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Abstract
k-core is important in many graph mining applications, such as community detec-
tion and clique finding. As one generalized concept of k-core, (i, j)-core is more
suited for bipartite graph analysis since it can identify the functions of two differ-
ent types of vertices. Because (i, j)-cores evolve as edges are inserted into (removed
from) a dynamic bipartite graph, it is more economical to maintain them rather than
decompose the graph recursively when only a few edges change. Moreover, many
applications (e.g., graph visualization) only focus on some dense (i, j)-cores. Exist-
ing solutions are simply insufficiently adaptable. They must maintain all (i, j)-cores
rather than just a subset of them, which requires more effort. To solve this issue, we
propose novel maintenance methods for updating expected (i, j)-cores. To estimate
the influence scope of inserted (removed) edges, we first construct quasi-(i, j)-cores,
which loosen the constraint of (i, j)-cores but have similar properties. Second, we
present a bottom-up approach for efficiently maintaining all (i, j)-cores, from sparse
to dense. Thirdly, because certain applications only focus on dense (i, j)-cores of
top-n layers, we also propose a top-down approach to maintain (i, j)-cores from
dense to sparse. Finally, we conduct extensive experiments to validate the efficiency
of proposed approaches. Experimental results show that our maintenance solutions
outperform existing approaches by one order of magnitude.
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1 Introduction

In numerous graph mining applications, one key goal is to discover the k-core (Cheng
et al. 2011; Khaouid et al. 2015; Montresor et al. 2011) of a given graph, which is the
largest subgraph such that every vertex has at least degree k within the subgraph. The
k-core is widely used in a variety of applications, including community evaluation
(Giatsidis et al. 2012), clique finding (Lu et al. 2017), and graph clusters (Cheng et al.
2013).

Unfortunately, k-core has certain limitations because it ignores the extra edge infor-
mation (e.g., direction, time, probability) in other types of graphs, such as direct graphs,
temporal graphs and uncertain graphs. As a result, several generalized concepts of
k-core such as D-core (Giatsidis et al. 2012), (k, η)-core (Bonchi et al. 2014) and
(k, h)-core (Wu et al. 2015) are presented, to deal with these types of graphs.

As one generalized concept of k-core, the (i, j)-core (Ahmed et al. 2007; Liu et al.
2020) is proposed to handle bipartite graph analysis, which is the largest subgraph in
which a vertex in one set has at least degree i and its neighbor in the other set has
at least degree j within the subgraph. It allows a vertex and its neighbors to have
varying degrees. Clearly, k-core is a subset of (i, j)-core satisfying i = j . Because
(i, j)-core can reveal the roles of two different kinds of vertices, it is more suited to
bipartite graphmining tasks. Related studies indicate that (i, j)-cores can be employed
in graph visualization and analysis (Ahmed et al. 2007) as well as fault-tolerant group
recommendation (Ding et al. 2017). Given the strong relation between k-core and
(i, j)-core, our research may benefit certain traditional bipartite graph issues, such as
biclique finding (Mukherjee and Tirthapura 2017), vertex ranking (He et al. 2017) and
community detection (Wang and Liu 2018).

Consider an application assignment in which we intend to locate high-value con-
sumers and popular goods from Taobao,1 which is the largest online shopping website
inChina, to demonstrate the importance of (i, j)-cores.We can observe frommodeling
these users and goods on a bipartite graph that one user only purchases a tiny number
of goods, while many users buy the same items. This bipartite graph is imbalanced.
As a result, the outcomes of obtaining k-cores from such a network are unreason-
able because users and goods have different weights in our objective. We could use
the (i, j)-core to allow users and items to have various neighbors to solve this issue.
Then, we will create a high-quality community and provide superior recommendation
services for these people who have comparable preferences.

Edges are inserted into (removed from) a dynamic bipartite graph over time in real-
world applications, resulting in the evolution of (i, j)-cores. To trace (i, j)-cores in
such a bipartite graph, a decomposition method must recalculate all (i, j)-cores even
if the network only changes one edge. In contrast, the maintenance method updates
the affected (i, j)-cores, making it more efficient.

Despite the fact that k-core maintenance (Saríyüce et al. 2013; Li et al. 2014; Wen
et al. 2016) is widely explored, it can not be utilized to address the (i, j)-core due to
the unique structure. Furthermore, Liu et al. (2020) provided an index-based (i, j)-
core computation method. Unfortunately, their approach must update (i, j)-cores,

1 https://www.taobao.com/.
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otherwise bipartite core indexes will be wrong. As a result, they are unsuitable for
some applications, such as community detection and graph visualization, which need
just a few dense (i, j)-cores.

We investigate the (i, j)-core maintenance of a dynamic graph to solve the issues
mentioned above. In this paper, we extend our earlier work (Bai et al. 2020) to a
bipartite graph, with an emphasis on (k, h)-cores of temporal graphs. Due to differing
structural definitions, there are two significant differences between (k, h)-cores and
(i, j)-cores.

(1) The number of (i, j)-cores of a bipartite graph is considerably more than the
number of (k, h)-cores in an almost equal-size temporal graph, since themaximum
k is substantially less than the maximal degree of vertices in a temporal graph. So,
(i, j)-core maintenance needs greater processing time and memory space.

(2) Because the initial stage does not create unsatisfied edges, (k, h)-core decompo-
sition methods eliminate unsatisfied edges before invalid vertices. However, the
procedure of eliminating invalid left and right vertices should alternate in (i, j)-
core decomposition. As a result, we need to redesign the appropriate algorithm.

This work presents a bottom-up approach using bipartite core indexes to effec-
tively maintain all (i, j)-cores from sparse to dense while keeping a lowmemory cost.
Furthermore, because some applications (e.g., graph visualization) primarily focus
on dense (i, j)-cores of top-n layers, we propose a top-down maintenance approach
to maintain (i, j)-cores from dense to sparse, which has not been reported in any
studies. It is worth noting that our top-down maintenance method can also update all
(i, j)-cores, although it is less efficient than the bottom approach. Finally, we conduct
comprehensive tests to validate the effectiveness of proposed solutions. Experimen-
tal results indicate that when only a few edges change, our maintenance methods
outperform baselines by one order of magnitude.

The main contributions of our paper are listed below:

• We present a bottom-up approach for rapidly updating all (i, j)-cores from sparse
to dense.

• To handle applications that need dense (i, j)-cores of top-n layers, we devise a
top-down method.

• We validate the effectiveness of our proposed methods by conducting comprehen-
sive experiments.

The rest of this paper is structured as follows: Sect. 2 introduces some preliminaries
of bipartite graph and (i, j)-core; Sect. 3 describes the specifics of quasi-(i, j)-core;
Sects. 4 and 5 illustrate the proposed maintenance approaches; experimental results
are reported in Sect. 6; the related studies are discussed in Sect. 7, and the paper is
concluded in Sect. 8.

2 Preliminaries

This section will review the fundamentals of bipartite graphs and (i, j)-cores. Table 1
lists several standard notations, which are used in the rest of this paper frequently.

123



212 W. Bai et al.

Table 1 Frequently used notations

Notation Description

Ĉ(S,G, i, j) The quasi-(i, j)-core of S on G

C(G, i, j) The (i, j)-core of G

D(G) The direct relation graph of (i, j)-cores in G

E(G) The edge set of G

Fb(i, j) A bottom-up candidate graph

Ft (i, j) A top-down candidate graph

G A bipartite graph

|G| The size of G

Gp The previous bipartite graph

Gc The current bipartite graph

∅ An empty graph

L(G) The left vertex set of G

N (G, l) The neighbor set of l in G

N (G, r) The neighbor set of r in G

P(i, j) The partial-(i, j)-core

R(G) The right vertex set of G

S A bipartite graph

S(G) The extended graph of S on G

S+ The insertion graph

S− The removal graph

d(G, l) The degree of l in G

d(G, r) The degree of r in G

d(G, L(G)) The maximum degree of vertices of L(G)

d(G, R(G)) The maximum degree of vertices of R(G)

l A left vertex

r A right vertex

(l, r) An edge

2.1 Bipartite graph

G = (L(G), R(G), E(G)) is a simple bipartite graph with two disjoint vertices sets
L(G) and R(G), called the left and right vertex sets respectively, and an edge set
E(G) ⊆ L(G) × R(G). If |E(G)| = 0, we regard G as an empty graph, denoted by
∅. Furthermore, assuming the context is clear, we use l ∈ G (r ∈ G) to substitute
l ∈ L(G) (r ∈ R(G)) and (l, r) ∈ G to replace (l, r) ∈ E(G). Additionally, the size
of G is represented by |G|.

For convenience, we generalize four set notations ⊆,∪,∩, \ for graph operations.
LetG1,G2 be two arbitrary bipartite graphs, we get the following notations:G1 ⊆ G2
means thatG1 is a subgraph ofG2;G1∪G2 is the union graph ofG1 andG2, containing
all edges of G1 and G2; G1 ∩ G2 is the intersection graph of G1 and G2, including
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(a) (2, 2)-core (b) (3, 2)-core

Fig. 1 Abipartite graph and its two (i, j)-cores, where circles and squares indicate the left and right vertices,
respectively, and the dashed lines represent the (2, 2)-core and the (3, 2)-core. In general, the (3, 2)-core
has a greater density than (2, 2)-core, which can be computed by |E(G)|/(|L(G)| · |R(G)|). The density
of a complete bipartite graph should be 1

common edges of G1 and G2; G1 \G2 is the difference graph of G1 and G2, such that
E(G1 \ G2) = E(G1) \ E(G2). In above operations, edges are automatically linked
if they share the same vertices.

Given G = (L(G), R(G), E(G)) and a vertex l ∈ L(G) (r ∈ R(G)),
N (G, l) (N (G, r)) is defined as the set of all neighbors of l (r) in G. And |N (G, l)|
is defined as the degree of the vertex l ∈ G, denoted by d(G, l). Similarly, d(G, r) is
defined for r ∈ G. Furthermore, d(G, L(G)) (d(G, R(G))) indicates the maximum
degree of vertices in L(G) (R(G)).

