
Data Mining and Knowledge Discovery (2021) 35:2655–2678
https://doi.org/10.1007/s10618-021-00776-2

CURIE: a cellular automaton for concept drift detection

Jesus L. Lobo1 · Javier Del Ser2 · Eneko Osaba1 · Albert Bifet3 ·
Francisco Herrera4

Received: 19 September 2020 / Accepted: 18 June 2021 / Published online: 4 September 2021
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021

Abstract
Data stream mining extracts information from large quantities of data flowing fast
and continuously (data streams). They are usually affected by changes in the data
distribution, giving rise to a phenomenon referred to as concept drift. Thus, learning
models must detect and adapt to such changes, so as to exhibit a good predictive per-
formance after a drift has occurred. In this regard, the development of effective drift
detection algorithms becomes a key factor in data streammining. In this work we pro-
pose CURIE, a drift detector relying on cellular automata. Specifically, in CURIE the
distribution of the data stream is represented in the grid of a cellular automata, whose
neighborhood rule can then be utilized to detect possible distribution changes over the
stream. Computer simulations are presented and discussed to show that CURIE, when
hybridized with other base learners, renders a competitive behavior in terms of detec-
tion metrics and classification accuracy. CURIE is compared with well-established
drift detectors over synthetic datasets with varying drift characteristics.

Keywords Concept drift · Drift detection · Data stream mining · Cellular automata

1 Introduction

Data StreamMining (DSM) techniques are focused on extracting patterns from contin-
uous (potentially infinite) and fast data. A data stream is the basis of machine learning
techniques for this particular kind of data, which is composed of an ordered sequence
of instances that arrive one by one or in batches. Depending on the constraints imposed
by the application scenario at hand, such instances can be read only once or at most
a reduced number of times, using limited computing and memory resources. These
constraints require an incremental learning (or one-pass learning) procedure where

Dedicated to Tom Fawcett and J. H. Conway, who passed away in 2020, for their noted contributions to
the field of cellular automata and machine learning, and for inspiring this research work.

Responsible editor: Annalisa Appice, Sergio Escalera, Jose A. Gamez, Heike Trautmann.

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10618-021-00776-2&domain=pdf
http://orcid.org/0000-0002-6283-5148

2656 J. L. Lobo et al.

past data cannot be stored for batch training in future time steps. Due to these chal-
lenging conditions under which learning must be done, DSM has acquired a notable
relevance in recent years, mostly propelled by the advent of Big Data technologies
and data-intensive practical use cases (Bifet et al. 2018).

In this context, data streams are often generated by non-stationary phenomena,
which may provoke a change in the distribution of the data instances (and/or their
annotation). This phenomenon is often referred to as concept drift (Webb et al. 2016).
These changes cause that predictive models trained over data streams become eventu-
ally obsolete, not adapting suitably to the newdistribution (concept). The complexity of
overcoming this issue, and its prevalence over many real scenarios, make concept drift
detection and adaptation acknowledged challenges in DSM (Jie et al. 2018). Exam-
ples of data stream sources undergoing concept drift include computer network traffic,
wireless sensor data, phone conversations, social media, marketing data, ATM trans-
actions, web searches, and electricity consumption traces, among others (Žliobaitè
2016). Recently, several emerging paradigms such as the so-called Smart Dust (Ilyas
andMahgoub 2018), Utility Fog (Dastjerdi andBuyya 2016),Microelectromechanical
Systems (MEMS or “motes”) (Judy 2001), or Swarm Intelligence and Robotics (Del
Ser et al. 2019), are in need for efficient and scalable solutions in real-time scenarios.
Here concept drift may be present, and thus making drift detection a necessity.

This complexity in the concept drift phenomenon manifests when researchers try
to characterize it (Webb et al. 2016). Indeed, there are many different types of con-
cept drifts, characterized by e.g. the speed or severity of change. Consequently, drift
detection is a key factor for those active strategies that require triggering mechanisms
for drift adaptation (Hu et al. 2019). A drift detector estimates the time instants at
which changes occur over the stream, so that when a change is detected, an adaptation
mechanism is applied to the base learner so as to avoid a degradation of its predictive
performance. The design of a concept drift detector with high performance is not triv-
ial, yet it is crucial to achieve more reliable DSM models. In fact, a general-purpose
strategy for concept drift detection, handling and recovery still remains as an open
research avenue, as foretold by the fulfillment of the No Free Lunch theorem in this
field (Hu et al. 2019). This difficulty to achieve a universal best approach becomes evi-
dent in the most recent comparative among drift detectors made in Barros and Santos
(2018). Analyzing its mean rank of methods, we observe how there is not a method
with the best metrics, or even showing the best performance in the majority of them.
In this regard, the design objective is to develop techniques that detect all existing
drifts in the stream with low latency and as few false alarms and missed detections
as possible. Thus, the most suitable drift detector depends on the characteristics of
the DSM problem under study, giving more emphasis to some metrics than others.
Regarding the detection metrics, we usually tend to put in value those drift detectors
that are able to show a good classification performance while minimizing the distance
of the true positive detections.

Cellular automata (CA), as low-bias and robust-to-noise pattern recognition meth-
ods with competitive classification performance, meet the requirements imposed by
the aforementioned paradigmsmainly due to their simplicity and parallel nature. In this
work we present a Cellular aUtomaton for concept dRIft dEtection (CURIE), capable
of competitively identifying drifts over data streams. The proposed approach is based

123

CURIE: a cellular automaton for concept drift detection 2657

on CA, which became popular when Conway’s Game of Life appeared in 1970, and
thereafter attracted attention when Stephen Wolfram published his CA study in 2002
(Wolfram 2002). Although CA are not very popular in the data mining field, Fawcett
showed in Fawcett (2008) that they can become simple, low-bias methods. CURIE,
as any other CA-based technique, is computationally complete (able to perform any
computation which can be done by digital computers) and can model complex sys-
tems from simple structures, which puts it in value to be considered in the DSM field.
Moreover, CURIE is tractable, transparent and interpretable (Lobo et al. 2021), all
ingredients that have lately attracted attention under the eXplainable Artificial Intelli-
gence (XAI) paradigm (Arrieta et al. 2020), and not easy to achieve when designing
new data mining techniques. The natural concordance between data and the internal
structure of a cellular automaton makes CURIE to be closer to a transparent model by
design, leaving aside any need for external algorithmic components (post-hoc explain-
ability tools) to interpret its decisions (Rudin 2019). Next, we summarize the main
contributions of CURIE to the drift detection field:

• It is capable of competitively detecting abrupt and gradual concept drifts.
• It does not require the output (class prediction) of the base learner. Instead, it
extracts the required information for drift detection from its internal structure,
looking at the changes occurring in the neighborhood of cells.

• It is transparent by design due to the fact that its cellular structure is a direct
representation of the feature space and the labels to be predicted.

• It can be combined with any base learner.

Besides, CURIE offers another additional advantage in DSM:

• It is also able to act as an incremental learner and adapt to the change (Lobo et al.
2021), going one step further by embodying an all-in-one approach (learner and
detector).

The rest of the manuscript is organized as follows: first, we provide the background of
the field in Sect. 2. Next, we introduce the fundamentals of CA and their role in DSM
in Sect. 3. Section 4 exposes the details of our proposed drift detector CURIE, whereas
Sects. 5 and 6 elaborate on experimental setup and analyze results with synthetic and
real-world data stream respectively. Finally, Sect. 7 concludes the manuscript with an
outlook towards future research derived from this work.

