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Abstract
Class imbalance is one of thewell-known challenges inmachine learning. Class imbal-
ance occurs when one class dominates the other class in terms of the number of
observations. Due to this imbalance, conventional classifiers fail to classify the minor-
ity class correctly. The challenges become evenmore severe when class overlap occurs
in imbalanced data. Though literature is available to sequentially deal with class imbal-
ance and class overlap, these methods are quite complex and not so efficient. In this
paper, we propose an overlap-sensitive artificial neural network that can handle the
problem of class overlapping and class imbalance simultaneously, along with noisy
and outlier observations. The strength of this method lies in identifying the overlap-
ping observations rather than the region and in not using multiple classifiers unlike
the other existing methods. The key idea of the proposed method is in weighing the
observations based on its location in the feature space before training the neural net-
work. The performance of the proposed method is evaluated on 12 simulated data sets
and 23 real-life data sets and compared with other well known methods.The results
clearly indicate the strength and ability of the proposed method for a wide variety of
imbalance ratio and levels of overlapping. Also, it is shown that the proposedmethod is
statistically superior to the other methods in terms of different performance measures.
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1 Introduction

Artificial Neural-Network (ANN) is one of the widely used machine learning tech-
niques to address challenging real life situations. The architecture of ANN is based on
the connection of nodes/ artificial neurons in layer-wise structure. The neurons in each
layer receive signal from the previous layer that gets processed using some non-linear
function and transferred to the subsequent layer neurons through the edges. One com-
mon approach of ANN is to learn the weights of the network iteratively by minimizing
the sum of squared error (SSE) between the output of the network and the actual target.
In this way, ANN approximates the function that fits well on the data under considera-
tion. Though the computation of the parameter weights works well for balanced data,
the process becomes biased when imbalance is present in the data set. A data set is
called imbalanced if the number of observations of one class (majority class) exceeds
the number of observations in the other class (minority class). Imbalanced data has
wide real world applications including customer churn prediction (Burez and Van den
Poel 2009), financial distress prediction (Cleofas-Sánchez et al. 2016), gene regula-
tory network reconstruction (Ceci et al. 2015) and information retrieval and filtering
(Piras and Giacinto 2012). In most of the applications, the minority class is usually
of prime interest. Standard classifiers generally result in higher misclassifications of
the minority class due to its bias towards the majority class resulting in sub-optimal
solution (López et al. 2013; Thanathamathee and Lursinsap 2013).

In literature, many solutions have been proposed for improving the classification
accuracy of theminority classwithout severely jeopardizing the classification accuracy
of the majority class. These solutions have been categorized as sampling methods
(Barua et al. 2012; Chawla et al. 2002; Han et al. 2005; Shahee and Ananthakumar
2018a, b), cost-sensitive learningmethods (Sun et al. 2007), one class learning (Chawla
et al. 2004), and feature selection (Alibeigi et al. 2012; Yin et al. 2013; Shahee and
Ananthakumar 2019).

Sampling method is a preprocessing technique that provides a balanced class distri-
bution so that the classifiers behave in a similarmanner as traditional classifiers (Batista
et al. 2004; Estabrooks et al. 2004). Cost sensitive learning considers different costs
of misclassification of each example using cost matrix for handling class imbalance
(Elkan 2001; Ting 2002). It assigns higher cost to misclassification of minority class
observations compared to majority class observations. In one-class learning, one-class
SVM is trainedwith only the target class (Tax andDuin 2004). Feature selection in case
of imbalanced domain is to select the appropriate features for better classification of
minority class. However, none of the above mentioned approaches provides uniformly
superior performancewhen the classes are imbalanced. Sampling basedmethod is con-
sidered to be the simplest technique for handling class imbalance because it provides
balanced class distributions, without modifying the standard classification algorithm
(Barua et al. 2012; Chawla et al. 2002; Han et al. 2005; Shahee and Ananthakumar
2018a, b).

Apart from class imbalance, certain data intrinsic characteristics like overlapping
between the classes, lackof density and information in the trainingdata, impact of noisy
observations/outliers, presence of small disjuncts also worsen the performance of the
classifiers (Alshomrani et al. 2015; Japkowicz and Stephen 2002; Jo and Japkowicz
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2004; Prati et al. 2004; López et al. 2013). In many real-world applications, data
exhibits class imbalance problem along with some data intrinsic characteristics (Tang
et al. 2010).

In this paper, we propose a new method for binary class data that can handle class
imbalance and class overlapping simultaneously along with noisy / outlier obser-
vations. Introduction of class overlap along with class imbalance adds additional
challenges to the classification task. Batista et al. (2005) conducted an experiment
on synthetic data and found that performance degradation of the classifier is not solely
due to class imbalance but is also related to the degree of overlap between the classes.
In literature, various methods have been proposed but most of the methods deal with
class imbalance and class overlapping sequentially. The proposed method addresses
the problem of class overlap in class imbalance using a very different approach of
assigning different weights to the observations before training the ANN.

Some of the major contributions of this paper are summarized as follows:

– We propose an overlap sensitive neural network where the loss function of the
network varies with respect to the weights of the observations.

– The weights of the observations are computed by taking into account the location
of observations in the feature space.

– The presence of noisy/outlier observations and the imbalance in class distributions
are also given due consideration while computing the weights.

– To demonstrate the effectiveness of the proposed method, we evaluate its perfor-
mance on 12 simulated data with different scenarios and 23 real-world data sets
and compare with the other methods. The results clearly show that the proposed
method outperforms the other methods.

The organisation of the paper is as follows. Related work is presented in Sect. 2
followed by the details of the proposed method in Sect. 3. Evaluation details and
parameter settings details are given in Sect. 4. Analysis on simulated data sets and
real-life data sets are presented in Sects. 5 and 6 respectively. Section 7 presents
discussion on the proposed method and finally conclusion is presented in Sect. 8.

2 Related work

Since our focus is to pursue the challenges in handling data with class overlap in the
presence of class imbalance for neural network classifier, we shall review the relevant
literature. As shown in Fig. 1, overlapping data enclose an ambiguous region in the
feature space where the prior probability of the classes are roughly equal (Das et al.
2013). Generally, overlapping is caused by lack of features to differentiate the classes.
When the data set has overlapping regions, traditional classifiers are not able to find
a feasible solution for classification (Xiong et al. 2010). In other words, overlapping
nature of data sets makes it difficult to identify a class boundary that can perfectly
separate the classes (Das et al. 2013). In comparison to solving the problems of imbal-
anced and overlapping classes independently, finding a solution for classes with both
overlap and imbalance is more difficult.
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Fig. 1 Left data without class-overlap, Right data with class-overlap

In general, a kernel function is used to solve the class overlap problems (Das et al.
2013; Qu et al. 2011). A kernel function transforms the data from lower dimensional
space to higher dimensional space, maximising the chance of identifying a linear
separator in higher dimension feature space. However, class overlap can still exist in
the higher dimensional feature space (Lee and Kim 2018).

