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Abstract

Sequence feature embedding is a challenging task due to the unstructuredness of
sequences—arbitrary strings of arbitrary length. Existing methods are efficient in
extracting short-term dependencies but typically suffer from computation issues for the
long-term. Sequence Graph Transform (SGT), a feature embedding function, that can
extract a varying amount of short- to long-term dependencies without increasing the
computation is proposed. SGT’s properties are analytically proved for interpretation
under normal and uniform distribution assumptions. SGT features yield significantly
superior results in sequence clustering and classification with higher accuracy and
lower computation as compared to the existing methods, including the state-of-the-art
sequence/string Kernels and LSTM.

Keywords Classification - Clustering - Feature extraction - Search - Sequence

1 Introduction

A sequence is an ordered series of discrete items, where each item can be a bucket
of elements. For example, {(B)(AAB){(CC)(A)}. A commonly found specific case of
sequences is when each item has only one element, e.g., {(B)(A)(A)(B)(C){(C)(A)} or
simply put BAABCCA. In this paper, a work has been done on this class of sequences
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(a.k.a strings) that we define as a series of discrete symbols sequentially tied together
in a certain order. A symbol can be an event, or a value. Such sequences are found in
processes where only one discrete event can occur at one time, such as clickstream,
music listening history, weblog, patient movements, and protein sequences.

Sequence data is omnipresent which has led to the development of various sequence
mining methods. Sequence mining research can be broadly divided into: (a) frequent
pattern or subsequence mining (Aggarwal and Han 2014), (b) motifs detection (Sandve
and Drablgs 2006), (c) alignment (Li and Homer 2010), (d) datastream modeling
(Silva et al. 2013), and (e) feature embedding (Kumar et al. 2012). Among them, fea-
ture embedding is particularly important because it provides a machine-interpretable
representation for the sequences. They can be used directly for (dis)similarity or “dis-
tance” computation between sequences or other machine learning models. A similar
approach word2vec is popular in text mining for converting text into vector embed-
dings. This enables building sequence classification and clustering models, which have
immense applications across the online industry, Bioinformatics, and healthcare.

Feature embedding is, however, challenging because (a) sequences are arbitrary
strings of arbitrary lengths, and (b) long-term dependencies (of sequence elements)
are difficult to capture. A long-term dependency here means the effect of distant
elements in a sequence on each other.

N-gram methods (also known as k-mers) are commonly used for feature representa-
tion. Several sequence kernels are developed on top of the n-grams features. Moreover,
generative parametric models, such as n-order Markov and HMM models have been
developed for sequences in which sequence features are represented by the transition
and emission probability matrices.

However, in addition to other limitations (discussed in Sect. 1.1), most of the existing
methods either limit themselves by extracting only short-term patterns or suffer from
increasing computation upon extracting the long-term patterns.

Additionally, accurately comparing sequences of different lengths is a non-trivial
problem. Traditional methods often lead to false positives. A false positive here implies
incorrectly identifying two different sequences as similar. Consider these sequences:
s1.ABC, s2. ABCABCABC, and s3. ABCDEFGHTI. Most traditional subsequence match-
ing methods will render s1 similar to both s2 and s3. However, we call similarity of
s1 and s3 a false positive because s3’s overall pattern is significantly different from
s1.

In this paper, a new sequence feature embedding function, Sequence Graph Trans-
form (SGT), that extracts the short- and long-term sequence features without any
increase in the computation has been developed. This unique property of SGT removes
the computation limitations; it enables us to tune the amount of short- to long-term
patterns that will be optimal for a given sequence problem. SGT also addresses the
issue of false positives upon comparing sequences of different lengths.

SGT embedding is a nonlinear transform of the inter-symbol distances in a
sequence. Its name is attributed to the graphical interpretation of the embedding which
shows the “association” between sequence symbols.

SGT is in a finite-dimensional feature space that can be used as a vector in most
mainstream data mining methods, such as kmeans, kNN, SVM, and Deep Learning
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architectures. Moreover, it can be used as a graph for applying graph mining methods
and interpretable visualizations.

We show that these properties have led to a significantly higher accuracy in sequence
modeling with lower computation. We theoretically prove the SGT properties, and
experimentally and practically validate its efficacy. We also show that SGT features
can be used as an embedding layer in a Feed-forward Neural Network (FNN). In our
real-world data sets, this outperformed the current state-of-the-art long- and short-term
neural network (LSTM) classifiers in both runtime and accuracy.

1.1 Related work

Sequence mining is an extensively studied problem. Several works have been done
specifically to estimate sequence similarity and feature representations for sequence
classification, clustering, etc. We categorize the literature as follows.

Alignment Sequence alignment has two broad types: global alignment (Needleman
and Wunsch 1970) and local alignment (Stoye et al. 1997). Global alignment finds
the sequence similarity between sequences over their entire length. While they work
better in pairwise sequence comparison, it becomes prohibitively time intensive on
large sequence data sets. For them, multiple sequence alignment (MSA) techniques
were developed.

Several MSA techniques accomplished global alignment (Notredame et al. 2000;
Thompson et al. 1994b). But they were ineffective when sequences have common
patterns (homologous) only over local regions. In such cases, local alignment needs
to be performed (Bailey et al. 1994; Lawrence et al. 1993; Morgenstern 1999).

In most of these methods, the computation complexity remains an issue. Dynamic
Programming (DP) has been used in the MSA techniques. Here DP suffers from
high-dimensional problems in MSA because the number of sequences is equal to the
number of dimensions. It is stated in Wang and Jiang (1994) if two or more optimal
paths are available and need to trace backward, the complexity of the backtracking
grows exponentially.

MSA is an NP-complete problem. To solve them, two types of approaches are
prevalent: exact and progressive alignment. Exact algorithms usually deliver high-
quality alignment that is very close to the optimal but applying them on most real
problems is unrealistic due to excess complexity (Lipman et al. 1989; Stoye et al.
1997). Progressive alignment is used in CLUSTAL (Thompson et al. 1994a), BLAST
(Altschul et al. 1997), FASTA (Pearson 1990), UCLUST (Edgar 2010), CD-HIT (Fu
et al. 2012), and MUSCLE (Edgar 2004). These alignment algorithms are greedy in
nature. This does not allow modification of string gaps and, hence, the alignment sim-
ilarity cannot be adjusted at a later stage. Also, a greedy algorithm can be trapped in
local minima. Another major drawback is that most progressive alignments are sensi-
tive to the initialization (the initial alignment). Moreover, most alignment algorithms
are heuristics and face these challenges. They, therefore, suffer from accuracy and
computation issues due to which sequence alignment is still under research.
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Kernels Sequence mining using string kernels has been considerably worked on. In
the current literature, kernel function has proven to be an effective method (Leslie
et al. 2004; Xing et al. 2010).

Over the last few decades, several string kernel methods have been proposed, e.g.,
Cristianini et al. (2000), Kuang et al. (2005), Leslie et al. (2001, 2004), Eskin et al.
(2003) and Smola and Vishwanathan (2003). Among them, the k-spectrum kernel
(Leslie et al. 2001), (k, m) mismatch kernel, and their variants (Eskin et al. 2003;
Leslie et al. 2004) gained popularity in the early 2000s.

These kernels decompose the original strings into sub-structures, i.e., k-mers (small
strings). They then find the count of the k-mers with up to m mismatches in the original
sequence to define a feature map. However, only the patterns of short subsequences
are captured in these methods. They fail to capture long-term patterns. To address this,
if larger k and m are taken, the feature map and the computation grows exponentially.
This makes them applicable to only small k, m, and eventually to small data sets (Wu
et al. 2019).

A thread of recent research has made valid attempts to improve the computation of
the kernel matrix, e.g., Farhan et al. (2017) and kuksa2009scalable. But these methods
only address the scalability issue in terms of the length of strings and the size of the
symbols set. The kernel matrix construction still has a quadratic complexity with
respect to the number of strings. Moreover, these methods inherit the issues of “local”
kernels, i.e., long-term dependencies are ignored.

More recently, a string kernel with random features was introduced (Wu etal. 2019).
This family of string kernels is defined through a series of different random feature
maps. They discover global long-term patterns and maintain a computation cost lin-
ear with respect to the string length and the number of string samples. This kernel
produces random string embeddings (RSE) by utilizing random feature approxima-
tions from randomly generated strings. These random strings have a short length to
reduce the computation complexity from quadratic to linear. But the approximation
for computational gain has a counter effect on the efficacy of the kernel embeddings.

Another class of kernel methods computes pairwise sequence similarity using some

global or local alignment measure, e.g., Needleman and Wunsch (1970) and Smith
and Waterman (1981). These string alignment kernels are defined using a learning
methodology R-convolution (Haussler 1999)—a framework for computing the ker-
nels between discrete objects. It works by recursively decomposing structured objects
into sub-structures and computes their global and local alignments to derive a fea-
ture map. While these methods cover both short-term (local) and long-term (global)
dependencies, they have high computation costs: quadratic in both the number and the
length of sequences.
Time-series classification Sequences are a special type of time series. A typical time
series is a sequence of observations of a continuous variable and a sequence is the
same for a discrete or categorical variable. It has been also stated in Gamboa (2017)
that any classification problem in which the data is registered taking into account some
notion of order can be cast as time series classification (TSC) problem.