2 Related work

We now delve into the background literature related to the main topics of this work:
drift detection (Sect. 2.1) and cellular automata for machine learning (Sect. 2.2).

2.1 Drift detection

DSM has attracted much attention from the machine learning community (Gomes
et al. 2019). Researchers are now on the verge of moving out DSM methods from
laboratory environments to real scenarios and applications, similarly to what occurred

123

2658 J. L. Lobo et al.

with traditional machine learning methods in the past. Most efforts in DSM have
been focused on supervised learning (Bifet et al. 2018) (mainly on classification),
addressing the concept drift problem (Webb et al. 2016). Generally, these efforts
have been invested in the development of new methods and algorithms that maintain
an accurate decision model with the capability of learning incrementally from data
streams while forgetting concepts (Losing et al. 2018).

For this purpose, drift detection and adaptation mechanisms are needed (Jie et al.
2018). In contrast to passive (blind) approaches where the model is continuously
updated every time newdata instances are received (i.e., drift detection is not required),
active strategies (where the model gets updated only when a drift is detected) are in
need for effective drift detection mechanisms. Most active approaches usually utilize
a specific classifier (base learner) and analyze its classification performance (e.g.
accuracy or error rate) to indicate whether a drift has occurred or not. Then, the
base learner is trained on the current instance within an incremental learning process
repeated for each incoming instance of the data stream. Despite the most used input
for the drift detectors are the accuracy or error rate, we can find other detectors that use
other inputs such as diversity (Minku and Yao 2011) or structural changes stemming
from the model itself (Lobo et al. 2018).

There is a large number of drift detectors in the literature,many of them compared in
Gonçalves Jr et al. (2014). As previously mentioned, the conclusion of these and other
works is that there is no a general-purpose strategy for concept drift. The selection of
a good strategy depends on the type of drift and particularities of each data streaming
scenario. Other more recent concept drift detection mechanisms have been presented
and well described in Barros and Santos (2018).

2.2 Cellular automata for pattern recognition

CA are not popular in the pattern recognition community, but even so we can find
recent studies and applications. In Collados-Lara et al. (2019), authors propose CA to
simulate potential future impacts of climate change on snow covered areas, whereas
in Gounaridis et al. (2019) an approach to explore future land use/cover change under
different socio-economic realities and scales is presented. Scheduling is another field
where CA has been profusely in use (Carvalho and Carneiro 2019). Another recent
CA approach for classification is Uzun et al. (2018). CA have been also used with
convolutional neural networks (Gilpin 2019) and reservoir computing (Nichele and
Molund 2017).

Regarding DSMor concept drift detection fields, the presence of CA-based propos-
als is even scarcer. Although a series of contributions unveiled solid foundations for
CA to be used for pattern recognition (Raghavan 1993), it was not until 2008 (Fawcett
2008) [departing from the seminal work in Ultsch (2002)] when CAwas presented as a
simple but competitive method for parallelism, with a low-bias, effective and compet-
itive in terms of classification performance, and robust to noise. Regarding DSM and
concept drift detection, timid efforts have been reported so far in Hashemi et al. (2007)
and Pourkashani and Kangavari (2008), which must be considered as early attempts
to deal with noise rather than with incremental learning and drift detection. They used

123

CURIE: a cellular automaton for concept drift detection 2659

a CA-based approach as a real-time instance selector to avoid noisy instances, while
the classification task was performed in batch learning mode by non-CA-based learn-
ing algorithms. Thus, CA is proposed as a mere complement to select instances, and
not as an incremental learner. Besides, their detection approach is simply based on
the local class disagreements between neighboring cells, without considering relevant
aspects such as the grid size, the radius of the neighborhood, or the moment of the
disagreement, among other factors. Above all, they do not provide any evidence on
how their solution learns incrementally, nor details on the real operation of the drift
detection approach. Finally, in terms of drift detection evaluation, their approach is
not compared to known detectors using reputed base learners and standard detection
metrics.

More recently, the authors of Lobo et al. (2021) transform a cellular automaton
into a real incremental learner with drift adaptation capabilities. In this work, we go
one step further by proposing CURIE, a cellular automaton featuring a set of novel
ingredients that endow it with abilities for drift detection in DSM. As we will present
in detail, CURIE is an interpretable CA-based drift detector, able to detect abrupt
and gradual drifts, and providing very competitive classification performances and
detection metrics.

3 Cellular automata

3.1 Foundations

VonNeumann describedCAas discrete dynamical systemswith a capacity of universal
computability (Von Neumann and Burks 1966). Their simple local interaction and
computation of cells result in a huge complex behavior when these cells act together,
being able to describe complex systems in several scientific disciplines.

Following the notation of Kari in Kari (2005), a cellular automaton can be formally
defined as: A

.= (d,S, f�, f�), with d denoting the dimension, S a group of discrete
states, f�(·) a function that receives as input the coordinates of the cell and returns
the neighbors of the cell to be utilized by the update rule, and f�(·) a function that
updates the state of the cell at hand as per the states of its neighboring cells. Hence,
for a radius r = 1 von Neumann’s neighborhood defined over a d = 2-dimensional
grid, the set of neighboring cells and state of the cell with coordinates c = [i, j] are
given by:

f�([i, j]) = {[i, j + 1], [i − 1, j], [i, j − 1], [i + 1, j]},
S(c) = S([i, j])

= f�(S([i, j + 1]), S([i − 1, j]), S([i, j − 1]), S([i + 1, j])),

123

2660 J. L. Lobo et al.

1

1

11

2

2

2

2

2

2

2

2 *

?

d
=

1

d = 2

d = 3

d = 5

d
=

4

d = 6

[h1, . . . , h|S|]

(a) (b) (c)

Fig. 1 Neighborhood of CA in data mining: (a) a von Neumann’s neighborhood with radius r = 1 and
r = 2 using the Manhattan distance; (b) the center cell inspects its von Neumann’s neighborhood (r = 1)
and applies the majority voting rule in a one-step update; (c) CURIE structure for d × G = 6 × 3

i.e., the vector of states S([i, j]) of the [i, j] cell within the grid is updated according
to the local rule f�(·) when applied over its neighbors given by f�([i, j]) (Fig. 1).
For a d-dimensional space, a von Neumann’s neighborhood contains 2d cells.

A cellular automaton should present these three properties: i) parallelism or syn-
chronicity (all of the updates to the cells compounding the grid are performed at the
same time); ii) locality (when a cell [i, j] is updated, its state S[i, j] is based on the
previous state of the cell and those of its nearest neighbors); and iii) homogeneity or
properties-uniformity (the same update rule f�(·) is applied to each cell).

3.2 Cellular automata for data streammining

A DSM process that may evolve over time can be defined as follows: given a time
period [0, t], the historical set of instances can be denoted asD0,t = d0, . . . ,dt , where
di = (Xi , yi) is an instance,Xi is the vector of features, and yi its label. Assuming that
D0,t follows a certain joint probability distribution Pt (X, y). As it has already been
mentioned, data streams usually suffer from concept drift, which may change their
data distribution, provoking that predictivemodels trained over them become obsolete.
Thus, concept drift happens at timestamp t + 1 when Pt (X, y) �= Pt+1(X, y), i.e. as
a change of the joint probability distribution of X and y at time t .

In addition to the presence of concept drift, DSM also imposes by itself its own
restrictions, which calls for a redefinition of the previous CA for data mining. Algo-
rithms learning from data streams must operate under a set of restrictions:

• Each instance of the data stream must be processed only once.
• The time to process each instance must be low.
• Only a few data stream instances can be stored (limited memory).
• The trained model must provide a prediction at any time.
• The distribution of the data stream may evolve over time.