Xiong et al. (2010) introduced an approach in which data located in the over-
lapping region is treated differently from data in the non overlapping region. Support
Vector DataDescription (SVDD) is used to find overlapping regions, followed by three
overlapping-class modeling schemes, namely discarding, merging and separating. In
discarding scheme, models are trained based on data that lie in the non-overlapping
region, while data in the overlapping is discarded. In case of merging scheme, data in
the overlapping region are given a new class label “overlapping” and two models are
trained. The first model is trained by considering overlapping region as a new class
and the second model is trained only on data in the overlapping region. On test data
sets, if the first model classifies as overlapping class, then the second model is used
to determine the original class. In the case of separating scheme, though two models
are trained, the first model is trained only on the overlapping region and the second
model is trained only on the non-overlapping region. Findings of the paper suggest
that the separating scheme is the best among the three schemes. However, in all the
three cases, models are trained multiple times leading to decrease in computational
efficiency.

Tang et al. (2010) used a probabilistic neural network (PNN) to divide the feature
space into overlapping and non-overlapping regions. For deciding the overlapping
region, two considerations are taken into account. First, the overlapping region should
be large enough to accommodate most of the potentially misclassified observations
to ensure that the classification of observations lying in the non-overlapping region
is highly accurate. Second, the overlapping region should not be too wide to include
too many patterns. For classification of the test set, if an observation falls in the non-
overlapping region, then it is classified based on the highest posterior probability. If
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the test observation falls in the overlapping region, a new method is suggested for
classification.

Das et al. (2013) proposed ClusBUS ( Clustering-based undersampling technique)
for handling class imbalance alongwith class overlap. Theirmethod identifies different
clusters present in the data set without considering the class. After that, it computes the
ratio (r ) of the number of minority class observations and the size of the cluster. Based
on the computed r value and empirically determined threshold τ , it removes all of the
majority class observations and retains theminority class observations. In each cluster,
vacuum gets created around the minority class observations thus helping classifiers
in learning the decision boundary efficiently. However, removal of the majority class
could result in loss of information.

Tang andGao (2007) proposed amulti-model classifier (DR-SVM)which combines
SVM and kNN under rough set technique. KNN is used to identify the boundary data
and the remaining data in each class is called positive region pattern. Two SVM
classifiers are trained in DR-SVM and a pair of separating hyperplanes are obtained.
The test set falling in the overlapping region is classified by KNN algorithm.

Lee and Kim (2018) proposed an overlap-sensitive margin (OSM) classifier that
separates the data space into soft and hard-overlap regions using the modified fuzzy
support vectors machine algorithm. Test set observations falling in soft-overlap region
are classified based on decision boundary of the OSM classifier and those observations
falling in hard-overlap region are classified using KNN algorithmwith k = 1. The key
point of this method is that each observation has different cost of misclassification.
However, this method results in significant decrease in the classification of majority
class observations when data is highly imbalanced. Furthermore, this method does not
take into account the presence of outliers or noisy examples in the data set.

Lin et al. (2017) proposed a focal loss function for handling class imbalance. The
loss function modulates the cross entropy loss function in such a way that it focuses
the learning on hard to learn examples and down-weigh the contribution of numerous
easy examples. However, the loss function is not balanced between the classes. Cui
et al. (2019) modified different loss functions, especially the focal loss function to
make it class-balanced loss function. The class-balanced loss is a re-weighting loss
function where weight is inversely proportional to the effective number of samples.
The data overlap is considered in quantifying the effective number of samples. The
proposed class-balanced loss achieves significant performance gains on long-tailed
data sets.

From the above literature, we observe that every method has its own limitation
and further, most of the studies have considered the problems of class imbalance
and overlapping sequentially. In this paper, we propose an overlap sensitive neural
network that takes into account class overlap and class imbalance simultaneously. Our
algorithm not only increases the performance of the classifiers on the minority class
but it also ensures that the performance on the majority class is not compromised.
In addition, the proposed method also considers the presence of noisy examples or
outliers in the data set.
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Fig. 2 Feed-forward-neural-network-architecture

3 The proposedmethod

From the literature, it can be seen that one way of handling class imbalance is to
assign higher weight to the minority class compared to the majority class. Motivated
from this notion, rather than entire class being assigned a weight, we assign different
weights to the observations in our proposed method to handle class imbalance and
class overlap simultaneously. The assigned weight to each observation acts as cost of
misclassification with respect to that observation. This section discusses our proposed
method by describing each of the components in the subsequent subsections.

3.1 Neural network training

In ANN, input is fed via input layer followed by Sigmoid activation function applied
at each neuron that finally gets transferred to the output layer. This is also called
feedforward network as shown in Fig. 2.

In forward propagation, the output of the j th hidden unit in the first hidden layer
is obtained as

a(2)
j =

n∑

i=1

θ
(1)
j i xi + θ

(1)
j0 (1)

where the superscript indicates the layer it belongs to. Here, θ(1)
j i denotes the weight

parameter connecting i th input and j th neuron and θ
(1)
j0 denotes the bias for hidden

unit j . Now a j is transformed using the sigmoid activation function h(.) (McClelland
et al. 1988) resulting in

z j = h(a j ) (2)

where

h(x) = 1/(1 + exp(−x)) (3)
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Similar process is followed in the next layer with inputs as z j to finally obtain the
output of the network.

For determining the weights θ , ANN in general considers the cross-entropy error
function for a classification problem as it leads to faster training and improved gen-
eralization (Simard et al. 2003). In the current study, each observation is assigned
different importance depending on its location in the feature space and accordingly,
the error function considered is

E(θ) = −
N∑

n=1

{yn log zn + (1 − yn) log(1 − zn)} ∗ wn (4)

where zn denotes the output of the network for the input xn , yn is the actual class label
and wn denotes the weight of the nth observation. Here, the gradient of E(θ) w.r.t θ

is computed using backpropagation iteratively.
As E(θ) depends on the weight θ j i through the summed input a j , we apply the

chain rule for partial derivative given by

∂En(θ)

∂θ j i
= ∂En(θ)

∂a j

∂a j

∂θ j i
wn (5)

Let us denote

δ j ≡ ∂En(θ)

∂a j
(6)

Hence, Eq. (5) becomes

∂En(θ)

∂θ j i
= δ j

∂a j

∂θ j i
wn (7)

where
∂a j
∂θ j i

= x j for layer 1 and z j for other layers.
This implies that the required derivatives are computed by multiplying the weight

wn of each observation, by the product of the z value at the input end of the weight and
the δ value of the following layer. To obtain the derivatives in (7), δ’s are computed
next.

