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Abstract
Efficient and interpretable classification of time series is an essential data mining
task with many real-world applications. Recently several dictionary- and shapelet-
based time series classification methods have been proposed that employ contiguous
subsequences of fixed length. We extend pattern mining to efficiently enumerate
long variable-length sequential patterns with gaps. Additionally, we discover patterns
at multiple resolutions thereby combining cohesive sequential patterns that vary in
length, duration and resolution. For time series classification we construct an embed-
ding based on sequential pattern occurrences and learn a linear model. The discovered
patterns form the basis for interpretable insight into each class of time series. The
pattern-based embedding for time series classification (PETSC) supports both univari-
ate and multivariate time series datasets of varying length subject to noise or missing
data. We experimentally validate that MR-PETSC performs significantly better than
baseline interpretable methods such as DTW, BOP and SAX-VSM on univariate and
multivariate time series. On univariate time series, our method performs compara-
bly to many recent methods, including BOSS, cBOSS, S-BOSS, ProximityForest
and ResNET, and is only narrowly outperformed by state-of-the-art methods such as
HIVE-COTE, ROCKET, TS-CHIEF and InceptionTime. Moreover, on multivariate
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datasets PETSC performs comparably to the current state-of-the-art such as HIVE-
COTE, ROCKET, CIF and ResNET, none of which are interpretable. PETSC scales
to large datasets and the total time for training and making predictions on all 85 ‘bake
off’ datasets in the UCR archive is under 3h making it one of the fastest methods
available. PETSC is particularly useful as it learns a linear model where each feature
represents a sequential pattern in the time domain, which supports human oversight
to ensure predictions are trustworthy and fair which is essential in financial, medical
or bioinformatics applications.

Keywords Time series classification · Sequential pattern mining · SAX ·
Interpretable classification

1 Introduction

Time series classification is an important real-world problem as currently technology
enables the collection of huge volumes of temporal data from users and devices. Exist-
ing time series classification methods often make stringent assumptions on the format
of the time series and require that time series start at the same time, are univariate, are
of equal length or only contain continuous values. However, in the real word, there is
more variation in time series. For instance, IoT devices collect sensor values and oper-
ating system events at the same time and exhibit missing data and irregular sampling.
Making accurate predictions on this large variety of datasets remains a hard problem
despite recent advances. This variety of time series is illustrated in Fig. 1.

In the active research area of dictionary- and shapelet-based time series classifi-
cation, patterns are fixed-length continuous and contiguous subsequences referred to
as shapelets, motifs or words. Shapelet-based methods use subsequences of the raw
numeric time series with elastic distance measures (Ye and Keogh 2011; Hills et al.
2014; Lucas et al. 2019). Dictionary-based methods convert continuous time series
data to a symbolic sequence using Symbolic Aggregate Approximation (SAX) after
which fixed-length contiguous subsequences are extracted for classification (Lin et al.
2003, 2012; Senin andMalinchik 2013).Alternatively, time series are first transformed
using Symbolic Fourier Approximation (SFA) instead of SAX resulting in the best
performing dictionary-based time series classification method, Bag of SFA Symbols
(BOSS) (Schäfer 2015). Because of its good performance on the ‘bake off’ datasets
of the UCR/UEA Archive (Bagnall et al. 2017), many extensions to BOSS have been
proposed recently, such as WEASEL, cBOSS, S-BOSS and TDE (Schäfer and Leser
2017; Middlehurst et al. 2019; Large et al. 2019; Middlehurst et al. 2020b). How-
ever, since these methods combine the predictions of hundreds of individual BOSS
classifiers and rely on the hard to interpret Symbolic Fourier Approximation represen-
tation, the resulting predictions are not interpretable. Finally, nearest neighbours with
Dynamic Time Warping (DTW) have proven to be a remarkably strong baseline on
both univariate and multivariate datasets (Shokoohi-Yekta et al. 2017; Bagnall et al.
2017).

Many more methods have been proposed. Heterogeneous ensemble methods, such
as COTE (Bagnall et al. 2015), HIVE-COTE (Lines et al. 2018) and TS-CHIEF (Shi-
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Fig. 1 Illustration of different use cases where PETSC is applicable. PETSC can discriminate between
different classes for univariate time series, multivariate time series and mixed-type time series consisting
of both event logs and continuous time series

faz et al. 2020) combine strong shapelet-, dictionary- and distance-based baseline
methods. High accuracy is also achieved by recent methods based on deep learning
architectures, such asResNet (Wang et al. 2017) and InceptionTime (Fawaz et al. 2019,
2020). All of the above mentioned methods mostly focus on increasing the accuracy
on the UCR/UEA time series benchmark, but they require significant resources to train
and make predictions and often do not scale to very large datasets and take days or
weeks to complete on all 85 ‘bake off’ datasets of the UCR archive (Dau et al. 2018).
More recently, ROCKET (Dempster et al. 2020) achieves both high accuracy and
efficiency, by completing on all 85 ‘bake off’ datasets under 2 h. Another interesting
new development is MR-SEQL (Le Nguyen et al. 2019) which is also accurate and,
excluding the SFA representation, offers an interpretable model.

For the related task of sequence (or event log) classification, many algorithms
have been proposed based on frequent pattern mining (Fan et al. 2008; Cheng et al.
2008; Zhou et al. 2016). Given the wealth of algorithms for efficiently enumerating
sequential patterns (Aggarwal and Han 2014; Zaki and Meira 2014) and event log
classification, one might wonder why it is scarcely mentioned within continuous time
series classification. We argue this is due to the following causes. First, time series are
highly autocorrelated, causing many repetitive symbols afters discretisation. That is,
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autocorrelated time series often contain long repetitive subsequences, e.g. aaaaaaaaaa
or bbbbbbbbb, that occur frequently and as a consequence, all shorter subsequences of
such sequences are also frequent causing a large output of less discriminative sequential
patterns. Second, in contrast to irregular event logs, the cohesion (in terms of time) of
matching pattern symbols is more important for regularly sampled continuous time
series. For instance, sequential pattern ab matches with window axxxxxxxxxb and we
show that, without temporal constraints on matching, this foils accurate classification.
Thirdly, since frequency is anti-monotonic, shorter patterns are more frequent than
longer ones, causing a long list of patterns of length 1, 2 or 3, while in dictionary-
based methods discriminative subsequences are much longer, i.e., a length of 10 is
more usual.

The traditional design choice of dictionary- and shapelet-based time series classi-
fiers is to limit patterns to a fixed length, duration and resolution. This makes sense
given that the space of sequential patterns grows exponentially with the length of the
pattern and the size of the alphabet. Our method, however, adopt a different approach.
First, we consider patterns of varying length, which is important, for instance, if pattern
aaa is discriminative for class A and pattern bbbccc for class B, limiting the candi-
date patterns to fixed length inhibits optimally separating instances of both classes.
Second, unlike related work into varying length patterns for time series classification
(Le Nguyen et al. 2017; Raza and Kramer 2020), we do not focus only on contiguous
subsequences, but on sequential patterns where the duration of the sequential pattern
occurrences varies as we allow for gaps between consecutive symbols when matching
the pattern to a discretised subsequence, e.g., aaabbbmatches with sequence aaaxbbb.
Third, we consider different resolutions when creating the representations, which is
determined by the choice of the sliding window parameter. If this is set to a relatively
high value, this smooths each segment and captures longer patterns, e.g., trends or
seasonal patterns. If the window is set to a relatively low value, we smooth less and
discover shorter and more diverse local shapes. We argue that choosing is losing when
committing to a fixed length, duration or resolution of patterns.

We propose PETSC, a new dictionary-based method that discovers candidate
sequential patterns of varying length and duration. The major steps of PETSC are
illustrated in Fig. 2. Our method first transforms the time series dataset using a sliding
window and SAX. For discovery of sequential patterns we extend principled tech-
niques from frequent, discriminative and top-k pattern mining literature to reduce
the number of candidates dramatically (Fan et al. 2008; Fradkin and Mörchen 2015).
Since the frequency of the prefix is higher than or equal to the frequency of any
sequential pattern starting with this prefix, i.e., frequency is anti-monotonic, we use
this to efficiently prune candidates. That is, we enumerate candidate sequential pat-
terns efficiently based on prefix-projected pattern growth (Pei et al. 2004) with respect
to a novel constraint on relative duration. We propose two mining algorithms that
discover the top-k most frequent and top-k most discriminative sequential patterns
directly.

After discovering k sequential patterns we create an embedding matrix where each
value represents the frequency of a sequential pattern for a time series. Formultivariate
time series we repeat this process and concatenate embedding vectors from each
dimension independently. Additionally, we create an ensemble method that discovers
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Fig. 2 Overview of the different steps in PETSC. First we transform each continuous time series to a
symbolic sequence using SAX. Next we discover a set of varying-length frequent sequential patterns. Next
we create an embedding based on matching pattern occurrences and finally train a linear model that assigns
a different weight to each discovered pattern. An extension of PETSC mines discriminative patterns and
another extension is based on near-matching patterns

the top-k sequential patterns in a limited number of SAX representations at multiple
resolutions. Finally, for classification we train a linear model using an elastic net
trained on the pattern-based embedding.

In summary, we make the following key contributions:

– We classify time series using a white-box linear model based on an embedding
of varying length frequent sequential patterns. We show that this model is easy to
interpret thereby supporting applications such as medical diagnosis or financial
applications, where explainable predictions and a transparent model are essential
for asserting fairness or building trust.

– We scale to much larger datasets and are on par with ROCKET (Dempster et al.
2020) concerning runtime performance by taking only 2.7 h to process all 85 ‘bake
off’ datasets (Bagnall et al. 2017).
Moreover, our model is small and supports real-time applications, such as edge
computation to handle the deluge of sensing data from IoT devices.

– We outperform dictionary-based methods such as BOP and SAX-VSM even with
default hyperparameters and are competitive with BOSS. We also outperform
distance-based approaches on both univariate andmultivariate datasets (Shokoohi-
Yekta et al. 2017; Bagnall et al. 2018). While out method performs slightly worse
in terms of accuracy than the state-of-the-art method ROCKET on average, we
still outperform ROCKET on 32 out of 109 univariate datasets and 10 out of 26
multivariate datasets.

– We explore and extend pattern mining research techniques to discover long, cohe-
sive and discriminative sequential patterns in time series directly. Additionally,
we present a novel temporal constraint on relative duration and an alternative to
exact pattern matching to deal with discretisation errors.

– We do not require stringent assumptions on the format of the time series and
naturally handle univariate, multivariate and mixed-type multivariate time series
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subject to missing data or irregular sampling. This supports applications for clas-
sification of IoT devices that log both sensor values and discrete operating events.

The remainder of this paper is organised as follows. We present an overview of the
related work in Sect. 2. In Sect. 3, we introduce the necessary preliminaries. In Sect. 4,
we provide a detailed description of our method for sequential patternmining, creating
the pattern-based embedding and classification using a linear model. In Sect. 5 we
present several optimisations that result in three additional variants of our algorithm.
In Sect. 6, we present an experimental evaluation of our method and compare with
state-of-the-art methods before presenting conclusions in Sect. 7.

2 Related work

In this sectionwepresent the relevant relatedwork, starting offwith various approaches
to time series classification, before discussing the fields of frequent pattern mining,
event log classification and explainability, which our work builds on.

2.1 Shapelet-based time series classification

Shapelet-based time series classification uses continuous subsequences to separate
time series with different labels (Bagnall et al. 2017). Often Euclidean distance or an
elastic distance measure, such as dynamic time warping, is used in combination with
the nearest neighbour classifier (Ye and Keogh 2011) or other (binary and multiclass)
algorithms such as decision trees (Hills et al. 2014). A disadvantage of shapelets is
that the nearest neighbour search makes it relatively slow on larger datasets which
has resulted in substantial work on optimisation (Rakthanmanon et al. 2012; Petitjean
et al. 2014; Yeh et al. 2016).

2.2 Dictionary-based time series classification

For dictionary-based time series classification, Lin et al. (2012) proposed bag-of-
patterns (BOP) where each time series is converted into segments using a sliding-
window and then converted to discrete subsequences, or words, using SAX. Senin and
Malinchik (2013) extended BOP in SAX-VSM thereby computing TF-IDF weights
for each word and label. In both approaches, time series are assigned a label based on
the nearest neighbour after transformation to a dictionary of words.