Therefore, when adapting a CA for DSM, the above restrictions must be taken into
account to yield a CA capable of learning incrementally, and with drift detection and
adaptation mechanisms. In order to use CA in DSM, data instances flowing over time
must be mapped incrementally to the cells of the grid. Next, we analyze each of the
mutually interdependent parts in CA for DSM:

• Grid: In a data mining problem with n features, the standard procedure adopted
in the literature consists of assigning one grid dimension to each feature. After

123

CURIE: a cellular automaton for concept drift detection 2661

that, it is necessary to split each grid dimension by the values of the features, in a
way that we obtain the same number of cells per dimension. To achieve that, “bins”
must be created for every dimension (Fig. 2) by arranging evenly spaced intervals
based on the maximum and minimum values of the features. These “bins” delimit
the boundaries of the cells in the grid.

• States: We have to define a finite number of discrete states |S|, which will
correspond to the number of labels (classes) considered in the datamining problem.

• Local rule: In datamining the update rule f�(·) can adopt several forms. One
of the most accepted variants is a majority vote among neighbors’ states (labels).
For example, for d = 2:

S([i, j]) = argmaxs∈S
∑

[k,l]∈ f�([i, j])
I(S([k, l]) = s),

where the value of f�([i, j])will be the coordinates of neighboring cells of [i, j],
and I(·) is an auxiliary function taking value 0 when its argument is false and 1 if
it is true.

• Neighborhood: a neighborhood and its radius must be specified. Even though
a diversity of neighborhood relationships has been proposed in the related litera-
ture, the “von Neumann” (see Fig. 1) or “Moore” are arguably the most resorted
definitions of neighborhood for CA.

• Initialization: the grid is seeded with the feature values of the instances
that belong to the training dataset. In order to decide the state of each cell, we assign
the label corresponding to the majority of training data instances with feature
values falling within the range covered by the cell. After that, cells of the grid are
organized into regions of similar labels (Fig. 2).

• Generations: when the initialization step finishes, some cells may remain
unassigned, i.e. not all of them are assigned a state (label). In other words, the
training dataset used to prepare the CA for online learning might not be large
enough to “fill” all cells in the grid. In such a case, it becomes necessary to “evolve”
the grid several times (generations) until all cells are assigned a state. In this
evolving process, each cell calculates its new state by applying the update rule over
the cells in its neighborhood. All cells apply the same update rule, being updated
synchronously and at the same time. Here lies the most distinctive characteristic
of CA: the update rule only inspects its neighboring cells, being the processing
entirely local (Fig. 1).

4 Proposed approach: CURIE

We delve into the ingredients of CURIE to act as drift detector. As shown in Fig. 3, its
detection mechanism hinges on the evidence that a recent number of mutations in the
neighborhood of a cell that has just mutated, may serve as an symptomatic indicator
of the occurrence of a drift.

123

2662 J. L. Lobo et al.

(a) (b)

Fig. 2 Data representation in CA: (a) a dataset with d = 2 dimensions (features), |S| = {0, 1}, and G = 2
“bins”, where Xt = (X1

t , X2
t) falls between [3, 7] (min/max X1

t) and [−3,−3] (min/max X2
t); (b) A

different dataset whose instances initialize the grid of a bigger cellular automaton with d = 2 and G = 10

CURIE builds upon this intuition to efficiently identify drifts in data streams by
fulfilling the following methodological steps (Algorithm 1 for the initialization of
CURIE, and Algorithm 2 for the drift detection and DSM process):

• First, in Algorithm 1 the CA inside CURIE is created by setting the value of
its parameters (detailed as inputs), and following the characteristics of the given
dataset (lines 1–5).

• A reduced number of preparatory instances of the data stream [(Xt , yt)]P−1
t=0) is

used to initialize the grid of CURIE. This grid is seeded with these instances, and
then CURIE is evolved for several iterations (generations) by applying the local
rule until all cells are assigned a state i.e. the labels of the preparatory instances
(lines 6–10).

• When the preparatory process is finished, we must ensure that several preparatory
data instances have not seeded the same cell, because each cell must reflect only
one single state. To this end, we must assign to each cell the most frequent state by
inspecting the labels of all those instances that fell within its boundaries. Then, we
must ensure that all cells have an assigned state by applying the local rule iteratively
all over the grid. Since this last process can again seed a cell with several instances,
we have to address this issue to ensure that the cell only reflects one single state
(lines 11–13).

• Next in Algorithm 2, CURIE starts predicting the data instances coming from the
stream in a test-then-train fashion (Gama et al. 2014) (lines 2–16). This process
consists of first predicting the label of the incoming instance, and next updating
the limits of the cells in the grid should any feature value of the processed instance
fall beyond the prevailing boundaries of the grid (lines 4–6). Secondly, the label
of the incoming instance is used for training, i.e. for updating the state of the
corresponding cell (line 7).

• In line 3 CURIE stores the incoming instance in a sliding window W of size P ,
which is assumed, as in the related literature, to be small enough not to compromise
the computational efficiency of the overall approach.

• During the test-then-train process, CURIE checks if a mutation of the cell states
has occurred (line 9). If the previous state of the cell (before the arrival of the
incoming instance) is different from the label of the incoming instance, a mutation
has happened. When there is a mutation, we assign the current time step to the cell

123

CURIE: a cellular automaton for concept drift detection 2663

in the grid of time steps (line 10). Then, CURIE checks the state of the neighboring
cells in a radius rmut (of a von Neumann’s neighborhood) in a specific period of
time (line 11). If the number of neighboring mutants exceeds a threshold (line 12),
CURIE considers that a drift has occurred.

• After drift detection, it is time to adapt CURIE to the detected change in the stream
distribution. To this end, we reset the grid, the vector of states, and the vector of
time steps in which a mutation was present (lines 13–15). Finally, the preparatory
process is carried out by seeding the grid with the instances stored in the sliding
window W (line 16).

Algorithm 1: Steps for the initialization of CU RI E .

Input : [(Xt , yt)]t=P−1
t=0 ; G; f�(·); f�(c) for cell with coordinates c ∈ G = {1, . . . , G}d .

Output: CU RI E initializated.

1 Let d be equal to the number of features in Xt
2 Let |S| be the number of classes (alphabet of yt)
3 Set a vector of state hits per cell: hc = [] ∀c ∈ G
4 Initialize the limits of the grid: [(limlow

n , limhigh
n)]dn=1

5 Create the grid as per G, n and [(limlow
n , limhigh

n)]dn=1

6 for t = 0 to P − 1 do // Preparatory process
7 Update limits as per Xt , e.g., limlow

n = min{limlow
n , xn

t }
8 Update grid “bins” as per G and [(limlow

n , limhigh
n)]dn=1

9 Select the cell c in the grid that encloses Xt
10 Append yt to the vector of state hits hc′ = [hc′ , yt]
11 Iterate with r and check |hc| to ensure one state per cell in G (local rule f�(·) and f�(c))
12 Guarantee at least |hc| = 1 in all cells in G
13 Iterate with r and recheck |hc| to ensure one state per cell (local rule f�(·) and f�(c))

Finally, after detailing the ingredients of CURIE to act as drift detector, we would
like to highlight two improvements over (Lobo et al. 2021) that positively impact on
the learning of data distribution:

• If the predicted and the true label do not equal each other, the cell state in CURIE
is always changed to the class of the incoming instance. Otherwise, if the age of
the cell state (Tage) was considered, this could impact on drift detection resulting
in more detection delay.