2.2 Bipartite core

A (i, j)-core is a type of cohesive subgraphs of the given bipartite graph G =
(L(G), R(G), E(G)), denoted by C(G, i, j), which represents the dense area of G.
In general, (i, j) � (1, 1) holds for every (i, j)-core, where� is a vector comparative
notation used to compare each component of two vectors. We also use C(G, i, j) = ∅
to indicate that C(G, i, j) is an empty graph. Furthermore, we can observe that the
(i, j)-core (see Fig. 1) cannot expand according to Definition 1, which is frequently
utilized in subsequent proofs.

Definition 1 A (i, j)-core of G, denoted by C(G, i, j), is the largest subgraph of G
such that d(G, l) ≥ i and d(G, r) ≥ j for l, r ∈ C(G, i, j).

The (i, j)-core of a bipartite graph G is unique and partially nested. It is worth
noting that the inclusion relation is non-linear, which is clearly distinct from that of
k-cores (Saríyüce et al. 2013). Based on partially nested property of (i, j)-cores, we
can create a direct relation graph without loop (see Fig. 2), denoted by D(G), in
which each vertex represents a (i, j)-core and each edge corresponds to the inclusion
relation between two adjacent (i, j)-cores. Because (i, j)-cores are arranged in layers,
we define the layer height of C(G, i, j) in D(G) to differentiate them, denoted by
h(C(G, i, j)) (see Definition 2).

Definition 2 Given an arbitrary (i, j)-core of G, the layer height of C(G, i, j) in
D(G) is defined as h(C(G, i, j)) = i + j − 1. Specially, h(C(G, 1, 1)) = 1.
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(a) (b)

Fig. 2 The direct relation graph of (i, j)-cores in a complete graph with 3 left vertices and 3 right vertices

(i, j)-cores in higher layers are often denser than those in the lower layers. Given
an arbitrary (i, j)-core of G, its layer height h(C(G, i, j)) = i + j − 1 holds, which
can be verified by mathematical induction.

2.3 Core decomposition

The main idea behind generating (i, j)-cores of a given graph is to delete the left ver-
tices with degrees less than i and the right vertices with degrees less than j repeatedly.
The issue of identifying all (i, j) pairs of vertices in a graph is known as (i, j)-core
decomposition.

We can define the core number (Cheng et al. 2013) of a vertex in k-core decom-
position to indicate which k-cores contain it. However, this concept is inapplicable to
(i, j)-core since their inclusion relations are partially nested. In other words, a vertex
may be located in two (i, j)-cores that are not overlapping. A vertex, for example, can
be located in both (2, 3)-core and (3, 2)-core. We know that they have different struc-
tures based onDefinition 1. Storing all (i, j) pairs of a vertexwill use a large amount of
memory space. For example, in a complete bipartite graphG = (L(G), R(G), E(G)),
it takes O((|L(G)| + |R(G)|) · |E(G)|)to store all (i, j) pairs. The major benefit of
this technique is that it can obtain the vertices of any (i, j)-core without traversing the
entire graph. For simplicity, this technique is referred to as (i, j)-pair sets.

Wu et al. (2015) developed the core number of k-cores to the core number set for (k,
h)-cores of temporal graphs, which only stores pairs without partial inclusion relation,
to save memory usage. If a vertex is located in (1, 1)-core, (2, 1)-core, (1, 2)-core and
(2, 2)-core, then its core number set is {(2, 2)}. Obviously, this approach may also be
used in (i, j)-cores and is known as (i, j)-core number sets.

Although storing the core number set of all vertices can save a significant amount
of memory, it has certain disadvantages. Given an arbitrary vertex, it is difficult to
determine if it can be included in a (i, j)-core with a single query. To solve this issue,
Liu et al. (2020) created bipartite core indexes, which can assure that the space usage
is proportional to the graph size. Based on this index, Liu et al. (2020) presented
an effective core decomposition algorithm with a time complexity of O(δ · |E(G)|),
where δ is bounded by

√|E(G)| but is considerably smaller in practice. This approach,
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however, has a disadvantage in that it must conserve the bipartite core index of vertices
in all (i, j)-cores. This technique is ineffective if we require a subset of (i, j)-cores.

We primarily employ bipartite core indexes and (i, j)-pair sets in this paper for our
bottom-up and top-down methods, respectively. Because most real graphs are sparse,
the memory usage of these methods is substantially lower than the theoretical bound.

3 Quasi core

When edges are inserted into (removed from) a dynamic bipartite graph, we explore
how to locate and update impacted (i, j)-cores. In a recent study (Bai et al. 2020), we
use quasi-(k, h)-core to estimate affected (k, h)-cores of temporal graph (Wu et al.
2014). Similarly, we can define quasi-(i, j)-core for bipartite graphs. By decomposing
the insertion (removal) graph (consisting of inserted (removed) edges) to a collection
of quasi-(i, j)-cores, we estimate influenced (i, j)-cores, and then update anticipated
(i, j)-cores rather than all of them.

Let Gp and Gc be previous and current bipartite graphs, respectively, and define
the insertion (removal) graph S+ = Gc \ Gp (S− = Gp \ Gc). It should be noted
that immediately decomposing S+ (S−)will yield the incorrect bipartite core index of
vertices in S+ (S−) since some of them link additional edges in Gc (Gp). Instead, we
decompose S+ (S−) into a set of quasi-(i, j)-cores. Because the insertion and removal
procedures are the same, we use S to represent S+ (S−) and G to indicate Gc (Gp).

Definition 3 Let S = (L(S), R(S), E(S)) and G = (L(G), R(G), E(G)) be two
bipartite graphs, S(G) = (L(S(G)), R(S(G)), E(S(G))) is an extended graph of
S on G, such that L(S(G)) = L(S) ∪ {l : l ∈ N (G, r) ∧ r ∈ S}, R(S(G)) =
R(S) ∪ {r : r ∈ N (G, l) ∧ l ∈ S} and E(S(G)) = E(S) ∪ {(l, r) : l ∈ L(S) ∧ r ∈
N (G, l)} ∪ {(l, r) : r ∈ R(S) ∧ l ∈ N (G, r)}. Additionally, if S ∩ G = ∅, then
S(G) = S.

In Definition 3, S(G) simply expands S by one step on G, ensuring d(S(G), l) =
d(S ∪ G, l) and d(S(G), r) = d(S ∪ G, r) for every l, r ∈ S. If S ⊆ G, then
d(S(G), l) = d(G, l) and d(S(G), r) = d(G, r) both true. In other words, vertices
in S will have the same degree in both S(G) and G. If |S| 
 |G|, the size of S(G) is
significantly smaller than S ∪ G.

Definition 4, based on the extended graph, gives formal details of the quasi-
(i, j)-core, which loosens the restrictions of the (i, j)-core on the extended graph.
Nonetheless, quasi-(i, j)-core is unique and somewhat nested.

Definition 4 Aquasi-(i, j)-core is the largest subgraph of S, denoted by Ĉ(S,G, i, j),
such that d(Ĉ(G), l) ≥ i and d(Ĉ(G), r) ≥ j for an arbitrary l, r ∈ Ĉ(S,G, i, j),
where Ĉ(G) is the extended graph of Ĉ(S,G, i, j) on G.

In contrast to (i, j)-core, quasi-(i, j)-core only demands that its vertices fulfill
constraints on its extended graph rather than itself. If the extended graph is unique, so
is quasi-(i, j)-core.

A decomposition approach may use to obtain quasi-(i, j)-cores, which are similar
to (i, j)-cores. Other operations are identical to those of (i, j)-core decomposition,
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except that the quasi-(i, j)-core decomposition calculates the degree of vertices of S
on S(G) rather than itself.

4 Bottom-up coremaintenance

This section provides a bottom-up approach for fast maintaining affected (i, j)-cores
with a set of inserted (removed) edges from sparse to dense. The core idea behind
our algorithms is to locate all impacted (i, j)-cores and update them one by one.
Because the operations for insertion and removal situations differ, we will explain
them independently.

For the insertion case, we estimate affected (i, j)-cores using quasi-(i, j)-cores and
then update each of them in turn. Edges of a quasi-(i, j)-core, in particular, impact
adjacent vertices and spread their effects through linked edges for each affected (i, j)-
core, but the quasi-(i, j)-core does not include all influenced vertices and edges. As
a result, the quasi-(i, j)-core is extended to a candidate graph. To avoid changing the
union graph of the candidate graph and the previous (i, j)-core, we extract the partial-
(i, j)-core from the candidate graph, which is the difference graph of the current
(i, j)-core and the previous (i, j)-core.

We still discover affected (i, j)-cores for the removal case by utilizing quasi-(i, j)-
cores and then updating them from sparse to dense. For each affected (i, j)-core, we
simply concentrate on the common edges of the quasi-(i, j)-core and the previous
(i, j)-core. We obtain the current (i, j)-core by recursively eliminating unsatisfied
vertices and edges from the previous (i, j)-core at the lowest cost.

4.1 Insertion case

As previously stated, our maintenance procedure for the insertion case consists of
four phases. Firstly, we decompose S+ to get a collection of quasi-(i, j)-cores, which
utilizes to locate affected (i, j)-cores. Secondly, we find a candidate graph including
all potential vertices and edges for each impacted (i, j)-core. Thirdly, we extract
a partial-(i, j)-core from the candidate graph and update the associated (i, j)-core.
Finally, we proceed to the following layer of (i, j)-cores until all affected (i, j)-cores
have been updated.

After obtaining a set of quasi-(i, j)-cores, we explore how to use the quasi-(i, j)-
core to discover a candidate graph. Vertices and edges that are accessible from edges
in Ĉ(S+,Gc, i, j) through a path are clearly impacted. We skip edges in the previous
(i, j)-core since they do not propagate their impacts. Because we can get the candidate
graph from either C(Gc, i − 1, j) or C(Gc, i, j − 1), C∗ is used to represent either
of them. If not specified, i > 1 ( j > 1) always holds for i − 1 ( j − 1).