TSC has been deeply studied. With the increase in temporal data, several TSC
algorithms have been proposed in the past decade, e.g., Bagnall et al. (2015). One of
the most popular and traditional TSC approaches is the use of the nearest neighbor
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(NN) classifier in conjunction with a distance function (Lines and Bagnall 2015).
Bagnall et al. (2015) showed that dynamic time warping (DTW) distance with an NN
classifier worked effectively.

Prior research in Lines and Bagnall (2015) also showed that DTW distance mea-

sure worked better than other distance measures. Some recent contributions include
ensembling methods, e.g., Bagnall et al. (2015), Hills et al. (2014), Bostrom and Bag-
nall (2017), Lines et al. (2016), Schifer (2015), Kate (2016), Deng et al. (2013) and
Baydogan et al. (2013). Regardless of the approach, they relied on an effective dis-
tance measure. And most of the distance measures faced issues related to effectively
capturing both short and long term dependencies with tractable computation.
Deep learning Deep learning-based methods have touched on a variety of problems
including sequence problems. Natural language processing and speech recognition
problems solved with deep learning architectures have a similar construct as a sequence
problem. Due to this, the methods developed for the former have been adopted in
sequence problems, e.g., in Lines et al. (2016, 2018), Bagnall et al. (2017) and Neamtu
et al. (2018).

More specifically, LSTMs in RNNs are extensively used for sequence mining prob-

lems due to its ability to learn long- and short- term sequence patterns (Graves 2013).
LSTMs are commonly used for building supervised sequence models and sequence-
to-sequence predictions (Sutskever et al. 2014). However, LSTMs and other RNNs
cannot differentiate between length sensitive and insensitive sequence problems (dis-
cussed in Sect. 1.2). The LSTM layer is also not interpretable for a visualization.
Additionally, an LSTM is computationally intensive compared to an FNN model used
with an SGT embedding (shown in Sect. 5.1).
Pattern discovery N-gram (also known as k-mers) methods and their variants (Comin
and Verzotto 2012; Didier et al. 2012) are popular approaches for pattern discovery.
However, their feature space and computation increase exponentially for long-term
dependencies. Another class of methods does frequent subsequence discovery using
apriori-like breadth-first search methods or pattern-growth depth-first search meth-
ods, e.g. GSP (Srikant and Agrawal 1996), PSP (Masseglia et al. 1998), and SPADE
(Zaki 2001). These methods, however, had a critical nontrivial computation that was
addressed by PrefixSpan (Han et al. 2001; Chiu et al. 2004), and SPAM (Ayres et al.
2002). While some of these methods are more suitable for sequences of item sets,
most of their feature representations can lead to poor accuracy.

Wang et al. (2005) extracted features from protein sequences using a 2-gram encod-
ing method and 6-letter exchange group methods to find the global similarity. They
used this with a neural network model. Some user-defined variables like len, mut,
and occur were also used to find the local similarities. Wu et al. (2006) enlarged 2-
gram encoding to an n-gram to improve the accuracy. Zainuddin and Kumar (2008)
developed a radial-based approach to reduce the computational overhead of n-gram
encoding method. Zaki et al. (2004) used a hidden Markov model to extract features
that were applied to the classifier that can train the data in high-dimensional space.
They used their features in building SVM classifiers.

Hash maps Hash maps address the high-dimensional input spaces for fixed or vari-
able length n-gram spaces by performing dimensionality reduction. They are typically
developed in Bioinformatics (Buhler 2001; Buhler and Tompa 2002; Indyk and Mot-
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wani 1998; Wesselink et al. 2002). Shi et al. (2009) used hashing to compare all
subgraph pairs on biological graphs. However, feature hashing can result in significant
loss of information, especially when hash collisions occur between highly frequent
features with significantly different class distributions. On the lines of hashing meth-
ods, Genome fingerprinting methods have been developed (Glusman et al. 2017). They
are fast and accurate. However, they are particularly built for and suitable to genome
data due to the small symbol set size and also known domain knowledge.

Generative The parametric generative methods typically make Markovian distribution
assumptions, more specifically a first-order Markov property, e.g., Cadez et al. (2003)
and Ranjan et al. (2015). However, such a distributional assumption is not always
valid. A general n-order Markov model was also proposed but not popular in practice
due to high computation. Hidden Markov model-based approaches are popular in both
bioinformatics and general sequence problems (Helske and Helske 2017; Remmert
et al. 2012). It assumes a hidden layer of latent states which results in the observed
sequence. These hidden states have a first-order Markov transition assumption that due
to the multi-layer setting, the first-order assumption is not transmitted to the observed
sequence. However, tuning HMM (finding optimal hidden states) is difficult and it is
computationally intensive.

Graph based Temporal graphs is a category of graph representations similar to SGT
defined in this paper. Temporal graphs were used for Phenotyping in Liu et al. (2015)
and Temporal Skeletonization in Liu et al. (2016). However, the definition of the devel-
oped SGT is fundamentally different from these Temporal graphs. Moreover, SGT’s
ability to capture the short- and long-term features are theoretically substantiated.
Another class of graph methods hypothesizes that sequences are generated from some
evolutionary process where a sequence is produced by reproducing complex strings
from simpler substrings, as in Siyari et al. (2016) and references therein. However, the
estimation algorithms for these methods are heuristics, sometimes greedy, and have
identifiability issues. Moreover, the evolutionary assumption may not be always true.

1.2 Research specification
1.2.1 Problem

The related methods discussed above fail to address at least one of the following
challenges: (a) capturing long-term dependencies, (b) false positives upon comparing
sequences of different lengths, and (c) domain-specific and/or computation complexity
with respect to sequence length, sample size, and the size of symbols set, where
sequence length is the total number of symbols in the sequence, sample size is the
number of sequences in the data set, and the symbols set is the set of unique symbols
that make the sequences of the data set.

We propose a new sequence feature extraction function, Sequence Graph Transform
(SGT), that addresses the above challenges and is shown to outperform existing state-
of-the-art methods in sequence data mining. SGT works by quantifying the pattern
in a sequence by scanning the positions of all symbols relative to each other. We
call it a graph transform because of its inherent property of interpretation as a graph,
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where the symbols form the nodes and a directed connection between two nodes shows
their “association.” These “associations” between all symbols represent the signature
features of a sequence.

Sequence analysis problems can be broadly divided into (a) length-sensitive:
the inherent patterns, as well as the sequence lengths, should match to render two
sequences as similar, e.g., in protein sequence clustering, and (b) length-insensitive:
the inherent patterns should be similar, irrespective of the lengths, e.g., weblog com-
parisons. In contrast with the existing literature, SGT provides a solution for both
scenarios. The advantage of this property becomes more pronounced when we have to
perform both types of analysis on the same data and implementing different methods
for each becomes cumbersome.

1.2.2 Contribution

In this paper, our major contribution is the development of a new sequence feature
embedding function: Sequence Graph Transform. SGT embedding exhibits the fol-
lowing properties,

1. Short- and long-term Captures both short and long term dependencies, i.e., both
local and global patterns. The amount of long term dependency to incorporate
can be controlled with a tuning parameter. Importantly, unlike the existing meth-
ods, enlarging the long-term dependency does not affect on SGT computation. By
removing the computation limitation, SGT embedding can be effectively tuned
based on a problem requirement.

2. Computationally tractable SGT computation complexity is linear with respect to
the number of sequences. Moreover, there are two algorithms proposed for SGT
estimation. One is selected based on which is higher between the sequence length
and alphabet set.

3. Compatibility Compatible with mainstream supervised and unsupervised learning
methods. SGT is an embedding function that converts an unstructured sequence
into a finite-dimensional vector. Mainstream learning methods, such as SVM clas-
sifier or k-means clustering, take such vectors as inputs. SGT embedding used in
conjunction with mainstream learning methods yields significantly superior results
for sequence problems.

4. Interpretability Embedded features are interpretable. Each feature in an SGT
embedding corresponds to a directional dependency between a symbol pair.
For example, SGT embedding of a sequence BAABCCA will have a fea-
ture corresponding to each 2-permutation of symbols: (A,A); (A,B);
(A,C); (B,A); (B,B); (B,C); (C,A); (C,B); (C,C).Thesym-
bol order in a feature (i, j) indicates the forward dependency from i to j: a high
value of feature indicates a high forward dependency, i.e., i is followed by a sig-
nificant amount of j’s in the sequence.

It is important to note that SGT is an embedding methodology. It is used in con-
junction with mainstream supervised and unsupervised learning methods. The source
code, data sets, and illustrative examples are provided at https://github.com/cran2367/
sgt (see “Appendix E”).
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Fig. 1 Hlustration of the “effect” X
of elements on each other A A B A B
T

1.2.3 Limitations

SGT works in most sequence problems but has the following limitations.

1. The effectiveness of SGT embedding becomes diminished if the sequence symbol
set is small. For example, in binary or DNA sequences where symbols € {0, 1} and
{a, C, G, T}, respectively. This is because the size of the embedding is proportional
to the size of the symbol set. In the above examples, the SGT embedding will be
of size 4 and 16, respectively. But if the sequence length is high, the embedding
cannot hold sufficient information that characterizes the sequence.

2. The proposed SGT algorithm applies to sequences of single element items called
as symbols. The reason is that SGT works by extracting dependencies between
items in a sequence. For this, SGT assumes an item to be unique. However, an
item is a bucket of elements—items can have common elements, e.g., the items in
{{B){AAB){(CC){A)} share elements. The proposed SGT does not draw informa-
tion from the presence of common elements in items. An extension to multi-element
item sequences is non-trivial and should be pursued in future research.