• In CURIE there is always one state assigned to each cell, thus it is not necessary
to check the state of the closest cell among those with assigned state to provide a
prediction. The cost of assigning one state to all cells of the grid is insubstantial;
it is just carried out at the preparatory process and when drift is detected. And so
we achieve a more simple method that does not need to check the surroundings
(neighborhood) of the cell when no state is assigned.

The source code of CURIE is available at https://github.com/TxusLopez/CURIE.

123

https://github.com/TxusLopez/CURIE

2664 J. L. Lobo et al.

Algorithm 2: Steps of CU RI E for drift detection and DSM
Input : [(Xt , yt)]∞t=P ; G; r ; rmut ; n_muts_allowed; mutation_period; W of size P; the limits

of the grid [(limlow
n , limhigh

n)]dn=1; a vector of mutations per time step and cell: hm = []
∀m ∈ G; a vector of state hits per cell: hc = [] ∀c ∈ G.

Output: Trained CU RI E producing predictions ŷt ∀t ∈ [P,∞)

1 Let |S| be the number of classes (alphabet of yt)

2 for t = P to ∞ do // DSM processing
3 Update W with the incoming instance (Xt , yt)

4 Predict ŷt as S(c), with c denoting the coordinates of the cell enclosing Xt

5 Update limits as per Xt , e.g., limlow
n = min{limlow

n , xn
t }

6 Update “bins” as per G and [(limlow
n , limhigh

n)]dn=1
7 Save the current cell state: cur_st = S(c)
8 Update S(c) = yt (i.e. the verified class of test instance)
9 if cur_st �= yt then // A mutation occurs in cell

10 Append t to the vector of mutations: hm′ = [hm′ , t]
11 Calculate # mutant neighbors n_muts of the cell, within radius rmut and within time

mutation_period
12 if n_muts >= n_muts_allowed then // Detection
13 Initialize hm, hc
14 Initialize grid limits: [(limlow

n , limhigh
n)]dn=1

15 New grid as per G, n, [(limlow
n , limhigh

n)]dn=1
16 Preparatory process (lines 6 − 10 of Algorithm 1) with instances in W

5 Experimental setup

In order to assess the performance of CU RI E , we have designed several experiments
with synthetic datasets configured with both abrupt and gradual drift versions.

Since drift detectors usually base their detection mechanisms on the prediction
results of a base learner, both detection and classification are often set to work together.
As it has been already mentioned, CURIE does not use the prediction of the base
learner. Instead, it estimates the occurrence of the drift by looking at the changes that
occur in the neighborhood of cells deployed over a grid that represents the distribution
of data. In our experiments we have accordingly combined three well-known base
learners (HT, NB and KNN) with five popular drift detectors including our proposed
detector (corr.DDM,EDDM,PH,ADWIN, and CURIE). They form 15 different learning-
detection schemes following the algorithmic template shown inAlgorithm3. Suchbase
learners and drift detection methods have been selected due to their wide use by the
DSMcommunity, and the availability of their implementations in the scikit-multiflow1

framework. For more information, we refer the reader to Gonçalves Jr et al. (2014)
and Barros and Santos (2018). Please note that the inclusion of KNN is not only based
on its frequent use, and it has also been considered due to its similarities with CA.
While KNN is not strictly local (the neighborhood is not fixed beforehand and the
nearest neighbor of an instance may change), CA has a fixed neighborhood. In CA the
local interaction between cells affects the evolution of each cell. We would also like to
underline that the size of the sliding window of KNN (max_window_size parameter in

1 https://scikit-multiflow.github.io/.

123

https://scikit-multiflow.github.io/

CURIE: a cellular automaton for concept drift detection 2665

(a)

(b)

Fig. 3 The interpretable adaptation mechanism of CURIE (d × G = 2 × 10) based on the mutations of
its neighborhood: (a) before the drift. CURIE updates the time instants of each mutant cell, i.e. when the
previous state of the cell (before the arriving of the incoming instance) is different from the label of the
incoming instance itself; (b) drift occurs. CURIE checks the neighborhood of each cell, and when at least
2 neighboring cells (defined by n_muts_allowed parameter) have mutated in the last 10 time steps (as per
the mutation_period parameter), CURIE considers that a drift has occurred. This is what is declared at
t = 1043 with the cell [2, 6] and its neighborhood of r = 2 (Manhattan distance), where 2 of its neighbors
have mutated at time steps 1037 and 1039. The number in each cell represents the last time that has mutated.
The neighborhood of the cell [2, 6] is darkened, and this cell (highlighted in white) and its neighbors which
have mutated ([1, 6], [1, 7]) have been enlarged

Table 1) is the same than the number of recent instances that CA uses to be initialized
and seeded after a drift is detected.

The computer used in the experiments is based on a x86 64 architecture with 8
processors Intel(R) Core(TM) i7 at 2.70GHz, and 32G B DDR4 memory running at
2, 133 MHz. The source code for the experiments is publicly available at this GitHub
repository: https://github.com/TxusLopez/CURIE.

5.1 Datasets

In order to assess the performance of a drift detector by measuring the different detec-
tion metrics, we need to know beforehand where a real drift occurs. This is only
possible with synthetic datasets. The scikit-multiflow framework, as one of the most
commonly accepted libraries in stream learning, allows generating a wide variety of

123

https://github.com/TxusLopez/CURIE

2666 J. L. Lobo et al.

Table 1 Configuration of detectors and CURIE

Detector Parameters Value

DDM min_num_instances 30

α (warning_level) 2.0

β (out_control_level) 300

EDDM min_num_instances 30

α (warning_level) 0.95

β (out_control_level) 0.9

ADWIN δ 0.002

PH min_instances 30

δ 0.005

threshold 50

α 0.9999

CURIE f�(·) von Neumann

f�(·) Majority voting

r , rmut 2,2

|S| {0, 1}
d × G n_ f eatures × n_bins

mutation_period 10

num_mutants_neighbors 2

synthetic data in order to simulate a realistic occurrence of drifts. The researcher can
configure the number of features, type of features (numerical or categorical), the num-
ber of samples, the noise impact, the number of classes, etc. to get the synthetic data
closer to a real scenario.

Concretely, we have generated 20 diverse synthetic datasets (10 abrupt and 10
gradual) by using several stream generators (Sine, Random Tree, Mixed, Sea, and
Stagger) and functions. They have a different number of features, noise, and a balanced
binary class. They exhibit 4 concepts and 3 drifts at time steps 10, 000, 20, 000, and
30, 000 in the case of abrupt datasets, and at time steps 9, 500, 20, 000, and 30, 500 in
the case of gradual ones. In the latter case, the width of the drift is 1, 000 time steps.
All generated data streams have 40, 000 instances in total.

Finally, as it is explained in Sect. 3.2, it is necessary to create “bins” by splitting
each grid dimension by the values of the features. For Sine and RT datasets we have
used 20 “bins” per dimension, while for the rest of datasets we have used 10 “bins’. The
values have been found experimentally, just knowing that a small grid is not capable
of representing the data distribution (e.g. the grid of Fig. 1). Here, we would like to
warn other researches by underlining that CURIE exhibits at this moment a drawback
that should be considered. Due to its exponential complexity, we recommend the use
of CURIE in datasets with a low number of features. This setback can be tackled by
carrying out the search over the grid’s cells by parallelizing this process.

