consider the predictions on the other windows to take
its decision. More particularly, XEM did not consider the expected window [23,40],
where it also gets a high-class probability of 86.3%. So, it would be interesting to
improve our hybrid ensemble method for MTS classification by considering in the
final decision the predictions on the different windows of an MTS.
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Fig. 18 Two MTS samples of Libras test set belonging to the same class with XEM predictions and the
time windows used for classification highlighted in bold, which serves as explanation for the end-user
(win_si ze: 40%)

Secondly, the choice of a timewindowwith a fixed length can be another limitation.
We assume in XEM that a unique window size is suitable to discriminate the different
classes. Nonetheless, we can imagine that different classes can be characterized by
signals of different lengths. This assumption leads XEM to select the window size
associated with the class having the largest discriminative features, and affects the
precision of explanation in case of other classes with smaller discriminative parts. For
example, Fig. 19 shows an augmented version of the previous synthetic dataset (see
Fig. 17) with a third class having a triangle wave in [72,84]. On this dataset and as
seen in the previous example, XEM selects a window size of 80% to correctly classify
the different MTS, the window size covering both square signals of class 3. However,
a window size of 20% is sufficient to discriminate MTS from class 1 (triangle wave).
Thus, given awindow size of 80% for this dataset, the explanation given to the end-user
for an MTS sample belonging to the class 1 would contain information which is not
discriminative (sine waves). Plus, adding some information/noise by taking a larger
window than necessary for some of the classes can generate misclassifications for
certain datasets. Therefore, it would also be valuable to improve XEM by integrating
the possibility of multiple window sizes.

6 Conclusion

We have presented our new eXplainable-by-design Ensemble method for MTS classi-
fication (XEM), which relies on the new hybrid ensemble method LCE. LCE exhibits
a better average rank than the state-of-the-art classifiers on the public UCI datasets
and XEM shows a better average rank than the state-of-the-art MTS classifiers on the
public UEA datasets. As tree-based ensemble methods, LCE and XEM can scale well
on larger datasets than the ones tested. In addition, XEM addresses the challenges
MTS classification usually faces. First, it provides faithful explainability-by-design
through the identification of the time window used to classify the whole MTS. Then,
XEM is robust when faced with challenges arising from continuous data collection
(different MTS length, missing data and noise).

With regard to future work, we would like to adapt XEM approach to the regression
task and evaluate it against the state-of-the-art regression methods. To further improve
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Fig. 19 The three MTS types of the synthetic dataset

the explainability of XEM, we also plan to work on a method that would analyze the
timewindows characteristic of each class in the training set to determine if they contain
some commonmultidimensional sequential patterns. Such patterns would enhance the
level of information, the granularity of explanations (both global & local) and could
also broaden the audience as they would synthesize the important information in the
discriminative time windows.
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