Definition 5 Fb(i, j) is a bottom-up candidate graph, whose edge (l, r) ∈ C∗ is reach-
able from edges in Ĉ(S+,Gc, i, j) via a path, such that d(C∗, l) ≥ i , d(C∗, r) ≥ j
and (l, r) /∈ C(Gp, i, j).
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To avoid having to recalculate the (i, j)-core of C(Gp, i, j) ∪ Fb(i, j), we obtain
the partial-(i, j)-core from Fb(i, j), denoted by P(i, j). It should be noted that P(i, j)
cannot grow, otherwise C(Gc, i, j) will also increase, which contradicts Definition 1.

Definition 6 A partial-(i, j)-core, denoted by P(i, j), is the difference graph of
C(Gc, i, j) and C(Gp, i, j) such that P(i, j) = C(Gc, i, j) \ C(Gp, i, j).

According to Definition 6, given l, r ∈ P(i, j), we get d(P(C), l) ≥ i and
d(P(C), r) ≥ j , where P(C) is the extended graph of P(i, j) on C(Gp, i, j). More-
over, the partial-(i, j)-core has an important property, the quasi-(i, j)-core of itself on
the previous (i, j)-core is identical to itself. As a result, we can establish a connection
between quasi-(i, j)-core and partial-(i, j)-core.

Lemma 1 P(i, j) = Ĉ(P(i, j),C(Gp, i, j), i, j) holds.

It should be emphasized that Definition 6 cannot be used to obtain P(i, j) since
it needs the knowledge of C(Gc, i, j), which is unavailable in our methods. Accord-
ing to Definition 5, we know that C(Gc, i, j) ⊆ Fb(i, j), otherwise, Fb(i, j) will
continue to expand. Therefore, we can derive the partial-(i, j)-core from Fb(i, j).
Two scenarios must be considered in light of the existence of C(Gp, i, j): (1) if
C(Gp, i, j) �= ∅, then P(i, j) = Ĉ(Ft (i, j),C(Gp, i, j), i, j); (2) if C(Gp, i, j) =
∅, then P(i, j) = C(Ft (i, j), i, j). Theorems 1 and 2 give thorough proofs for two
situations (See Appendix). They verify the correctness of our bottom-up insertion
algorithm.

Theorem 1 If C(Gp, i, j) �= ∅, then P(i, j) = Ĉ(Fb(i, j),C(Gp, i, j), i, j).

Theorem 2 If C(Gp, i, j) = ∅, then P(i, j) = C(Fb(i, j), i, j).

Theorem1 states thatwe can get P(i, j) from Fb(i, j) by obtaining the quasi-(i, j)-
core of Fb(i, j) on C(Gp, i, j). Actually, Theorem 2 is a special case of Theorem 1.
When C(Gp, i, j) = ∅, there is no available information of C(Gp, i, j). According
to Definition 5, P(i, j) ⊆ Fb(i, j) holds. Thus, we can drive P(i, j) by decomposing
Fb(i, j).

Algorithm 1 first decomposes S+ to get a set of quasi-(i, j)-cores using Gc. It only
conserves a map of (i, j)-pairs and related edge sets for convenience, e.g., �̂+(i, j) is
an edge set containing edges in the quasi-(i, j)-core. Updating C(Gp, 1, 1) is a trivial
case, it revises bipartite core indexes of vertices in S+ directly. In the main loop, if
�̂+(i + 1, j) �= ∅, it gets P(i + 1, j) from Fb(i + 1, j) and updates the bipartite core
indexes of vertices. Similarly, the operations for �̂+(i, j + 1) are identical. It returns
updated �L and �R until the algorithm ends.

To conserve the updated index of vertices in Algorithm 1, additional bipartite
indexes �′

L and �′
R are required. If we directly update �L and �R , the process

of identifying a candidate graph may get an erroneous result since it depends on �L

and �R to determine whether a vertex can be located in C(Gp, i, j). Besides, we also
provide an extra algorithm for updating each affected (i, j)-core (see Appendix).

Algorithm 1 has a time complexity of O(|C||Gc|), where |C| is the number of
(i, j)-cores and O(|Gc|) is the cost to update each influenced (i, j)-core. When Gc is
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Algorithm 1 Bottom-Up Insertion (BUI)
Input: Gp : the previous bipartite graph, S+: the insertion bipartite graph, �L : the bipartite core indexes

of left vertices, �R : the bipartite core indexes of right vertices.
Output: �L : the bipartite core indexes of left vertices, �R : the bipartite core indexes of right vertices.
1: Gc ← Gp ∪ S+
2: decompose S+ to get a map �̂+ of quasi-(i, j)-pairs and edge sets
3: copy �L , �R to �′

L and �′
R

4: update �′
L , �′

R of vertices in S+
5: let Q andQ′ be two empty sets
6: insert (1, 1)-pair into Q
7: while Q �= ∅ do
8: for (i, j) ∈ Q do
9: if �̂+(i + 1, j) �= ∅ then
10: get Fb(i + 1, j) from C(Gc, i, j) according to Definition 5
11: get P(i + 1, j) from Fb(i + 1, j)
12: update �′

L , �′
R of vertices in P(i + 1, j)

13: �̂+(i + 1, j) ← ∅ � each bipartite core only update one time
14: insert (i + 1, j)-pair into Q′
15: end if
16: if �̂+(i, j + 1) �= ∅ then
17: get Fb(i, j + 1) from C(Gc, i, j) according to Definition 5
18: get P(i, j + 1) from Fb(i, j + 1)
19: update �′

L , �′
R of vertices in P(i, j + 1)

20: �̂+(i, j + 1) ← ∅
21: insert (i, j + 1)-pair into Q′
22: end if
23: end for
24: Q ← ∅
25: swap Q andQ′
26: end while
27: swap �L ,�R with �′

L , �′
R

28: return �L , �R

a complete graph, then |C| = d(Gc, L(Gc)) ·d(Gc, R(Gc)). Because most graphs are
sparse, |C| is significantly smaller than its theoretical bound. In most cases, the size
of a candidate graph is typically less than Gc. In terms of space complexity, because
the method just saves the entire graph Gc, the space required is O(|Gc|).

Example 1 We give a simple example (see Fig. 3) to illustrate the process of Algo-
rithm 1. When two edges are added to the graph, we focus on updating (2, 2)-core.
Other (i, j)-cores can be updated similarly. Firstly, we visit the quasi-(2, 2)-core by
using �̂+, �̂+(2, 2) only has one edge, which is highlighted in purple. Secondly, we
use traversal to discover a candidate graph marked in blue and has six vertices. It
is worth noting that the candidate graph has no edges from the previous (2, 2)-core,
which can be ruled out by visiting �L and �R . Thirdly, we get the partial-(i, j)-core
from this candidate graph, which is highlighted in red and has 4 vertices, and we
update the maximal i and j of these vertices in �′

L and �′
R . Fourthly, we continue to

visit the next layer of (i, j)-cores, such as (2, 3)-core and (3, 2)-core, until all affected
(i, j)-cores are updated. Finally, the algorithm swaps �L and �R with �′

L and �′
R .
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(a) (b) (c)

(d) (e)

Fig. 3 The steps for updating (2, 2)-core with two inserted edges are as follows: a the previous (2, 2)-core
is marked by a black dashed line and two inserted edges are specified by a green dotted line; b the quasi-
(2, 2)-core is shown by a purple half-dashed line; c the candidate graph is indicated by a blue half-dashed
line; d the partial-(2, 2)-core is indicated by a red half-dash line; e the current (2, 2)-core is indicated by a
dashed line (Color figure online)

4.2 Removal case

We have three stages of updating influenced (i, j)-cores in the removal case. Firstly,
we decompose S− to get a set of quasi-(i, j)-cores. Secondly, we recursively eliminate
unsatisfiedvertices and edges impactedby thequasi-(i, j)-core for each affected (i, j)-
core. We adjust C(Gp, i, j) to get C(Gc, i, j) at the lower possible cost. Lastly, we
proceed to the following layer of (i, j)-cores until all relevant (i, j)-cores have been
updated.

In Algorithm 2, it first obtains a set of quasi-(i, j)-cores from S−. Similar to the
insertion case, the algorithm only conserves a map �̂− of (i, j)-pairs and correspond-
ing edge sets. The main loop traverses (i, j)-cores in each layer. If �̂−(i, j) �= ∅, then
it computes the degree of vertices in C(Gp, i, j) and inserts unsatisfied vertices into
corresponding vertex sets. Next, it recursively removes influenced vertices in two sets
(auxiliary procedures are presented in Appendix). When the algorithm terminates, all
bipartite core indexes of affected vertices are updated, and the algorithm returns �L

and �R .
For the removal algorithm, we do not need to calculate all degrees of vertices in

C(Gp, i, j) beforehand, and the value can be computed when a vertex is visiting.
Algorithm 2 detects impacted vertices of C(Gp, i, j) for each (l, r) ∈ �̂−(i, j) �=

∅. In the worst case, it may traverse all vertices and edges in C(Gp, i, j), therefore
its time complexity is O(|C||Gp|), where C is the number of (i, j)-cores in Gp. The
space complexity is O(|Gp|) becauseAlgorithm 2 requires O(|Gp|) to store thewhole
graph.