In the following, we develop SGT and provide its theoretical support. We perform
an extensive experimental evaluation and show that SGT bridges the gap between
sequence mining and mainstream data mining through direct application of fundamen-
tal methods, viz. PCA, k-means, SVM, and graph visualization via SGT on sequence
data analysis.

2 Sequence graph transform (SGT)
2.1 Overview and intuition

By definition, a sequence can be either feed-forward or bidirectional. In a feed-
forward sequence, events (symbol instances) occur in succession; e.g., in a clickstream
sequence, the click events occur one after another in a forward direction. On the other
hand, in a bidirectional sequence, the directional or chronological order of symbol
instances is not present or not important. In this paper, we present SGT for feed-
forward sequences; SGT for bidirectional sequences is given in Sect. 7.1.

For either of these sequence types, the developed SGT works on a fundamental
premise—the relative positions of symbols in a sequence characterize the sequence—
to extract the pattern features of the sequence. This premise holds for most sequence
mining problems because the similarity in sequences is often measured based on the
similarities in their pattern from the symbol positions.

Figure 1 shows an illustrative example of a feed-forward sequence. In this example,
the presence of symbol B at positions 5 and 8 should be seen in context with or as a
result of all other predecessors. To extract the sequence features, we take the relative
positions of one symbol pair at a time. For example, the relative positions for pair
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(a,B) are {(2,3),5} and {(2,3,6),8}, where the values in the position set for A are
the ones preceding B. In the SGT procedure defined and developed in the following
Sects. 2.3 and 2.4, the sequence features are shown to be extracted from these positions
information.

These extracted features are an “association” between A and B, which can be inter-
preted as a connection feature representing “A leading to B.” We should note that “A
leading to B” will be different from “B leading to A.” The associations between all
symbols in the symbol set denoted as V can be extracted similarly to obtain sequence
features in a |V|>-dimensional space.

This is similar to the Markov probabilistic models, in which the transition probabil-
ity of going from A to B is estimated. However, SGT is different because the connection
feature (1) is not a probability, and (2) takes into account all orders of the relationship
without any increase in computation.

Besides, the SGT also make it easy to visualize the sequence as a directed graph, with
sequence symbols in V as graph nodes and the edge weights equal to the directional
association between nodes. Hence, we call it a sequence graph transform. Moreover,
we show in Sect. 7.2 that under certain conditions, the SGT also allows node (symbol)
clustering.
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A high-level overview of our approach is given in Fig. 2a, b. In Fig. 2a, we show
that applying SGT on a sequence, s, yields a finite-dimensional SGT feature vec-
tor ¥®) for the sequence, also interpreted and visualized as a directed graph. For a
general sequence data analysis, SGT can be applied to each sequence in the sample
(Fig. 2b). The resulting feature vectors can be used with mainstream data mining
methods.

2.2 Notations

Suppose we have a data set of sequences denoted by S. Any sequence in the data
set, denoted by s(e S), is made of symbols in set V. A sequence can have instances
of one or many symbols from V. For example, sequences from a data set, S, made
of symbols in V = {A,B,C, D, E}(suppose) can be S = {AABAAABCC, DEEDE,
ABBDECCABB, ...}. The length of a sequence, s, denoted by, L), is equal to the
number of events (in this paper, the term “event” is used for a symbol instance) in it.
In the sequence, s; will denote the symbol at position /, where / = 1, ..., L® and
S] € V.

We extract a sequence s’s features in the form of “associations” between the sym-
bols, represented as 1//;‘2), where u, v € V, are the corresponding symbols, and ¥ is a
function of a helper function ¢. ¢, (d) is a function that takes a “distance,” d, as input,
and « as a tuning hyper-parameter.

2.3 SGT definition

As also explained in Sect. 2.1, SGT extracts the features from the relative positions
of events. A quantification for an “effect” from the relative positions of two events
in a sequence is given by ¢ (d(l, m)), where [, m are the positions of the events, and
d(l, m) is a distance measure. This quantification is an effect of the preceding event
on the later event. For example, see Fig. 3a, where u# and v are at positions / and m,
and the directed arc denotes the effect of # on v.

For developing SGT, we require the following conditions on ¢: (a) strictly greater
than 0: ¢ (d) > 0; Yk > 0, d > 0; (b) strictly decreasing with d: %qﬁk(d) < 0; and
(c) strictly decreasing with «: %q&,( d) < 0.

The first condition is to keep the extracted SGT feature, i = f(¢), easy to analyze,
and interpret. The second condition strengthens the effect of closer neighbors. The last
condition helps in tuning the procedure, allowing us to change the effect of neighbors.

There are several functions that satisfy the above conditions: e.g., Gaussian, Inverse
and Exponential. We take ¢ as an exponential function because it will yield inter-
pretable results for the SGT properties (Sect. 2.4.1) and d(I, m) = |m — [|.

Ge(d(l,m)) = e " Wi >0,d>0 (1

In a general sequence, we will have several instances of a symbol pair. For example,
see Fig. 3b, where there are five (u, v) pairs, and an arc for each pair shows an effect of
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Fig. 3 Illustration of the effect of symbols’ relative positions

u on v. Therefore, the first step is to find the number of instances of each symbol pair.
The instances of symbol pairs are stored in a |V| x V| asymmetric matrix, A. Here,
Ay will have all instances of symbol pairs (i, v), such that in each pair instance, v’s
position is after u.

A (s) ={U,m) : sp=u, s, = v,
l<m,,mel,... LW} )

After computing ¢ from each (u, v) pair instance for the sequence, we define the
“association” feature ¥, as a normalized aggregation of all instances, as shown below
in Egs. (3a) and (3b). Here, | A, | is the size of the set A,,,, which is equal to the number
of (u, v) pair instances. Eq. (3a) gives the feature expression for a length-sensitive
sequence analysis problem because it also contains the sequence length information
within it (proved with a closed-form expression under certain conditions in Sect. 2.4.1).
In Eq. (3b), the length effect is removed by normalizing | A, | with the sequence length
L) for length-insensitive problems (shown in Sect. 2.4.1).

efklmfll
Zv(l'm)lj“‘”?)” ;  lengthsensitive (3a)
S
1/fuv(s) = Z " e—l(lm—ll
l.m)€Aun () ;  lengthinsensitive (3b)

|Auv(s)|/L(S)

and ¥ (s) = [Yyy(s)], u, v € V is the SGT feature representation of sequence s.
For illustration, the SGT feature for symbol pair (A,B) in sequence in

Fig. 1 can be computed as (for k = 1 in length-sensitive SGT): Axg =
e—|m—[\

(2.5:3.5): 2.8): 3.8): (6.8)] and Yy =  MmcheCT
—15=2] 4 p—15-3] 4 p—18=2| 4 ,—I8=3] 4 ,—[8-6]
= e e e e O ) 6,

The features, ¥ ), can be either interpreted as a directed “graph,” with edge weights,
«, and nodes in V or vectorized to a |V|?-vector denoting the sequence s in the feature
space.
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Y ~ N(ug, 0f)

v
X~ N(:ull! Cra)

Fig.4 Representation of short- and long-term dependencies

2.4 SGT properties
2.4.1 Short- and long-term features

In this section, we show SGT’s property of capturing both short- and long-term
sequence pattern features. This is shown by a closed-form expression for the expecta-
tion and variance of the SGT feature, 1,,,, under some assumptions.

Assume a sequence of length L with an inherent pattern: u#,v occur closely together
within a stochastic gapas X ~ N (Uy, 05), and the intermittent stochastic gap between
the pairs as ¥ ~ N(ug, aé), such that, i, < ug (see Fig. 4). X and Y characterize
the short- and long-term patterns, respectively. Note that this assumption is only for
showing an interpretable expression and is not required in practice.

Theorem 1 The expectation and variance of SGT feature, V., has a closed-form
expression under the above assumption, which shows that it captures both short- and
long-term patterns present in a sequence in both length- sensitive and insensitive SGT
variants.

2

i3 1)/; length sensitive
ElYu] =17 2+ @
y; length insensitive

2
I L+1)/2> 7, length sensitive
pL(p

pL
var(Yy) = E

5 ©)
LT 1)/2> w;  length insensitive
pp
where,
e_/loc
y = : — ©)
— pHMB A= 7
‘(1 ‘ )[1 pL(e“f‘—n”
—2fig 1 — —2pLjig

e - e
=— |pL—e% | ——M 7
d 1 — e 208 (p ¢ ( 1 — e 208 )) M

and, flgy = Kllg — 2 a, g =KUg — 2 ﬂ’ p — constant.
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Proof Given in “Appendix A”.

As we can see in Eq. (4), the expected value of the SGT feature is proportional to
the term y . The numerator of y contains information about the short-term pattern, and
its denominator has long-term pattern information.

In Eq. (6), we can observe that if either of p, (the closeness of u and v in the
short-term) and/or pg (the closeness of u# and v in the long-term) decreases, y will
increase, and vice versa. This emphasizes two properties: (a) the SGT feature, ¥,
is affected by changes in both short- and long-term patterns, and (b) v, increases
when u, v becomes closer in the short- or long- range in the sequence, providing an
analytical connection between the observed pattern and the extracted feature. Besides,
it also proves the graph interpretation of SGT: ¥, that denotes the edge weight for
nodes « and v (in the SGT-graph) increases if closeness between u, v increases in the
sequence, meaning that the nodes become closer in the graph space (and vice versa).
Importantly, limy _, o, var(i,,) — 0 ensures feature stability.