For the output neuron,

δk = zk − yk (8)

where zk is the predicted value of the kth observation and yk is the true class label.
Now, the δ values for hidden layer neurons are obtained by propagating the δ’s

recursively from the next higher layer using

δ j = h
′
(a j )

∑

k

θk jδk (9)
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Substituting these δ’s in Eq. (7), the required derivatives are computed.

3.2 Computation of observation weights

The main motivation of assigning weights to the observations is to increase the per-
formance of the classifier on the minority class without losing the performance on the
majority class. The computation of weights of observations takes into account class
overlapping, class imbalance and noisy/outlier observations. For this, data is divided
into three parts, namely safe zone, overlapping and outlier or noisy observations. An
observation is called a safe zone observation if it is surrounded by the same class
observations. Overlapping observations are those that have few other class observa-
tions in its neighbourhood. When an observation is surrounded by all the observations
of the other class, it is referred to as an outlier.

3.2.1 Class overlapping

For handling overlapping between the classes, we assign weights to the observations
with respect to the level of overlap.Higherweights are assigned to the observations that
are less overlapping and lower weights to the observations that are of high overlapping
in nature. For incorporating overlapping between the classes, propensity score of each
observation is defined by using K − NN algorithm. The value of K is set to 5 like
other well known methods in class imbalance domain (Chawla et al. 2002; He et al.
2008).

P = NN/5 (10)

where P is the propensity score and NN is the number of examples from the same
class. P = 0 means the observation is located inside the other class, in other words,
it is an outlier observation. P = 1 refers to safe zone observation, surrounded by
observations of the same class. An observation with 0 < P < 1 is referred to as
an overlapping observation. Hence, overlapping between classes is incorporated by
computation of the propensity score.

To accommodate different levels of overlapping of outliers in our method, we
consider a parameterC in the range [0.0, 0.20]. This range is chosen so that the weight
assigned to an outlier cannot exceed that assigned to an overlapping observation. Thus,
each observation is assigned a propensity score including outliers being assigned a
score C .
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Fig. 3 Different types of outliers: A is least overlapping, followed by B & D and then by E

3.2.2 Handling class imbalance

After dealing with class overlapping by using the propensity score, we now have to
deal with class imbalance. One of the techniques for handling class imbalance is to
preprocess the data that diminishes the effect of class imbalance by either increasing
the minority class observations or by decreasing the majority class observations. In
this study, we diminish the effect of class imbalance by making the total weight of the
minority class equal to the total weight of the majority class. To do this, we define the
Overlapping imbalance ratio (OIR), calculated as the number of overlapping observa-
tions in the minority class (nn1) divided by the number of overlapping observations
in the majority class (nn0).

OI R = nn1/nn0 (11)

Then we multiply the weights of overlapping majority class observations by OI R.
Further, to make the total weights of majority class and minority class equal, the
minority class examples are multiplied by a factor WGT where WGT is defined as

WGT = sum of majority class weights/Sum of minority class weights (12)

In this way, the sum of the weights of both the classes get balanced and this also
ensures that the weights of observations in safe zone are higher than the weights of
observations in the overlapping region which in turn are higher than the outliers.
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3.2.3 Outlier adjustment

While handling outliers, all such observations were assigned the same score C as
indicated in Sect. 3.2.1. Further, weight adjustment while handling class imbalance
changes the weights of the outliers uniformly. It is possible that these outliers are not
of the same kind as some may be easy to classify than other outliers. This points out
the need to weigh the outliers based on their level of overlapping. To illustrate this
aspect, Fig. 3 shows four outliers A, B, D and E of the minority class. Here, A is close
to the minority class and is relatively easily classifiable compared to B and D and
hence the level of overlapping is the least for A, followed by B and D and then by E.
Thus, the assigned weights should be in decreasing order of the extent of overlapping.
To accommodate this, we compute the distance of the outliers from the centroid of its
class using Eq. (13).

d = (||Xc − Xi ||2)1/2 (13)

where d is the distance between the centroid Xc and the outlier Xi . Now the outliers
are weighed with respect to the distance and accordingly, we choose a monotonic
decreasing function of distance given by (14).

wd = 2/(1 + exp(d)) (14)

The weights of the outliers are adjusted by multiplying with this quantity wd . By this,
the outlier that is located far from its centroid gets assigned less weight compared to
the outlier that is closer to its centriod. This would result in reduction of weights in
outliers and the difference is distributed proportionately among other observations.
The proposed method is summarized in Algorithm 1.
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Algorithm 1 Computation of weight vector of the classes
Input: Training dataset: S = {Xi , yi }, i = 1, ..., N ; Xi ∈ Rn and yi ∈ {0, 1} Positive class (class1):

S+ = {X+
i , y+

i }, i = 1, ..,m+;Negative class (class0): S− = {X−
i , y−

i }, i = 1, ...,m−; S = S+∪S−;
N = m+ + m−

Output: Weight vector of minority class V1 and weight vector of majority class V0

1: function WeightVectorComputation(S+, S−)
2: Compute propensity score of S+ and S− observations – return ClassPropPlus and ClassPropNeg

respectively.
// Initialize C with one of the value C ∈ {0.20, 0.15, 0.10, 0.05, 0.00} to all the outliers of S+

3: ClassPropPlusNew = []
4: for i = 1 to length(ClassPropPlus) do
5: if ClassPropPlus[i] == 0 then
6: ClassPropPlusNew[i] = C
7: else
8: ClassPropPlusNew[i] = ClassPropPlus[i]
9: end if
10: end for
11: ClassNeg ← OI R ∗ ClassPropNeg
12: WGT ← sum(ClassNag)/sum(ClassPropPlusNew)

13: ClassPosWgt ← ClassPropPlusNew ∗ WGT
14: V 1 ← Outlier Ad justment(ClassPropPlus,ClassPosWgt)
15: V0 ← ClassNag
16: return V0, V1
17: end function

18: function OutlierAdjustment(ClassPropPlus,ClassPosWgt)
19: ClassPropPlus3 = []
20: for i = 1 to length(ClassPropPlus) do
21: if ClassPropPlus[i] == 0 then
22: d ← (||Xc − Xi ||2)1/2 // xc is the centroid of class1 and Xi is an outlier of class1.
23: dist ← 2/(1 + exp(d))