Example 2 We present a simple example (see Fig. 4) to demonstrate the process of
Algorithm 2. We are still considering how to update (2, 2)-core with two removed
edges because other (i, j)-cores can be changed in the same way. Firstly, we visit
the quasi-(2, 2)-core using �̂−, �̂−(2, 2) only has one edge, which is highlighted in
purple. Secondly, we get the partial-(2, 2)-core in C(Gp, 2, 2), which is indicated in
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Algorithm 2 Bottom-Up Removal (BUR)
Input: Gp : the previous bipartite graph, S−: the removal bipartite graph, �L : the bipartite core indexes of

left vertices, �R : the bipartite core indexes of right vertices.
Output: �L : the bipartite core indexes of left vertices, �R : the bipartite core indexes of right vertices.
1: decompose S− to get a map �̂− of quasi-(i, j)-pairs and edge sets
2: Gc ← Gp \ S−
3: copy �L , �R to �′

L and �′
R

4: let Q andQ′ be two pair sets
5: insert (1, 1)-pair into Q
6: while Q �= ∅ do
7: for (i, j) ∈ Q do
8: if �̂−(i, j) �= ∅ then
9: let dL and dR be two maps
10: let QL andQR be two vertex sets
11: for (l, r) ∈ �̂−(i, j) do
12: if �L (l, i) ≥ j ∧ �R(r , j) ≥ i then � (l, r) ∈ C(Gp, i, j)
13: if l /∈ dL then
14: dL (l) ←Compute-Core-Degree(Gc,�R , l, i, j)
15: end if
16: if dL (l) < i then
17: insert l intoQL
18: end if
19: if r /∈ dR then
20: dR(r) ←Compute-Core-Degree(Gc, �L , r , j, i)
21: end if
22: if dR(r) < j then
23: insert r intoQR
24: end if
25: end if
26: end for
27: while QL �= ∅ ∨ QR �= ∅ do
28: Remove-Unsatisfied-Vertices(Gc,QL ,QR , dR , �′

L , i, j)
29: Remove-Unsatisfied-Vertices(Gc,QR ,QL , dL , �′

R , j, i)
30: end while
31: �̂−(i, j) ← ∅
32: insert (i + 1, j)-pair and (i, j + 1)-pair into Q′
33: end if
34: end for
35: Q ← ∅
36: swap Q with Q′
37: end while
38: swap �L ,�R with �′

L , �′
R

39: return �L , �R

red and has 4 vertices. In contrast to the insertion case, we can search for influenced
vertices directly in C(Gp, 2, 2). Thirdly, we reduce the maximum i and j of these
vertices in �′

L and �′
R . Lastly, we continue to visit the next layer of (i, j)-cores, such

as (2, 3)-core and (3, 2)-core, until all affected (i, j)-cores are updated. The algorithm
uses �′

L and �′
R to update �L and �R .
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(a) (b) (c)

(d)

Fig. 4 The steps of updating (2, 2)-core with two removed edges are as follows: a the previous (2, 2)-core
is indicated by a black dashed line, and two removed edges are noted by a green dotted line; b the quasi-
(2, 2)-core is demonstrated by a purple half-dashed line; c the affected vertices and edges are implied by a
red half-dashed line; d the current (2, 2)-core is stated by a black dashed line (Color figure online)

5 Top-down coremaintenance

This section proposes a top-down approach for maintaining (i, j)-cores from dense
to sparse. In many applications, such as recommendation system or vertex ranking,
dense (i, j)-cores are more critical than sparse (i, j)-cores. For example, many people
enjoy sharing their posts on Weibo,2 the most popular social platform in China. We
are especially interested in the evolution of high-impact users and associated posts
by modeling the network to a bipartite graph since they determine information flow
across the whole graph. Analyzing these users can have a substantial business impact
(e.g., advertising and attracting activity users). However, these users only employ a
subset of dense (i, j)-cores. Tracing the evolution of all (i, j)-cores is impractical.

To satisfy this demand, a top-downapproach that can update expected (i, j)-cores of
top-n layers with less time is present. Supergraphs (e.g., (i −1, j)-core and (i, j −1)-
core) cannot not be used to reduce costs, unlike the bottom-up approach. We use
current (i + 1, j)-core and (i, j + 1)-core instead to reduce cost while maintaining
the previous (i, j)-core.

The essential processes of maintaining (i, j)-cores in the top-down approach are
identical to those in the bottom-up solution but implement details differ significantly.
For the insertion case, we redefine a candidate graph using the current (i + 1, j)-core
and the current (i, j+1)-core, and then extract the quasi-(i, j)-core from this candidate
graph. Because the top-down method explores the whole graph, the candidate graph
is larger than in the bottom-up condition. In the removal case, we ignore any vertex
that is located in the current (i + 1, j)-core or the current (i, j + 1)-core because they
must belong to the current (i, j)-core.

Because we maintain the (i, j)-cores from dense to sparse, the key issue for the
top-down approach is to locate the highest layer of the direct relation graph D(Gc),
denoted by h(D(Gc)) (see Sect. 2). When a bipartite graph is a complete graph,
then h(D(Gc)) = d(L(Gc)) + d(R(Gc)) − 1. Otherwise, h(D(Gc)) < d(L(Gc)) +
2 https://www.weibo.com/.
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d(R(Gc)) − 1. Therefore, we identify the existing (i, j)-cores in order to reset the
highest layer and then update expected (i, j)-cores in turn.

5.1 Insertion case

Except the candidate graph, the processes for maintaining (i, j)-cores are similar to
the bottom-up approach. We first decompose the insertion graph into a set of quasi-
(i, j)-cores; then, using quasi-(i, j)-core, (i + 1, j)-core and (i, j + 1)-core, we find
a candidate graph for each influenced (i, j)-core; following that, we get the quasi-
(i, j)-core from this candidate graph, and update (i, j)-pairs of vertices; lastly, we
repeat the loop until all top-n layers of (i, j)-cores are updated.

After decomposing S+, we investigate how to construct a top-down candidate graph
on the entire graph using Ĉ(S+,Gc, i, j), C(Gc, i + 1, j) and C(Gc, i, j + 1). The
top-down candidate graph, unlike the bottom-up case, does not include the current
(i, j)-core. More importantly, the impacts of a quasi-(i, j)-core will not spread across
edges in the previous (i, j)-core, but may spread over edges in C(Gc, i + 1, j) and
C(Gc, i, j + 1). In other words, we simply can not stop the search path when edges
are located in (C(Gc, i + 1, j) ∪ C(Gc, i, j + 1)) \ C(Gp, i, j).

Definition 7 Ft (i, j) is a top-down candidate graph, whose edge (l, r) ∈ Gc is reach-
able from edges in Ĉ(S+,Gc, i, j) via a path, such that d(Gc, l) ≥ i , d(Gc, r) ≥ j
and (l, r) /∈ C(Gp, i, j) ∪ C(Gc, i + 1, j) ∪ C(Gc, i, j + 1).

Then, we consider getting P(i, j) from Ft (i, j). Because we utilize the avail-
able information of C(Gc, i + 1, j) and C(Gc, i, j + 1), corresponding cases are
more complicated than those of the bottom-up approach. In summary, four cases
must be addressed: (1) if C(Gc, i + 1, j) ∪ C(Gc, i, j + 1) �= ∅, C(Gp, i, j) �=
∅, and C = C(Gp, i, j) ∪ C(Gc, i + 1, j) ∪ C(Gc, i, j + 1), then P(i, j) =
(Ĉ(Ft (i, j),C, i, j) ∪C(Gc, i + 1, j) ∪ C(Gc, i, j + 1)) \ C(Gp, i, j); (2) if
C(Gc, i + 1, j) ∪ C(Gc, i, j + 1) = ∅, C(Gp, i, j) �= ∅, and C = C(Gp, i, j),
then P(i, j) = Ĉ(Ft (i, j),C, i, j); (3) if C(Gc, i + 1, j) ∪ C(Gc, i, j + 1) �= ∅,
C(Gp, i, j) = ∅, and C = C(Gc, i + 1, j) ∪ C(Gc, i, j + 1), then P(i, j) =
C∪Ĉ(Ft (i, j),C, i, j); (4) ifC = C(Gp, i, j)∪C(Gc, i+1, j)∪C(Gc, i, j+1) = ∅,
then P(i, j) = C(Ft (i, j), i, j).

Although cases (1), (2) and (3) are similar, the associated solutions for getting
partial-(i, j)-cores differ dramatically. Case (2) and (4) are identical to those of the
bottom-up approach when C(Gc, i + 1, j) ∪ C(Gc, i, j + 1) = ∅. Theorem 3 and 4
verify the correctness of two cases, we present detailed proofs in Appendix.

Theorem 3 If C(Gc, i + 1, j) ∪ C(Gc, i, j + 1) �= ∅, C(Gp, i, j) �= ∅, and C =
C(Gp, i, j)∪C(Gc, i+1, j)∪C(Gc, i, j+1), then P(i, j) = (Ĉ(Ft (i, j),C, i, j)∪
C(Gc, i + 1, j) ∪ C(Gc, i, j + 1)) \ C(Gp, i, j).