In the length-insensitive SGT feature expectation in Eq. (4), it is straightforward to
show that it becomes independent of the sequence length as the length increases. As
sequence length, L, increases, the (1, v) SGT feature approaches a constant, given as

e P
limz 00 E[Yup] — o |1 — i .

Besides, for this limy _, o var(y,,) 1/—>L 0. Thus, the expected value of the SGT
feature becomes independent of the sequence length at a rate of inverse to the length.
In our experiments, we observe that the SGT feature approaches a length-invariant
constant when L > 30.

) 2 eflla
lim Pr{ v, = —
L—o0 P

}—>1 ®)

1—e#s|] 1/L

Furthermore, the length-sensitive SGT feature expectation in Eq. (4) contains the
sequence length, L. This shows that the SGT feature has the information of the
sequence pattern, as well as the sequence length. This enables an effective length-
sensitive sequence analysis because sequence comparisons via SGT will require both
patterns and sequence lengths to be similar.

Additionally, for either case, if the pattern variances, 03 and o2, in the above
scenario are small, k allows regulating the feature extraction: higher « reduces the
effect from long-term patterns and vice versa. O

2.4.2 Uniqueness of SGT sequence encoding

The properties discussed above play an important role in SGT’s effectiveness. Due to
these properties, unlike the methods discussed in Sect. 1.1, SGT can capture higher
orders of relationships without any increase in computation. Besides, SGT can effec-
tively find sequence features without the need for any hidden string/state(s) search.
In this section, we show an additional property of SGT useful for sequence encod-
ing while answering, is SGT feature for a sequence unique? Yes and no. Based on
Theorem 2 given below, a stack of SGTs computed for sufficiently different values of
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k will be a unique representation of a sequence. This representation can also be used
for sequence encoding.

However, in a typical sequence mining problems, we require sequences with similar
(same) patterns to be close (equal) in its feature space. This makes data separation in
clustering and boundary computation in classification easier. Therefore, stacking SGTs
is usually not required as also found in our results.

Theorem 2 A stack of SGTs for a sequence s, ¥ ) (s), k = 1,2, ... uniquely charac-
terizes the sequence.

Proof The theorem can be proved if we prove that a sequence s can be reconstructed
from SGT components W& e =0,1,..., K with probability 1 as K — oo, given
its length L.

For reconstruction, we have to find the elements present at each position, x;, [ =
I,..., L.

W gives the initialization of the number of occurrences of each paired instances
of elements u, v € V.

We solve the following system of equations where the unknowns are, x;,/ =
1, ..., L using the known WE e =1,2,...

Ze_’(lx’_x’"l =W u,vey )

Solution of this system of equations will yield multiple solutions for x;,/ =
1,2,..., L. Suppose the set of solutions after solving the system of Eq. (9) for
k=1,...,Lisc.

Since W*) k= 1,2, ... are independent (see proof in “Appendix B”), adding
another system of equations for k = K + 1 will result into a reduced set of solutions
o e la| < |o].

Therefore, by induction as K — oo, |o| — 1,1i.e. we reach a unique solution which
is the reconstructed sequence. O

SGTs can be stacked if the objective is to ensure sequences in a data set do not map
to the same representation. However, in most sequence mining problems the objective
is to identify sequences that have similar inherent patterns. To that end, only one SGT
that appropriately captures the long- and short- term patterns is usually sufficient.

3 SGT algorithm

We have devised two algorithms for SGT. The first algorithm (see Algorithm 1)
is faster for short sequences when the sequence lengths on average are significantly
smaller than the size of the symbol set, i.e., L << |V|. The second (see Algorithm 2)
is faster otherwise.

The input to the algorithms is a sequence s, a symbol set V' that makes up the
sequence, and a tuning parameter . The symbol set V can be larger than the set
of symbols present in the sequence s, i.e., V 2 {s;}, s; € s, 5; # s, Vi, j. If the
sequence s belongs to a population of sequences S, i.e., s € S, then the symbol set
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1: Input: A sequence, s € S, alphabet set, V', and .

[\

: Initialize
WO W) 0,1, and length, L <« 1.

AW

: Processing

5:fori € {l1,..., (length(s) — 1)} do

6: for j e {(i+1),...,length(s)} do
7 if length-insensitive is True then
B Wik, < Wk, /L

9: else

10: Wg))x] “~ Wg))sj +1

11: end if

12: w§f}sj < w§f,)xj +exp(—k|j — i)
13: where, s;, sj € %

14:  end for

15: L« L+1

16: end for

17: Output

(1)

1
18: Yy (s) < (%) W) = Y ()] uv eV

Algorithm 1: SGT embedding via sequence parsing.

should comprise of symbols that construct all the sequences in S, i.e., V < U{s;}, s; €
s, 8 #s;Vi, j,seS.

The algorithms are initialized with two zero square matrices W©, W) of size |V|.
Their rows and columns refer to the symbols in ), and a cell will denote a value for the
corresponding symbols (u, v). These matrices will be iteratively updated during the
SGT computation. They are expected to be sparse if the symbol set is large. Therefore, a
sparse representation of W W) can also be used for computational gains. Besides,
a length variable L is initialized to 1 and O in Algorithms 1 and 2, respectively. L
is also updated during the learning iterations and used if the SGT embedding is for a
length-insensitive problem (1f length-insensitive is True).

W® and W denote the numerator and denominator in Egs. (3a) and (3b), respec-
tively. These terms are computed differently in the two algorithms. In Algorithm 1,
the sequence s is traversed element by element in a double nested (i, j) iterations
(lines 3—4). Inside an (7, j) iteration the corresponding symbols (s;, s;) are taken

from the sequence s. For this (s;, s;) the cells WE?’)S ; and ng)v ; are incremented.
These are one-step increments for every instance of (u, v)Vu,v € Vins.

Differently, instead of traversing the sequence Algorithm 2 traverses the symbol
set V in a double nested (u, v) iterations (lines 9—11). This is computationally more
efficient for long sequences that have relatively smaller symbols set.

To facilitate this algorithm, a helper function Get SymbolPositions is defined.
It returns a {u : {position}} dictionary where u € V and {position} is the list of
indexes at which u is present in s.
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1: Input: A sequence, s € S, alphabet set, V', and .

: function GetAlphabetPositions(s, V)

: positions <« {(J}

:forveVdo

positions(v) <— {i :s; = v,i =1, ..., length(s)}
: end for

: return positions

o0

: Initialize
9: WO W) 0,1, and length, L < 0
positions <— GetAlphabetPositions(s, V).

10: Processing

11: foru € V do

12: U <« positions(u)
13:  forv e Vdo

14: V <« positions(v)

15: C—UxWT={G,j)lieU,jeV, &j>i}
16: if length-insensitive is True then

17: W)« length(C)/L

18: else

19: W,(JO{, < length(C)

20: end if

21 W)« sum(exp(—«[Ceu — C: )
22:  end for

23: L < L +length(U)

24: end for

25: Output

(1)

1
26 Yun(s) < (KL;&;) W) = W ()], wv eV

Algorithm 2: SGT embedding via alphabets parsing.

Inside a (u, v) iteration the positions of the symbols u and v are known. In line 13,
the cross product of the positions is taken such that the position of v is after . The con-
straint is for a feed-forward sequence and can be omitted for a bidirectional sequence.

The cells W,(,OL and W,(f% are then updated with the net value of the (i, j) instances
in the cross product. Unlike the update steps in Algorithm 1, the increments here are
accumulative.

The sequence length L is computed in the outer iteration loop in both the algorithms.
If the embedding is length-insensitive, W(?) is scaled by the sequence length. Finally,
the SGT embedding as the «-th root of the element-wise division of W), wo, ie.,

1
@\ ¥
<h> , is outputted.

The resulting embedding is a |V| x |V| matrix. The matrix can be used as is for
feature interpretation, visualization, or learning similar to the way an adjacency matrix
is used. The embedding is, otherwise, vectorized to a | V| * || vector and used as input
to an unsupervised or supervised learning method.
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3.1 Complexity

The initialization and post-processing steps in both algorithms are O (|V|?) for a dense
matrix implementation of the W's. However, they are sparse if L << [V|. In this case,
these steps can be computed in O (L? log |V|) or O(L?).

The processing step of Algorithm 1 has double nested iterations along the length of
a sequence with unit computations within. Its complexity is O (L?). On the other hand,
the processsing in Algorithm 2 has double nesting along the alphabets also with unit
computations therein. Therefore, a part of the computation is O (|V|?). Additionally,
the helper function GetAlphabetPositions isof order O(|V|L). Therefore, the
processing complexity is O(|V|(L + |V])). Thus, Algorithm 2 is more suitable if
L >>1|V|.

The processing computation of SGT algorithms on a data set S with n sequences will
consequently be O(nL?) and O(n|V|(L +|V))) for Algorithms 1 and 2, respectively.
However, the SGT embeddings of the sequences s € S are independent. Note that
the input to the algorithms is only one sequence s. Therefore, the embeddings can be
computed in parallel for the sequences in a data set S. It will be shown in Sect. 5.3 that
parallel computation significantly reduces the runtime by distributing the sequences
on several worker nodes and computing their embeddings simultaneously.

The size for a sequence embedding is O (|V|?) in the worst case of no sparsity. In a
worst case when every symbol u € V is present in s, each element in the embedding
will be non-zero. Otherwise, if the symbol set is large, typically only a fraction of
them are present in s. In these cases, a sparse representation of the embedding reduces
the size by a sparsity fraction r to O ((r IV)3), r € (0, 1). Therefore, although the size
is quadratic with respect to |V] it is not an impediment.