24: ClassPropPlus3[i] = ClassPosWgt[i] ∗ dist
25: else
26: ClassPropPlus3[i] = ClassPosWgt[i]
27: end if
28: end for
29: diff = sum(ClassPosWgt) - sum(ClassPropPlus3)
30: SumTemp = Sum of the weights of non-outliers of ClassPropPlus3
31: ratio = di f f /SumTemp
32: AdjWgt = NULL
33: for i = 1 to length(ClassPropPlus) do
34: if ClassPropPlus[i] �= 0 then
35: Ad jWgt[i] = ClassPropPlus3[i] ∗ ratio
36: else
37: Ad jWgt[i] = 0
38: end if
39: end for
40: V1 ← ClassPropPlus3 + Ad jWgt
41: return V1
42: end function
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3.3 Computation complexity

We analyze the computational complexity of computing the propensity score. Propen-
sity score of an observation is based on the number of observations of the same class
in its K-NN. Let the data set have N examples in the n-dimensional feature space. We
know that the time complexity of computation of distance between two points in Rn

is O(n). Since (N − 1) distances are computed for each example, the corresponding
time complexity isO(N − 1)n. These distances are sorted using Radix sort. The time
complexity of sorting the (N −1) distances using Radix sort isO(N −1+b) logb D)

and selecting the first k observations isO(1). Hence, total time taken for one example
isO(N − 1)n+O(N − 1+ b)logbD. As we have total N observations, the total time
complexity isO((N−1)n+(N−1+b) logb D)∗N which is approximatelyO(N 2n).
The present study uses this propensity score, though it can become expensive for large
data sets having large number of features. Further, if categorical variables are present
in the dataset, one hot encoding is generally used for its representation. This results in
increasing the number of features which further increases the time complexity. Appro-
priate distance measure needs to be used for calculation of Propensity score to handle
non continuous variables which we intend to study later.

4 Evaluationmetrics and parameter settings

This section discusses the evaluation metrics used to evaluate the performance of the
proposed method. The parameter settings used in the network are also presented.

4.1 Evaluationmetrics

The proposedmethod is evaluated on the basis of evaluationmetrics that are commonly
used in the literature (He et al. 2008;He andGarcia 2008; Tharwat 2018), being derived
from the confusion matrix Table 1. In this confusion matrix, rows denote the number
of true class examples and the columns denote the number of examples classified by
the classifier.

Some of the well knownmetrics used for imbalanced data sets are precision, recall,
F-measure and G-mean (He and Garcia 2008). These metrics are defined as

Precision = T P

T P + FP
(15)

Recall = T P

T P + FN
(16)

F − Measure = (1 + β2)Recall ∗ Precision

β2 ∗ (Recall + Precision)
(17)

Here β is a non-negative parameter that controls the influence of precision and recall.
With β = 0, F-Measure is same as recall and when β → ∞, it tends to Precision. In
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Table 1 Confusion matrix Classifier Output

True Class P N

p TP FN

n FP TN

this study, we set β = 1, giving equal importance to precision and recall.

G − Mean =
√

T P

T P + FN

T N

T N + FP
(18)

G-Mean measures the performance by combining the Recall of positive and negative
classes (Guo and Viktor 2004b).

Another widely used graphical based representation for imbalanced domain is
Receiving Operating Characteristic (ROC) curve (Provost et al. 1997). This repre-
sentation of the performance of the classifier plots TP rates on the Y-axis and FP rates
on the X-axis. The TP rates and FP rates are defined as

TP rate = T P

T P + FN
(19)

FP rate = FP

FP + T N
(20)

A quantitative representation of ROC curve is the area under this curve and is called
AUC (Bradley 1997; Huang and Ling 2005).

4.2 Parameter settings

In this study, the neural network has one hidden layer, and the number of neurons
it contains is (No. of features + classes)/2, as considered in the literature (Guo and
Viktor 2004a). The number of input neurons is equal to the number of features of the
data set. In addition, batch normalization is used along with RelU activation function
in the hidden layer and Sigmoid activation in the output layer. Binary cross entropy
loss function has been optimized using Stochastic Optimizer Adam with learning
rate 0.01 and number of epochs being set to 100. This network is built in PyTorch
sequential model. The degree of overlap parameterC ∈ {0.20, 0.15, 0.10, 0.05, 0.00},
as explained in the proposed method section.

As the proposed method assigns weights to the observations before training the
network, it is a kind of pre-processing technique and hence we compare our pro-
posed method with certain well known preprocessing based techniques with default
parameter for handling class imbalance alongwith class overlapping, such as, SMOTE
(Chawla et al. 2002), ENN (Wilson 1972), SMOTE+ENN (Batista et al. 2004), Tomek
links (Tomek 1976) and SMOTE + Tomek (Batista et al. 2004). We evaluate the per-
formance of the proposed method using five-fold stratified cross validation technique
and compare with other existing methods on various metric measures.
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5 Simulation studies

This section considers the evaluation of the proposed method on simulated data sets
and compares its performance with some of the well known preprocessing based
methods that are used for handling class imbalance along with class overlapping.

5.1 Simulation setup

In this section, we simulate twelve binary class data sets that can be divided into three
groups (A, B and C) of different levels of class overlap, each comprising four data
sets. Data sets ofGroup A are simulated using bivariate Gaussian distribution with the
majority class having mean vector (0,0) and the minority vector having mean vector
(3,3) with common covariancematrix I2∗2.Group B data sets are simulated in a similar
way except that the mean vector of the minority class is shifted towards the majority
class from (3,3) to (1,1) to increase the class overlap. To further increase the overlap,
data sets in Group C are generated in such a way that the mean vector of the minority
class is shifted from (1,1) to (0.8, 0.8). Figure 4 shows the structure of three groups
with different levels of overlapping. For each group, we create four data sets with
different class imbalance ratios, approximately equal to 1:2, 1:5, 1:10 and 1:20. The
data sets thus generated are listed in Table 2 along with the number of observations in
each class.

5.2 Results

Tables 3, 4 and 5 present the results of simulation studies for Groups A, B and C
respectively. Tables 4 and 5 clearly indicate better performance of the proposedmethod
for Groups B and C in terms of F-measure_1 (F1), G-Mean and AUC for all levels
of imbalance ratios except SimDataC.3, where SMOTE_ENN performs slightly better
than the proposed method in G-Mean measure. As the imbalance ratio increases, the
performance gap between the proposedmethod and other methods becomes wider and
particularly quite prominent in Group C data SimDataC.4, where the imbalance ratio
is the highest. However, in case of Group A data sets where overlap is insignificant,
SMOTE and SMOTE_TOMEK perform slightly better than the proposed method in
terms of AUC and G-Mean, though the proposed method still performs much better
in terms of F1.

6 Experiments on real-life data sets

We evaluate the proposed method on 23 real-life data sets and compare its perfor-
mance with the performance of preprocessing based methods which were used for the
simulation studies.