In Fig. 3 we show an illustrative example on a dataset provided by Lin et al. (2012)
where we ran PETSC and highlight 2 sequential patterns with high support in each
class. To make the visualisation clearer we removed overlapping pattern occurrences.
In Fig. 4 we show another illustrative example and compare BOP with PETSC. Each
time series of length 1000 is segmented with a sliding-window of length 50 and
discretised using SAX into words of length 12 consisting of 4 symbols. Using BOPwe
create a dictionary that contains all unique subsequences of length 12. Using PETSC
wemine the top-1000most frequent sequential patternswith a length between 6 and 12
and a relative duration of 1.2, meaning that at most 2 gaps are allowed.We observe that
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Fig. 3 Illustrative example where we show 8 time series of different classes and highlight occurrences for
the top-2 sequential patterns with the highest support in each class. First, we segment the time series using
a sliding-window of length Δt = 120 and discretise each segment using SAX with 4 symbols and a word
length of 15. Next, we mine the top-200 frequent sequential patterns with a length between 5 and 15 and
allow for 1 gap

Fig. 4 Illustrative example where we show 16 times series of 8 different classes. In the second column, we
show the corresponding PETSC embedding that represents the frequency of thousands of varying length
sequential patterns. In the third column, we show the corresponding BOP embedding that represents the
frequency of thousands of fixed-length sequences. In addition we connect each time series to its nearest
neighbour in each column—if the line is green, the nearest neighbour is of the same class, and if the line is
red, the nearest neighbour is of another class (Color figure online)

if we compute the nearest neighbour using Euclidean distance on the raw time series
this is not an instance with the same label. The nearest neighbour in the embedding
space of both BOP and PETSC is much more reliable for this dataset, however, BOP
identifies S4 as the nearest neighbour of S13, even though the two time series belong
to different classes.
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Schäfer (2015, 2016) proposes BOSS which first transforms time series using
Symbolic Fourier Approximation (SFA) and then creates a dictionary of patterns, in
this case (unordered) sets of SFA symbols. BOSS offers high accuracy and has been
extended to be more efficient. BOSS achieves an accuracy on the UCR Benchmark
(Dau et al. 2018) that is within a critical distance of deep-learning based approaches,
such as ResNet (Wang et al. 2017) and ensemble methods such as Proximity Forests
(Lucas et al. 2019).

2.3 Time series classification with variable length patterns

Most related to our method is SEQL (Le Nguyen et al. 2017) which mines varying
length sequences, after transformation usingSAX.SEQL tackles the large search space
by employing greedy search thereby mining the most discriminative subsequences
directly. The authors further extend their method and propose an ensemble MR-SEQL
that combines multiple resolutions of SAX and SFA representations which results
in an accuracy competitive with recent deep learning and heterogeneous ensemble
techniques (Le Nguyen et al. 2019). Unlike MR-SEQL, PETSC does not depend on
SFA and uses non-contiguous patterns instead of subsequences by allowing pattern
occurrences with varying duration. Another difference is that MR-SEQL combines√|S| representations and linear models, while we propose a single linear model based
on log(|S|) representations. Another related method based on varying length SAX
patterns is MiSTiCl (Raza and Kramer 2020). MiSTiCl tackles the large subspace
of varying length patterns using frequent (contiguous) string mining and creates an
embedding based on different SAX representations similar to SEQL. Key differences
with PETSC are that we mine non-contiguous sequential patterns and use a linear
model for classification whereMiSTiCl uses a random forest for classification making
it uninterpretable. Finally, using pattern mining we naturally handle a larger variety of
time series data sources, such as univariate time series with missing values, irregular
sampling and multivariate time series (possibly of mixed type). We experimentally
compare with MR-SEQL and MiSTiCl in Sect. 6.

2.4 Frequent patternmining

Within the pattern mining community, there has always been a focus on interpretable
association rules, based on itemsets and sequential patterns (Agrawal et al. 1994),
also referred to as parallel and serial episodes for sequential data (Mannila et al.
1997). Early algorithms focused on how to generate many frequent patterns of vary-
ing length efficiently (Pei et al. 2004; Chen et al. 2007). Others have investigated how
to efficiently incorporate various constraints (Pei et al. 2007). Others have adapted
methods to produce less redundant patterns, leading to various condensed representa-
tions, i.e., closed, maximal or non-derivable (conjunctive) patterns. Finally, there have
been attempts to directly report patterns ranked on non-frequency based interesting-
ness measures such as leverage (Petitjean et al. 2016) and cohesion (Cule et al. 2019),
or based onminimal description length to produce a set of patterns that compresses the
sequence best (Lam et al. 2014). A known problem with frequent patterns is that they
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are often not interesting, which is even worse within the context of time series. We
circumvent these issues, by first computing sliding windows and using SAX, which
includes a local z-normalisation of each window, which is important in limiting the
diversity of patterns. Additionally, we demonstrate that setting constraints on minimal
length and relative duration is very important. We propose a new sequential pattern
mining algorithm in Sect. 4 that is related to prefix-projected pattern growth such as
PrefixSpan (Pei et al. 2004), mining with temporal constraints such as PG (Pei et al.
2007), algorithms that mine the top-k most frequent sequential patterns directly such
as TSK (Fournier-Viger et al. 2013) and algorithms that mine the top-k most cohesive
sequential patterns directly such as QCSP (Feremans et al. 2018).

2.5 Event log classification

Frequent and discriminative patternmining has been proposed for discrete sequence or
event log classification (Fan et al. 2008; Cheng et al. 2008; Zhou et al. 2016). In Sect. 5,
we propose a new sequential pattern algorithm that discovers the most discriminative
patterns directly where we rank patterns on contrast, defined as the difference in
relative support in time series with and without a certain label. We also investigate
the use of sequential covering to remove redundant patterns. In sequential covering
we mine the best discriminative pattern and then remove all windows covered by this
pattern.We repeat this process iteratively until all time serieswindows are covered by at
least one discriminative pattern. In other works, authors have also proposed to create
a representation based on occurrences of sequential patterns before classification,
such as in BIDE-DC (Fradkin and Mörchen 2015) and SQN2VEC (Nguyen et al.
2018). Similar to our proposed method, they consider redundancy between patterns,
gap constraints and a one-versus-all strategy for dealing with multiple classes. A
key difference, however, is that only discrete sequential datasets, typically with a
small alphabet, are considered, thereby ignoring challenges specific to time series
classification.

2.6 Explainability

In practice, end-users of algorithms prefer the output to be explainable. Deep learning
algorithms are often seen as black box methods, and practitioners in many fields pre-
fer to use more interpretable methods, even if they produce lower accuracy. Recently,
methods have been developed within the deep learning community for visualising
attribution, i.e., quantifying the contribution of each time series interval (Hsieh et al.
2021). Other general algorithms have been constructed to explain individual deci-
sions post hoc for black-box models (Molnar 2020). Most notably, algorithms such
as LIME (Ribeiro et al. 2016) and SHAP (Lundberg and Lee 2017) attempt to pro-
vide explanations for each individual classification on a point-by-point basis. This
enables instance-based decision support, i.e., highlight which parts of a test instance
contribute the most to the assigned class label. However, this is still a weaker form of
interpretability, as it only allows to explain a decision for an individual instance.
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An intrinsically interpretable model (Molnar 2020) consists of a linear model or
decision tree and a set of interpretable features (or patterns). With this type of white-
box model, we look at the model internals, such as the weights of the linear model or
decision tree branches, to trust decisions. That is, using an interpretable model it is
possible for human experts to inspect both the model and the features in order to trust
decisions for any instance. Note that it is always possible to train a global surrogate
model post hoc thereby mimicking the behaviour of a black-box model at the cost of
slightly worse accuracy, however training an interpretable model directly is far more
straightforward and certainly preferable if high accuracy is achieved.

Another important aspect of a good explanation is selectivity or complexity of
the model (Molnar 2020). That is, having thousands of features in a linear model
hinders interpretation, and having fewer features or sparse linear models is better for
providing decision support towards human end-users interpreting themodel. In general
selecting the top-k features with the highest information gain (Peng et al. 2005) can
be employed to reduce the number of features. We remark that pattern redundancy has
been extensively studied by the pattern mining community (Han et al. 2011; Aggarwal
and Han 2014) and we can filter closed or maximal sequential patterns or patterns
that are non-discriminatory, i.e., having low contrast using sequential covering (see
Sect. 5.2).

Within the context of time series classification, there also exist techniques that
are reducing overlapping patterns, such as numerosity reduction (Lin et al. 2012).
Another technique is shapelet clustering, where the authors propose to reduce the
number of shapelets using a clustering of (equal-length) shapelets to increase model
interpretation at the cost of a slight drop in accuracy (Hills et al. 2014). However,
we remark that most existing methods for time series classification are difficult to
interpret and the employed models are unsuitable for human interpretation. That is,
by adopting an SFA representation, random forests, deep learning or an ensemble
thereof, existing methods are extremely hard to interpret. A notable exception is MR-
SEQL (Le Nguyen et al. 2019) since its model consists of a linear model of features.
However, MR-SEQL depends on SFA and since SFA symbols represent a complex-
valued function of frequency this hinders interpretability.

In this work we discuss both instance-based decision support (by visualising attri-
bution) and learn an intrinsically interpretable model directly. Additionaly we present
a use-case where we reduce the number of patterns to further improve explanations in
Sect. 6.3.

3 Preliminaries

In this section, we introduce the necessary concepts and notations, before formally
defining our problem setting.
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3.1 Time series data

A time series is defined as a time-ordered sequence of measurements S = (〈x1, t1〉,
. . . , 〈xn, tn〉), where each measurement has a timestamp tk and ∀ i, j ∈ {1..n} : i <

j ⇒ ti ≤ t j . For continuous time series xk ∈ R. For discrete time series xk ∈ Ω

where Ω denotes the finite domain of event types. We remark that for sequential
pattern mining we do not require a single event at each timestamp (i.e. ti = t j ) nor
that the sample rate is regular (i.e. ∀i : ti+1 − ti is not constant). We use |S| to denote
the length of the time series. If time series are of different length we define |S| to be
the minimal length of any time series.

A univariate time series dataset consists of multiple labelled time series, i.e. S =
{Si , yi }mi=1. Each time series Si may be of different length, however, in the univariate
case we assume all measurements are of the same type. A class, or label, yi ∈ Y
where Y denotes the finite domain of classes, which is either binary or multi-class if
it consists of more than two classes.

In a multivariate time series dataset, each labelled instance is composed of several
time series, or dimensions: S1,...,d = {S1i , . . . Sdi , yi }mi=1. That is, there are m labelled
instances and each instance consists of d time series, S1i , . . . , S

d
i . Like in the univariate

case, we assume that time series in each dimension d are of the same type, however,
in different dimensions the types may vary. The sampling and length of each time
series can also vary. In the remainder of this paper, we use the notation Sd (or S)
to refer to all time series in a single dimension of a multivariate time series dataset.
We remark that PETSC reduces a multivariate time series dataset to d univariate time
series datasets for extracting a sequential pattern-based embedding.

3.2 Segmentation

A time series window Sk[ta, tb] is a contiguous subsequence of time series Sk and
contains all measurements {〈xi , ti 〉 ∈ Sk | ta ≤ ti ≤ tb} in the univariate case. In this
work, we use fixed-length sliding windows. This means choosing a fixed time interval
Δt (e.g. 5 s, 10 min or 1 h) and creating windows starting at t1, . . . tn . For a time series
of length |Si | there are |Si |−Δt +1 windows assuming an increment of 1. We denote
the resulting set of windows as Ss . For multivariate datasets, we apply a sliding-
window over each dimension independently. It is known that the accuracy of time
series classification is heavily dependent on the value of Δt , since segments must be
long enough to contain the distinctive features, but also short enough to be informative1

(Senin andMalinchik 2013; Le Nguyen et al. 2019). After transforming the time series
data using a sliding-window, the dataset consists ofmany small segments andwe ignore
the order between segments. This enables us tomine local, phase-independent, patterns
and is in contrast to interval-based time series classification methods. We remark that
sequential pattern mining specific to intervals, i.e., by discovering and counting the

1 We remark that alternatives to sliding-window based frequency for sequential patterns have been investi-
gated that do not require choosingΔt (Cule et al. 2019). However, this is not compatible with window-based
normalisation performed by SAX.
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Fig. 5 Illustration of the SAX transform where the normalised continuous time series segment with length
|S| = 128 is transformed using PAA with a word size of w = 8 and discretised into α = 3 equal-density
regions into the discrete sequence baabccbc (Lin et al. 2012)

frequency of sequential patterns in each interval separately, is not explored to date,
but seems a logical direction for future work.

3.3 Symbolic aggregate approximation

After a sliding-window transformation, we reduce and discretise each continuous
segment, or window, Ss[ta, tb] using SAX (Lin et al. 2003). SAX has two parameters:
the word size w and the alphabet size α. First, we z-normalise each window resulting
in values distributed with a mean of 0.0 and a standard deviation of 1.0. If the standard
deviation is below a certain threshold, typically set to 0.01, we do not z-normalise
to prevent that noise is amplified. Next, the length of each window is reduced by
computing the Piecewise Aggregate Approximation (PAA), e.g., with a word size, or
PAAwindow, of 8 we divide the normalised segment into 8 equally sized subsegments
and store the mean value for each subsegment (Keogh et al. 2001). Finally, we convert
each mean value to a letter (or digit) using a lookup table into α equal-density regions
assuming the Gaussian distribution. Figure 5 from Lin et al. (2012) illustrates the
transformation of a single segment. We remark that parameters w and α have a large
influence on the final classification accuracy. Lin et al. (2012) propose to set α to 3
or 4 for most datasets and w from 6 to 8. Since we mine variable length patterns, it
makes sense to increase w, e.g., on some datasets setting w to 20 (and α as high as
12) resulted in best accuracy as we will discuss in Sect. 6.