Both the time complexity and size are independent of the tuning parameter «. k
adjusts the amount of short- and long-term dependencies captured in SGT embedding
(refer to Sect. 2.4.1). The computation complexities being independent of « gives a
significant advantage to SGT. Unlike the existing methods, the short- and long-term
dependencies to include can be tuned based on the problem and not restricted by
computation limitations.

3.2 Parameter selection

SGT embedding has only one tuning parameter x. A small value of « allows longer-
term dependencies captured in the embedding and vice-versa. In the implementation
shown in this paper, k is chosen from 1, 2, ..., 10. Although fractional values can also
be taken but SGT’s performance is insensitive to minor differences in «. Therefore, «
is chosen as integers in this paper.

The optimal selection of « depends on the problem at hand. If the end objective is
building a supervised learning model, methods such as cross-validation can be used.
For unsupervised learning, any goodness-of-fit criteria can be used for the selection.
In cases of multiple parameter optimization, e.g. the number of clusters (say, n.) and
k together in clustering, we can use a random search procedure. In such a procedure,
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we randomly initialize n., compute the best k¥ based on some goodness-of-fit measure,
then fix « to find the best n., and repeat until there is no change.

4 Experimental analysis

SGT’s efficacy can be assessed based on its ability to find (dis)similarity between
sequences. Therefore, we built a sequence clustering experimental setup. Clustering
requires an accurate computation of (dis)similarity between objects and thus is a good
choice for the efficacy test.

We show the following experiments here: (a) Exp-1: length-sensitive sequence prob-
lem. (b) Exp-2: length-insensitive with non-parametric sequence pattern, (c) Exp-3:
length-insensitive with parametric sequence pattern, and (d) Exp-4: sensitivity analysis
against the sample size, symbol set size, and sequence length.

The settings for each of them are given in Table 1. The table shows the mean
and standard deviation of the lengths of the sequences generated for each simulation
in each experiment. For Exp- 1, 2, and 4, a sequence is generated from some ran-
domly simulated set of motifs (strings) of random lengths (between 2 and 8). These
motifs are randomly placed and interspersed with arbitrary strings, which is the noise
in a sequence. For experiments reproduction, details of sequence simulation are in
“Appendix D”. In Exp-3, sequences are generated for a mixture of Markov and semi-
Markov processes as presented in Ferreira and Pacheco (2005), and mixture of Hidden
Markov processes from Helske and Helske (2017). In all the experiments, k-means
clustering was applied to SGT representations of the sequences. Besides, the publicly
available implementations of the benchmark methods were used.

In Exp-1, we compared SGT with length-sensitive algorithms, viz. MUSCLE,
UCLUST, and CD-HIT, which are popular in Bioinformatics. These methods are
hierarchical in nature, and thus, they find the optimal number of clusters. For SGT-
clustering, the number of clusters is found using the procedure recommended in
Sect. 3.2.

Figure 5 shows the results, where the y-axis is the ratio of the estimated best number
of clusters, n., and the truth, n.. The x-axis shows the clustering accuracy. For a best
performing algorithm, both metrics should be close to 1. As shown in the figure, CD-
HIT and UCLUST overestimated the number of clusters by about twice and five times,
respectively. MUSCLE had a better n. estimate but had about 95% accuracy. On the
other hand, SGT could accurately estimate n. and has a 100% clustering accuracy.

In Exp-2, we compared SGT with popular and state-of-the-art sequence analy-
sis techniques, viz. n-gram, String Kernel, mixture Hidden Markov model (HMM),
Markov model (MM) and semi-Markov model (SMM)-based clustering. For n-gram,
we take n = {1, 2,3}, and their combinations. In String Kernel, the subsequence
length parameter k = 4 is taken. For these methods, we provided the known 7, to
the algorithms and report the Fl-score for accuracy. In this experiment, the clusters
are increasingly overlapped to make them difficult to separate. An overlapping cluster
implies their seed motifs set have a non-null intersection (see “Appendix D”).

Exp-2’s result in Fig. 6a shows the accuracy (F1-score) and the runtimes in Fig. 6b,
where SGT is seen to outperform all others in accuracy. MM and SMM have poorer
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Fig.7 Exp-3 results

accuracy because of the first-order Markovian assumption. HMM is found to have
comparable accuracy, but its runtime is more than six times that of SGT. String Kernel
and N-gram methods’ accuracies lie in between. Low-order n-grams have smaller
runtime than SGT but worse accuracy. Interestingly, the 1-gram method is better
when overlapping is high, showing the higher-order n-grams’ inability to distinguish
between sequences when the overlap is high.

Furthermore, we did Exp-3 to see the performance of SGT in sequence data sets
generated from the mixture of parametric distributions, viz. the mixture of HMM, MM
and SMM. The objective of this experiment is to test SGT’s efficacy on parametric data
sets against parametric methods. In addition to obtaining data sets from mixed HMM
and first-order mixed MM and SMM distributions, we also get second-order Markov
(MM2) and third-order Markov (MM3) data sets. Figure 7a shows the F1-score and
Fig. 7b has the runtimes. As expected, the mixture clustering method corresponding
to the true underlying distribution is performing the best. Note that SMM is slightly
better than MM in the MM setting because of its over-representative formulation,
i.e. a higher dimensional model to include a variable time distribution. However, the
proposed SGT’s accuracy is always close to the best. This shows SGT’s robustness
to underlying distribution and its universal applicability. And, again, its runtime is
smaller than all others.
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Fig. 10 Exp-4 sensitivity analysis: sequence length

Sensitivity analysis of SGT against the sample size, symbol set size, and sequence
length is performed in Exp-4. As shown in Table 1, the sample size, symbol set
size, and the mean of sequence lengths ranged from {100, 500, 1000}, {20, 50, 100},
and {100, 500, 1000}, respectively. The standard deviation of the sequence lengths
in this analysis was kept very small to accurately measure the effect of the length
and, therefore, not mentioned in the table. Besides, the settings for the sensitivity
analysis are not extreme values due to the computation limitation of some methods.
For example, the 3-gram method failed to yield a result for a symbol set size of 100
on the test computing system.
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The results are shown in Figs. 8, 9 and 10. As shown in the charts for the f1-
score, SGT embedding based k-means remained robust to the variations in sample
size (Fig. 8a), symbol set size (Fig. 9a), and sequence length (Fig. 10a).

Among the benchmark methods, SMM is agnostic to the sequence length because
it also more parameterization that incorporates the sequence length. Moreover, the
non-parametric n-gram based methods were better than the parametric methods for
varying symbol set size expect higher n-gram inability to yield results in tractable time
for high feature space.

Besides, while SGT’s performance with the sample size was unaffected, the other
methods improved with more samples. The runtime comparison shows that SGT
embedding runtime although increases in each variation, is significantly lower than the
benchmark methods. Non-parametric methods generally have lower runtime because
the time-intensive feature estimation occurs only once. On the other hand, the iterative
EM algorithm based estimation in the parametric methods re-computes the features
at every iteration.

5 Applications on real data

The sequence mining problem can be broadly categorized as classification, clustering,
and search. In the following, real-world examples for each of them are presented.
Performance comparisons! with state-of-the-art methods including deep learning is
made on the labeled data in sequence classification. Sequence clustering demonstrated
an application for unsupervised learning. Moreover, a sequence search is demonstrated
using the parallel computation capability with SGT. The implementation steps are
available at https://github.com/cran2367/sgt.

5.1 Sequence classification

Here we perform classification on (a) protein sequences” having either of two known
functions, which act as the labels, and (b) network intrusion data> containing audit
logs and any attack as a positive label.

The data set details are in Table 2. For both problems, we use the length-sensitive
SGT. For proteins, it is due to their nature, while for network logs, the lengths are
important because sequences with similar patterns but different lengths can have dif-
ferent labels. Consider a simple example of two sessions: {login, pswd, login,
pswd, ... } and {login, pswd, ... (repeated several times)..., login, pswd}.
While the first session can be a regular user mistyping the password once, the other
session is possibly an attack to guess the password. Thus, the sequence lengths are as
important as the patterns.