Fifteen out of 23 data sets are chosen from KEEL data sets repository and the
maximum class imbalance among these data sets is 58.28 and the maximum number
of observations is 1484 (Alcalá-Fdez et al. 2011). For large-scale data set, breast
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Fig. 4 Simulated data sets having different levels of overlapping
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Table 3 F-measure, G-mean & AUC values for Group A data sets

Data sets Method F-measure_1 G-Mean AUC F-measure_0

SimDataA.1 ANN 0.971 0.976 0.979 0.987

SMOTE 0.975 0.984 0.984 0.988

ENN 0.965 0.975 0.979 0.984

SMOTE_ENN 0.975 0.982 0.982 0.988

Tomek_Link 0.971 0.977 0.980 0.987

SMOTE_Tomek 0.976 0.984 0.984 0.988

Prop_Method_C1 0.976 0.983 0.983 0.988

Prop_Method_C2 0.976 0.983 0.983 0.988

Prop_Method_C3 0.976 0.983 0.983 0.988

Prop_Method_C4 0.976 0.983 0.983 0.988

Prop_Method_C5 0.976 0.983 0.983 0.983

SimDataA.2 ANN 0.934 0.942 0.960 0.991

SMOTE 0.955 0.983 0.983 0.991

ENN 0.924 0.948 0.965 0.988

SMOTE_ENN 0.950 0.978 0.979 0.990

Tomek_Link 0.932 0.944 0.961 0.990

SMOTE_TOMEK 0.953 0.982 0.982 0.990

Prop_Method_C1 0.953 0.980 0.981 0.991

Prop_Method_C2 0.954 0.980 0.981 0.991

Prop_Method_C3 0.956 0.980 0.981 0.991

Prop_Method_C4 0.956 0.979 0.980 0.991

Prop_Method_C5 0.958 0.979 0.980 0.992

SimDataA.3 ANN 0.831 0.849 0.911 0.989

SMOTE 0.921 0.980 0.980 0.992

ENN 0.846 0.871 0.927 0.990

SMOTE_ENN 0.911 0.976 0.976 0.990

Tomek_Link 0.838 0.858 0.919 0.990

SMOTE_TOMEK 0.917 0.979 0.979 0.991

Prop_Method_C1 0.928 0.976 0.979 0.992

Prop_Method_C2 0.929 0.977 0.979 0.992

Prop_Method_C3 0.931 0.978 0.980 0.993

Prop_Method_C4 0.932 0.979 0.981 0.993

Prop_Method_C5 0.933 0.979 0.981 0.993

SimDataA.4 ANN 0.581 0.592 0.771 0.988

SMOTE 0.796 0.963 0.963 0.987

ENN 0.592 0.620 0.788 0.988

SMOTE_ENN 0.780 0.957 0.958 0.986

Tomek_Link 0.593 0.611 0.781 0.988

SMOTE_TOMEK 0.801 0.963 0.964 0.987

Prop_Method_C1 0.843 0.955 0.960 0.990
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Table 3 continued

Data sets Method F-measure_1 G-Mean AUC F-measure_0

Prop_Method_C2 0.852 0.953 0.957 0.991

Prop_Method_C3 0.857 0.950 0.955 0.991

Prop_Method_C4 0.862 0.949 0.954 0.992

Prop_Method_C5 0.859 0.943 0.948 0.992

Table 4 F-measure, G-mean & AUC values for Group B data sets

Data sets Method F-measure_1 G-Mean AUC F-measure_0

SimDataB.1 ANN 0.630 0.707 0.729 0.843

SMOTE 0.682 0.762 0.763 0.807

ENN 0.677 0.757 0.761 0.805

SMOTE_ENN 0.682 0.762 0.764 0.802

Tomek_Link 0.666 0.742 0.752 0.841

SMOTE_TOMEK 0.682 0.763 0.764 0.809

Prop_Method_C1 0.682 0.762 0.763 0.812

Prop_Method_C2 0.683 0.763 0.764 0.813

Prop_Method_C3 0.683 0.763 0.764 0.813

Prop_Method_C4 0.684 0.763 0.765 0.814

Prop_Method_C5 0.684 0.764 0.765 0.815

SimDataB.2 ANN 0.406 0.521 0.637 0.920

SMOTE 0.482 0.731 0.732 0.827

ENN 0.489 0.665 0.705 0.894

SMOTE_ENN 0.473 0.725 0.726 0.817

Tomek_Link 0.445 0.562 0.659 0.920

SMOTE_TOMEK 0.485 0.733 0.734 0.829

Prop_Method_C1 0.499 0.734 0.737 0.847

Prop_Method_C2 0.502 0.733 0.737 0.850

Prop_Method_C3 0.504 0.732 0.737 0.854

Prop_Method_C4 0.506 0.731 0.736 0.857

Prop_Method_C5 0.507 0.729 0.734 0.861

SimDataB.3 ANN 0.151 0.228 0.550 0.954

SMOTE 0.349 0.748 0.751 0.834

ENN 0.329 0.492 0.636 0.946

SMOTE_ENN 0.351 0.753 0.754 0.835

Tomek_Link 0.205 0.308 0.569 0.952

SMOTE_TOMEK 0.347 0.746 0.749 0.832

Prop_Method_C1 0.390 0.756 0.761 0.876

Prop_Method_C2 0.394 0.755 0.760 0.880

Prop_Method_C3 0.401 0.756 0.762 0.884
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Table 4 continued