3.4 Sequential patternmining

Asequential pattern X is a sequence of one ormore items, denoted as X = (s1, . . . , sl),
where sk ∈ Ω and Ω is the finite domain of symbols. For continuous time series
|Ω| = α after transformation using SAX. A sequential pattern may contain repeating
items and we allow gaps (or unmatched symbols) between items. A sequential pattern
X = (s1, . . . , sl) covers a segment Ssk [ta, tb] if:
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X ≺ Ssk [ta, tb] ⇔ ∃t1, . . . , tl ∈ [ta, tb] : t1 < · · · < tl :
∀ j ∈ {1, . . . , l} : 〈i j , t j 〉 ∈ S ∧ s j = i j .

The cover and support of a sequential pattern X in a segmented time series dataset Ss

is defined as:

cover(X ,Ss) = {Ssk [ta, tb] | Ssk [ta, tb] ∈ Ss ∧ X ≺ Ssk [ta, tb]},
support(X ,Ss) = |cover(X ,Ss)|.

A sequential pattern is frequent if its support is higher than a user-defined thresh-
old on minimal support, or min_sup. Note that frequency based on a sliding-window
is somewhat harder to interpret in the original time series since a sequential pat-
tern often covers multiple overlapping windows.2 For example, given discretised
time series Sk = xxxabcxxx we create the following windows using Δt = 5:
xxxab, xxabc, xabcx , abcxx and bcxxx . Subsequently, the support of sequen-
tial pattern X = (a, b, c) in this instance is 3. A sequential pattern X is not
closed if there exists a sequential pattern Z , such that X is a subsequence of Z and
support(X ,S) = support(Z ,S), e.g., if (a, b) and (a, b, c) have the same support
closed pattern mining would only keep (a, b, c). After segmentation and discretisation
we can use any sequential pattern mining algorithm to efficiently mine all frequent
sequential patterns in time series (Zaki and Meira 2014; Aggarwal and Han 2014).
However, as discussed previously, existing pattern mining algorithms have issues con-
cerning continuous time series.

3.5 Problem setting

Given a training dataset of time series Strain (or S1...d
train ) that is either univariate, mul-

tivariate or mixed-type the task is to predict the correct class ŷq ∈ Y for each test
time series instance in Stest = {Sq}tq=1 or S1...d

test = {S1q , . . . , Sdq }tq=1 for multivari-
ate time series. We evaluate PETSC on accuracy, execution time and interpretability
and compare with state-of-the-art time series classification methods on univariate and
multivariate benchmark from the UCR/UEA time series classification archive (Dau
et al. 2018).

4 Pattern-based embedding for time series classification

In this section, we describe a method that constructs a pattern-based embedding for
time series classification (PETSC). PETSC has four major steps. First, the time series
is segmented and transformed using SAX. Second, a dictionary containing the top-k
most frequent sequential patterns with respect to temporal constraints is mined from
S (or in each dimension Sd for multivariate time series). Third, the sequential pattern

2 This observation has led to adaptations for numerosity reduction in time series classification (Lin et al.
2012) or non-overlapping minimal windows in frequent pattern (or episode) mining (Zhu et al. 2010; Cule
et al. 2019).
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dictionary is used to compute the frequency of each pattern thereby creating a pattern-
based embedding. Fourth, we train a linear model with L1 and L2 regularisation to
separate each class based on the pattern-based embedding. In Sect. 5, we present three
possible variants of our base PETSC classifier which we experimentally evaluate in
Sect. 6.

The main steps of our method are shown in Algorithm 1. For brevity, we show only
the version that takes as input a univariate time series. For multivariate (or mixed-
type) time series, we repeat lines 1-9 for each time series and then merge the resulting
embeddings, before constructing a classifier in line 10.

4.1 Preprocessing

Preprocessing is the first step in petsc_train shown in Algorithm 1 (line 1-4). First,
we segment each time series in S using a fixed-length sliding window of length Δt .
After this transformation, we create equal length windows (in time). Note that these
windows do not necessarily contain the same number of items if sampling is irregular.
Next, each continuous window Ss[ta, tb] is z-normalised because time series have
widely different amplitudes. Frequent sequential patterns are often limited in length,
i.e., traditionally a length of 5 is quite high, therefore we reduce the length of each
window using the Piecewise Aggregate Approximation (PAA), such that a sequential
pattern covers a large part of a window. For example, a continuous time series of length
1000 is transformed to 1000 − 120 + 1 sliding windows of length 120 (Δt = 2min).

Algorithm 1: petsc_train(S, Δt , w, α, k, min_len, rdur) Pattern-based embed-
ding for time series classification
Input: Univariate time series S = {Si , yi }mi=1, sliding window interval (Δt), SAX word size (w)

and alphabet size (α), number of patterns (k), minimum length pattern (min_len) and temporal
constraint (rdur)

Result: Set of patterns P , coefficients linear model φ

// Preprocessing
1 Ss ← segment(S, Δt)
2 if S is continuous then
3 foreach Ss [ta , tb] ∈ Ss do
4 Ss [ta , tb] ← discretise(paa(z- norm(Ss [ta , tb]), w), α)

// Mine sequential patterns
5 P ← mine_freq_sp(Ss , k,min_len, rdur)
// Create embedding

6 F ←
⎛
⎜⎝
0 . . . 0
.
.
.

. . .
.
.
.

0 . . . 0

⎞
⎟⎠

|S|×|P |

7 for i ← 1 to |S| do
8 for j ← 1 to |P| do
9 Fi, j = supportrdur(X j , S

s
i )

// Train linear model
10 φ ← elastic_net(F , {yi }mi=1)

11 return 〈P, φ〉
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Each continuous window of length 120 is then reduced to a length of 16 using PAA
(w = 16) and consequently, the mean amplitude is discretised to 4 symbols (α = 4).

We remark that for larger datasets we could increase the increment of the sliding
window to a larger value than 1, i.e., with a value of 2 (or 10) we decrease the number
of windows |Ss | = |S| · (|S| − Δt + 1) by a factor of 2 (or 10) thereby conserving
memory anddecreasing execution time. Increasing the incrementwouldmean skipping
some overlapping segments, which would clearly result in a considerable reduction
in runtimes, but it would potentially come at a cost of some important patterns not
being discovered. In preliminary experiments we found that increasing the increment
has a large influence on runtimes and a limited negative effect on accuracy, but since
our algorithm is already very fast, we decided to set the default value of the window
increment to 1, and not to skip any segments.

4.2 Discover top-k frequent cohesive sequential patterns

To create a dictionary for time series classification we propose a method based on
frequent pattern mining to efficiently discover sequential patterns. Many different
algorithms have been proposed to discover sequential patterns. However, continuous
time series have their own challenges such as autocorrelation, the relatively small
alphabet after the SAX transform and the goal to discover long and cohesive patterns
similar to subsequences found by related dictionary-based methods. We propose the
following goals for discovering patterns in time series:

– Mine sequential patterns above a specified minimum length.
– Enumerate the top-k most frequent sequential patterns directly instead of fine-
tuning the threshold on minimal support (min_sup parameter) which is resource
consuming.

– Only consider cohesive occurrences of sequential patterns which is known to be
important in literature on episode mining (Zimmermann 2014; Cule et al. 2019).

Relative duration
Traditionally, temporal constraints bound the number of gaps or duration of a pattern
regardless of the length of the pattern (Pei et al. 2007). We propose a constraint on
the duration of a pattern occurrence relative to the length of the pattern (rdur). The
cover and support of a sequential pattern X in a segmented time series dataset Ss with
respect to rdur are defined as:

coverrdur(X ,Ss) = {Ssk [ta, tb] | Ssk [ta, tb] ∈ Ss

∧ ∃ta′, tb′ ∈ [ta, tb] : tb′ − ta′ ≤ rdur · |X | ∧ X ≺ Ssk [ta′, tb′ ]},
supportrdur(X ,Ss) = |coverrdur(X ,Ss)|.

That is, X must cover a subsequence of a segment that is at most rdur · |X | long. For
instance, if rdur is 1.2 this implies that we allow a maximal duration of �4 · 1.2� = 4
for patterns of length 4, 6 for patterns of length 5 and 24 for patterns of length 20.
Algorithm
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Algorithm 2:mine_freq_sp(Ss , k,min_len, rdur) Discover top-k frequent cohe-
sive sequential patterns in Ss

Input: Segmented univariate time series Ss , number of patterns (k), minimum length pattern
(min_len) and maximum duration relative to pattern length (rdur)

Result: Top-k sequential patterns ranked on support with respect to rdur
1 Q ← [〈∅,Ss , Ω〉]
2 P ← make_heap(k)
3 min_sup ← 0
4 while Q �= ∅ do
5 〈X , PX , Y 〉 ← pop(Q)

6 if Y = ∅ then
7 if supportrdur(X ,Ss ) > min_sup and |X | ≥ min_len then
8 push(P, 〈X , supportrdur(X ,Ss )〉)
9 if |P| > k then

10 pop(P)

11 min_sup ← min_heap(P)

12 else
13 if supportrdur(X ,Ss ) < min_sup then
14 continue
15 sl+1 ← first(Y );
16 push(Q, 〈X , PX , Y \ {sl+1}〉)
17 Z ← (X , sl+1)

18 PZ ← project(S, Z , PX , rdur)
19 YZ ← proj_candidates(S, Z , PZ )

20 push(Q, 〈Z , PZ , YZ 〉)
21 return P

The algorithm mine_freq_sp, shown in Algorithm 2, discovers longer, frequent and
cohesive sequential patterns.We start by creating an empty priority queue that stores all
sequential pattern candidates sorted on support (line 1). During recursion we maintain
candidate sequential patterns X = (s1, . . . , sl) and construct sequential patterns Z of
length l+1where X is the prefix and item sl+1 is from the set Y of (unvisited) symbols,
or candidate items. For incrementally computing projections of supersequences Z we
also maintain the projection of X on Ss denoted as PX . Next, we create a heap of
patterns (line 2). Like the queue, we also use a priority queue data structure, but this
time sorted on descending support. Initially, min_sup is 0 (line 3). However, after k
candidates are discovered, the current minimal support in the heap is used to prune
future candidates (line 13) instead of a fixed value for min_sup. In the main loop, we
first retrieve the most likely candidate sequential pattern, i.e., the one with the highest
support, from the priority queue (line 5). Next, we check if the set of candidate items
is empty (line 6) and we have a leaf in our search process. In this case, we add the
current candidate pattern to the pattern heap if its support is higher than min_sup and
the length of the pattern is greater than or equal to min_len (line 7-9). Since we want
to return at most k sequential patterns, the pattern with the lowest support is removed
(line 10) andmin_sup is updated (line 11). Remark that we do not assume a maximum
length, but since we depend on SAX, the length of any sequential pattern is limited
by w. If the set of candidate items is not empty, we first check if the current candidate
prefix is frequent (line 13). Next, we create two nodes in the search tree: the current
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sequential pattern X without the first item sl+1 in the set of candidate items Y (line
16) and the sequential pattern Z = (s1, . . . , sl , sl+1) (Line 20).
Pseudo-projections
Crucial to performance of mine_freq_sp is how to compute the support with respect
to rdur and limit the number of candidates. We compute support (and candidates)
using incremental pseudo-projections. A projection of X on Ss is denoted by PX and
consists of all windows Ss[ti , t j ] covered by X with respect to rdur. The support for
sequential pattern X is then computed as |PX |. In the projection data structure we
maintain the index of each window and offsets 〈t1, tl〉 to the first (s1) and last symbol
(sl ) of X = (s1, . . . , sl) in the covered windows. The projection PZ of supersequences
Z = (s1, . . . , sl , sl+1) are computed incrementally by checking if sl+1 occurs in
the suffix of each window Ss[ti , t j ], i.e., starting after the last offset of sl for each
window in PX . For example, assume Sk = xxxabcxxx and we create the following
windows using Δt = 5: w1 = xxxab, w2 = xxabc, w3 = xabcx , w4 = abcxx
and w5 = bcxxx . After projection on X = (a, b) we keep references to windows
and store PX = {w1 : 〈4, 5〉, w2 : 〈3, 4〉, w3 : 〈2, 3〉, w4 : 〈1, 2〉} in memory. For
supersequence Z = (a, b, c)weconstruct PZ = {w2 : 〈3, 5〉, w3 : 〈2, 4〉, w4 : 〈1, 3〉}.
Restricting projections using relative duration
Since we only consider cohesive occurrences, we use the relative duration rdur to fur-
ther restrict the projection by translating this constraint to a constraint on the absolute
duration and a limit on the number of gaps.