1 Unless otherwise mentioned, the analyses are done on 2.2 GHz Quad-Core Intel Core i7 16 GB 1600
MHz DDR3 machine.

2 https://www.uniprot.org.
3 https://www.ll.mit.edu/ideval/data/1998data.html.
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Table 2 Data set attributes

Attribute Protein Network
Sample size 2113 115

Sequence length range (289, 300) (12, 1773)
Class distribution 46.4%+ 11.3%+
Symbol set size 20 (amino acids) 49 (log events)
Table 3 Classification accuracy (F1-score) results

SVM On'{yprr)lein; Ynetwork } Protein (%) Network (%)
SGT{0.0014; 0.1} 99.61,x =1 89.65,x = 10
2-gram{0.0025; 0.00041} 93.87 63.12
3-gram{0.00012; 8.4¢ — 6} 95.12 49.09

1 +2-2{0.0012; 0.0004} 94.34 64.39
1+2+3-g{4.0e — 5;8.2¢ — 6} 96.89 49.74

String kernel (Kuksa et al. 2009) 97.63 52.36

Fast kernel (Farhan et al. 2017) 94.66 41.76
Random features kernel (Wu et al. 2019) 96.18 55.24

Bold value shows the best performance

Table 4 Deep learning

Setting F1-score Runtime (s)
(a) Protein data

LSTM-1 hidden layer- LSTM(32) 0.997 272
LSTM-2 hidden layer- LSTM(32), LSTM(16) 1.000 415

FNN-1 hidden layer- Dense, Relu(16) 1.000 10

FNN-2 hidden layer- Dense, Relu(32), Relu(16) 1.000 11

(b) Network data

LSTM-1 hidden layer- LSTM(128) 0.353 467
LSTM-2 hidden layer- LSTM(64), LSTM(32) 0.502 822

FNN-1 hidden layer- Dense, Relu(128) 0.663 23

FNN-2 hidden layer- Dense, Relu(64), Relu(32) 0.563 22

For the network intrusion data, the sparsity of SGTs was high. Therefore, we per-
formed principal component analysis (PCA) on it and kept the top 10 PCs as sequence
features. We call it SGT-PC, for further modeling. For proteins, the SGTs are used
directly. SVM classifier is trained on n-grams with an RBF kernel, cost parameter
set to 1, and on current state-of-the-art String Kernels (Kuksa et al. 2009), its faster
approximate improvement by Farhan et al. (2017) (the k-mer and mismatch lengths are
setto 5 and 2, respectively), and a recently developed state-of-the-art Random Features
Kernel (Wu et al. 2019). Table 3 reports the average test accuracy (F1-score) from a
ten- and five-fold cross-validation for the protein and network data, respectively.
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As we can see in Table 3, the F1-scores are high for all methods in the protein data,
with SGT-based SVM surpassing all others. On the other hand, the accuracies are
small for the network intrusion data. This is primarily due to (a) a small data set but
high dimension (related to the symbol set size), leading to a weak predictive ability of
models, and (b) a few positive class examples (unbalanced data) causing a poor recall
rate. Still, SGT outperforms other methods by a significant margin.

Furthermore, LSTM models in Deep Learning are state-of-the-art for sequence
classification. We compare it with a regular FNN Deep Learning models (an MLP,
specifically) in which the SGT features are used as embedding layer. For learning, we
use binary cross-entropy loss function and adam optimizer. Tensorflow is used for the
implementations.

Table 4a, b shows the results. The accuracies (F1-scores) in the Protein data is close
to 1 for all models. SGT powered FNN is only marginally better in accuracy, however,
its runtime is a fraction of LSTM’s runtime. In the network data, the accuracies are
lower for LSTM models. This can be because, (a) it is a length sensitive sequence
problem, (b) the sequence lengths vary significantly. LSTMs may not capture the
differences due to lengths. Also, LSTMs pad all sequences to become equal lengths,
which may not work as effectively if the differences in lengths are significantly high
(LSTMs still performed well on protein data because the difference in the lengths is
quite small). On the other hand, the FNN worked reasonably better. Its accuracy is
higher than SVM on the other methods but smaller than SVM on SGT. This can be due
to a small data set which makes the model training more difficult for a deep learning
model. For the same reason, a single layer FNN worked better than two-layer.

5.2 Sequence clustering

We perform clustering user activity on the web (weblog sequences) to understand user
behavior.

We took users’ navigation data (weblogs) on msnbc.com® collected during a 24-h
period. The symbols of these sequences are the events corresponding to a user’s page
request, e.g. frontpage, tech, etc. There are a total of 12 types of events (|)| =
12). The data set has a random sample of 100,000 sequences. The sequences’ average
length and standard deviation is (6.9, 27.3), with the range between (2, 7440) and
skewed distribution.

Our objective is to cluster the users with similar navigation patterns, irrespective of
differences in their session lengths. We, therefore, take the length-insensitive SGT and
use the random search procedure for optimal clustering in Sect. 3.2. We performed k-
means clustering and the goodness-of-fit criterion as db-index and found the optimality
fork = 9atn, = 104, which s close to the result in Cadez et al. (2003). The frequency
distribution (Fig. 11) of the number of members in each cluster has a long-tail—the
majority of users belong to a small set of clusters.

Additionally, SGT enables a visual interpretation of the clusters. In Fig. 12a, b, we
show a graph visualization of some clusters’ centroids (which are in the SGT space),
a representative of a behavior.

4 http://archive.ics.uci.edu/ml/datasets/msnbc.com+anonymous+web+data.
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Fig. 11 Clustering
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Fig. 12 Graphical visualization of cluster centroids
Table 5 Parallel computing cluster specifications
Parallel computing cluster Specification
Driver type r4.xlarge
30.5 GB memory, 4 cores, | DBU
Worker type r4.xlarge

30.5 GB memory, 4 cores, | DBU
Min workers: 2

Max workers: 24

5.3 Parallel computation and sequence search

Typically sequence databases found in the real world are quite large. For example,
protein databases have millions of sequences and increasing. Here we show that SGT
sequence features can lead to a fast and accurate sequence search. More specifically,
we will utilize parallel computation capability possible with SGT.

We collected a sample of 10k and 1M protein sequences from the UniProtKB
database on www.uniprot.org. First, we ran a benchmark test for runtime comparison.
We computed the SGT embeddings for the two data set with the default mode and
parallel computation mode. In the default mode, the embeddings are computed one-
by-one. Therefore, the computation will be proportional to the sample size.

In the parallel computation mode, a data set is partitioned into smaller chunks and
distributed over several worker nodes. The embeddings are computed in parallel on
these worker nodes. Depending on the number of worker nodes and their capacity, the
data set can be repartitioned to more chunks and the overall runtime can be reduced.
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Table 6 Parallel computation runtime comparison

Sample size Default mode runtime Parallel computation runtime (repartitions)

10k 13.50 min 31.2 5 (500)

1 million 24+h 28.96 min (10k)

Table 7 Protein search query ]

(AOA2TOPYED) result SGT BLAST CLUSTAL-Omega
KO0ZGNS V5XH98 V5XH98
AOAO0Y1CPH7 AOAS45TVAL KOK3L7
AOA5RSLCJ1 KOK3L7 AO0AS545TVAL
KOK3L7 AOA1I1B4Y2 AOA3SOHQH6
AOAONOIISD1 AOAONIISD1 AOAONIISD1

The specifications of the parallel computing cluster are shown in Table 5. The
cluster was hosted on AWS. The driver and worker nodes were r4 .xlarge.)

The runtimes for SGT embedding computation are presented in Table 6. As shown
in the table, the runtime for 10k data set reduced from 13.5 min under the default mode
to about 30 s with parallel computation. In this run, the data set was partitioned into
500 chunks. The runtime reduction is more significant for the 1 Million data set. In
this case, the data set was partitioned into 10k chunks and the runtime reduced from
more than 24 h to less than 30 min.

The embeddings are then stored and a sequence query search is performed. A
protein sequence (id: AOA2TOPYEOQ) is arbitrarily chosen. The objective is to find
protein sequences similar to AOA2TOPYEQ in the data set.

At this stage, the embeddings of the database sequences are known. To search
sequences similar to the query we compute the embedding for the query
AOA2TOPYEOQ.® The dot product of the query embedding with the embeddings in
the database is computed. A dot product is a measure of the similarity. Among the
various choices of similarity measure, the dot product is chosen here because it is
computationally faster with embeddings.

The sequences with large dot products will have high similarity with the query. The
top five similar protein sequences from the data set are shown in Table 7. The top five

5 The configurations details of r4.xlarge is available here https://docs.aws.amazon.com/AWSEC2/
latest/UserGuide/memory-optimized-instances.html.

6ThepnndnsummmeofAOAZTOPYEOm,MSAAADRPTVEISTDFYSLDALMALVDEPPRL
ALAPEVAERIDAGARYVERIAPQDRHIY GINTGFGPLCETRIPADRMSELQHKHL
VSHACGVGEPVPERVSRLAMLVKLLTFRAGYSG ISLEAVQRVLDLWNADVIPVVPKKGT
VGASGDLAPLAHLALPLIGLGKVRVDGRITDAGA VLEAMGWKPLRLKPKEG
LALTNGVQYINALALDSVLRSERLIKAADLIAGLSIQGFSCAD TFYQPILHAT
SLHPERSAVAGNLVRLLDGSNHHTLPQGNAAREDPYSFRCAPQVHAAVRQ TCGFA
RDIVGRECNSVSDNPLFFPEHDQVILGGNLHGESTAFALDFLAIAMSELANISER RTY
QLLSGQHGLPDFLAPEPGVDSGLMIPQYTSAALVNENKVLATPASIDTIPTSQLQED HVSMGGT
SAYKLWTILDNCEYVLAVELMTAVQAIDLNQGLRPSPATRGVVAEFRQEVGFL REDRLQADDIEKSRRYL
RGRLRTWAKDLD
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A B C A B C
A J ! A ! ! L
$1: ABCABC (6] 0.05 0.12 007k 018
B 014 005 B 019  0.070 k)
C 0.14  0.05 C OEE] 019 0.07
A B C A B C
52:ABCABCABCABCABCABCABCABC A 0.04 009 A 0.07 0.19
ABCABCABC (33) B 0.10  0.04 B 019 007
C 010 004 C k| 019 007
$3:ABCABCABCABCABCABCABCABC A B C A B c
ABCABCABCABCABCABCABCABCAB A 0.03 008 A 0.07 0.19
CABCABCABCABCABCABCABCABCA B 008  0.03 B B

BCABCABCABCABCABCABCABC (99)
C 008 003 C 019 007

Fig. 13 Effect of sequence length on SGT features (k = 5)

for the commonly used protein search methods BLAST and CLUSTAL-Omega are
also shown for reference.