The datasets are available at this Harvard Dataverse repository: https://dataverse.
harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/5OWRGB. And a more

123

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/5OWRGB
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/5OWRGB

CURIE: a cellular automaton for concept drift detection 2667

detailed description can be found at: https://github.com/TxusLopez/CURIE/blob/
master/README.md

5.2 Methods and parameters

As for CURIE we have assigned one grid dimension to each feature of the dataset at
hand. We also note that we have used a reduced number of instances to warm up the
learning-detection schemes, and also CURIE (see Algorithms 1 and 2, and 3). The
number of instances for this purpose usually depends on the memory or processing
time restrictions. In our experiments we have considered a very low number of them in
order to simulate a very restrictive real-time environment (see parameter P in Table 1).
In all of them,CURIE has been configured with a von Neumann’s neighborhood rather
than opting for its Moore alternative. A von Neumann’s neighborhood is linear in the
number of dimensions of the instance space, and therefore scales well for problems of
high dimensionality. In addition, a Moore’s neighborhood includes more neighbors,
thus we would have to potentially apply the local rule over more cells. This would
make the process computationally heavier and less suited for a DSM setting in the
preparatory process and after the drift occurs.

The parameters configuration for the drift detectors under consideration was exper-
imentally fixed, and is detailed in Table 1. The number of preparatory instances (P)
and the sliding window (W) of size P are shared between CURIE and the base learn-
ers. Concretely, their values are P = 50 and w = P . The values for the base learners
parameters have been found through a hyper-parameter tuning process (Grid Search
with 10 folds in a Stratified K-Folds cross-validator using a balanced accuracy metric)
carried out with these preparatory instances (see Table 2). For more information about
the meaning of the parameters and their values, we refer the reader to https://scikit-
multiflow.readthedocs.io/en/stable/api/api.html. And to know more about the Grid
Search process we refer to https://scikit-learn.org/stable/modules/generated/sklearn.
model_selection.GridSearchCV.html. Finally, Algorithm 3 presents the details of the
learning and detection scheme followed by the experiments.

5.3 Performancemetrics

Regarding the classification accuracy, we have adopted the so-called prequential
accuracy (p ACC) (Dawid and Vovk 1999), which is widely applied in streaming
classification scenarios. This metric evaluates the base learner performance by quan-
tifying the average accuracy obtained by the prediction of each test instance before its
learning in an online test-then-train fashion. This accuracy metric can be defined as:

p ACC(t) =

⎧
⎪⎪⎨

⎪⎪⎩

p ACCex (t), if t = tre f ; otherwise

preACCex (t − 1) + p ACCex (t) − p ACCex (t − 1)

t − tre f + 1
,

123

https://github.com/TxusLopez/CURIE/blob/master/README.md
https://github.com/TxusLopez/CURIE/blob/master/README.md
https://scikit-multiflow.readthedocs.io/en/stable/api/api.html
https://scikit-multiflow.readthedocs.io/en/stable/api/api.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html

2668 J. L. Lobo et al.

Table 2 Grid Search parameters of the base learners

Base learner Parameters Values range

KNN n_neighbors 3, 5, 7, 10, 15

lea f _si ze 3, 5, 7, 10, 15

algori thm kd_tree

max_window_si ze W

HT grace_period 25, 75, 150, 300

tie_threshold 0.001, 0.25075, 0.5005, 0.75025, 1

spli t_con f idence 0.000000001, 0.025, 0.05, 0.075, 1.0

spli t_cri terion ’gini’,’info_gain’, ’hellinger’

lea f _prediction ’mc’,’nb’, ’nba’

NB nominal_attributes None

Algorithm 3: Learning-detection scheme

Input : [(Xt , yt)]t=P−1
t=0 ; [(Xt , yt)]∞t=P ; W of size P

1 . Output: Trained base learners producing predictions ŷt ∀t ∈ [P,∞)

2 Base learner ∈ [HT, NB, KNN]
3 Initialize base learners parameters of Table 1
4 Detector ∈ [DDM, EDDM, ADWIN,PH,CURIE]
5 Initialize detectors parameters of Table 1

6 for t = 0 to P − 1 do // Preparatory process
7 if detector = CURIE then
8 Train detector with (Xt , yt)

9 Train base learner with (Xt , yt)

10 for t = P to ∞ do // DSM processing
11 Update W with the incoming instance (Xt , yt)

12 Predict ŷt
13 Train base learner with (Xt , yt)

14 if detector = CURIE then
15 Train detector with (Xt , yt)

16 else
17 if ŷt �= yt then
18 detector.add_element(0)
19 else
20 detector.add_element(1)

21 if detector.detected_change() then // Detection
22 Initialize detector
23 Preparatory process (6 − 7) with instances in W

24 Compare classification and detection performance metrics

where p ACCex (t) = 0 if the prediction of the test instance at time t before its learning
is wrong, and 1 when it is correct. The reference time tre f fixes the first time step used

123

CURIE: a cellular automaton for concept drift detection 2669

in the estimation, and allows isolating the computation of the prequential accuracy
before and after a drift has occurred.

To know about the resources used by stream learners, we have adopted the measure
RAM-Hours proposed in Bifet et al. (2010), based on rental cost options of cloud
computing services. Here, 1 RAM-Hour equals 1 GB of RAM dispensed per hour of
processing (GB-Hour). In order to analyze the concept drift identifications we have
used the Matthews correlation coefficient (MCC) as detection metric. MCC it is a
correlation coefficient between the current and predicted instances. It returns values
in the [−1, 1] range, and it is defined as:

MCC = ((T P · T N) − (F P · F N))√
(T P + F P) · (T P + F N) · (T N + F P) · (T N + F N)

.

As the high variance may appear in MCC and µD when T P = 0 in several datasets
due to a) the very different behavior of detectors in such a diverse experimentation, and
b) the period enabled to make detections (2% and 10% of the concept size for abrupt
and for gradual datasets respectively) is quite restricted and provokes that T P = 0
frequently. Thus, we have included the non-detection rate (N D) as a new indicator
to be considered. Therefore, N D shows clearly the detection performance without
masking the behavior of those detectors which show a competitive MCC but with a
high variance. The lower the rate is, the better this detection performance will be. It
is defined as:

N D = The number of experiments with TP=0

The total number of experiments (30)
.

We have also measured the distance of the drift detection to the real drift occurrence
(µD). Finally, it is worth mentioning that the drifts detected within 2% and 10%
[for abrupt and gradual drifts) of the concept size after the real drift positions were
computed as T P (as in Barros and Santos (2018)], e.g. T P > 3 is possible, otherwise
they are F P .

5.4 Statistical tests

We have statistically compared the detectors in all datasets by carrying out the Fried-
man non-parametric statistical test as described in Demšar (2006). This test is the first
step to knowwhether any of the detectors have a performance statistically different (in
prequential accuracy, RAM-Hours, µD, MCC , and N D) from the others. The null
hypothesis states that all detectors are statistically equal, and in all cases was rejected.
Then it is necessary to use a post-hoc test to discover in what detectors there is a
statistical difference (in prequential accuracy, RAM-Hours, µD, and MCC), and we
used the Nemenyi post-hoc test (Nemenyi 1963) with 95% confidence to compare all
the detectors against all the others. The results are graphically presented showing the
critical difference (CD) represented by bars and detectors connected by a bar are not
statistically different.