Data sets Method F-measure_1 G-Mean AUC F-measure_0

Prop_Method_C4 0.401 0.748 0.756 0.889

Prop_Method_C5 0.398 0.734 0.745 0.894

SimDataB.4 ANN 0.000 0.000 0.500 0.975

SMOTE 0.226 0.746 0.748 0.856

ENN 0.028 0.053 0.508 0.975

SMOTE_ENN 0.219 0.741 0.743 0.848

Tomek_Link 0.000 0.000 0.500 0.975

SMOTE_TOMEK 0.224 0.746 0.747 0.851

Prop_Method_C1 0.237 0.746 0.752 0.870

Prop_Method_C2 0.241 0.749 0.755 0.873

Prop_Method_C3 0.247 0.748 0.755 0.879

Prop_Method_C4 0.260 0.749 0.757 0.891

Prop_Method_C5 0.269 0.723 0.739 0.907

Table 5 F-measure, G-mean & AUC values for Group C data sets

Data sets Method F-measure_1 G-Mean AUC F-measure_0

SimDataC.1 ANN 0.537 0.631 0.671 0.819

SMOTE 0.630 0.717 0.719 0.766

ENN 0.623 0.700 0.708 0.716

SMOTE_ENN 0.626 0.710 0.713 0.743

Tomek_Link 0.580 0.672 0.692 0.811

SMOTE_TOMEK 0.625 0.713 0.714 0.762

Prop_Method_C1 0.631 0.718 0.720 0.771

Prop_Method_C2 0.631 0.719 0.720 0.771

Prop_Method_C3 0.631 0.719 0.720 0.771

Prop_Method_C4 0.631 0.718 0.720 0.770

Prop_Method_C5 0.630 0.718 0.719 0.769

SimDataC.2 ANN 0.255 0.381 0.574 0.914

SMOTE 0.418 0.679 0.680 0.789

ENN 0.422 0.601 0.661 0.888

SMOTE_ENN 0.430 0.689 0.690 0.796

Tomek_Link 0.319 0.444 0.599 0.914

SMOTE_TOMEK 0.425 0.684 0.685 0.793

Prop_Method_C1 0.439 0.694 0.696 0.808

Prop_Method_C2 0.433 0.688 0.690 0.807

Prop_Method_C3 0.436 0.689 0.691 0.812

Prop_Method_C4 0.439 0.689 0.692 0.818

Prop_Method_C5 0.443 0.689 0.693 0.825
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Table 5 continued

Data sets Method F-measure_1 G-Mean AUC F-measure_0

SimDataC.3 ANN 0.049 0.077 0.514 0.953

SMOTE 0.299 0.705 0.709 0.793

ENN 0.215 0.345 0.575 0.947

SMOTE_ENN 0.303 0.705 0.709 0.808

Tomek_Link 0.093 0.155 0.528 0.952

SMOTE_TOMEK 0.298 0.703 0.707 0.794

Prop_Method_C1 0.319 0.702 0.709 0.838

Prop_Method_C2 0.320 0.699 0.706 0.843

Prop_Method_C3 0.320 0.694 0.702 0.847

Prop_Method_C4 0.324 0.696 0.704 0.850

Prop_Method_C5 0.332 0.695 0.707 0.861

SimDataC.4 ANN 0.000 0.000 0.500 0.975

SMOTE 0.175 0.680 0.683 0.810

ENN 0.000 0.000 0.500 0.975

SMOTE_ENN 0.178 0.687 0.690 0.809

Tomek_Link 0.000 0.000 0.500 0.975

SMOTE_TOMEK 0.174 0.681 0.683 0.809

Prop_Method_C1 0.191 0.704 0.709 0.825

Prop_Method_C2 0.193 0.704 0.709 0.828

Prop_Method_C3 0.196 0.701 0.708 0.835

Prop_Method_C4 0.196 0.684 0.699 0.848

Prop_Method_C5 0.192 0.617 0.656 0.889

cancer dataset has been used from the Knowledge Discovery and Data Mining Cup,1

which contains 102,294 examples with an imbalance ratio of 163.20. Apart from this,
three datasets have been considered from corporate bankruptcy domain, namelyUSA,
Japan and Polish bankruptcy data (Zhou 2013; Zikeba et al. 2016).

USAdata set contains observations fromnon-financial industrywith financial status
(Non-bankrupt or Bankrupt) as class label from 1981 to 2009. A bankrupt company is
defined as the onewhose reason for deletion ismarked as “bankruptcy” or “liquidation”
in the original Compustat North America dataset. As suggested by Zhou (2013), we
use 10 explanatory variables to predict the financial status. These explanatory variables
are: net income/total assets (NI/TA), current ratio (CR), retained earnings/total assets
(RE/TA), working capital/total assets (WC/TA), EBIT/total assets (EBIT/TA), sales
/total assets (S/TA), cash/total assets (C/TA), current assets/total assets (CA/TA), stock
holder’s equity/total debt (SHE/TD) and cash/current liabilities(C/CL). The number of
bankrupt and non-bankrupt firms between year 1981 to year 2009 are 918 and 85,211
respectively, with an imbalance ratio of 92.82. Japan bankruptcy dataset consists of
only non-financial firms and indicates whether they were bankrupt or non-bankrupt

1 http://www.kdd.org/kdd-cup.
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Table 6 Summary of the real-life data sets

Data sets Total observations Minority Majority IR

Pima 768 268 500 1.87

yeast-2_vs_4 514 51 463 9.08

glass0 214 70 144 2.06

ecoli1 336 77 229 3.36

yeast1 1484 429 1055 2.46

winequality-red-4 1599 53 1546 29.17

winequality-red-8_vs_6-7 855 18 837 46.5

winequality-white-3-9_vs_5 1482 25 1457 58.28

wisconsin 683 239 444 1.86

yeast-1_vs_7 459 30 429 14.3

yeast-2_vs_8 482 20 462 23.1

yeast5 1484 1440 44 32.73

yeast6 1484 1449 35 41.4

ecoli4 336 20 316 15.8

glass4 214 201 13 15.47

KDD_Cup_2008_Breast_Cancera 102294 623 101671 163.20

csv result-1year 7027 6756 271 24.93

csv result-2year 10173 9773 400 24.43

csv result-3year 10503 495 10008 20.21

csv result-4year 9792 515 9277 18.01

csv result-5year 5910 410 5500 13.41

Japan 36637 59 36578 619.97

USA 86129 918 85211 92.82

ahttp://www.kdd.org/kdd-cup/view/kdd-cup-2008

during the period 1989 to 2009. As before, we use the same 10 explanatory variables.
This data set has 59 bankrupt observations and 36,578 non-bankrupt observations,
thus having an imbalance ratio of 619.97.

In case ofPolish companiesmanufacturing sector data, the periodof time considered
was 2007-2013 for bankruptcy companies and 2000-2012 for operating companies.
The data set is divided into 5 parts depending on the forecasting period. The 1st
year data contains financial rates from 1st year of the forecasting period and the
corresponding class label indicates bankruptcy status after 5 years. The 2nd year data
contains financial rates from 2nd year of the forecasting period and the class label
indicates bankruptcy status after 4 years. Similarly, 3rd year, 4th year, 5th year data
sets have financial rates from 3rd, 4th and 5th years of the forecasting periods and
the class labels indicate the bankruptcy status after 3, 2, and 1 year respectively. The
characteristics of these data sets are listed in Table 6.

Five-fold stratified cross validation is used to compare the performance of the
proposed method with other existing methods, except for Japan and USA data sets.
Following Zhou (2013), for Japan and USA data sets, models are trained on obser-
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vations from year 1981 to 2001 and tested on observations between 2002 and 2009.
The results of the analysis are presented in Tables 7, 8, 9, 10 and 11 (Best results are
highlighted in bold face).