Firstly, there is limit on the maximum duration:

max_duration = �max_len · rdur�.

As a consequence, we limit the search for sl+1 in each window in PX with offsets
〈t1, tl〉 and range [ti , t j ] to indexes tk ∈ [tl + 1, t1 + max_duration] which might be
smaller than [tl + 1, t j ].

Secondly, the maximal number of remaining gaps is given by:

max_gap_total = max_duration − max_len,

current_gaps = (tl − t1 + 1) − |X |,
max_rem_gap = max_gap_total − current_gaps.

As a consequence we limit the search in each suffix to indexes tk ∈ [tl + 1, tl +
max_rem_gap + 1]. For example, assume we have X = (a, b), Z = (a, b, c),
max_len = 5, rdur = 1.2 and w1 = abxxxxxxxc and w2 = axbxc. Z covers
both windows, however for w1 the duration would be 10, but max_duration of 6 is
preventing a match with respect to rdur. For w2 the duration would be 5, however,
max_gap_total = 1 and current_gaps = (3− 1+ 1) − 2 = 1, so max_rem_gap = 0
and since c is at index 5 and not 4 this would also not be a match.
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4.3 Constructing the pattern-based embedding

Having obtained a dictionaryP , i.e., a set of varying length patterns for the segmented
time seriesSs , PETSCmapsSs to a pattern-based embedding. In the embedding space
each time series Si is represented by a vector of size |P|, where each value is associated
with the support of pattern X1, . . . , Xk in Si . This is shown in Algorithm 1 (line 6-9)
where we first initialise the embedding matrix F to |S| × |P| dimensions. Next, we
compute the support of each pattern in each time series, computed as the number of
sliding windows covered by the pattern with respect to the constraint imposed by rdur.
Note that by using the support as feature, we regard both the (cohesive) occurrence of
a pattern and its frequency as important components for discriminating classes. For
instance, a pattern might occur on average 10 times in each time series of class A,
while occurring only once in class B.
Naïve algorithm
We implemented a naïve algorithm that computes the support of every pattern X in P
in each time series Si (in both the training and test database). The time complexity of
constructing the pattern-based embedding of S is O(|P| · |S|). Since the number of
patterns |P| is controlled by the hyper-parameter k the total runtime is still reasonable
since k is limited to a few thousand in practice for high accuracy. However, we remark
that this results in a runtime that is an order of magnitude worse than the discovery of
the top-k most frequent sequential patterns and might impede real-time applications.
For example, in preliminary experiments on UCR datasets we found that computing
the embedding takes minutes while mining the patterns only takes seconds.
Efficient algorithm
We can improve the naïve algorithm for computing the embedding based on the obser-
vation that the embeddingmatrix produced by PETSC is sparse and the density is often
less than 1% on many datasets, similar to related dictionary-based methods such as
BOP or SAX-VSM. For efficiently computing the sparse embedding we use prefix-
projected pattern growth to identify all segments matching the pattern X without the
cost of matching the full pattern X = (s1, . . . , sl). First, we compute the projection
PXp for each prefix X p = (s1, . . . , sp) for p from 1 to l incrementally. The number of
segments matching in each successive projection, PXp , grows smaller (since support
is anti-monotonic), thereby discarding segments that do not match prefix (s1, . . . , sp)
before considering them for (s1, . . . , sp, sp+1). Bymatching the pattern X with respect
to rdur using incremental prefix-projections and given that in practice most patterns
cover only a few time series with respect to rdur, most windows are discarded early
on without the computational cost of matching the complete pattern. In preliminary
experiments on UCR datasets we found that constructing the embedding with this
algorithm took seconds where the naïve algorithm would take minutes.

4.4 Constructing the time series classifier

The final step of PETSC (line 10 of Algorithm 1) is to construct the model for clas-
sifying time series. In principle we could use any classification algorithm such as a
random forest or k-nearest neighbours, but given that we are interested in interpretable
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results and because of its simplicity we adopt a simple linear model. For each label
y ∈ Y we learn a linear model that separates time series Si based on its pattern-based
embedding Fi (after normalisation):

ŷ = w0 + w1 · Fi,1 + · · · + wk · Fi,k .

The model coefficients W = (w0, . . . , wk) are learned by minimising the following
loss function:

L(λ1, λ2,W ) = |y − FT W |2 + λ2

k∑
i=1

w2
i + λ1

k∑
i=1

|wi |.

The loss function combines regression with L1 and L2 regularisation referred to as
an elastic net (Zou and Hastie 2005). L1, or LASSO, regularisation is particularly
useful since frequent pattern-based features that are not discriminative have a high
likelihood of a zero coefficient making the model more condensed and improving
overall interpretability. Meanwhile, combining it with L2, or ridge, regularisation
overcomes limitations by adding a quadratic part to the penalty which makes the loss
function convex and a unique minimum is guaranteed. We remark that for multi-class
time series datasets we use a one-vs-all approach.

5 Optimisations

In this section, we discuss possible optimisations of the PETSC algorithm presented
above. Concretely, we develop three additional variants of the algorithm. First, we
propose MR-PETSC, an ensemble method that combines patterns discovered in dif-
ferent resolutions. Second, we propose PETSC-DISC, a method that mines the top-k
most discriminative patterns directly. Third, we present PETSC-SOFT that relaxes
the requirement of an exact match to deal with discretisation errors. Next we dis-
cuss the use of common transformations to the original time series before applying
dictionary-based methods. We conclude this section with an analysis of the time and
space complexity of PETSC and variants.

5.1 Ensemble of multiresolution frequent sequential patterns

A disadvantage of PETSC is that, like related dictionary-based methods, its accuracy
is highly dependent on the hyper-parameter Δt . Additionally, PETSC ignores dis-
criminative patterns at different resolutions. Both of these issues are addressed by the
MR-PETSC variant, shown in Algorithm 3 and illustrated in Fig. 6. In this approach,
we still mine patterns with the same constraints and the same parameters for the SAX
representation, but we do this recursively starting with a single segment equal to the
length of the time series (or the minimum length in varying length time series) (line
3) and recursively divide the sliding window by two until the segment length is lower
than the SAX word size (line 4 and 12). At each resolution, we join the embedding
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Fig. 6 Illustration of MR-PETSC where we first create different symbolic representations by varying the
fixed-length sliding window (Δt) and then combine sequential patterns discovered in each representation
in a single linear model

Algorithm 3: mr_petsc_train(S, w, α, k, min_len, rdur) Multiresolution
pattern-based embedding for time series classification
Input: Univariate time series S = {Si , yi }mi=1, other parameters similar to petsc
Result: Set of patterns P , coefficients linear model φ

1 P ← ∅
2 F ← ∅
3 Δt ← min{|Si ||Si ∈ S}
4 while Δt > w do

// PETSC embedding at Δt
5 Ss ← segment(S, Δt)
6 foreach Ss [ta , tb] ∈ Ss do
7 Ss [ta , tb] ← sax(Ss [ta , tb], w, α)

8 PΔt ← mine_freq_sp(Ss , k,min_len, rdur)
9 FΔt ← create_embedding(Ss ,PΔt )

// join
10 P ← P ∪ PΔt
11 F ← F �� FΔt
12 Δt ← Δt / 2

// Train linear model
13 φ ← elastic_net(F , {yi }mi=1)

14 return 〈P, φ〉

vectors (line 5-11) and train a linear model on the final embedding vector where we
combine pattern-based feature values from different resolutions (line 13). The over-
head of MR-PETSC is limited since we create at most log(|S|) representations. For
instance, if the original time series length is 128, we first create a single segment
with Δt = 128, then Δt is equal to 64, 32 and finally 16 (assuming w is 15). In the
embedding vector we will have k × 4 pattern-based feature values from 4 different
resolutions.

We remark that MR-PETSC produces high accuracy with default parameters, i.e.,
if we mine the top-200 sequential patterns with a minimum length of 5 and a con-
straint on relative duration of 1.1 on SAX strings consisting of 4 symbols (α = 4)
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and a fixed length of 15 (w = 15). However, for optimal performance we tune the
hyper-parameters. We experimentally validate the accuracy of this ensemble method
in Sect. 6.

5.2 Direct mining of themost discriminative patterns

In PETSC we mine all frequent patterns and rely on the elastic net classifier to select
patterns that are frequent in one class rather than over different classes.Wenowpropose
PETSC-DISC, an alternative mining algorithm that discovers the most discriminative
sequential patterns directly. Given a segmented time series dataset Ss , label λ, time
series windows with label λ (denoted by Ss

λ+ ) and any other label (denoted by Ss
λ− ),

we define discriminative support, or contrast, as

contrast(X ,Ss) = ∣∣ supportrdur(X ,Ss
λ+)

|Ss
λ+|

− supportrdur(X ,Ss
λ−)

|Ss
λ−|

∣∣.

Algorithm 4: mine_discr_sp(Ss , λ, k, min_len, rdur, min_sup) Discover top-k
discriminative sequential patterns in Ss

Input: Segmented univariate time series Ss , target class (λ), threshold on minimal support
(min_sup), other parameters similar to mine_freq_sp

Result: Top-k sequential patterns ranked on contrast

1 Q ←
[
〈∅,Ss

λ+ ,Ss
λ− , Ω〉

]

2 P ← make_heap(k)
3 i ← 0
4 while Q �= ∅ or stop(i) do
5 〈X , PX ,λ+ , PX ,λ− , Y 〉 ← pop(Q)

6 if Y = ∅ then
7 if |X | ≥ min_len then
8 push(P, 〈X , contrast(X ,Ss )〉)
9 if |P| > k then

10 pop(P)

11 i ← i + 1
12 else
13 if supportrdur(X ,Ss ) < min_sup then
14 continue
15 sl+1 ← first(Y );
16 push(Q, 〈X , PX ,λ+ , PX ,λ− , Y \ {sl+1}〉)
17 Z ← (X , sl+1)

18 PZ ,λ+ ← project(Sλ+ , Z , PX ,λ+ , rdur)

19 PZ ,λ− ← project(Sλ− , Z , PX ,λ− , rdur)

20 YZ ← proj_candidates(Sλ+ , Z , PZ ,λ+ ) ∪ proj_candidates(Sλ− , Z , PZ ,λ− )

21 push(Q, 〈Z , PZ ,λ+ , PZ ,λ− , YZ 〉)
22 return P

123



1036 L. Feremans et al.

Thealgorithm forminingdiscriminative patterns directly is shown inAlgorithm4.A
key difference with Algorithm 2 is that we employ heuristic search using contrast and
visit candidates with high contrast first. However, since contrast is not anti-monotonic
we cannot prune on contrast nor guarantee that after i iterations the current discovered
top-k patterns have the highest contrast overall.

We start by creating an empty priority queue that contains all sequential pattern
candidates sorted on contrast and a heap of discovered patterns sorted on descending
contrast (line 1-2). Like before, during recursion we maintain candidate sequential
patterns X = (s1, . . . , sl) and construct sequential patterns Z of length l + 1 where
X is the prefix and item sl+1 is from the set Y . For efficiently computing contrast we
maintain separate projections of X on time series instances with and without label λ,
i.e., computed on Ss

λ+ and Ss
λ− , and denoted as PX ,λ+ and PX ,λ− . In the main loop,

we first retrieve the candidate sequential pattern with the highest contrast from the
priority queue (line 5). If the set Y of candidate items is empty, we add the current
candidate (if |X | ≥ min_len) to the pattern heap. As soon as k patterns have been
found we remove the pattern with the lowest contrast from the heap (line 9-10). If
the set of candidate items is not empty, we also remove discriminative patterns that
are too infrequent overall, using the min_sup parameter (line 13). Next, we create two
nodes in the search tree: the current sequential pattern X without the first item sl+1 in
the set of candidate items Y (line 16) and the sequential pattern Z = (s1, . . . , sl , sl+1)

(line 21). Here, we compute incremental pseudo projections on both Sλ+ and Sλ− (line
18-20). The main loop stops if the queue is empty, meaning we have enumerated all
frequent sequential patterns. Alternatively, we stop after a fixed number of iterations i
(line 4) or dynamically, i.e., when no new patterns with high contrast are discovered in
the last k iterations. For multiclass datasets we run mine_discr_sp for each label and
join all patterns resulting in a set of at most |Y| · k patterns. We then return the top-k
patterns with the highest contrast for any label. We remark that we also experimented
with sequential covering to remove redundant patterns (Cheng et al. 2008). However,
in preliminary experiments, we found that the increase in accuracy was too marginal
to justify the additional complexity and runtime of sequential covering.