123

2670 J. L. Lobo et al.

6 Results and discussion

In this section we present the mean results for all datasets in Table 3, and the mean
results for abrupt and gradual datasets in Tables 4 and 5 respectively. The original
results are given in Online Resource 1 and 2, which correspond to the original results
for the order functions F1 and F2 respectively, as it was introduced in Sect. 5.1.
At the beginning of these resources, a complete table compiles the results of the
experiments. Each detector is hybridized with the base learners and tested over 20
datasets (10 in Online Resource 1 and 10 in Online Resource 2). The whole set of
metrics is presented: prequential accuracy (p ACC), R AM − Hours, true positives
(T P), false positives (F P), true negatives (T N), false negatives (F N), distance to
the drift (µD), precision, recall, MCC , and non-detection rate (N D). The ranking of
p ACC , R AM − Hours, µD, MCC , and N D is provided for every experiment. At
the end of the resources, 6 summarizing tables are shown. On the left, the “F global
rank” shows the mean rank of detectors, while “F global results” shows the mean and
standard deviation of themetrics. On the right, these tables (“F abrupt rank”, “F gradual
rank”, “F abrupt results”, and “F gradual results”) detail the mean ranks and metrics
for abrupt and gradual datasets. Finally, the Online Resource 3 correspond to Tables
3, 4, and 5. Online Resources 1, 2, and 3 can be found as O_R_1.xlsx , O_R_2.xlsx
and O_R_3.xlsx respectively at https://github.com/TxusLopez/CURIE.

In Table 3 we observe that CURIE achieves the second best p ACC metric with
0.828±0.08, beingADWIN the best. However,CURIE is the worst in terms of R AM −
Hours with 9.55 · 10−4 ± 12 · 10−4. Here, in favor of CURIE, it is worth mentioning
that it is competingwithwell-established detectorswhose code has been optimized and
tested by the community in the scikit-multiflow framework. Probably, future versions
of CURIE will be more competitive in terms of this metric. Regarding detection
metrics, CURIE is the best with 303.45 ± 78.06 for µD, 0.37 ± 0.23 for MCC , and
0.20 for N D.

Deepening the types of drifts, we see in Tables 4 and 5 how CURIE shows the best
p ACC metric (together with ADWIN) with 0.841 ± 0.09, and the second best with
0.814±0.07 (withDDM immediately after) for abrupt and gradual datasets respectively.
In terms of R AM − Hours metric, CURIE exhibits the worst result for abrupt datasets
and the second worst for gradual ones. However, CURIE is the best in µD, MCC ,
and N D, with 118.90 ± 73.80, 0.17 ± 0.15, and 0.40 for abrupt datasets. In case of
gradual datasets, CURIE is again the best in µD with 488.00±82.32, the second best
in MCC (very close to ADWIN) with 0.57±0.31, and the best in N D with 0.00. Both
for abrupt and gradual drifts, CURIE shows a very competitive behavior in p ACC ,
and leads the ranking in µD, MCC , and N D; although in R AM − Hours has a poor
performance.

We would like to devote particular attention to the results of the N D metric. As
it has been already mentioned in Sect. 5.3, N D indicates how effective the detector
is. Here, we see that CURIE achieves true detections (T P > 0) in the majority of
abrupt datasets (N D = 0.40), while makes true detections in all gradual datasets
(N D = 0.00).

According to the mean ranks for all datasets of Fig. 4, ADWIN, CURIE and DDM
are the best detectors in terms of p ACC , yet no statistical differences between them.

123

https://github.com/TxusLopez/CURIE

CURIE: a cellular automaton for concept drift detection 2671

Ta
bl
e
3

M
ea
n
re
su
lts

an
d
m
ea
n
ra
nk
s
of

th
e
de
te
ct
or
s
in

ea
ch

m
et
ri
c
fo
r
al
lc
on
si
de
re
d
da
ta
se
ts

D
D
M

E
D
D
M

A
D
W
I
N

P
H

C
U
R
I
E

pA
C
C

sc
or
e

0.
81

3
±

0.
08

0.
79

0
±

0.
07

0.
83

5
±

0.
07

0.
80

7
±

0.
08

0.
82

8
±

0.
08

ra
nk

2.
72

4.
00

2.
18

3.
24

2.
81

R
A
M
-H

ou
rs

sc
or
e

5.
54

·1
0−

4
±

6
·1

0−
4

7.
50

·1
0−

4
±

18
·1

0−
4

5.
86

·1
0−

4
±

7
·1

0−
4

4.
51

·1
0−

4
±

6
·1

0−
4

9.
55

·1
0−

4
±

12
·1

0−
4

ra
nk

3.
31

2.
56

3.
00

2.
32

3.
82

µ
D

sc
or
e

59
5.
00

±
0.
00

48
2.
80

±
17

4.
76

39
2.
09

±
18

9.
50

56
8.
68

±
92

.7
5

30
3.
45

±
78

.0
6

ra
nk

3.
93

3.
22

2.
53

3.
56

1.
76

M
C
C

sc
or
e

0.
00

±
0.
00

0.
06

±
0.
09

0.
26

±
0.
25

0.
06

±
0.
16

0.
37

±
0.
23

ra
nk

3.
93

3.
22

2.
53

3.
56

1.
76

N
D

sc
or
e

1.
00

0.
62

0.
45

0.
87

0.
20

ra
nk

3.
95

2.
95

2.
57

3.
60

1.
94

p
A

C
C

co
m
pi
le
s
th
e
pr
eq
ue
nt
ia
l
ac
cu
ra
cy

re
su
lts

of
th
os
e
ba
se

le
ar
ne
rs

(H
T
,K

N
N
,a
nd

N
B
)
w
hi
ch

ha
ve

be
en

hy
br
id
iz
ed

w
ith

ea
ch

de
te
ct
or

(D
D
M
,E

D
D
M
,A

D
W
I
N
,P

H
,a
nd

C
U
R
I
E
).