It can be observed that the proposed method does really well on F-measure of
minority class, G-Mean and AUC for different values of C . In the case of G-Mean,
the proposed method outperforms the other methods on all data sets except Japan and
yeast-2_vs_4 data sets, where SMOTE performs better than the other methods. Simi-
larly, while using AUC measure, the proposed method outperforms all other methods
on all data sets except Japan and yeast-2_vs_4, where SMOTE and SMOTE_ENNper-
form better respectively. Figure 5 showsROCgraphs of corporate bankruptcy datasets.
It can be observed from these graphs that the proposed method performs better on all
data sets except Japan data set. We can verify these observations from AUC values of
Tables 7, 8, 9, 10 and 11.

To assess whether the proposed method shows significant improvement over the
existingmethods, we conductedWilcoxon Signed Rank Test (Richardson 2010) on the
F-measure of minority and majority class, G-mean and AUC. The null and alternative
hypotheses are as follows:

H0: The median difference is zero
H1: The median difference is positive

Wilcoxon signed-rank test ranks the absolute difference between two classifiers. If
the null hypothesis is true, the sum of the ranks corresponding to positive differences
(W+) and that of negative differences (W−) should be nearly equal. The null hypoth-
esis is rejected in favor of the above alternative hypothesis only if the test statistic
W = W− is sufficiently small. For 23 data sets, to reject the null hypothesis at 0.05
significance level,W value must be less than 73 (Richardson 2010). Table 12 presents
the details of Wilcoxon signed rank test for AUC values for the proposed method and
SMOTE. As we can see from this table, W+ = 255, W− = 21, and thus W value =
21. W < 73 indicates that the proposed method is superior compared to SMOTE in
terms of AUC measure. Table 13 presents the summary of W+, W− and W values
for Wilcoxon signed rank test when comparing the proposed method with the other
methods on F-measure of both the classes, G-Mean and AUC. The statistical tests
indicate that the proposed method outperforms the other methods in terms of AUC,
F-measure minority and G-mean measure.

7 Discussion

In literature, few preprocessing based techniques exist for handling class imbalance
and class overlap. Traditionally, SMOTE handles class imbalance by oversampling
observations. However, oversampling is carried out without considering its location
in the feature space and thus oversampling in the overlapping region degrades the
performance of the classifier. Further, oversampling increases the size of the training
set, thus increasing the training time substantially. Edited Nearest Neighbours (ENN)
and Tomek Links are clean up techniques that remove the overlapping observations.
These techniques are combined with SMOTE to handle overlap resulting in tech-
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Table 7 F-measure, G-mean & AUC values for real-life data sets

Data sets Method F-measure_1 G-Mean AUC F-measure_0

Pima ANN 0.650 0.721 0.735 0.834

SMOTE 0.662 0.737 0.739 0.794

ENN 0.670 0.742 0.744 0.776

SMOT_ENN 0.681 0.750 0.754 0.781

Tomek_link 0.656 0.729 0.738 0.826

SMOTE_Tomek 0.671 0.744 0.746 0.800

Prop_Method_C1 0.687 0.758 0.760 0.815

Prop_Method_C2 0.684 0.756 0.758 0.814

Prop_Method_C3 0.690 0.761 0.763 0.817

Prop_Method_C4 0.686 0.758 0.759 0.815

Prop_Method_C5 0.680 0.753 0.755 0.814

yeast-2_vs_4 ANN 0.749 0.805 0.835 0.977

SMOTE 0.742 0.901 0.904 0.966

ENN 0.711 0.845 0.865 0.967

SMOT_ENN 0.727 0.918 0.920 0.960

Tomek_link 0.688 0.787 0.819 0.969

SMOTE_Tomek 0.718 0.885 0.889 0.962

Prop_Method_C1 0.747 0.892 0.897 0.966

Prop_Method_C2 0.770 0.898 0.903 0.970

Prop_Method_C3 0.777 0.900 0.905 0.971

Prop_Method_C4 0.781 0.897 0.903 0.972

Prop_Method_C5 0.764 0.879 0.886 0.971

glass0 ANN 0.716 0.773 0.795 0.879

SMOTE 0.723 0.798 0.802 0.814

ENN 0.718 0.794 0.805 0.807

SMOT_ENN 0.708 0.785 0.792 0.793

Tomek_link 0.744 0.810 0.819 0.867

SMOTE_Tomek 0.728 0.800 0.805 0.823

Prop_Method_C1 0.730 0.805 0.807 0.834

Prop_Method_C2 0.742 0.814 0.816 0.843

Prop_Method_C3 0.742 0.814 0.816 0.844

Prop_Method_C4 0.735 0.808 0.811 0.839

Prop_Method_C5 0.727 0.802 0.804 0.832

ecoli1 ANN 0.754 0.814 0.850 0.938

SMOTE 0.772 0.887 0.888 0.916

ENN 0.761 0.865 0.873 0.918

SMOT_ENN 0.776 0.886 0.889 0.915

Tomek_link 0.775 0.839 0.854 0.939

SMOTE_Tomek 0.779 0.891 0.893 0.918

Prop_Method_C1 0.808 0.890 0.892 0.938
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Table 7 continued

Data sets Method F-measure_1 G-Mean AUC F-measure_0

Prop_Method_C2 0.810 0.891 0.893 0.939

Prop_Method_C3 0.815 0.892 0.895 0.941

Prop_Method_C4 0.821 0.894 0.897 0.944

Prop_Method_C5 0.832 0.898 0.901 0.948

yeast1 ANN 0.518 0.618 0.670 0.855

SMOTE 0.592 0.715 0.716 0.768

ENN 0.606 0.725 0.727 0.803

SMOT_ENN 0.591 0.712 0.716 0.749

Tomek_link 0.546 0.649 0.685 0.850

SMOTE_Tomek 0.590 0.713 0.714 0.768

Prop_Method_C1 0.617 0.733 0.735 0.811

Prop_Method_C2 0.617 0.733 0.734 0.812

Prop_Method_C3 0.608 0.723 0.726 0.819

Prop_Method_C4 0.603 0.719 0.722 0.818

Prop_Method_C5 0.601 0.717 0.721 0.818

Table 8 F-measure, G-mean & AUC values for real-life data sets

Data sets Method F-measure_1 G-Mean AUC F-measure_0

winequality-red-4 ANN 0.000 0.001 0.500 0.983

SMOTE 0.173 0.656 0.690 0.908

ENN 0.000 0.001 0.500 0.983

SMOT_ENN 0.202 0.751 0.763 0.896

Tomek_link 0.013 0.025 0.503 0.982

SMOTE_Tomek 0.166 0.643 0.684 0.908

Prop_Method_C1 0.249 0.783 0.790 0.918

Prop_Method_C2 0.251 0.763 0.774 0.923

Prop_Method_C3 0.216 0.721 0.740 0.917

Prop_Method_C4 0.238 0.702 0.730 0.933

Prop_Method_C5 0.313 0.644 0.703 0.962

niques SMOTE + ENN and SMOTE + Tomek. However, these methods suffer loss of
information due to removal of some of the overlapping observations.