Only two of the five SGT search results match with BLAST and CLUSTAL-Omega
while the result of the latter two are more similar. This is expected because both the
latter methods are alignment based. On the other hand, SGT looks for similarity in the
distribution of sequence symbol positions. Such a distribution similarity based search
is quite applicable on user data, e.g., for behavioral analysis as presented in Sect. 5.2.7

The search operation can be further improved with respect to accuracy and speed
by applying a dimension reduction using methods like PCA and performing the dot
product on the reduced dimension.

6 Discussion: why does SGT work better?
6.1 Ability to work in length- sensitive and insensitive problems

We discussed SGT’s length- sensitive and insensitive variants in Sects. 2.3 and
2.4.1. Here we show SGT’s ability to work in both with a real example. Consider the
three sequences, s1, s2, and 53, in Fig. 13. The sequences are of lengths 6, 33, and 99,
respectively. Their inherent pattern is {A, B, C} occurring in succession.

We find their SGT features for both length- sensitive and insensitive variants. We
show the SGT features as adjacency matrices in Fig. 13. We will first look at the length
insensitive column. We notice that the SGT features s1 and s2 are quite close. And
as the sequence lengths increased the SGT features approached a constant value. This
can be noted from the length-insensitive SGT features of s2 and s3 which are the same
up to two decimals.

7 Essentially, SGT-based search could be used for problems where distribution-based methods like Markov
or Hidden Markov model are used as opposed to alignment.
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Table 8 SGT accounting for mismatches (k = 5)

Sequences comparison Norm-1 difference
ABCABC versus ABCABCABCABCABCABC 0.001
ABCABC versus ABCABCDEFGHIJKLMNO 5.880

On the other hand, in the length-sensitive case, the SGT features keep changing as
the length changes. Note that the features reduce consistently as the length increases.
This is because, as shown in Theorem 1, the expectation of the length-sensitive SGT
features reduce with length. To avoid the features from approaching zero (for high
lengths), we can tune the hyperparameter « .

This example reinstates that SGT can effectively take into account the length-
sensitivity and insensitivity. Moreover, the features derived from the SGT algorithm
in Fig. 13 are approximately equal to the value computed from Eq. (4) confirming the
theoretical interpretations in Sect. 2.4.1.

The sequences in this example were noise-free. However, SGT is robust to noise
which we will discuss in Sect. 6.3.

6.2 Avoids false positives by inherently accounting for mismatches

In this paper, a false positive is defined as identifying two sequences of different
lengths as similar if the smaller sequence is a subsequence of or locally aligns with the
longer sequence. Avoiding false positives is a nontrivial challenge in length-insensitive
sequence problems. For example, N-gram methods can often lead to such false posi-
tives. To address this, mismatch Kernels were developed (Eskin et al. 2003). However,
these methods require additional computations for the mismatches or substitutions.
On the other hand, SGT inherently accounts for the mismatches.

Consider a small sequence ABCABC and compare it with ABCABCABCABCABCABC
and ABCABCDEFGHIJKLMNO. Ideally, we require ABCABC to match with the former
but not the latter. As shown in Table 8, SGT feature comparisons achieve this and,
thus, avoids a false positive.

6.3 Robust to noise

To explain SGT’s robustness to noise we will draw parallels with Markov Model.
Compare SGT with a first-order Markov model. Suppose we are analyzing sequences
in which “B occurs closely after A.”” Due to stochasticity, the observed sequences can
be like: (a) ABCDEAB, and (b) ABCDEAXB, where (b) is same as (a) but a noise X,
appearing in between A and B. While their transition probabilities P(A — B) in
sequence (a) and (b) in a Markov model is significantly different (a:1.00 and b:0.50),
SGT is robust to such noises. The SGT feature for (A,B) for length- sensitive and
insensitive scenarios are (a: 0.50 and b: 0.45), and (a: 0.34 and b: 0.30), respectively,
for k = 5. As shown in Fig. 14, the percentage change in the SGT feature for (2, B),
in the above case, is smaller than the Markov and decreases with increasing k. It also
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Fig. 14 Percentage changein [ o------
SGT feature for (2,B) with « in
the presence of noise
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shows that we can easily regulate the effect of such stochasticity by changing «: choose
a high « to reduce the noise effect, with a caution that sometimes the interspersed
symbols may not be noise but part of the sequence’s pattern (thus, we should not set
k as a high value without a validation). Furthermore, a Markov model cannot easily
distinguish between these two sequences: ABCDEAB and ABCDEFGHIJAB, from the
(a,B) transition probabilities (=1 for both). Differently, the SGT feature for (A&,B)
changes from 1.72 to 2.94 (x = 1), because it looks at the overall pattern.

7 SGT extensions
7.1 SGT for bidirectional sequences

As also mentioned in Sect. 2.1, in a bidirectional sequence the chronological order of
events does not matter, e.g. proteins. This is also the case with weblog data, such as
music listening history, where sometimes we want to understand the tracks that were
listened together and not the order in which they were played.

SGT for bidirectional sequences can be computed by just changing the definition
of A,y (s) in Eq. (2) to,

Au(s) ={U,m) 2 51 = u, 53 = v,
I,mel,...,L®)} (10)

Below we show that under the assumption—all the symbols are present in a
sequence with a uniform probability—, the bidirectional SGT features can be approx-
imated directly from the directed.

We can write Eq. (10) as,

A ) ={U,m): si=u,sm=v,l,mel,... LY}
={(,m) : s1=u,sm=v,l<m,l,me1,...,L(S)}
HA,m): s =u,spm=v,l>ml,mel,... LY}
= AMU(S)+AZU(S)
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TUT VT W= Yuw
X l/)uv

(a) u,v are closer than
U, w. (b) SGT’s Graph

view.

Fig. 15 Illustrative example for symbol clustering

Therefore, the SGT for the bidirectional sequence in Eq. (3a) can be expressed as,

Zv(z,m)e/iw(s) e (d(l, m))
| A (5)]
D ovtmyeAu(s) D@ m) 4+ 3 v et (s) P (d(l, m))
| Auw ()] + 1AL (5)]
1AW (8) + 1AL, ()9, (5)
a | Auwv ()] + AT, (5)]

tI}Lw(s) =

Under the above assumption,
Aun($) ~ Ay (s) (1D
Therefore, the bidirectional SGT features can be approximated as

. w4yl
WN_7T_ (12)

7.2 SGT for symbol clustering

Node clustering in graphs is a classical problem solved by various techniques,
including spectral clustering, graph partitioning, and others. SGT’s graph interpreta-
tion facilitates grouping of symbols that occur closely via any of these node clustering
methods.

This is because SGT gives larger weights to the edges, ¥, , corresponding to symbol
pairs that occur closely. For instance, consider a sequence in Fig. 15a, in which v occurs
closer to u than w, also implying E[X] < E[Y]. Therefore, in this sequence’s SGT,
the edge weight for u— v should be greater than for u—w, i.e. ¥, > VY.

From the assumption in Sect. 2.4.1, we will have, E[| Ayy|] = E[| Ayw]]. Therefore,
Yuy < E[¢(X)] and ¥,y < E[¢p(Y)], and due to Condition b on ¢ given in Sect. 2.3,
if E[X] < E[Y], then E[Yu,] > E[Yuwl.

Moreover, for an effective clustering, it is important to bring the “closer”” symbols
in the sequence more close in the graph space. In the SGT’s graph interpretation, it
implies that 1,,, should go as high as possible to bring v closer to u in the graph and
vice versa for (u, w). Thus, effectively, A = E[v¥,, — ¥uy] should be increased. It

@ Springer



Sequence graph transform 699

Fig. 16 Node clustering P
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is proved in “Appendix B” that A will increase with «, if kd > 1, Vd, where we have
deN.

In effect, SGT enables the clustering of associated symbols. This has real-world
applications, such as finding the webpages (or products) that are viewed (or bought)
together.

7.2.1 Validation

We validated the efficacy of the SGT extension given above (Sects. 7.1, 7.2) in another
experiment presented here. Our main aim in this validation is to perform symbol
clustering assuming the sequences are bidirectional. We set up a test experiment such
that across different sequence clusters some symbols occur closer to each other. We
create a data set that has sequences from three clusters and symbols belonging to two
clusters (symbols A-H in one cluster and I-P in another). The mean and standard
deviation of the simulated sequence lengths is (103.9, 33.6). The noise is at 30-50%
and the number of underlying sequence clusters is equal to three.

This emulates a biclustering scenario in which sequences in different clusters have
distinct patterns; however, the pattern of closely occurring symbols is common across
all sequences. This is a complex scenario in which clustering both sequences and
symbols can be challenging.

Upon clustering the sequences, the F1-score is found to be 1.0. For symbol clus-
tering, we applied spectral clustering on the aggregated SGT of all sequences, which
yielded an accurate result with only one symbol as mis-clustered. Moreover, a heat
map in Fig. 16 clearly shows that symbols within the same underlying clusters have
significantly higher associations. Thus, it validates that SGT can accurately cluster
symbols along with clustering the sequences.