R
A

M
−

H
ou

rs
pr
ov
id
es

th
e
co
st
s
of

ea
ch

m
en
tio

ne
d
hy
br
id
,w

hi
le
µ

D
,

N
D
,a
nd

M
C

C
sh
ow

th
e
re
su
lts

fo
r
th
e
de
te
ct
io
n
m
et
ri
cs

123

2672 J. L. Lobo et al.

Ta
bl
e
4

M
ea
n
re
su
lts

an
d
m
ea
n
ra
nk
s
of

th
e
de
te
ct
or
s
in

ea
ch

m
et
ri
c
fo
r
ab
ru
pt

da
ta
se
ts

D
D
M

E
D
D
M

A
D
W
I
N

P
H

C
U
R
I
E

pA
C
C

sc
or
e

0.
81

5
±

0.
07

0.
79

4
±

0.
07

0.
84

1
±

0.
08

0.
80

8
±

0.
08

0.
84

1
±

0.
09

ra
nk

2.
87

4.
08

2.
12

3.
38

2.
55

R
A
M
-H

ou
rs

sc
or
e

4.
48

·1
0−

4
±

4
·1

0−
4

2.
79

·1
0−

4
±

2
·1

0−
4

5.
29

·1
0−

4
±

5
·1

0−
4

4.
99

·1
0−

4
±

7
·1

0−
4

9.
31

·1
0−

4
±

13
·1

0−
4

ra
nk

3.
10

2.
50

3.
27

2.
33

3.
80

µ
D

sc
or
e

19
0.
00

±
0.
00

14
8.
00

±
50

.6
5

14
8.
33

±
52

.9
2

17
9.
60

±
21

.9
4

11
8.
90

±
73

.8
0

ra
nk

3.
88

2.
78

2.
70

3.
57

2.
07

M
C
C

sc
or
e

0.
00

±
0.
00

0.
06

±
0.
07

0.
14

±
0.
15

0.
10

±
0.
22

0.
17

±
0.
15

ra
nk

3.
88

3.
08

2.
52

3.
23

2.
28

N
D

sc
or
e

1.
00

0.
53

0.
50

0.
80

0.
40

ra
nk

3.
91

2.
66

2.
66

3.
38

2.
39

N
ot
e
th
at
µ

D
eq
ua
ls
19

0
(2
%

of
a
co
nc
ep
tl
en
gt
h
of

95
00

)
w
he
n
th
er
e
ar
e
no

T
P
in

ab
ru
pt

da
ta
se
ts
;o

th
er
w
is
e,
if
µ

D
w
ou

ld
eq
ua
li
.e
.0

,w
e
w
ou

ld
fa
vo
r
th
is
m
et
ri
c

123

CURIE: a cellular automaton for concept drift detection 2673

Ta
bl
e
5

M
ea
n
re
su
lts

an
d
m
ea
n
ra
nk
s
of

th
e
de
te
ct
or
s
in

ea
ch

m
et
ri
c
fo
r
gr
ad
ua
ld

at
as
et
s

D
D
M

E
D
D
M

A
D
W
I
N

P
H

C
U
R
I
E

pA
C
C

sc
or
e

0.
81

2
±

0.
08

0.
78

6
±

0.
06

0.
82

8
±

0.
07

0.
80

5
±

0.
08

0.
81

4
±

0.
07

ra
nk

2.
57

3.
92

2.
25

3.
10

3.
07

R
A
M
-H

ou
rs

sc
or
e

6.
60

·1
0−

4
±

9
·1

0−
4

12
.2
1

·1
0−

4
±

34
·1

0−
4

6.
44

·1
0−

4
±

9
·1

0−
4

4.
03

·1
0−

4
±

4
·1

0−
4

9.
80

·1
0−

4
±

11
·1

0−
4

ra
nk

3.
52

2.
62

2.
73

2.
30

3.
83

µ
D

sc
or
e

10
00

.0
0

±
0.
00

81
7.
59

±
29

8.
87

63
5.
86

±
32

6.
08

95
7.
77

±
16

3.
57

48
8.
00

±
82

.3
2

ra
nk

3.
98

3.
35

2.
55

3.
88

1.
23

M
C
C

sc
or
e

0.
00

±
0.
00

0.
6

±
0.
11

0.
38

±
0.
35

0.
02

±
0.
09

0.
57

±
0.
31

ra
nk

4.
03

3.
20

2.
57

3.
93

1.
27

N
D

sc
or
e

1.
00

0.
70

0.
40

0.
93

0.
00

ra
nk

3.
98

3.
23

2.
48

3.
82

1.
48

N
ot
e
th
at
µ

D
eq
ua
ls
10

00
(1
0%

of
a
co
nc
ep
tl
en
gt
h
of

10
,
00

0)
w
he
n
th
er
e
ar
e
no

T
P
in

gr
ad
ua
ld

at
as
et
s;
ot
he
rw

is
e,
if
µ

D
w
ou

ld
eq
ua
li
.e
.0

,w
e
w
ou

ld
fa
vo
r
th
is
m
et
ri
c

123

2674 J. L. Lobo et al.

Fig. 4 Comparison of mean ranks for all datasets in (a) pACC, (b)RAM-Hours, (c)µD, (d)MCC, and (e)
ND, using the Nemenyi test based on the results of Table 3 with a 95% confidence interval. CD is 1.363887
for 5 detectors and 20 datasets

Fig. 5 Comparison of mean ranks for abrupt datasets in (a) pACC, (b) RAM-Hours, (c) µD, (d) MCC,
and (e) ND, using the Nemenyi test based on the results of Table 4 with a 95% confidence interval. CD is
1.363887 for 5 detectors and 20 datasets

Fig. 6 Comparison of mean ranks for gradual datasets in (a) pACC, (b) RAM-Hours, (c) µD, (d)MCC,
and (e) ND, using the Nemenyi test based on the results of Table 5 with a 95% confidence interval. CD is
1.363887 for 5 detectors and 20 datasets

Regarding the R AM − Hours metric, CURIE and DDM are the worst detectors, with
no statistical differences between them. However, in what refers to µD and MCC ,
CURIE, ADWIN, and EDDM are the best detectors, yet again no statistical differences
between them. We find the same results in the mean ranks for abrupt and gradual
datasets depicted in Figs. 5 and 6 respectively.

123

CURIE: a cellular automaton for concept drift detection 2675

The conditions of the Nemeneyi test have been very tight (95% confidence for
5 detectors in 20 datasets) and it is difficult to achieve statistical differences. Even
so, CURIE has shown to be an interpretable drift detector competitive in terms of
predictive performance (p ACC) and detection metrics (µD, MCC , and N D), with-
out depending on the output (class prediction) of the base learner. Moreover, CURIE
provides competitive metrics for abrupt and gradual drifts, being this issue very con-
troversial in the drift detection field, as it was shown in Gonçalves Jr et al. (2014).

Finally, we would like to discuss on the suitability of CA for high-dimensional
datasets. When applying CA for streaming scenarios, we have to consider that since
the number of cells is proportional to the number of dimensions, as many features
in the dataset are, and as many cells per feature, as much computational cost and
more processing time will be required. Concretely, in a problem with d dimensions,
and with a size of the grid given by G, the worst-case complexity of predicting the
class of a given test instance Xt will be O(Gd). This is the time required by a single
processing thread to explore all cells of the d-dimensional grid and find the cell for
the instance Xt . Because of this exponential complexity, we recommend the use of
CA for datasets with a low dimensionality. However, when the scenario imposes such
conditions, the search process over the cells of the grid could be parallelized, allowing
for faster prediction and cell updating processes.

7 Conclusion and outlook

This work has presented CURIE, a competitive and interpretable drift detector based
on cellular automata. Until now, cellular automata have shown to be suitable solutions
for data mining tasks due to their simplicity to model complex systems, being robust
to noise and a low-bias method. Besides, they are computationally complete with
parallelism capacity, and they already showed competitive classification performances
as data mining methods.

This time, we have focused on their capacity to detect concept drift. They have
revealed themselves as suitable detectors that achieve competitive detection metrics.
They have also allowed base learners to exhibit competitive classification accuracies
in a diversity of datasets subject to abrupt and gradual concept drifts. They are suit-
able candidates to represent data distributions with a few instances, being this ability
welcomed in data stream mining tasks where memory and computational resources
are often severely constrained. Moreover, CURIE can act as an all-in-one approach,
in contrast to many other drift detectors which are based on a combination of a base
learner method with a detection mechanism.

As future work, we aim to extend the experimental benchmark to more synthetic
and real datasets in order to extrapolate the findings and conclusions of this study to
different types of drift and more realistic applications. Applying ensemble approaches
or even networks of cellular automata are also among our subjects of further study.
We also encourage other researchers to improve the performance of CA in high-
dimensional datasets. Finally, we would like to underline the relevance of carrying out

123

2676 J. L. Lobo et al.

experiments on parallelized algorithms; they probably will show the way to overcome
the high-dimensionality drawback.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s10618-021-00776-2.