5.3 Relaxing exact patternmatching

Several alternatives have been proposed to create an embedding based on sequences,
shapelets or sequential patterns. Laxman et al. (2007) proposes to compute frequency
based on non-overlapping occurrences for discrete patterns. Hills et al. (2014) propose
to compute theminimal Euclidean distance between each contiguous (and continuous)
pattern and continuous segment in the time series and Senin and Malinchik (2013)
propose to compute class-specific weights using TF-IDF. From a quality perspective
we argue that for matching discrete patterns small differences might be ignored, e.g.,
given the pattern X = (a, a, a, b, b, b, b) and the segment S1 = (a, a, a, b, b, b, c)
the distance is small and the mismatch possibly due to noise. Especially as the discreti-
sation error grows with long patterns, e.g., for a pattern of length 14 and an alphabet
of size 3 the average rounding error accumulates to 14 · 1/(2 · 3). Based on this
observation, we propose to count near matching occurrences as an alternative to exact
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matching and propose another variant of PETSC, namely PETSC-SOFT. For a pattern
X and segmented time series Ss we define the soft support as:

supportsoft(X ,Ss, τ ) = ∣∣{Ssk [ta, tb] | Ssk [ta, tb] ∈ Ss∧
min_dist(X , Ssk [ta, tb]) < τ · |X |

2 · α

}∣∣,
min_dist(X , Ssk [ta, tb]) = min({ dist(X , Ssk [ta′, tb′ ]) |

Ssk [ta′, tb′ ] � Ssk [ta, tb] ∧ tb′ − ta′ = |X |})

Here |X |
2·α returns the average rounding error and dist is the Euclidean distance.3 For

instance, in our previous example, with τ = 1.0, X would match segment S1 since
dist(X , S1) = 1 is lower than the expected rounding error of 7/(2 · 3) = 1.166. We
introduce the parameter τ to allow user-defined control for soft matching, e.g. given
α = 4 and τ = 1.0, we would allow a distance of 0 for patterns of length 7, 1 for
patterns of length 8 and 2 for patterns of length 16. For τ equal to 2 or 3 matching is
more relaxed. Remark that when using soft matching, we assume the relative duration
to be 1.0, as the method’s complexity would severely increase otherwise. In Sect. 6
we experimentally validate supportsoft .

5.4 Basic time series transformations

While the original authors of both BOP and SAX-VSM report more wins over 1-NN
DTWon their selection of datasets, the opposite is reported by Bagnall et al. (2017) on
the completeUCRbenchmark.We remark that bothmethods have their own biases and
that performance will vary depending on the type of dataset, akin to the No Free Lunch
Theorem (Wolpert and Macready 1997). Nearest neighbour with DTW will miss cor-
relation of discriminative subsequences at different locations. Inversely, BOP misses
overall correlation of two time series by extracting only local phase-independent pat-
terns. Consequently, ensemble methods that combine both approaches such as DTW-F
(Kate 2016) result in an overall increase in accuracy. We conclude that applying the
following basic time series transformations (Hyndman and Athanasopoulos 2018) on
Si = (x1, . . . , xn) may result in improved performance:

– Derivative (or lag n = 1): x̂t = xt − xt−1
– Second derivative (or lag n = 2): xt = x̂t − x̂t−1
– Logarithm: xt = ln xt
– Logarithm of derivative: xt = ln x̂t

Especially, in the context of theUCRbenchmark that containsmany smaller datasets of
synthetic and/or sine-like nature with a strong overall correlation, applying dictionary-
based methods on both the original time series and after each transformmight enhance
the ability to discover local discriminative patterns. For instance, on the UCR Adiac
dataset the error of DTW is 0.376 and the error of PETSC is 0.381. However, after

3 We use the ordinal values for SAX symbols when computing Euclidean distance, that is b − a is 1 and
c − a is 2.
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transforming this dataset using the logarithm the error of PETSC drops to 0.350.
However, to be fair to all methods, we did not apply any time series transformations
on the data used in our experiments in Sect. 6.

5.5 Time and space complexity

Since PETSC mines sequential patterns on each dimension independently the execu-
tion time is linear in the number of dimensions d for multivariate time series. The
total number of windows in the sequential database for mining in each dimension is
dependent on the number of instances |S|, the time series length |S| and the sliding-
window interval Δt , i.e. |Ss | = |S| · (|S| − Δt + 1). If we assume that top-k frequent
cohesive sequential pattern mining is linear in |Ss | the complexity of MR-PETSC for
multivariate datasets is approximately O(d · |S||S| log(|S|)).4

For univariate time series PETSC is thus linear in both the training set size and
time series length while MR-PETSC is quasilinear in the time series length since we
consider at most log(|S|) SAX representations. Similar to MR-PETSC, MR-SEQL is
also linear in the training set size and quasilinear in the time series length. However, for
high accuracyMR-SEQL uses

√|S| different SAX and SFA representations, resulting

in a slighly worse complexity of O(d · |S||S| 32 log(|S|)). Other scalable multivariate
time series methods include Proximity Forests and TS-CHIEF that are based on an
ensemble of decision trees are quasilinear in the training set size, but quadratic in
the time series length. Finally, ROCKET is only linear in the time series length, i.e.
the complexity on multivariate time series is given by O(d · k|S||S|). However the
constant k that specifies the number of different kernels to train on is high, i.e. the
suggested default is 10,000.

From a space complexity perspective, the proposed patternmining algorithms relies
on a depth-first search strategy to enumerate candidate sequential patterns and as such
has manageable memory requirements, i.e. the mining algorithm only has to keep
at most max_len candidate sequential patterns in memory, which is limited by w.
Likewise the size of heap is limited by themaximal number of patterns k. Furthermore,
by relying on incremental pseudo-projections of the sequential database, the space
complexity is bounded by the representation of the sequential database itself which
is linear in the training set size and linear in the time series length. The embedding
data structure is linear in the training set size and in the number of patterns. Since
the number of patterns k is limited to 1000 in practice and by adopting sparse data
structures (since most pattern occurrences will be 0) this is efficient. Overall, for
MR-PETSC, the space complexity is O(d · k · log(|S|)|S|) since we concatenate |S|
embedding vectors of length k for each dimension d in different resolutions log(|S|)
in memory.

4 Note that pattern mining has a worst-case time complexity which is exponential in the size of the pattern
and the alphabet size. That is, with a pattern size (or word size) of w and α different symbols, there are
αw possible sequential patterns of length w. However, we assume parameters such as w, α, k and rdur are
constants. That is, we argue that in the context of time series classification, and not pattern mining, it is less
relevant to perform a detailed analysis of the efficiency of our method for large values of k or rdur , since
we do not observe an increase in time series classification accuracy for large values of both k and rdur .
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For large multivariate datasets, we see that in practice out-of-memory errors can
occur, since a space complexity of O(|S| · |S|) for the sequential database can be
problematic for very large datasets. In this case, we suggest to limit memory consump-
tion by selecting a larger for the window increment i . For instance, for EigenWorms
|Ss | = 128 · (17,984−20+1) ≈ 2.2 ·106 forΔt = 20. By selecting a larger window
increment (or stride) than 1, we can reduce the size of the sequential database by a
constant factor. For instance, given an increment i equal to Δt (i.e. non-overlapping
sliding windows), the number of windows in each time series drops with |S|/i . For
instance, for Eigenworms |Ss | = 128 · (17,984)/20 = 115,098 for i = Δt = 20. For
large multivariate datasets this can lead to a speed-up proportional to i , however the
frequency of patterns is then computed only approximately, as we require overlapping
sliding windows to compute the exact count of pattern occurrences.

6 Experiments

In this section, we compare PETSC and its variants with existing state-of-the-art
methods.

6.1 Experimental setup

Datasets
We compare methods against univariate and multivariate datasets from the UCR/UEA
benchmark (Dau et al. 2018). In Table 1we show the details on a subset of 19 univariate
datasets from the UCR archive (Senin and Malinchik 2013). In Table 2 we show the
details on 19 multivariate datasets from the UCR archive (Bagnall et al. 2018). We
selected multivariate time series where |S| was at least 30 and the total file size was
not too large (i.e., < 300 MB). We also compare totals against the 85 ‘bake off’
univariate datasets (Bagnall et al. 2017; Dau et al. 2018), and 26 ‘bake off’ equal-
length multivariate datasets (Bagnall et al. 2018; Ruiz et al. 2021). Time series are
from different domains and applications, i.e., time series extracted from images (such
as shapes of leaves), resulting from a spectrograph or medical devices (ECG/EEG)
and various sensors, simulations, motion detection and human activity recognition
(HAR).
State-of-the-art methods
We compare the accuracy of PETSC and its variants with base learner such as 1-
NN with DTW and comparable interpretable dictionary-based methods such as BOP,
SAX-VSM and MR-SEQL (Le Nguyen et al. 2019) for univariate datasets. We also
compare with non-interpretable dictionary-based methods based on a Bag of SFA
Symbols, such as BOSS (Schäfer 2015), cBOSS (Middlehurst et al. 2019), S-BOSS
(Large et al. 2019) and TDE (Middlehurst et al. 2020b), methods based on deep
learning such as ResNet (Wang et al. 2017) and InceptionTime (Fawaz et al. 2020)
and heterogeneous ensemble methods such as Proximity Forests (Lucas et al. 2019),
ROCKET (Dempster et al. 2020), HIVE-COTE (Lines et al. 2018) and TS-CHIEF
(Shifaz et al. 2020).
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Table 1 Details on 19 UCR
univariate datasets

Dataset |Y| |Strain| |Stest | |S| Type

Adiac 37 390 391 176 Image

Beef 5 30 30 470 Spectro

CBF 3 30 900 128 Simulated

Coffee 2 28 28 286 Spectro

ECG200 2 100 100 96 ECG

FaceAll 14 560 1690 131 Image

FaceFour 4 24 88 350 Image

Fish 7 175 175 463 Image

GunPoint 2 50 150 150 Motion

Lightning2 2 60 61 637 Sensor

Lightning7 7 70 73 319 Sensor

OliveOil 4 30 30 570 Image

OSULeaf 6 200 242 427 Image

SyntheticControl 6 300 300 60 Simulated

SwedishLeaf 15 500 625 128 Image

Trace 4 100 100 275 Sensor

TwoPatterns 4 1000 4000 128 Simulated

Wafer 2 1000 6164 152 Sensor

Yoga 2 300 3000 426 Image

Table 2 Details on 19 UCR
multivariate datasets

Dataset |Y| |Strain| d |S| Type

ArtWordRec 25 275 9 144 Motion

AtrialFibr 3 15 2 640 ECG

BasicMotions 4 40 6 100 HAR

CharTraject 20 1422 3 60+ Motion

Cricket 12 108 6 1197 HAR

EigenWorms 5 128 6 17,984 Motion

ERing 6 30 4 65 HAR

Epilepsy 4 137 3 206 EEG

EthanolConc 4 261 3 1751 Spectro

FingerMov 2 316 28 50 EEG

HandMovDir 4 160 10 400 EEG

LSST 14 2459 6 36 Simulated

Libras 15 180 2 45 HAR

NATOPS 6 180 24 51 HAR

RacketSports 4 151 6 30 HAR

SelfRegSCP1 2 268 6 896 EEG

SelfRegSCP2 2 200 7 1152 EEG

SWalkJump 3 12 4 2500 ECG

UWaveGestLib 8 120 3 315 HAR

123



PETSC: pattern-based embedding for time series… 1041

For multivariate datasets we compare with base learner such as 1-nearest neigh-
bour classification using either Euclidean distance (1-NNED), dimension independent
dynamic time warping (DTWI ) and dimension dependent dynamic time warping
(DTWD) (Shokoohi-Yekta et al. 2017). We also compare with ensembles of state-
of-the-art univariate classifiers that train a separate classifier over each dimension
independently, such as ROCKET, HIVE-COTE, ResNet, cBOSS, Shapelet Trans-
form Classifier (STC) (Hills et al. 2014) and methods based on random forests using
shapelet-based and other time series features, such as Time Series Forest (TSF) (Deng
et al. 2013), Generalized Random Shapelet Forest (gRSC) (Karlsson et al. 2016) and
Canonical Interval Forest (CIF) (Middlehurst et al. 2020a). In univariate andmultivari-
ate experiments we use the publicly reported results from the UCR/UEA benchmark
and ‘bake off’ studies (Bagnall et al. 2017, 2018; Ruiz et al. 2021).
Parametrisation of methods
All dictionary-based methods have the same preprocessing steps which include set-
ting an appropriate window size for segmentation (Δt) and setting the word (w) and
alphabet (α) length for the SAX (or SFA) representation. BOP and SAX-VSM have
no additional parameters. BOSS has an additional parameter that controls if normali-
sation should be applied. For mining patterns PETSC has three additional parameters,
namely the number of patterns (k), minimum length of a pattern (min_len) and a con-
straint on the duration (or cohesion) of pattern occurrences (rdur). PETSC-SOFT has
an additional parameter τ to control soft matching. PETSC-DISC has an additional
min_sup parameter to control the minimal support for discriminative patterns which
we set to 3. ForMR-PETSCwe report the results with default parameters (i.e.,w = 15,
α = 4, k = 200,min_len = 5 and rdur = 1.1) and varying parameters. For all PETSC
variationswe set the regularisation parametersλ1 andλ2 for linear regression to default
values (i.e. . We remark that the implementation and experimental scripts for PETSC
are implemented using Java and Python and are open source.5

Hyper-parameter optimisation
For optimising preprocessing parameters Δt , w and α we use random search on a
validation set (Bergstra and Bengio 2012). That is, we iterate through a fixed number
of randomly sampled parameter settings and keep the parameter setting with the best
accuracy after 100 iterations. Here, Δt is randomly sampled between 10% and 100%
of the time series length. For SAX,w is between 5 and 30 and α between 3 and 12. For
all PETSC variants, k is between 500 and 2500,min_len in {0.1w, 0.2w, 0.3w, 0.4w}
and rdur in {1.0, 1.1, 1.2, 1.5}. For PETSC-SOFT, τ is in {1/2α, 2/2α, 3/2α}.