8 Conclusion

SGT is found to yield superior accuracy over other methods in sequence mining. This
can be attributed to SGT (a) effectively capturing short- and long-term patterns in both
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length- sensitive and insensitive problems, (b) it inherently accounts for sequence mis-
matches to avoid false positives, and, (c) itis robust to noise in sequence patterns. These
attributes are discussed in detail in Sects. 6.1-6.3. Moreover, SGT has significantly
lower runtimes due to its computational efficiency and is also easy to implement. It
can be further improved by implementing a sparse data structure for the W matrices in
the algorithms. In addition to the above-mentioned applications, SGT can also be used
for: (a) element (symbol) clustering, (b) sequence database search, and (c) sequence
encoding, shown in the Applications section.

Besides, some preliminary work shows the possibility of a 2-D SGT applicable to
image data allowing invariance to orientation. Moreover, other choices for the function
¢, such as Gaussian, or addition of a skip parameter r (for addressing lag effects), for
example, e ¥ M (@=7.0) "and application of concatenated (stacked) SGT features for
different ¥ may be taken as future research. Furthermore, a formal approach for «
selection can be developed.

Appendices
A Mean and variance of Y,

Consider an arbitrary sequence s, where the sequence has an ordered list of sym-
bols. These symbols belong to a finite set V. SGT embedding works by finding the
dependencies between every pair of symbols (u, v); u, v € V.

To easily denote various (u, v) pairs in s, we use a term, mth neighboring pair,
where an mth neighbor pair for (u, v) will have m — 1 other u’s in between. A first
neighbor is thus the immediate («, v) neighboring pairs, while the 2nd-neighbor has
one other u in between, and so on (see Fig. 4 for illustration). The immediate neighbor
mentioned in the assumption in Sect. 2.4.1 is the same as the first neighbor defined
here.

Based on the sequence patterns assumption in Sect. 2.4.1 and assuming u, v occur
uniformly in the sequence with probability p, the expected number of first-neighbor
(u, v) pairs is given as M = pL. Consequently, it is easy to show that the expected
number of mth neighboring (u, v) pairs is (M —m + 1), i.e., the second neighboring
(u, v) pairs will be (M — 1), (M — 2) for the third, so on and so forth, till one
instance for the Mth neighbor. The gap distance for an mth neighbor is given as
Z1=X;Zp=X+Y",Yim=2,...,M.

Besides, the total number of (u, v) pair instances will be Zf‘le m = W(z
| A,y |, by definition). Suppose we define a set that contains distances for each possible
(u, v) pairs as Z = {an,i =1,....\M—m+1);m = 1,..., M}. Also, since
Zy ~ N(ug+m—1)ug, cr‘f—i—(m — 1)05), ¢ (Z,,) becomes alognormal distribution.
Thus,

Elpe(Zn)] = e Ha=(m=Ditp (13)

var(gy (Z)] = e~ e 200D o 22Dty (14)

@ Springer



Sequence graph transform 701

where,

2

- K ~
ua=wa—70§;ufx=wa—l<20§

~ i 2.~/ 2.2

fp =K — =0f: jlg =K = K 0p (15)

Besides, the feature, ¥,,, in Eq. (3a) can be expressed and further derived using
Sect. A.1 as,

MM +1)/2
Zr];[:l(M — (m — 1))g_/1a_(m—l)ﬂﬁ
MM +1)/2
2 e—fia

Y ] | — o—PLits
(1)1 e
pL(et*f — 1)

14

E[wuv] =

(16)

This yields to the expectation expression in Eq. (4). Besides, the variances will be

1 2 o2
var = — (pL
(Yuv) SLpLT1))2 [ (p
_211/ 1 — €_2pLﬂ/ﬂ
—e il ——
1 — e 2
—2fiy 5 — e~ 2pLiig
1 — e 2 1 — e 2

e

I ’ -
—— | m; length sensitive
pL(pL +1)/2

var(Yy) =

((Tl)ﬂ) m;  length insensitive
p(p

A.1 Arithmetico-geometric series

The sum of a series, where the kth term for kK > 1 can be expressed as,
i = (a + (k — Dd) br*=!
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is called an arithmetico-geometric because of a combination of arithmetic series
term (a+ (k—1)d), where a is the initial term and common difference d, and geometric
br¥=! where b is the initial value and common ratio being r.

Suppose the sum of the series till n terms is denoted as,

Sp=_(a+ (k- d)br*" (17)
k=1

Without loss of generality we can assume b = 1 for deriving the expression for S,
(the sum for any other value of » can be easily obtained by multiplying the expression
for S, with b). Expanding Eq. (17),

Sn :a—1—(a—1—d)r+...—+—(a—f—(n—1)d)r"_1 (18)
Now multiplying S,, with r,
rSp =ar+ @+dr*+...+ @+ (n — Hd)yr" (19)

Subtracting Eq. (19) from (18), if |r| < 1, else we subtract the latter from the
former, we get,

(1= 1)S,| = [a Fdtd)r ..+ (¢+Md)r”_1]

ot G+ @ D]

=la+dr+r*+...+r" Y =@+ mn-Ddr"

dr(1 —r*!
= a—l—u—(a—l—(n—l)d)r" .
1—r
Therefore,
1 dr(l1—r"7h
S, = a+ —(a+m—-Dd)r" (20)
1—r 1—r
or, for any value of b,
1 dr(l —r"1)
S, =b a—+ —(a+ m—Dd)r" 21
1—r 1—r
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B W® independent with respect to k
Proof We have W) = [W,f'f,)], u,v €V where

W(K) — Z e—K|m—” (22)

uv
Y(,m)eAyuy(s)

To prove the independence of W) with respect to «, we need to show wb(f) min

) . .
wL(er ) where W,. is a column in W.

Without loss of generality assume A, (s) = 1 and replacing |m — | with x, x > 0

in Eq. (22) the column w,. for k and k +8 will be, w') = [e=**Jand w( T = [¢*¥]
wherei =1,...,|V|.
W,(f) and W,(,'fH) will be dependent iff there is a nontrivial solution for a, b in
Eq. (23).
aw' — pwt) =0 (23)

Solving this for @ and b by taking any element i in w,..

() (k+8)
aw,;” —bw,; =0
= ae N — pe~ TN —
= e (g —be %) =0

Since e % £ 0, we have a = be %%, Plugging this in the equation for another
element j in w,. we get,
awl(l';) — bw,i';.H) =0
— be—éxie—KXj _ be—(K+6)xj =0
= be (e —eT) =0

Since e~ £ ¢73%iVi, j, and e **i # 0 we have b = 0. Consequently, a = 0.
Therefore, Eq. (23) has a trivial solution a, b = 0. Thus, wf,'f) is independent with

respect to x implying independence of W), O
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Seed motifs

"LDRWZXIG" " " "HXCDI" "TBHTO" " " "PYOYAVLG" "IJu" “XPRY" "

Sequence

FU MGBDR HZALDRWZXIGASFPSGALDRWZXIGZQIHPYOYAVLGYRSHXCDIFFIK

HXCDILWTVPYOYAVLGXWG QGNRCLDRWZXIGIVWYK OHJIW UXVUPZ
FEOJPYFA JJGBLXPYOYAVLGMPHYDDRTBHTODLJIDIH IF R

SKMPCTBHTOOMAXFTBHTO

Fig. 17 A simulated sequence from seed motifs

Cluster A motifs
e W WRKHDEV" "KFCN™ " " UNSZYRIY" "GNVZD" "MITD" "XMCGFA" "VX"  "XHTWR”

Cluster B motifs
nEt W WRKHDEV" "KFCN" " " "OHZVQJ" "NDFFU" "SHXVQB" "FM"

Fig. 18 Motif sets of overlapping clusters

C Proof for symbol clustering

d
Wehave, 52 = ——El$c(X) = (V)] = Elg: ¢ (X) = ¢ (V)] For E[X] < E[Y],

3
we want, 22 > 0,in turn, 2 ¢, (X) > aq&,((Y).This will hold if %q&x (d) > 0, that

is, slope, %qbk (d) is increasing with d. For an exponential expression for ¢ (Eq. 1), the
above condition holds true if kd > 1. Hence, under these conditions, the separation
increases as we increase the tuning parameter, « .

D Sequence simulation

In this section, we explain the sequence generation for Exp 1-2 in Sect. 4.

A sequence is generated by randomly selecting a string from the motif set and
placing them in random order between arbitrary strings. These interspersed arbitrary
symbols are the noise in a sequence. Figure 17 shows an example of a sequence
generated from a set of seed motifs. About 50% of the sequence is noise—arbitrary
strings. Note that due to the random motif selection, a simulated sequence does not
necessarily contain all seed motifs.

Generating sequence clusters

Suppose we have to generate K sequence clusters. We first randomly simulate K
sets of motifs. In each set, the motifs are of random lengths (between 2 and 8 in our
simulations). The size of a set is also randomly chosen (between 6 and 11 in this
paper). Sequences are then generated from each motif set as described above.

@ Springer



Sequence graph transform 705

What are overlapping clusters?

In our experiments, we have to test the efficacy of clustering methods when the clusters
are difficult to separate. This is the case when the clusters overlap. In traditional
multidimensional data in Euclidean space, it means the centroids of the clusters are
close. In our problem, overlapping clusters imply that they have some common seed
motifs. In other words, the intersection of the clusters’ motif sets is not null. Thus, 0%
overlap implies the intersection of motif sets is null, and a 100% overlap implies the
intersection is equal to the union. Figure 18 shows an example of overlapping motif
sets of two clusters.

E Code repository and data sets

The source code and data sets are available on GitHub as https://github.com/cran2367/
sgt. Its python package is also provided at https://pypi.org/project/sgt/.
The python package can be installed as follows.

$ pip install sgt
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