Theorem 4 If C(Gc, i + 1, j) ∪ C(Gc, i, j + 1) �= ∅, C(Gp, i, j) = ∅, and C =
C(Gc, i + 1, j) ∪ C(Gc, i, j + 1), then P(i, j) = C ∪ Ĉ(Ft (i, j),C, i, j).
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Algorithm 3 Top-Down Insertion (TDI)
Input: Gc: the current bipartite graph, S+: the insertion graph,�L : the map of (i, j)-pairs and left vertices,

�R : the map of (i, j)-pairs and right vertices, n: the number of expected layers.
Output: �n

L : the map of (i, j)-pairs and left vertices in (i, j)-cores of top-n layers, �n
R : the map of

(i, j)-pairs and right vertices in (i, j)-cores of top-n layers.
1: decompose S+ to get a map �̂+ of quasi-(i, j)-pairs and edge sets
2: copy �L , �R to �n

L , �n
R respectively

3: let Q,Q′ be two empty sets
4: insert (d(L(Gc)), d(R(Gc)))-pair into Q
5: h(D(Gc)) ← 0
6: while Q �= ∅ do
7: for (i, j) ∈ Q do
8: if �̂+(i, j) �= ∅ then
9: C ← C(Gc, i + 1, j) ∪ C(Gc, i, j + 1) ∪ C(Gp, i, j)
10: obtain Ft (i, j) from Gc by Definition 7
11: if C(Gp, i, j) = ∅ ∧ (C(Gp, i − 1, j) �= ∅ ∨ C(Gp, i, j − 1) �= ∅) then
12: decompose Ft (i, j) to get the remainder (i, j)-cores
13: update �n

L , �n
R for vertices in (i ′, j ′)-cores (i ′ ≥ i and j ′ ≥ j)

14: else
15: get the quasi-(i, j)-core of Ft (i, j) on C
16: update �n

L , �n
R for vertices in quasi-(i, j)-core

17: end if
18: �̂+(i, j) ← ∅
19: if �n

L (i, j) �= ∅ ∧ h(D(Gc)) = 0 then
20: h(D(Gc)) ← i + j − 1 � the maximal layer height of D(Gc)

21: end if
22: if h(D(Gc)) − (i + j − 1) + 1 > n then
23: break
24: end if
25: insert (i − 1, j) and (i, j − 1) intoQ′
26: end if
27: end for
28: Q ← ∅
29: swap Q andQ′
30: end while
31: for (i, j) ∈ �n

L do � remove invalid (i, j)-pairs
32: if h(D(Gc)) − (i + j − 1) + 1 > n then
33: remove (i, j)-pair from �n

L and �n
R

34: end if
35: end for
36: return �n

L and �n
R

Algorithm 3 first decomposes S+ to produce a map of quasi-(i, j)-pairs and edge
sets, then copies �L ,�R to �n

L ,�n
R . In the main loop, it gets C(Gc, i, j) according

to two cases. If C(Gc, i, j) = ∅ and C(Gc, i − 1, j) �= ∅ ∨ C(Gc, i, j − 1) �= ∅,
it directly decomposes the candidate graph to get (i ′, j ′)-cores (i ′ ≥ i and j ′ ≥ j)
because no previous (i, j)-cores are accessible. Otherwise, it gets the quasi-(i, j)-
core of Ft (i, j) on C . Next, it adjusts �n

L ,�n
R based on preceding situations. Lastly,

it inserts valid pairs (i − 1, j) and (i, j − 1) intoQ′ and continues the next loop. The
algorithm returns �n

L and �n
R until it terminates.

Example 3 We present a simple example (see Fig. 5) to illustrate the procedure of
Algorithm 3. When two edges are inserted into the graph, we focus on updating the
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(a) (b) (c)

(d) (e)

Fig. 5 The following are the processes involved in updating the (2, 2)-core utilizing the current (3, 2)-core
and two inserted edges: a the previous (2, 2)-core equals to the current (3, 2)-core, and they are both marked
by a black dash-dotted line, with two inserted edges marked by a green dotted line; b the quasi-(2, 2)-core
is indicated by a purple half-dashed line; c the candidate graph is highlighted by a blue half-dashed line;
d the quasi-(2, 2)-core is depicted by a red half-dashed line; e the current (2, 2)-core is shown by a black
dashed line and a dash-dotted line (Color figure online)

(2,2)-core. We emphasize the distinctions between bottom-up and top-down cases.
When searching for a candidate graph, the method skips edges located in the previous
(2,2)-core, and the current (3,2)-core, which can be omitted by visiting �L and �R .
Thirdly, the algorithm gets the quasi-(2, 2)-core of the candidate graph on C , which
is highlighted in red and contains four vertices, and the algorithm revises �L and �R

for vertices in the quasi-(2,2)-core. Lastly, the algorithm visits the following layer of
(i, j)-cores, such as (1,2)-core and (2, 1)-core, until all expected (i, j)-cores have
been updated. The algorithm returns �n

L and �n
R .

The time complexity of Algorithm 3 is similar to Algorithm 1, except some oper-
ations on Ft (i, j). Because the method searches for Ft (i, j) on Gc, the size of
Ft (i, j) may be larger than that of Fb(i, j). Thus, the overall time complexity is
O(|�̂n||Gc|) 
 O(|C||Gc|), where |�̂n| is the number of quasi-(i, j)-cores of top-n
layers. In terms of the space complexity, it merely stores the entire graph Gc, hence it
is O(|Gc|).

It is worth mentioning that we do not apply bipartite core indexes of vertices in
Algorithm 3. Because we only update top-n layers of (i, j)-cores, the bipartite core
indexes of vertices are incorrect. Instead,we just save each (i, j)-pair and its associated
vertices. Because the top-down approach canmaintain expected (i, j)-cores, the inputs
do not need to contain all (i, j)-pairs of vertices.

5.2 Removal case

Related operations for the remove case are comparable to those of the bottom-up
approach. Because we update the (i + 1, j)-core and the (i, j + 1)-core before the
(i, j)-core, we can skip vertices located in (i + 1, j)-core and (i, j + 1)-core. We are
only interested in (i, j)-cores of top-n layers, therefore we maintain (i, j)-cores from
dense to sparse.

123



Generalized core maintenance of dynamic bipartite graphs 225

Algorithm 4 Top-Down Removal (TDR)
Input: Gp : the previous bipartite graph, S−: the removal graph, �L : the map of (i, j)-pairs and left

vertices, �R : the map of (i, j)-pairs of right vertices, n: the number of expected layers.
Output: �n

L : the map of (i, j)-pairs of left vertices in (i, j)-cores of top-n layers, �n
R : the map of (i, j)-

pairs of right vertices in (i, j)-cores of top-n layers.
1: decompose S− to get a map �̂− of quasi-(i, j)-pairs and edge sets
2: Gc ← Gp \ S−
3: copy �L , �R to �n

L , �n
R respectively

4: let Q andQ′ be two empty sets
5: insert (d(L(Gp)), d(R(Gp)))-pair into Q
6: h(Dc) ← 0
7: while !Q.empty() do
8: for (i, j) ∈ Q do
9: if �̂−(i, j) �= ∅ ∧ �L (i, j) �= ∅ then � C(Gp, i, j) �= ∅
10: let dL , dR be two empty maps
11: let QL andQR be two empty sets
12: for (l, r) ∈ �̂−(i, j) ∧ l ∈ �L (i, j) ∧ r ∈ �R(i, j) do
13: if l /∈ �n

L (i + 1, j) ∪ �n
L (i, j + 1) then

14: codes are similar to corresponding lines in Algorithm 2
15: end if
16: if r /∈ �n

R(i + 1, j) ∪ �n
R(i, j + 1) then

17: codes are similar to corresponding lines in Algorithm 2
18: end if
19: end for
20: �̂−(i, j) ← ∅
21: while QL �= ∅ ∨ QR �= ∅ do
22: Remove-Unsatisfied-Vertices(Gc,QL ,QR , dR , �n

L , i, j)
23: Remove-Unsatisfied-Vertices(Gc,QR ,QL , dL , �n

R , j, i)
24: end while
25: end if
26: codes are similar to corresponding lines in Algorithm 3
27: end for
28: codes are similar to corresponding lines in Algorithm 3
29: end while
30: codes are similar to corresponding lines in Algorithm 3
31: return �n

L and �n
R

Algorithm 4 decomposes S− into a map of quasi-(i, j)-pairs and edge sets, and
then copies �L ,�R to�n

L ,�n
R . In the main loop, it first scans edges in �̂−(i, j), and

inserts unsatisfied vertices intoQL andQR respectively; next, it modifies C(Gp, i, j)
to get C(Gc, i, j), and updates �n

L ,�n
R by recursively removing unsatisfied vertices;

at last, it inserts valid pairs (i − 1, j), (i, j − 1) into Q′ and continues the next loop.
Until the algorithm terminates, it returns �n

L and �n
R .

The time complexity of Algorithm 4 is O(|�̂n|·|Gp|) 
 O(|C|·|Gp|), where |�̂n|
is the number of quasi-(i, j)-cores of top-n layers. In terms of the space complexity,
storing the entire graph still takes O(|Gp|).
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Table 2 The details of real graphs: |L(G)|, |R(G)| and |E(G)| denote the size of left vertices, right vertices
and edges, respectively

Graph |L(G)| |R(G)| |E(G)| d(G, L(G)) d(G, R(G)) Density |C|

AM 0.13M 0.38M 1.47M 294 646 2.998 × e−5 1818

Actor2 0.30M 0.90M 3.78M 1334 1, 590 1.390 × e−5 5876

DL 0.17M 0.05M 0.29M 28 12,189 3.196 × e−5 13,437

DP 0.05M 0.14M 0.21M 512 30 3.057 × e−5 886

DR 0.17M 0.02M 0.23M 33 7446 7.526 × e−5 8207

DS 0.08M 0.08M 0.28M 65 321 4.560 × e−5 826

DW 0.09M 0.05M 0.14M 42 246 3.495 × e−5 468

KC 0.11M 0.18M 0.51M 286 385 2.681 × e−5 948

KI 0.69M 0.19M 2.72M 654 1293 2.125 × e−5 3820

OC 0.02M 0.02M 0.06M 116 18 1.591 × e−4 257

Specifically, d(G, L(G)), d(G, R(G)) represents the maximal degree of left and right vertices in G respec-
tively, and |C| indicates the maximal number of (i, j)-cores in G

6 Experiments

In this section, we conduct extensive experiments to evaluate the performance of our
proposed algorithms. Experimental results show that our maintenance approaches
outperform baselines.

All algorithms are written in C++ and compiled using GCC 9.3 with -O3 opti-
mization setting. Experiments are carried out on a workstation with two Xeon
E5-2630v3@2.4GHz CPUs (16 cores and 128GB RAM) running Linux operating
system Ubuntu 20.04.

6.1 Dataset

Real graphs are downloaded from KONECT,3 including: actor2 (Actor2), actor-
movie (AM), dbpedia-location (DL), dbpedia-producer (DP), dbpedia-starring (DS),
dbpedia-writer (DW), komatrix-imdb (KI), dbpedia-recordlabel (DR), komatrix-
citeseer (KC), opsahl-collaboration (OC). The details of them can be seen in Table 2,
and none of them have isolated vertices.