6.2 Effect of hyper-parameters on the accuracy of PETSC

We begin our experimental analysis by having a closer look at the effect various
hyper-parameters have on the accuracy of our algorithm.
Window and SAX parameters
In this experiment we run PETSC on a grid with varying window, SAX word and
alphabet length on Adiac and Beef. Figure 7 shows the test error for varying w and
α for PETSC on Adiac when Δt is 0.5 · |S| and Beef when Δt is 0.1 · |S|. Default
5 Source code of PETSC: https://bitbucket.org/len_feremans/petsc.
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Fig. 7 Impact of varying w and α on the classification error of PETSC on Adiac (left) and Beef (right). The
minimal error on Adiac is 0.299 (w = 19, α = 12 and Δt = 0.5 · |S|) and 0.133 on Beef (w = 19, α = 8
and Δt = 0.1 · |S|)

values for mining are k = 1000,min_len = 0.3w and rdur = 1.0. First, we observe
that accuracy deteriorates for small values of either w or α. Next, we observe that for
Adiac and Beef the error is minimal for high values of α and medium values for w,
or the other way around with medium values for α and high values for w, but slightly
worse if both parameters are set to high values.

In Adiac the optimal parameters result in frequent patterns of length 5 to 19 con-
sisting of 12 distinct symbols and cover almost half the time series (Δt = 0.5 · |S|),
which is sensible since in Adiac time series are overall similar long sine-like waves,
where subtle differences result in a different label. In Beef the optimal parameter for
Δt is 10% and for Δt = 0.25 · |S| and Δt = 0.5 · |S| the minimal error (for any
combination ofw and α) increases with 6% and 10%. This suggests that short patterns
are far more discriminative for this dataset and explains the high accuracy of PETSC
on this dataset.
Pattern mining parameters
In this experiment we run PETSC on a grid with varying k, minimum length and
relative duration on Adiac and Beef. Figure 8 shows the test error for varying k and
min_lenwhen rdur is 1.0with optimal window and SAXparameters. First, we observe
that setting k too lowormin_len too high (i.e.more thanw/2) results in lower accuracy.
Second, we observe that the error (for any combination of k and min_len) increases
with 4% and 10% with a relative duration of 2.0. We remark that it only took a couple
of seconds to run PETSC for each parameter setting with a maximum of 30s for high
values of rdur and k and low values of Δt .

Based on these and further experiments we conclude that:

– The parameter Δt is domain-specific and ranges from 0.1 · |S| to 0.5 · |S| and has
a severe impact on accuracy. For short time series (i.e. |S| < 50), we setΔt = |S|,
but this invalidates the use-case of discovering local phase-independent patterns.
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Fig. 8 Impact of varying k and min_len on the classification error of PETSC on Adiac (left) and Beef
(right). The minimal error on Adiac is 0.360 ( k = 901, min_len = 19 and rdur = 1.0) and 0.166 on Beef
(k = 701,min_len = 4 and rdur = 1.0)

– SAX parameters α and w should be sampled together and have a severe impact on
accuracy. Too low values might degrade performance, while setting both values
high causes too much entropy.

– The parameter rdur is domain-specific and has impact on accuracy. On Adiac and
Beef a value of 1.0 works best, however, we see that on most datasets the error is
lowest if rdur is 1.1 or 1.5. If rdur is set too high (i.e., 2.0 or more) this results in
degraded performance.

– For mining, k has less influence on accuracy but should be set sufficiently high,
i.e., 1000 is a good default value. We experimented with k up to 5000, but this
did not improve results. Finally, min_len should be lower than w/2, but not lower
than 3.

6.3 Explaining PETSC andMR-PETSC

In this section we first discuss how we can use our model for instance-based decision
support by visualising attribution and how to visualise and learn from the intrinsically
interpretablemodel.We also provide a use-casewherewe discuss techniques to reduce
the number of patterns to further improve explanations.

6.3.1 Instance-based decision support

For interpretability, we can compute the influence, or attribution of each sequential
pattern occurrence weighted by the coefficient of the linear model. We use this attri-
bution to highlight regions of the time series that lead to predicting each label y or not.
First, we determine for each sequential pattern Xk its occurrences in the segmented
SAX representation of a time series Si . Next, we compute the inverse transform that
maps each occurrence back to the original raw time series based on the window offset
and the scaling factor Δt/w. Next, we compute the attribution of a pattern at each
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location in Si which is wk/supportrdur(Xk) where wk is the corresponding coefficient
of pattern Xk in the linear model. We remark this only includes patterns that occur
at least once in Si and have a non-zero coefficient wk . For interpretability, we make
sure the intercept of the linear model (w0) is 0 and that the embedding vector is mean-
centred, such that the weights multiplied by the feature values (feature effects) explain
the contribution to the predicted outcome (Molnar 2020). The sum of the attribution
of each pattern at each location indicates the relative importance of a location and
the sign indicates if is a positive or negative for class y. For MR-PETSC the sum
of attributions is composed of patterns at each resolution, but this does not impede
interpretation compared to PETSC, since we still employ a single linear model of
patterns. In Fig. 9 we show the first two time series with different label for the Gun-
Point, ECG200 and TwoPatterns dataset where we highlight discriminative regions
by visualising the sum of pattern attributions at each location. In the visualisation, the
colour and the thickness of the line are determined by the sign and the absolute value
of the sum of attributions. We observe that for discriminating between the Gun-drawn
and Point gestures in the GunPoint dataset, the small dip after the main movement
is discriminative for the Point gesture which confirms existing work (Ye and Keogh
2011; Le Nguyen et al. 2019).

6.3.2 Global explanations

PETSC learns an intrinsic sparse interpretable model, consisting of k weights
w1, . . . wk of the linear model and the corresponding k sequential patterns. We can
inspect this model, visually or otherwise, and provide decision support instance-based
as explained previously, on a feature level, i.e., by rendering all occurrences of a single
pattern, or globally, for instance by rendering the most discriminative patterns directly
as shown in Fig. 3.

In Table 3 we show the top-5 patterns with the highest absolute weight wk in each
resolution on the Gunpoint dataset where MR-PETSC has an error of 0.04 (w = 20,
α = 12, k = 250, min_len = 6 and rdur = 1.0). We remark that there is redundancy
between the patterns and we will discuss techniques to handle this in the next section.
A positive weight and a large absolute value indicate that the first pattern is specific to
class Gun, meaning the gesture of drawing a gun and holding it, instead of pointing
a finger. Note that our model is sparse, which is beneficial for explanations (Molnar
2020), and that the first pattern only occurs in 8% of time series windows.We conclude
that PETSC and MR-PETSC offer a transparent model (Molnar 2020) and enable
human experts to inspect each pattern specific to class A or B and trust decisions for
any possible instance.

6.3.3 Interpretation use-case

While the SAX representation is interpretable, as are the resulting sequential patterns,
it is not obvious how to explain real-world use-cases, especially since MR-PETSC
discovers thousands of patterns in multiple resolutions. Therefore we further illus-
trate this based on a use-case. We consider the BeetleFly dataset from the UCR/UEA
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Fig. 9 Thefirst two time serieswith different class from theGunPoint,ECG200 andTwoPatterns dataset.We
use MR-PETSC to discover patterns in different resolutions and highlight regions that are more important
for making predictions with MR-PETSC

benchmark. The BeetleFly dataset consists of 20 training images of either a beetle or
fly transformed to a time series as illustrated in Fig. 10.
Identifying optimal hyper-parameters
We used a random search to identify that the optimal SAX representation consists of
12 bins (α = 12) and words of size 30 (w = 30). For pattern mining the optimal
parameters are k = 1000, min_len = 8 and rdur = 1.0. Note that using random
search we identified multiple parameter settings at which the error on the validation
set was 0.0. The total time for runningMR-PETSC 100 times with random parameters
was 10 min using 8 cores. Note that using our open-source code it is easy to identify
optimal parameters using random search on a validation set (using multiple threads)
and then run the method with the optimal parameters on the test set.
Accuracy
We find that MR-PETSC achieves state-of-the-art performance with a large relative
increase over ROCKET on many datasets originating from the shapelet tranformation
method (Hills et al. 2014), such as BeetleFly where the accuracy is 100%. Shapelets
and sequential patterns are both based on rotational-invariant subsequences, so it is not
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Table 3 Top-5 most
discriminative patterns for each
resolution of MR-PETSC for
Gunpoint

Δt Weight Seq. pattern Support

0.715 ejllll 0.08

−0.656 ddddddfklll 0.04

|S| −0.656 ddddddf 0.04

−0.656 ddddddfkll 0.04

−0.656 ddddddfkl 0.04

−0.796 hjkkkkkkk 0.02

−0.794 bbbbbcccc 0.02

|S|/2 −0.764 bbbbbcc 0.03

−0.742 bbbbbc 0.04

0.730 bbbbbbbb 0.04

−1.000 aaaabc 0.02

−0.926 bbbbbc 0.01

|S|/4 0.799 eeeeeeeeee 0.01

0.793 cccccccccc 0.04

−0.749 ddcccc 0.01

Fig. 10 Top figure shows instances of the BeetleFly and BirdChicken datasets. Bottom figure illustrates
the outline of a beetle represented as a time series where a subsequence is highlighted in blue (Hills et al.
2014). With optimised pre-processing parameters and after removing redundant patterns based on Jaccard
similarity PETSC achieves an accuracy of 80% and the model consists of a single subsequence which can
subsequently be highlighted in each image outline to facilitate trivial interpretation

surprising that both approaches work well on similar datasets. The relative improve-
ments achieved by MR-PETSC over ROCKET on such datasets is significant, i.e.,
BeetleFly (+13%), Herring (+12%), Lightning2 (+12%), CinCECGTorso (+10%),
FaceFour (+7%) and BirdChicken (+2%).
Multi-resolution pattern visualisation
The benefit of our model is that at each resolution we have the sequence of symbols
of each pattern. Moreover, we can match each sequential pattern to the time series
and inspect the individual occurrences. In Fig. 11 we show 4 resolutions of the same
time series of a fly and a beetle. With a window of 512 the window size is equal to
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Fig. 11 Example of two time series of a fly and a beetle using a window of 512 (= |S|), 256, 128 and 64.
Note that by using the same SAX parameters on different windows results in more fine-grained patterns
matching more closely a shorter piece of the time series

the time series length. In the last subfigure each window has size 64 or 1/8 of the time
series. Remark that by using the same SAX parameters on different windows results
in more fine-grained patterns matching more closely a shorter piece of the time series.
For visualisation purposes we normalise the entire time series instead of applying
window-level normalisation.
Reducing the number of patterns
A problem is that by having 4 resolutions with 1000 patterns each, interpretation
becomes difficult. We propose to reduce the number of varying length patterns in each
resolution significantly by removing redundant patterns, thereby removing patterns
while maintaining high accuracy. Pattern redundancy has been extensively studied in
the pattern mining community (Han et al. 2011; Aggarwal and Han 2014). We chose
to remove redundant patterns based on Jaccard similarity, defined as:

jaccard(X1, X2,Ss) = cover(X1,Ss) ∩ cover(X2,Ss)

cover(X1,Ss) ∪ cover(X2,Ss)
.