Acknowledgements This work has received funding support from the ECSEL Joint Undertaking (JU)
under grant agreement No 783163 (iDev40 project). The JU receives support from the European Union’s
Horizon 2020 research and innovation programme, national grants from Austria, Belgium, Germany, Italy,
Spain and Romania, as well as the European Structural and Investment Funds. Authors would like to also
thank the ELKARTEK and EMAITEK funding programmes of the Basque Government (Spain)

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

References

Arrieta AB, Díaz-RodrDíguez N, Del Ser J, Bennetot A, Tabik S, Barbado A, Salvador G, Sergio GL,
Daniel M, Richard B et al (2020) Explainable artificial intelligence (XAI): concepts, taxonomies,
opportunities and challenges toward responsible AI. Inf Fusion 58:82–115

Barros RSM, Santos SGTC (2018) A large-scale comparison of concept drift detectors. Inf Sci 451:348–370
Bifet A, Gavaldà R, Holmes G, Pfahringer B (2018) Machine Learning for data streams with practical

examples in MOA. MIT Press. https://moa.cms.waikato.ac.nz/book/
Bifet A, Holmes G, Pfahringer B, Frank E (2010) Fast perceptron decision tree learning from evolving data

streams. In: Pacific-Asia conference on knowledge discovery and data mining. Springer, pp. 299–310
Carvalho Tiago I, Carneiro Murillo G, Oliveira Gina MB (2019) Improving cellular automata scheduling

through dynamics control. Int J Parallel Emerg Distrib Syst 34(1):115–141
Collados-Lara A-J, Pardo-Igúzquiza E, Pulido-Velazquez D (2019) A distributed cellular automatamodel to

simulate potential future impacts of climate change on snow cover area. Adv Water Resour 124:106–
119

Dastjerdi AV, Buyya R (2016) Fog computing: helping the Internet of Things realize its potential. Computer
49(8):112–116

Dawid AP, Vovk VG et al (1999) Prequential probability: principles and properties. Bernoulli 5(1):125–162
Del Ser J, Osaba E, Molina D, Yang XS, Salcedo-Sanz S, Camacho D, Das S, Suganthan PN, Coello CAC,

Herrera F (2019) Bio-inspired computation: where we stand and what’s next. Swarm Evolut Comput
48:220–250

Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30
Fawcett T (2008) Data mining with cellular automata. ACM SIGKDD Explor Newsl 10(1):32–39
Gama J, Žliobaitė I, Bifet A, Pechenizkiy M, Bouchachia A (2014) A survey on concept drift adaptation.

ACM Comput Surv (CSUR) 46(4):44
Gilpin W (2019) Cellular automata as convolutional neural networks. Phys Rev E 100(3):032402
Gomes HM, Read J, Bifet A, Barddal JP, Gama J (2019) Machine learning for streaming data: state of the

art, challenges, and opportunities. ACM SIGKDD Explor Newsl 21(2):6–22
Gonçalves Jr Paulo M, Santos Silas GT, de Carvalho B, Roberto SM, Vieira Davi CL (2014) A comparative

study on concept drift detectors. Expert Syst Appl 41(18):8144–8156
Gounaridis D, Chorianopoulos I, Symeonakis E, Koukoulas S (2019) A random forest-cellular automata

modelling approach to explore future land use/cover change in attica (Greece), under different socio-
economic realities and scales. Sci Total Environ 646:320–335

Hashemi S, Yang Y, Pourkashani M, Kangavari M (2007) To better handle concept change and noise: a
cellular automata approach to data stream classification. In: Australasian joint conference on artificial
intelligence. Springer, pp. 669–674

123

https://doi.org/10.1007/s10618-021-00776-2
https://doi.org/10.1007/s10618-021-00776-2
https://moa.cms.waikato.ac.nz/book/

CURIE: a cellular automaton for concept drift detection 2677

Hu H, Kantardzic M, Sethi TS (2019) No free lunch theorem for concept drift detection in streaming data
classification: a review. In: Wiley interdisciplinary reviews: data mining and knowledge discovery, pp.
e1327

Ilyas M, Mahgoub I (2018) Smart dust: sensor network applications, architecture and design. CRC Press,
Boca Raton

Jie L, Anjin L, Fan D, Feng G, Joao G, Guangquan Z (2018) Learning under concept drift: a review. IEEE
Trans Knowl Data Eng 31(12):2346–2363

Judy JW (2001)Microelectromechanical systems (mems): fabrication, design and applications. SmartMater
Struct 10(6):1115

Kari J (2005) Theory of cellular automata: a survey. Theor Comput Sci 334(1–3):3–33
Lobo JL, Del Ser J, Laña I, Bilbao MN, Kasabov N (2018) Drift detection over non-stationary data streams

using evolving spiking neural networks. In: International symposium on intelligent and distributed
computing. Springer, pp. 82–94

Lobo JL, Del Ser J, Herrera F (2021) LUNAR: Cellular automata for drifting data streams. Inf Sci 543:467–
487

Losing V, Hammer B, Wersing H (2018) Incremental on-line learning: a review and comparison of state of
the art algorithms. Neurocomputing 1275:1261–1274

Minku Leandro L, Yao X (2011) DDD: a new ensemble approach for dealing with concept drift. IEEE
Trans Knowl Data Eng 24(4):619–633

Nemenyi PB (1963) Distribution-free multiple comparisons. Princeton University, Princeton
Nichele S, Molund A (2017) Deep learning with cellular automaton-based reservoir computing. Complex

Systems
Pourkashani M, Kangavari MR (2008) A cellular automata approach to detecting concept drift and dealing

with noise. In: 2008 IEEE/ACS international conference on computer systems and applications. IEEE,
pp. 142–148

Raghavan R (1993) Cellular automata in pattern recognition. Inf Sci 70(1–2):145–177
Rudin C (2019) Stop explaining black box machine learning models for high stakes decisions and use

interpretable models instead. Nat Mach Intell 1(5):206–215
UltschA (2002)Datamining as an application for artificial life. In: Proceedings of the 5thGermanworkshop

on artificial life. Citeseer, pp. 191–197
Uzun AO, Usta T, Dündar EB, Korkmaz EE (2018) A solution to the classification problem with cellular

automata. Pattern Recog Lett 116:114–120
Von Neumann J, Burks AW et al (1966) Theory of self-reproducing automata. IEEE Trans Neural Netw

5(1):3–14
Webb GI, Hyde R, Cao H, Nguyen HL, Petitjean F (2016) Characterizing concept drift. Data Min Knowl

Disc 30(4):964–994
Wolfram S (2002) A new kind of science. Wolfram media Champaign, Champaign
Žliobaitè I, Pechenizkiy M, Gama J (2016) An overview of concept drift applications. In: Big data analysis:

new algorithms for a new society. Springer, pp. 91–114

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Authors and Affiliations

Jesus L. Lobo1 · Javier Del Ser2 · Eneko Osaba1 · Albert Bifet3 ·
Francisco Herrera4

B Jesus L. Lobo
jesus.lopez@tecnalia.com

Javier Del Ser
javier.delser@ehu.eus ; jdelser@bcamath.org

Eneko Osaba
eneko.osaba@tecnalia.com

123

http://orcid.org/0000-0002-6283-5148

2678 J. L. Lobo et al.

Albert Bifet
albert.bifet@telecom-paristech.fr ; abifet@waikato.ac.nz

Francisco Herrera
herrera@decsai.ugr.es

1 TECNALIA, Basque Research and Technology Alliance (BRTA), Gipuzkoa, Spain

2 University of the Basque Country UPV/EHU & Basque Center for Applied Mathematics
(BCAM), Bilbao, Spain

3 ParisTech & The University of Waikato, Hamilton, New Zealand

4 Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI),
University of Granada, Granada, Spain

123

	CURIE: a cellular automaton for concept drift detection
	Abstract
	1 Introduction
	2 Related work
	2.1 Drift detection
	2.2 Cellular automata for pattern recognition

	3 Cellular automata
	3.1 Foundations
	3.2 Cellular automata for data stream mining

	4 Proposed approach: CURIE
	5 Experimental setup
	5.1 Datasets
	5.2 Methods and parameters
	5.3 Performance metrics
	5.4 Statistical tests

	6 Results and discussion
	7 Conclusion and outlook
	Acknowledgements
	References