We can observe fromTable 2 that most real graphs are sparse, with significantly less
(i, j)-cores than d(G, L(G)) · d(G, R(G)), implying that the maintenance solution
is more effective than the decomposition method on most of them.

6.2 Metric and baseline

Because the (i, j)-core is a well-defined graph with a distinct structure, we do not
require any additional metric to evaluate it. Previous studies (Cheng et al. 2011;

3 http://konect.uni-koblenz.de/.
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Saríyüce et al. 2013; Li et al. 2014; Liu et al. 2020) have shown that running
time is a significant criterion for assessing the efficiency of core decomposition
and maintenance algorithms. Most methods have low dependence on memory size
as they just traverse the graph. Moreover, some studies (Cheng et al. 2011; Wen
et al. 2019) investigated I/O efficiency strategies for big size graphs that can-
not be fitted into memory. Since we are primarily concerned with in-memory
algorithms, running time is appropriate for assessing our algorithms. Mathemati-
cal proofs confirm the validity of our methods. In addition, we check the results
of maintenance approaches to guarantee that all algorithms are correctly exe-
cuted.

In comparison, we present three baselines algorithms (Liu et al. 2020). The
first is the decomposition method, called ComShrDecom, denoted by Dec., which
directly decomposes the entire bipartite graph to get its (i, j)-cores. Its basic idea
is to investigate computation sharing opportunities while processing left and right
vertices consistently. The number of iterations of Dec. is 2δ, where 2δ refers
to the maximum value such that (δ, δ)-core is not empty. The remainder algo-
rithms are two enhanced edge-based maintenance methods for insertion and removal
cases, named BiCore-Index-Ins∗ and BiCore-Index-Rem∗, denoted by II and IR,
respectively. BiCore-Index-Ins∗ (BiCore-Index-Rem∗) updates the maximal i ( j)
for left (right) vertices by visiting a local subgraph rather than the entire graph,
and then the algorithms revise bipartite core indexes of the corresponding ver-
tices.

6.3 Running time

To simulate the edges are inserted into (removed from) a dynamic graph, we
shuffle the edge set and randomly select the last 0.1% from each graph as
inserted edges. At the same time, the remainder is regarded as the previous
graph. In the removal case, we shuffle the edge set and randomly choose the
top 0.1% from the graph as removed edges, while the previous graph has all
edges. We do not seek the best outcomes for all graphs evaluated because
edges can have various effects on (i, j)-cores. Since the running time of our
maintenance algorithms depends on the local structure of a graph, optimizing
these approaches for real applications with numerous inserted (removed) edges is
rugged.

Table 2 demonstrates thatDL andDR are dense. The primary benefit ofmaintenance
algorithms is that they can avoid recalculating unaffected (i, j)-cores. Maintenance
methods are not appropriate for a dense or a sparse graph with many inserted
(removed) edges (see Table 3), in which case most (i, j)-cores are affected. The
performance of II is superior to ours while dealing with an imbalanced graph
because II can only update the maximal i ( j) of corresponding vertices. In contrast,
our methods must update all affected (i, j)-cores. Moreover, because TDI incurs
a higher cost when searching the candidate graph, its performance is worse than
BUI.
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Table 3 The running time of
core maintenance under the
insertion case (second): our BUI
obtains the best performance on
all graphs except DL, DP and
DR

Graph Dec. BUI TDI II

AM 142.490 32.711 98.353 49.423

Actor2 621.160 472.385 4894.910 9031.040

DL 10.835 55.826 97.575 27.310

DP 8.803 0.514 2.177 0.188

DR 9.724 213.633 108.965 15.980

DS 11.372 3.712 6.702 7.884

DW 7.907 0.356 0.885 2.765

KC 30.182 7.020 23.712 38.968

KI 372.105 290.045 2802.680 3520.870

OC 2.412 0.001 0.009 0.058

Best results are given in bold
In these graphs, Dec. gets the best performance on DL and DR while
II gets the best performance on DP

Table 4 The running time of
core maintenance under removal
case (second): all maintenance
algorithms outperform the
decomposition method

Graph Dec. BUR TDR IR

AM 132.527 11.659 1.649 43.409

Actor2 563.521 25.974 11.757 164.913

DL 11.096 54.034 2.197 2.443

DP 8.796 0.092 0.113 0.379

DR 10.113 81.859 2.789 4.969

DS 11.846 0.135 0.128 1.538

DW 9.040 0.023 0.103 0.282

KC 28.146 0.647 0.405 4.891

KI 384.944 35.416 5.847 82.382

OC 2.645 0.014 0.018 0.037

Best results are given in bold
OurBUR achieves the best performance onDP,DW OC, and ourTDR
obtains the best effect on remainder graphs

In contrast to the insertion case, Table 4 demonstrates that removal maintenance
algorithms outperform the decomposition method. Although inserted and removed
edges both disseminate their impact through nearby paths, there are apparent dif-
ferences. The insertion algorithms refer to search and evict operations, whereas the
removal case concerns the evict process. TDR, unlike BUR, can utilize the informa-
tion of updated (i, j)-cores to avoid calculating the core degree of affected vertices.
As a result, it is inexpensive. In comparison to our approaches, IR performs relatively
poorly. The gap in some graphs, such as AM, reaches one order of multitude. It also
does well on DW and OC.
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Table 5 The running time of
core maintenance with different
values of r under insertion case
(second): Dec. performs best on
DL and DR, whereas our BUI
obtains the best performance on
DS, DW, OC

Graph r (%) Dec. BUI TDI II

DL 0.050 14.028 452.231 473.640 23.547

0.075 12.451 473.585 485.476 32.755

0.100 12.338 486.227 477.145 48.217

0.125 12.332 587.767 580.617 58.943

0.150 12.908 601.495 588.866 72.276

DP 0.050 9.936 2.569 7.698 0.855

0.075 9.999 2.696 7.744 1.278

0.100 10.019 2.783 8.134 1.748

0.125 10.060 3.377 8.114 1.994

0.150 9.954 3.032 8.290 2.339

DR 0.050 11.195 508.898 335.555 17.947

0.075 11.165 507.267 346.539 26.137

0.100 11.233 509.554 439.796 36.457

0.125 12.690 699.463 384.454 48.367

0.150 16.773 710.256 487.801 54.697

DS 0.050 13.633 6.097 15.415 21.867

0.075 13.446 6.527 16.373 35.915

0.100 12.912 6.735 16.751 70.900

0.125 19.137 10.561 28.995 89.210

0.150 18.353 11.516 27.820 103.381

DW 0.050 8.716 0.559 1.117 3.720

0.075 8.932 0.695 1.109 5.233

0.100 8.735 0.838 1.230 6.514

0.125 8.768 0.959 1.697 8.244

0.150 8.552 0.998 1.490 8.959

OC 0.050 3.598 0.135 0.443 0.679

0.075 2.930 0.099 0.749 1.681

0.100 2.707 0.133 0.437 1.967

0.125 3.428 0.132 0.556 1.846

0.150 3.026 0.122 0.492 2.286

Best results are given in bold
II achieves the best performance on DP

6.4 Ratio test

To track the running time evolution of our algorithms, we run all methods with varying
values of r and n on these graphs, where r and n denote the edge ratio and the
number of layers, respectively. Apart from these factors, the rest of the settings are
comparable to our performance evaluation. Because of the randomization of inserted
(removed) edges, the running time for the identical settings varies for each graph
experiment.
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Table 5 illustrates that when r increases, the performance of all insertion mainte-
nance algorithms decreases since inserted edges influence more (i, j)-cores. Because
decomposition approaches always decompose entire graphs, their running time is
rather stable. Similar to the insertion case, when the number of edges triples, BUI and
TDI take 1.5x time. But the consuming time of II is proportional to the edge growth
ratio.

Table 6 illustrates that the performance of all removal maintenance algorithms
degrades when removed edges influence more (i, j)-cores. Because removed edges
take up a small proportion of the total edges, the running time of the decomposition
remains consistent, although with a slight fluctuation. When the number of removed
edges triples, the running time of all maintenance algorithms becomes proportional to
the edge increase ratio.

Lastly, we study the impact of maintaining (i, j)-cores of top-n layers with r =
0.1%, where n is the number of layers of (i, j)-cores and varies from 1 to 20. Other
settings are analogous to those used in the above experiments.

We realize that the performance of TDI and TDR (see Tables 7 and 8) is more
stable when compared with different values of r . On the one hand, the number of
(i, j)-cores in top-n layers is minimal; on the other hand, dense (i, j)-cores are hardly
affected by inserted (removed) edges due to its high density.

As previously stated, the maintenance cost of removal algorithms is lower than that
of insertionmethods. As a result, the cost of estimating themaximal layer of the current
graph will be a significant fraction under the top-down approach. If removed edges
only influence a few (i, j)-cores, the cost of our top-down approach may outweigh
the bottom-up method.

6.5 Discussion

Finally, we provide a summary of (i, j)-core maintenance. In detail, we first analyze
the benefits and drawbacks of baselines. Then, we discuss the advantages and disad-
vantages of our approaches. Lastly, we address the distinction between bottom-up and
top-down approaches.

Through our experiments, we observe that Dec. outperforms other approaches in
dense graphs. The basic principle behind maintenance algorithms is to find incre-
ment (decrement) of the previous (i, j)-core. A few inserted (removed) edges in
a dense graph will affect most (i, j)-cores. As a result, the expense of mainte-
nance is high. Meanwhile, most inserted (removal) edges in a sparse graph do
not affect dense (i, j)-cores, but Dec. must recalculate them. This is why main-
tenance algorithms are developed. II and IR only update the maximal bipartite
core indexes of vertices for each edge. It does not recalculate all (i, j)-cores,
so it is appropriate for dealing with extremely unbalanced graphs. However,
the cost of II and IR are proportion to the edge increase ratio, implying that
they are not fit for other types of graphs with numerous inserted (removed)
edges.