Next we create a non-redundant pattern setP ′
γ such that no two patterns in the set have

Jaccard similarity higher than γ , that is we add X j toP ′
γ if and only if �Xi ∈ P ′

γ : i �=
j ∧ jaccard(Xi , X j ,Ss) > γ. For instance, with γ = 0.9 we remove patterns where
90% of occurrences overlap. The Jaccard similarity is of particular interest because of
the sliding window-based preprocessing which results in many patterns that overlap
within a small delay, i.e., given the SAX sequences (a, a, a, b, b) and (a, a, b, b, b)
we have frequent sequential patterns X1 = (a, a), X2 = (a, b), X3 = (b, b) and
X4 = (a, a, b, b) which all make each other redundant, and it is safe to remove all but
one of them.

The number of patterns after filtering on BeetleFly are shown in Table 4. We also
show the number of patterns with a non-zero weight after training the linear model
using an elastic net (see Sect. 4.4). We observe that, when the window size is set to
512, 256 or 32 the number of patterns that are non-redundant w.r.t. γ = 0.9 becomes
very small. In Table 5 we show the corresponding error of PETSC for each setting
for different values of γ . We observe that on BeetleFly using the complete series with
a window size of 512 results in an error of 0.5, which is meaningless since we only
have two classes (we also observe this when plotting the attribution since the mean
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Table 4 Number of non-redundant patterns in BeetleFly in each resolution

Window |P| Non-zero weight |P ′|γ=1.0 |P ′|γ=0.9 |P ′|γ=0.5

512 1000 1000 20 20 20

256 1000 998 73 73 26

128 1000 997 714 641 70

64 1000 995 477 286 10

32 1000 998 142 75 1

The setting for γ that results in the lowest number of patterns is considered best and shown in bold, the
second best setting is underlined

Table 5 Error after filtering
non-redundant patterns in
BeetleFly for different window
sizes and values of γ and by
combining patterns in all
windows

Window P P ′
γ=1.0 P ′

γ=0.9 P ′
γ=0.5

512 0.500 0.500 0.500 0.500

256 0.450 0.400 0.400 0.250

128 0.250 0.200 0.200 0.250

64 0.100 0.150 0.050 0.250

32 0.150 0.100 0.100 0.200

Combined 0.05 0.05 0.100 0.250

The setting with the lowest error is shown in bold, the second best
settings are underlined
The best result misclassifies only 1/20 test instances using 286 patterns
However, using just a single pattern we have a setting that misclassifies
only 4/20 test instances

attribution accumulates to zero). The lowest error is 0.05 when the window is 64 and
γ is 0.9, meaning that 1/20 time series is misclassified. Using a window of 32 and γ

equal to 0.5 we have a single pattern and only misclassify 4/20 time series, which is
interesting.We remark that we can further reduce the number of patterns by increasing
the regularisation weights λ{1,2} (see Sect. 4.4).
Interpretation of outline images
For interpretation of the BeetleFly patterns, we created a version of the dataset starting
from the original images enabling us to render pattern occurrences in the original 2D
space for easy interpretation.6 We applied the radial distance method to convert the
original MPEG-7 images to time series (Bober 2001; Adamek and O’Connor 2003).
That is, we extract the outline and then compute the distance between the centre and
each point in the outline.

First we run PETSC with parameters as discussed previously (window = 64,
w = 30, α = 10, k = 1000, min_len = 8, rdur = 1) thereby discovering 315
frequent patterns with a non-zero weight. Using this setting 15/20 images are correctly
classified. Next, we remove redundant patterns using a Jaccard similarity threshold of
0.5 resulting in 119 patterns of which only 38 have a non-zero weight. Surprisingly,
the accuracy increases to 17/20 in this case. Finally we render each pattern in the

6 We remark that there are differences in our creation of BeetleFly dataset compared to the UCR version
due to small changes in the pre-processing of the original MPEG-7 source images.
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Fig. 12 Visualisation of the top-20 patterns on the BeetleFly dataset where we have an accuracy of 0.85
meaning 3/20 test images are misclassified. We show the top-20 patterns with the highest weight, where
blue patterns are discriminative for beetles (i.e., part of legs) and red patterns for flies (i.e., part of wings).
Here, each image is first converted to a time series using the radial distance method. For classification we
learn a linear model using PETSC and subsequently remove redundant patterns resulting in 38 patterns. For
visualisation we map each pattern occurrence from the SAX representation to the original time series and
then back to the original 2D outline

original representation. First, we compute occurrences of each pattern in the SAX-
based sliding window representation. Next, we map each occurrence to the original
time series representation and then back to the outline. The top-20 patterns with the
highest weight are shown in Fig. 12. We observe that patterns correspond to important
discriminative features such as the legs of a beetle or the wings of a fly. We remark
that a similar approach can be used to visualise the top-20 (non-redundant) patterns
discovered in multiple resolutions using MR-PETSC.

We find that by reducing the number of patterns using a threshold on Jaccard
similaritywecandrasticallyfilter the number of patterns andmake themodel extremely
comprehensible. However, often a larger amount of patterns may result in higher
accuracy, so there a trade-off to be made between model complexity and accuracy as
is expected. We find that by removing redundant patterns it is straightforward to make
a trade-off between model comprehension and accuracy.

6.4 Comparing PETSC variants

6.4.1 Comparing accuracy of PETSC variants

In this experiment, we compare the accuracy of PETSC with PETSC-SOFT, PETSC-
DISC and MR-PETSC. We also compare with BOP, since the fixed-length SAX
sequences used by BOP are a special case of the patterns in PETSC, i.e., if we set rdur
to 1.0, min_len to w and k to a large number (to include all patterns with a support
greater than 0), PETSC and BOP produce the same patterns and embedding. To avoid
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that results are biased by the random search for hyper-parameter optimisation for BOP,
PETSC and its variants we employ cross-validation and report the mean error on the
publicly available train/test split pairs after 5 runs.

Table 6 shows the error on 19 univariate datasets. We see that some methods work
better on some datasets. However, overall MR-PETSC produces the lowest average
error. Moreover, even with default parameters MR-PETSC has an average error of
only 0.139, which is lower than other variants even with optimised parameters. By
considering varying length patterns PETSC (and all its variants) outperforms BOP by
+3%. By considering patterns of both varying length and resolution, MR-PETSC out-
performs BOP by +6.5%. When comparing PETSC with PETSC-SOFT we observe
that near matching patterns results in best results on 5/19 datasets which is promising.
The results for PETSC-DISC are on par with PETSC, however on datasets such as
GunPoint and TwoPatterns where the presence of clear local patterns is well known,
PETSC-DISC performs slightly better. However, on other datasets PETSC is better
whichwould suggest that frequent cohesive sequential patterns are as useful as sequen-
tial patterns with high contrast. To limit the number of experiments, we only compare
MR-PETSC with the state-of-the-art methods. We decided not to study all possible
combinations, i.e., using multiresolution or discriminative patterns in combination
with supportsoft for constructing the embedding, or combining discriminative patterns
mined in different resolutions.

6.4.2 Comparing execution time of PETSC variants

In this experiment, we compare the execution time of BOP, PETSC and its variants.We
included time for both training and testing using random searchwith 100 iterations and
report the mean and total time after 5 runs. The execution times are reported in Table 7
where we report individual results on the 4 largest datasets. We observe that PETSC
is faster than BOP. Considering that PETSC creates variable length patterns thereby
covering, in theory, an exponentially large search space, this is surprising. However,
BOP requires the nearest neighbour search at test time which explains why it starts
to slow down on datasets with many instances, e.g., on TwoPatterns which consists
of 1000 training instances. Compared to PETSC, PETSC-SOFT is a slower because
we must use the naïve algorithm for computing the embedding using supportsoft . In
contrast, PETSCuses amore efficient algorithm for computing the embeddingbasedon
supportrdur thereby leveraging sparse optimisations. Finally,MR-PETSC runs PETSC
at most log(|S|) times and is about 7 times slower than PETSC. We conclude that all
PETSC variants are extremely efficient in absolute time. MR-PETSC takes on average
1.1h to run 100 random parameter settings and the total time on all 19 datasets is 3.2h
for PETSC and 20.9 h for MR-PETSC using a single core.

6.5 Comparing against state-of-the-art methods

In this section, we compare our algorithm to a variety of existing classifiers in terms of
accuracy and runtime on both univariate and multivariate datasets. To avoid congested

123



PETSC: pattern-based embedding for time series… 1051

Table 6 Classification error of BOP, PETSC and its variants on 19 univariate time series from the UCR

Dataset bop petsc petsc- soft petsc- disc mr- petsc

Adiac 0.403 0.398 0.391 0.420 0.375

Beef 0.367 0.360 0.287 0.373 0.287

CBF 0.033 0.026 0.014 0.019 0.017

Coffee 0.064 0.057 0.064 0.079 0.043

ECG200 0.198 0.184 0.153 0.184 0.178

FaceAll 0.252 0.257 0.240 0.265 0.225

FaceFour 0.123 0.030 0.050 0.032 0.005

Fish 0.112 0.064 0.069 0.097 0.026

GunPoint 0.027 0.076 0.028 0.059 0.063

Lightning2 0.298 0.266 0.256 0.295 0.203

Lightning7 0.466 0.301 0.356 0.332 0.266

OSULeaf 0.328 0.207 0.146 0.188 0.036

OliveOil 0.167 0.142 0.313 0.120 0.047

SwedishLeaf 0.250 0.140 0.154 0.158 0.108

SyntheticControl 0.031 0.022 0.027 0.034 0.029

Trace 0.014 0.006 0.004 0.004 0.004

TwoPatterns 0.034 0.018 0.006 0.015 0.024

Wafer 0.008 0.014 0.008 0.011 0.005

Yoga 0.178 0.217 0.205 0.219 0.188

avg. error 0.177 0.147 0.146 0.153 0.112

avg. rank 4.0 3.1 2.4 3.6 1.6

The settings with the lowest error are underlined
PETSC and its variants outperform BOP on most datasets

Table 7 Runtime in seconds of BOP, PETSC and its variants on the four largest datasets, and average and
total runtimes on all 19 univariate datasets from the UCR archive (average over 100 runs using random
search)

Dataset bop petsc petsc- soft petsc- disc mr- petsc

FaceAll 2047 1071 1279 1859 6400

TwoPatterns 6313 1272 1957 1961 4683

Wafer 1350 1076 2135 1578 3920

Yoga 1108 1709 1927 2120 10,052

avg. time 786 619 836 1065 3976

total. time 14,938 11,763 15,886 20,240 75,548

The settings with the lowest runtime are underlined
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figures and huge tables, we report a selection of comparisons here, while the complete
raw experimental results are available at our website.7

6.5.1 Comparing accuracy on univariate datasets

In this experiment we compare MR-PETSC against comparable interpretable base
learners and current state-of-the-art methods, such as HIVE-COTE, ROCKET, TS-
CHIEF and InceptionTime. Hyper-parameters for MR-PETSC were optimised using
random search with 100 iterations on a validation set. Since MR-PETSC often finds
multiple parameter settings at which the error is 0.0 on the validation set, we ran the
parameter optimisation 3 times and report the best of 3 runs thereby assuming an
Oracle. For all state-of-the-art methods we use the reported results available from the
UCR archive (Bagnall et al. 2017; Dau et al. 2018). If no data was available, we ran
experiments ourselves using sktime (Löning et al. 2019).

The results are shown in Fig. 13 where we compare the average rank ofMR-PETSC
with other methods on 85 ‘bake off’ datasets of the UCR archive using a critical differ-
ence diagram. Tests are performed with theWilcoxon signed-rank test using the Holm
correction (Demšar 2006). We see that MR-PETSC outperforms baseline methods
such DTW, BOP and SAX-VSM. MR-PETSC performs comparably to MR-SEQL,
cBOSS, BOSS, S-BOSS, ProximityForest and ResNet, but ranks significantly lower
than the current state-of-the-art methods Inceptiontime, TS-CHIEF, ROCKET and
HIVE-COTE, none of which are interpretable. In Fig. 14 we compare the accuracy of
MR-PETSCwith ROCKET, ResNET, BOSS andMR-SEQL on a subset of UCR/UEA
datasets where both methods produced results. MR-PETSC outperforms ROCKET
on 32/109 datasets (ROCKET does better on 64/109 datasets, while the others were
ties), ResNET on 42/112 datasets, BOSS on 50/112 datasets and MR-SEQL on 31/85
datasets. This shows that while ROCKET ranks significantly higher on average, MR-
PETSC still outperforms ROCKET on 29% of datasets, which is excellent for an
interpretable method. Finally, in Table 8 we report details on 19 univariate datasets
from the UCR archive. On 9 out of 19 datasets MR-PETSC reports the best results
compared to DTW, BOP, SAX-VSM and BOSS. Even with suboptimal default param-
eters MR-PETSC has an average error of 0.129 which is lower than other methods
except BOSS.