When compared to II and IR, our methods reduce the cost of seeking increment
(decrement) of the previous (i, j)-core since it deals with several edges at the same
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Table 6 The running time of
core maintenance with various r
values under remove case
(second): IR achieves the best
results on DL and DR while our
TDR obtains the best effect on
DS and DW

Graph r (%) Dec. BUR TDR IR

DL 0.050 13.014 44.226 2.506 1.311

0.075 12.235 57.207 2.950 1.954

0.100 12.377 65.456 3.225 2.710

0.125 12.272 69.429 4.123 3.863

0.150 13.140 86.172 4.309 4.707

DP 0.050 9.867 0.161 0.104 0.201

0.075 10.106 0.218 0.141 0.273

0.100 9.971 0.306 0.138 0.431

0.125 10.059 0.496 0.190 0.510

0.150 10.357 0.530 0.241 0.646

DR 0.050 14.079 87.319 3.309 1.322

0.075 13.790 133.300 3.342 2.243

0.100 13.987 135.924 3.858 3.196

0.125 14.745 140.389 7.470 4.624

0.150 15.573 170.678 4.585 3.481

DS 0.050 18.959 0.176 0.148 0.987

0.075 18.132 0.274 0.200 1.584

0.100 17.761 0.545 0.274 2.595

0.125 18.073 0.432 0.363 3.059

0.150 17.612 0.916 0.253 3.830

DW 0.050 7.974 0.091 0.097 0.093

0.075 8.905 0.092 0.071 0.231

0.100 8.468 0.137 0.134 0.257

0.125 8.943 0.166 0.113 0.405

0.150 8.363 0.156 0.106 0.487

OC 0.050 2.918 0.012 0.041 0.025

0.075 3.016 0.012 0.021 0.031

0.100 3.123 0.030 0.021 0.036

0.125 2.542 0.021 0.024 0.037

0.150 2.729 0.027 0.038 0.062

Best results are given in bold
And our BUR achieves the best performance on OC

time. Similarly, our methods suffer from the same disadvantages, making them unsuit-
able for dense graphs. Furthermore, our approaches perform worse when tackling
extremely imbalanced graphs because our methods must calculate all affected (i, j)-
cores. However, there is no such restriction in II and IR, which offers the possibility
of combining two strategies to take advantage of both approaches.

Bottom-up and top-down approaches are generally intended for different purposes.
The former is used to handle cases when all (i, j)-cores are required, while the latter
is used to take (i, j)-cores of top-n layers. Although the top-down approach can
also maintain all (i, j)-cores, it will cost more than the bottom-up approach for the
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Table 7 The running time of
maintaining (i, j)-cores of top-n
layers under insertion case
(second): our TDI outperforms
all other algorithms

Graph n Dec. BUI TDI II

AM 1 158.002 178.936 16.838 1482.390

5 17.904

10 18.060

15 18.119

20 17.283

Actor2 1 638.679 907.210 88.931 13, 161.100

5 85.744

10 85.773

15 85.880

20 87.365

KC 1 32.788 9.107 2.802 122.114

5 2.334

10 2.802

15 2.763

20 2.775

KI 1 479.035 472.988 47.590 7696.440

5 44.627

10 44.359

15 43.754

20 46.175

Best results are given in bold
Because n has no effect on other methods, so their running time are
same for varying values of n

insertion case. A bottom-up approach, for example, can be employed as filter stages
for some complicated subgraphs, e.g., bicliques (Mukherjee and Tirthapura 2017).
On the other hand, the top-down approach can be used in the community detection of
some recommendation systems.Ourmethods are currently not adequately parallelized.
Hence, they are unsuitable for dealing with large graphs. In future work, wewill utilize
the possibility of concurrently updating (i, j)-cores, improving resource utilization.

7 Related work

Numerous works on cohesive subgraphs (Semertzidis et al. 2019) have been published
in recent years, including maximal cliques (Akkoyunlu 1973; Jiang et al. 2017), quasi-
cliques (Yang et al. 2016), k-plexes (Berlowitz et al. 2015), k-cores (Saríyüce et al.
2013; Montresor et al. 2011; Wu et al. 2015), k-trusses (Huang et al. 2014). We will
look into cohesive subgraphs of unipartite and bipartite graphs.

Some studies concentrate on k-core decomposition in various scenarios. Cheng
et al. (2011) presented the external-memory approach in massive graphs, and their
algorithms achieved comparable performance with the in-memory algorithm.Montre-

123



Generalized core maintenance of dynamic bipartite graphs 233

Table 8 The running time of
maintaining (i, j)-cores of top-n
layers under removal case
(second): our TDR performs
best on AM, Actor2 and KI, and
our BUR achieves the best
performance on KC

Graph n Dec. BUR TDR IR

AM 1 149.079 25.849 17.410 43.628

5 17.387

10 18.350

15 17.536

20 17.711

Actor2 1 635.409 168.410 107.476 203.597

5 86.334

10 102.288

15 103.231

20 103.308

KC 1 34.570 0.474 2.787 5.195

5 2.778

10 2.796

15 2.804

20 2.759

KI 1 511.279 98.170 65.412 86.445

5 53.108

10 54.035

15 49.285

20 51.578

Best results are given in bold

sor et al. (2011) demonstrated new distributed algorithms in large networks, allowing
the decomposition over a set of connected machines and analyzing the low bound of
the complexity. Wu et al. (2015) developed efficient distributed algorithms to compute
(k, h)-cores in a temporal graph. Khaouid et al. (2015) implemented an algorithm that
can calculate the k-core decomposition for massive networks in a consumer-grade PC.

Some other works are concerned with k-core maintenance. Saríyüce et al. (2013)
introduced incremental k-core decomposition algorithms for the streaming graph data
based on the edge inserted (removed). Li et al. (2014) suggested an efficiency approach
for updating a certain number of nodes after inserting (deleting) an edge. To further
improve the performance, they also provided two pruning strategies by exploiting
the lower and upper bounds of the core number. Zhang et al. (2017) proposed a fast
order-based approach for the core maintenance that outperformed the state-of-the-art
algorithms. Bai et al. (2020) presented an efficient method to handle core maintenance
of enormous temporal graphs, which served as the idea for our research.

Researchers are interested in bipartite graphs because they may readily model the
collaborative relationship between two different entities. Zou (2016) exploited the
bitruss problem in a bipartite graph to find the largest edge-induced subgraph in which
every edge is included in at least k rectangles within the subgraph. Wang et al. (2018)
proposed a novel local search frameworkwith four heuristics algorithms to improve the
performance of the maximum balanced biclique issue.Wang and Liu (2018) evaluated
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the performance of community detection on bipartite graphs. Liu et al. (2020) pro-
posed efficient (i, j)-core decomposition andmaintenance methods based on bipartite
core indexes, whose space complexity is proportional to the graph size. However, their
approaches must compute all bipartite core indexes, which is inefficient for applica-
tions that focus on a few dense (i, j)-cores.

8 Conclusions

(i, j)-core, as a general concept of k-core, can distinguish various roles of two types
of vertices in bipartite graph analysis. (i, j)-cores maintenance is more challenging
due to its unique structure. To further decrease the cost of finding (i, j)-cores of a
dynamic bipartite graph when a few edges change, we provide a bottom-up approach
to update all (i, j)-cores quickly and a top-down approach to get the expected (i, j)-
cores of top-n layers. Experimental results show that our maintenance approaches
achieve better performance than baselines on most graphs.

We will continue to parallelize our algorithms to deal with (i, j)-core maintenance
of massive graphs that may fully utilize hardware resources in future work.
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Appendix A Proofs and Algorithms

Proof for Lemma 1. Let C = C(Gp, i, j) and P = P(i, j), Ĉ(P,C, i, j) ⊆ P holds
by Definition 4. Thus, we just prove P ⊆ Ĉ(P,C, i, j). Suppose there is a nonempty
graph A = P \ Ĉ(P,C, i, j), there must be a vertex l (r) ∈ A such that d(P(C), l) <

i (d(P(C), r) < j), where P(C) is the extended graph of A onC , and this vertex leads
to the recursive deletion on P . Otherwise, Ĉ(P,C, i, j) can expand via l (r). Since
P = C(Gc, i, j) \ C , d(P(C), l) ≥ i (d(P(C), r) ≥ j) always holds for l (r) ∈ P ,
which makes a contradiction. Thus, P ⊆ Ĉ(P,C, i, j).

In summary, P = Ĉ(P,C, i, j). ��

Proof for Theorem 1. LetC = C(Gp, i, j), F = Fb(i, j) and P = P(i, j). Firstly, we
prove Ĉ(F,C, i, j) ⊆ P . Suppose there is a nonempty graph A = Ĉ(F,C, i, j) \ P ,
there must be a vertex l (r) ∈ A such that d(F(C), l) < i (d(F(C), r) < j) and
this vertex leads to recursive deletion on A, where F(C) is the extended graph of F
on C . Otherwise, P can expand via l (r), which contradicts Definition 6. According
to Definition 5, d(F(C), l) ≥ i (d(F(C), r) ≥ j) holds for an arbitrary l (r) ∈ F
unless there is a vertex l ′ (r ′) ∈ C such that d(C, l ′) < i (d(C, r ′) < j). Since
C is the previous (i, j)-core, this makes a contradiction. As for an edge (l, r) ∈ A,
since l, r ∈ P , P can expand via adding (l, r), which contradicts Definition 6. Thus,
Ĉ(F,C, i, j) ⊆ P .
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Secondly, we prove P ⊆ Ĉ(F,C, i, j). Since P ⊆ F , Ĉ(P,C, i, j) ⊆ Ĉ(F,C, i,
j) holds. By Lemma 1, P(i, j) = Ĉ(P,C, i, j) ⊆ Ĉ(F,C, i, j).
In summary, P = Ĉ(P, F, i, j). ��

Proof for Theorem 2. Since C(Gp, i, j) = ∅, we have C(Gc, i, j) = P(i, j) ⊆
Fb(i, j). Since Fb(i, j) ⊆ Gc, C(Fb(i, j), i, j) ⊆ C(Gc, i, j) holds. Due to
C(Gc, i, j) ⊆ Fb(i, j), we have C(Gc, i, j) ⊆ C(Fb(i, j), i, j).

In summary, C(Fb(i, j), i, j) = C(Gc, i, j) = P(i, j). ��
Proof for Theorem 3. Let F = Ft (i, j), P = P(i, j) and C = C(Gc, i + 1, j) ∪
C(Gc, i, j + 1) ∪ C(Gp, i, j). Firstly, we prove (Ĉ(F,C, i, j) ∪ C(Gc, i + 1, j) ∪
C(Gc, i, j + 1)) \ C(Gp, i, j) ⊆ P . Since C(Gc, i + 1, j) ∪ C(Gc, i, j + 1) ⊆
C(Gc, i, j), (C(Gc, i + 1, j) ∪ C(Gc, i, j + 1)) \ C(Gp, i, j) ⊆ P holds. Since
Ĉ(F,C, i, j) \ C(Gp, i, j) = ∅, we just need to prove Ĉ(F,C, i, j) ⊆ P . Sup-
pose there is a nonempty graph A = Ĉ(F,C, i, j) \ P , we have d(F(C), l) ≥ i
or d(F(C), r) ≥ j for arbitrary l, r ∈ A, where F(C) is the extended graph
of F on C . If l /∈ P , there must be a vertex l ′ ∈ C (r ′ ∈ C) such that
d(C, l ′) < i (d(C, r ′) < j), which makes a contradiction. Since l, r ∈ P , if
(l, r) /∈ P , then we have P ⊆ P ∪ (l, r), which contradicts Definition 6. Thus,
(Ĉ(F,C, i, j) ∪ C(Gc, i + 1, j) ∪ C(Gc, i, j + 1)) \ C(Gp, i, j) ⊆ P .

Secondly, we prove P ⊆ (Ĉ(F,C, i, j) ∪ C(Gc, i + 1, j) ∪ C(Gc, i, j + 1)) \
C(Gp, i, j). Suppose there is a nonempty graph A = P \ ((Ĉ(F,C, i, j)∪C(Gc, i +
1, j) ∪ C(Gc, i, j + 1)) \ C(Gp, i, j)). Since (C(Gc, i + 1, j) ∪ C(Gc, i, j +
1)) \ C(Gp, i, j) ⊆ P and Ĉ(F,C, i, j) \ C(Gp, i, j) = Ĉ(F,C, i, j), A ⊆
P\Ĉ(F,C, i, j) holds. Clearly, A ⊆ F . Since A �= ∅, theremust be a vertex l (r) ∈ A
such that d(F(C), l) < i (d(F(C), r) < j), where F(C) is the extended graph of F
on C . By Definition 7 and C is the union graph of previous (i, j)-core, (i + 1, j)-core
and (i, j + 1)-core, d(F(C), l) ≥ i (F(C), r) ≥ j) holds for l (r) ∈ A. Again, this
is contradiction. Hence, P ⊆ (Ĉ(F,C, i, j) ∪ C(Gc, i + 1, j) ∪ C(Gc, i, j + 1)) \
C(Gp, i, j).

In summary, P = (Ĉ(F,C, i, j)∪C(Gc, i+1, j)∪C(Gc, i, j+1))\C(Gp, i, j).
��

Proof for Theorem 4. Let F = Ft (i, j), P = P(i, j) and C = C(Gc, i + 1, j) ∪
C(Gc, i, j + 1). Firstly, we prove Ĉ(F,C, i, j) ∪ C ⊆ P . Since C(Gp, i, j) =
∅, we have P = C(Gc, i, j). By Definition 6, we have C ⊆ C(Gc, i, j) = P .
Thus, we just need to prove Ĉ(F,C, i, j) ⊆ P . Suppose there is a nonempty graph
A = Ĉ(F,C, i, j) \ P , we have d(F(C), l) ≥ i (d(F(C), r) ≥ j) for arbitrary
l ∈ A (r ∈ F), where F(C) is the extended graph of F on C . If l /∈ P , there must
be a vertex l ′ ∈ C (r ′ ∈ C) such that d(C, l ′) < i (d(C, r ′) < j), which makes a
contradiction becauseC is the union graph of (i+1, j)-core and (i, j+1)-core. Since
l, r ∈ P , if (l, r) /∈ P , then we have P ⊆ P ∪ (l, r), which contradicts Definition 6.
Thus, Ĉ(F,C, i, j) ∪ C ⊆ P .

Secondly, we prove P ⊆ Ĉ(F,C, i, j) ∪ C . Suppose there is a nonempty graph
A = P \ (Ĉ(F,C, i, j) ∪C), since C ⊆ P , we have A ⊆ P \ Ĉ(F,C, i, j). Clearly,
A ⊆ F , otherwise it contradicts our assumption. Since A �= ∅, there must be a vertex
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Algorithm 5 Bottom-Up Bipartite Core Update

Input: Gc: the current bipartite graph, �̂+: the map of quasi-(i, j)-pairs and edge sets, �L : the bipartite
core indexes of left vertices, �R : the bipartite core indexes of right vertices, �

′
L : the new bipartite core

indexes of left vertices, �′
R : the new bipartite core indexes of right vertices, (i ′, j ′): the (i ′, j ′)-pair of

supergraph, (i, j): the given (i, j)-pair.
Output: �′

L : the bipartite core indexes of left vertices, �
′
R : the bipartite core indexes of right vertices.

1: let QL andQR be two empty sets
2: let d′

L and d′
R be two empty maps � store degree of vertices in C(Gc, i ′, j ′)

3: for (l, r) ∈ �̂+(i, j) do
4: if �′

L (l, i ′) ≥ j ′ ∧ �′
R(r , j ′) ≥ i ′ then � (l, r) ∈ C(Gc, i ′, j ′)

5: if �L (l, i) < j ∧ d′
L (l) ≥ i then � compute degree of l in C(Gc, i ′, j ′)

6: insert l intoQL
7: end if
8: if �R(r , j) < i ∧ d′

R(r) ≥ j then
9: insert r intoQR
10: end if
11: end if
12: end for
13: let dL and dR be two empty maps
14: let VL , VR be two empty sets
15: while QL �= ∅ ∨ QR �= ∅ do
16: Search-Possible-Vertices(QL ,QR , dL , VL ) � Omit constant parameters
17: Search-Possible-Vertices(QR ,QL , dR , VR )
18: end while
19: while VL �= ∅ ∨ VR �= ∅ do
20: Remove-Unsatisfied-Vertices(VL , VR , dR , dL )

21: Remove-Unsatisfied-Vertices(VR , VL , dL , dR)

22: end while
23: for l ∈ dL do
24: if �′

L (l, i) < j then
25: �′

L (l, i) ← j
26: end if
27: end for
28: for r ∈ dR do
29: if �′

R(r , j) < i then
30: �′

R(r , j) ← i
31: end if
32: end for
33: return �′

L , �′
R

l (r) ∈ A such that d(F(C), l) < i (d(F(C), r) < j), where F(C) is the extended
graph of F on C . By Definition 7 and C is the union graph of (i + 1, j)-core and
(i, j + 1)-core, d(F(C), l) ≥ i (d(F(C), r) ≥ j) holds for l (r) ∈ A. Again, this is
a contradiction. Hence, P ⊆ Ĉ(F,C, i, j) ∪ C .

In summary, P = Ĉ(F,C, i, j) ∪ C . ��
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Algorithm 6 Procedures of Algorithm 5
1: procedure Search- Possible- Vertices(QL ,QR , dL , VL )
2: for l ∈ QL do
3: d ← 0
4: let V ′ be an empty set
5: for r ∈ N (Gc, l) ∧ �′

R(r , j ′) ≥ i ′ do � r ∈ C(Gc, i ′, j ′)
6: if �R(r , j) ≥ i then � r ∈ C(Gp, i, j)
7: d ← d + 1
8: else if d′

R(r) ≥ j then
9: d ← d + 1
10: insert r into V ′
11: end if
12: end for
13: if d ≥ i then
14: dL (l) ← d
15: for r ∈ V ′ do
16: insert r intoQR
17: end for
18: else
19: insert l into VL
20: end if
21: end for
22: QL ← ∅
23: end procedure
24: procedure Remove- Unsatisfied- Vertices(VL , VR , dR , dL )
25: for l ∈ VL do
26: for r ∈ N (Gc, l) do
27: if r ∈ dR(r) ∧ dR(r) ≥ j then
28: dR(r) ← dR(r) − 1
29: if dR(r) < j then
30: insert r into VR
31: end if
32: end if
33: end for
34: remove l from dL
35: end for
36: VL ← ∅
37: end procedure
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Algorithm 7 Procedures of Algorithm 2
1: procedure Compute- Core- Degree(Gc, �R , l, i, j)
2: d ← 0
3: for r ∈ N (Gc, l) ∧ �R(r , j) ≥ i do � r ∈ C(Gp, i, j)
4: d ← d + 1
5: end for
6: return d
7: end procedure
8: procedure Remove- Unsatisfied- Vertices(Gc,QL ,QR , dR ,�′

L , i, j)
9: for l ∈ QL do
10: for r ∈ N (Gc, l) ∧ �R(r , j) ≥ i do � r ∈ C(Gp, i, j)
11: if r /∈ dR then
12: dR(r) ←Compute-Core-Degree(Gc,�R , r , j, i)
13: end if
14: if dR(r) ≥ j then
15: dR(r) ← dR(r) − 1
16: if dR(r) < j then
17: insert r intoQR
18: end if
19: end if
20: end for
21: end for
22: update �′

L of vertices in QL
23: QL ← ∅
24: end procedure
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