7 Full experimental results: https://bitbucket.org/len_feremans/petsc/src/master/Results.html.
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Fig. 13 Average rank of MR-PETSC compared to 13 time series classification methods on a subset of the
85 ‘bake off’ univariate datasets. A solid bar indicates there is no significant difference in rank. The top
clique of four classifiers represent the current state-of-the-art (Dau et al. 2018)

Table 8 Classification error ofMR-PETSC compared toDTW,BOP, SAX-VSMandBOSSon 19 univariate
time series from the UCR archive

Dataset mr- petsc dtw bop sax- vsm boss

Adiac 0.350 0.376 0.408 0.543 0.251

Beef 0.200 0.533 0.497 0.504 0.385

CBF 0.013 0.007 0.037 0.042 0.002

Coffee 0.000 0.214 0.056 0.062 0.011

ECG200 0.110 0.120 0.214 0.165 0.110

FaceAll 0.225 0.189 0.061 0.035 0.026

FaceFour 0.000 0.024 0.052 0.057 0.004

Fish 0.017 0.051 0.109 0.059 0.031

GunPoint 0.020 0.013 0.030 0.041 0.006

Lightning2 0.230 0.213 0.303 0.256 0.190

Lightning7 0.247 0.247 0.447 0.404 0.334

OliveOil 0.067 0.167 0.153 0.154 0.130

OSULeaf 0.029 0.248 0.300 0.140 0.033

SyntheticControl 0.020 0.023 0.074 0.131 0.032

SwedishLeaf 0.112 0.102 0.216 0.294 0.082

Trace 0.000 0.050 0.023 0.008 0.000

TwoPatterns 0.021 0.001 0.056 0.111 0.009

Wafer 0.008 0.004 0.003 0.004 0.001

Yoga 0.176 0.130 0.138 0.164 0.090

avg. error 0.097 0.142 0.167 0.167 0.090

avg. rank 2.3 3.1 3.9 4.1 1.6

The settings with the lowest error are underlined
We observe that MR-PETSC improves on both BOP and SAX-VSM and is not significantly worse than
BOSS

6.5.2 Comparing execution time on univariate datasets

In a first experiment, we compare the execution time of MR-PETSC with DTW and
BOSS. The average execution time for training and making predictions on the 19
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Fig. 14 Comparison of accuracy between MR-PETSC and 4 univariate methods. Each dot is one of the
(at most) 112 univariate datasets from the UCR/UEA repository. A dot below the diagonal line indicates
MR-PETSC is more accurate

UCR datasets is 16s for DTW, 34s for MR-PETSC and 2218s for BOSS.8 BOSS takes
minutes or hours where both MR-PETSC and DTW require seconds or minutes to
complete. DTW is overall faster, but MR-PETSC is 30% faster than DTW on the two
largest datasets consisting of a 1000 training instances, that is, on TwoPatterns and
Wafer DTW took 94s and 151s, while MR-PETSC took 69s and 107s. We remark that
our implementation is partially in Java and Python and that we do no take advantage
of low-level optimisations available in C++.

In a second experiment we ran MR-PETSC with default parameter settings on the
85 ‘bake off’ datasets of the UCR archive one by one using a single core. We compare
the total execution time of both training and testing and compare with recent state-
of-the-art methods focusing on faster training, namely ROCKET, cBOSS which is an
optimisation of BOSS, MR-SEQL, MiSTiCl, InceptionTime, Proximity Forest and
TS-CHIEF. In Table 9 we show the results. We see that ROCKET is faster since it took

8 We use the implementations available in the sktime library (Löning et al. 2019).
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Table 9 Total execution time in hours for training and predictions on all 85 ‘bake off’ UCR/UEA datasets
for MR-PETSC and state-of-the-art methods (Dempster et al. 2020)

rocket mr- petsc cBoss MiStiCl mr- seql Inception time Proximity forest ts- chief

Total time 1.4h 2.7h 19.5h 20.2h 23.7h 6d 11d 11d

The setting with the best result is shown in bold, the second best result is underlined

Fig. 15 Average rank of MR-PETSC compared to 11 time series classification methods on 26 ‘bake off’
equal-lengthmultivariate datasets. A solid bar indicates there is no significant difference in rank. In previous
studies, the state-of-the-art methods were ROCKET, HIVE-COTE, CIF and ResNet (Ruiz et al. 2021)

1.4 h to complete, while MR-PETSC took 2.7 h to complete. However, MR-PETSC
is substantially faster than other aforementioned methods.

6.5.3 Comparing accuracy onmultivariate datasets

In this experiment we compareMR-PETSCwith baseline distance-basedmethods and
current state-of-the-art multivariate time series classification methods such as HIVE-
COTE, ROCKET, CIF andResNet (Ruiz et al. 2021). For optimising hyper-parameters
for MR-PETSC we used grid search and report the best results after evaluating 27
parameter settings, w in {10, 15, 20}, α in {4, 8, 12} and rdur in {1.0, 1.1, 1.5} and
assume an Oracle that selects the best parameters settings. On large datasets we chose
default parameters. For all state-of-the-art methods we used the reported results avail-
able from Ruiz et al. (2021) or ran experiments ourselves using sktime (Löning et al.
2019) if no data was available.

The results are shown in Fig. 15 where we compare the average rank of MR-
PETSC with other methods on 26 ‘bake off’ multivariate datasets using a critical
difference diagram. We observe that MR-PETSC is ranked above the state-of-the-art
method ResNet and performs significantly better than DTWI . ROCKET is ranked
first and is significantly better than DTWI , RISE, cBOSS, TSF, DTWD and gRSF,
but not significantly better than CIF, HIVE-COTE, MR-PETSC, ResNET and STC.
In Fig. 16 we compare the accuracy of MR-PETSC with ROCKET, ResNET, DTWD

and DTWI on 26 datasets. We observe that MR-PETSC outperforms ROCKET 10/26
datasets (ROCKETdoes better on 15/26 datasets with one tie), ResNET on 16 datasets,
DTWD on 17 datasets and DTWI on 23 datasets. We conclude that our interpretable
method produces comparable results to the best-performing state-of-the-art methods,
all of which are non-interpretable.
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Fig. 16 Comparison of accuracy between MR-PETSC and 4 multivariate methods. Each dot is one of the
26 ‘bake off’ multivariate datasets. A dot below the diagonal line indicates MR-PETSC is more accurate

Table 10 shows the error on 19 multivariate datasets for both MR-PETSC and
distance-based baselines on 19 multivariate datasets. We observe that distance-based
methods work better on some datasets, e.g., on LSST the error is 1.5% lower and on
Libras the error is 4.9% lower, possibly since for these datasets |S| is quite small.
However, on 14/19 datasets the inverse is true and on ERing the error drops by more
than 80% and on EthanolConc by more than 20% compared to the best distance-based
approach. This suggests that for these datasets using whole time series distances is
less useful as a feature and there is a clear benefit in using local sequential pattern
occurrences as features. We conclude that MR-PETSC improves on distance-based
baselines on multivariate datasets and is not significantly worse than current state-
of-the-art methods. We remark that even with default parameters MR-PETSC has an
average error of 0.329 and is still on par with distance-based approaches.
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Table 10 Classification error ofMR-PETSC compared to distance-based baselinemethods 1-NNED, 1-NN
DTWI and 1-NN DTWD on 19 multivariate time series from the UCR

Dataset mr- petsc 1- nn ed 1- nn dtwI 1- nn dtwD

ArtWordRec 0.003 0.030 0.020 0.013

AtrialFibr 0.600 0.733 0.733 0.800

BasicMotions 0.000 0.325 0.000 0.025

CharTraject 0.059 0.036 0.031 0.010

Cricket 0.000 0.056 0.014 0.000

ERing 0.055 0.867 0.867 0.867

EigenWorms 0.229 0.450 0.450 0.382

Epilepsy 0.000 0.333 0.022 0.036

EthanolConc 0.445 0.707 0.696 0.677

FingerMov 0.390 0.450 0.480 0.470

HandMovDir 0.662 0.721 0.694 0.769

LSST 0.440 0.544 0.425 0.449

Libras 0.155 0.167 0.106 0.128

NATOPS 0.083 0.150 0.150 0.117

RacketSports 0.092 0.132 0.158 0.197

SelfRegSCP1 0.212 0.229 0.235 0.225

SelfRegSCP2 0.467 0.517 0.467 0.461

SWalkJump 0.600 0.800 0.667 0.800

UWaveGestLib 0.200 0.119 0.131 0.097

avg.error 0.245 0.388 0.334 0.343

avg.rank 1.5 3.1 2.5 2.4

MR-PETSC outperforms distance-based baseline methods

6.5.4 Comparing execution time onmultivariate datasets

In this experiment we compare MR-PETSC with distance-based approaches on mul-
tivariate datasets. On most of the 19 multivariate UCR datasets MR-PETSC requires
a couple of seconds or minutes and is slower than DTW if the number of instances
is low. We remark that on SelfReg(ulation)SCP1 we ran out of memory using a limit
of at most 8GB, using the hardest parameters setting during grid search, i.e. w = 15,
α = 12, rdur = 1.5 and min_len = 5. On EigenWorms MR-PETSC took about 3 h
to process 262MB of data in sktime format. EigenWorms consists of 128 instances,
but each instance consists of 6 dimensions of length 17,984. Segmenting long time
series with a small window results in large sequential databases making MR-PETSC
slower. However, since the pattern mining algorithms employ a depth-first strategy,
they are memory efficient. To validate MR-PETSC performance on large datasets we
ran it on FaceDetection (|S| = 5890, d = 144, |S| = 62, file_size = 804MB),
PEMS-SF (|S| = 267, d = 963, |S| = 144, file_size = 420MB) and MotorImagery
(|S| = 278, d = 64, |S| ≈ 1000, file_size = 537MB) and the total execution time
was respectively 1.5h, 1.8h and 7.5h using a single core. We remark that Bagnall et al.
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(2018) did not report results of DTW on EigenWorms or FaceDetection since it did
not complete in time for publication. Ruiz et al. (2021) also report missing values for
HIVE-COTE, DTWD , gRSF, RestNet, MR-SEQL and RISE due to out-of-memory
issues or failing to finish within a copious 7 day limit. We conclude that MR-PETSC
successfully scales to very large multivariate time series datasets.

7 Conclusions

PETSC leverages decades of research into pattern mining to discover long cohesive
sequential patterns. We have shown that varying length sequential patterns with gaps
are a new type of important feature in time series classification. Additionally, we
studied soft support of patterns to deal with discretisation errors and direct mining of
sequential patterns with the highest contrast. We find that MR-PETSC, that combines
PETSC on different resolutions, is the best performing variant. On univariate datasets,
MR-PETSC is more accurate than related interpretable dictionary-based methods,
such as BOP and SAX-VSM and is on a par with MR-SEQL. More importantly,
MR-PETSC achieves comparable performance to recent non-interpretable methods,
such as BOSS, cBOSS, S-BOSS, ProximityForest and ResNet, but is narrowly outper-
formed by the current state-of-the-art methods InceptionTime, TS-CHIEF, ROCKET
and HIVE-COTE, none of which are interpretable. On multivariate datasets MR-
PETSC does even better, and achieves performance that is not significantly different
than that of non-interpretable state-of-the-art such as ROCKET,CIF andHIVE-COTE.

In the design ofMR-PETSCwe use the same parameters for the SAX representation
and pattern mining in its ensemble and combine only a small number of base PETSC
learners in different resolutions (typically fewer than 10). In contrast to state-of-the-
art methods our predictions are easy to interpret, enabling us to highlight important
patterns for predicting time series or to inspect local discriminative patterns. We have
shown how our model enables instance-based decision support by visualising attri-
bution and presented a use-case where we reduce the number of patterns and enable
human oversight of our intrinsically interpretable model before making any decision.

Moreover, MR-PETSC consists of efficient algorithms to discover patterns, create
the embedding and train a linear model for making final predictions. On univariate
time series the runtime performance of MR-PETSC is slightly slower than that of
ROCKET by taking 2.7 h to complete on the 85 ‘bake off’ datasets, but still orders of
magnitude faster than BOSS, TS-CHIEF, HIVE-COTE and about 5 times faster than
cBOSS and MR-SEQL. MR-PETSC scales to large multivariate time series between
200 and 800MB where it completes training and predictions in hours using a single
core while improving on accuracy compared to baseline distance-based methods and
performing comparably to state-of-the-art in terms of accuracy.

Since PETSC builds upon patternmining, it naturally handles a large variety of time
series formats, including both univariate, multivariate and mixed-type time series of
varying length and containing missing data or non-contiguous sampling. Additionally,
the linear model and sequential patterns discovered in the time domain, allow for
predictions that are fully interpretable and explainable, which is essential in many
domains and a cause of growing concern in recent times. This is in contrast with
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existing methods with comparable accuracy and speed that rely on difficult to interpret
techniques such as random forests, SFA-based representations, deep learning or large
heterogeneous ensembles thereof. For future work wewant to investigate applications,
such as resource-constrained classification of time series from IoT devices that contain
both continuous sensor values and discrete events.
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