The proposed method uses an entirely different approach of considering different
costs of misclassification for observations while training the ANN. Different costs of
misclassification for observations are incorporated by assigning different weights to
the observations, depending on its location in the feature space. Accordingly, a dataset
is divided into three regions: safe zone, overlapping and noisy or outlier observa-
tions. The extent of overlapping is quantified by computing the propensity score. The
proposed method initially uses a parameter C to assign all the noisy observations a
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Table 8 continued

Data sets Method F-measure_1 G-Mean AUC F-measure_0

winequality-red-8_vs_6-7 ANN 0.001 0.002 0.500 0.989

SMOTE 0.171 0.518 0.658 0.963

ENN 0.001 0.002 0.500 0.989

SMOT_ENN 0.113 0.471 0.626 0.939

Tomek_link 0.001 0.002 0.500 0.989

SMOTE_Tomek 0.171 0.518 0.658 0.963

Prop_Method_C1 0.143 0.677 0.731 0.906

Prop_Method_C2 0.170 0.735 0.758 0.915

Prop_Method_C3 0.174 0.738 0.761 0.916

Prop_Method_C4 0.155 0.661 0.732 0.918

Prop_Method_C5 0.199 0.542 0.644 0.950

winequality-white-3-9_vs_5 ANN 0.057 0.074 0.518 0.992

SMOTE 0.124 0.615 0.685 0.940

ENN 0.000 0.000 0.500 0.991

SMOT_ENN 0.130 0.640 0.693 0.942

Tomek_link 0.153 0.201 0.550 0.992

SMOTE_Tomek 0.124 0.615 0.685 0.940

Prop_Method_C1 0.201 0.663 0.762 0.959

Prop_Method_C2 0.212 0.660 0.757 0.962

Prop_Method_C3 0.234 0.678 0.770 0.965

Prop_Method_C4 0.265 0.663 0.766 0.971

Prop_Method_C5 0.294 0.493 0.655 0.986

wisconsin ANN 0.953 0.965 0.965 0.975

SMOTE 0.954 0.967 0.967 0.975

ENN 0.964 0.978 0.978 0.979

SMOT_ENN 0.963 0.976 0.976 0.979

Tomek_link 0.952 0.965 0.965 0.974

SMOTE_Tomek 0.952 0.966 0.966 0.973

Prop_Method_C1 0.958 0.971 0.971 0.977

Prop_Method_C2 0.960 0.973 0.160 0.977

Prop_Method_C3 0.962 0.975 0.975 0.979

Prop_Method_C4 0.962 0.975 0.975 0.979

Prop_Method_C5 0.963 0.975 0.976 0.979

yeast-1_vs_7 ANN 0.042 0.060 0.512 0.967

SMOTE 0.287 0.696 0.716 0.885

ENN 0.127 0.187 0.514 0.967

SMOT_ENN 0.250 0.684 0.700 0.852

Tomek_link 0.061 0.087 0.518 0.967

SMOTE_Tomek 0.290 0.705 0.724 0.883

Prop_Method_C1 0.313 0.730 0.746 0.886
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Table 8 continued

Data sets Method F-measure_1 G-Mean AUC F-measure_0

Prop_Method_C2 0.321 0.724 0.743 0.894

Prop_Method_C3 0.310 0.717 0.736 0.893

Prop_Method_C4 0.336 0.724 0.745 0.906

Prop_Method_C5 0.410 0.741 0.764 0.931

Table 9 F-measure, G-mean & AUC values for real-life data sets

Data sets Method F-measure_1 G-Mean AUC F-measure_0

yeast-2_vs_8 ANN 0.534 0.588 0.736 0.987

SMOTE 0.257 0.661 0.709 0.930

ENN 0.561 0.612 0.754 0.987

SMOT_ENN 0.220 0.672 0.707 0.908

Tomek_link 0.585 0.617 0.759 0.989

SMOTE_Tomek 0.249 0.644 0.696 0.933

Prop_Method_C1 0.548 0.648 0.760 0.985

Prop_Method_C2 0.538 0.629 0.747 0.985

Prop_Method_C3 0.578 0.642 0.760 0.987

Prop_Method_C4 0.603 0.640 0.760 0.989

Prop_Method_C5 0.622 0.655 0.772 0.989

yeast5 ANN 0.215 0.272 0.605 0.986

SMOTE 0.670 0.955 0.956 0.985

ENN 0.302 0.364 0.651 0.987

SMOT_ENN 0.658 0.954 0.955 0.984

Tomek_link 0.216 0.270 0.598 0.986

SMOTE_Tomek 0.670 0.955 0.956 0.985

Prop_Method_C1 0.558 0.942 0.944 0.972

Prop_Method_C2 0.600 0.958 0.959 0.974

Prop_Method_C3 0.602 0.957 0.958 0.975

Prop_Method_C4 0.605 0.957 0.958 0.975

Prop_Method_C5 0.607 0.954 0.956 0.975

yeast6 ANN 0.000 0.000 0.500 0.988

SMOTE 0.384 0.869 0.876 0.966

ENN 0.000 0.000 0.500 0.988

SMOT_ENN 0.360 0.874 0.879 0.961

Tomek_link 0.000 0.000 0.500 0.988

SMOTE_Tomek 0.381 0.867 0.875 0.966

Prop_Method_C1 0.410 0.874 0.883 0.964

Prop_Method_C2 0.424 0.874 0.884 0.966
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Table 9 continued

Data sets Method F-measure_1 G-Mean AUC F-measure_0

Prop_Method_C3 0.410 0.861 0.873 0.966

Prop_Method_C4 0.400 0.846 0.862 0.966

Prop_Method_C5 0.388 0.818 0.837 0.966

ecoli4 ANN 0.361 0.365 0.674 0.980

SMOTE 0.828 0.894 0.905 0.990

ENN 0.333 0.363 0.665 0.977

SMOT_ENN 0.747 0.891 0.902 0.983

Tomek_link 0.299 0.317 0.633 0.977

SMOTE_Tomek 0.820 0.889 0.900 0.989

Prop_Method_C1 0.814 0.951 0.957 0.986

Prop_Method_C2 0.818 0.951 0.958 0.986

Prop_Method_C3 0.818 0.951 0.958 0.986

Prop_Method_C4 0.816 0.851 0.958 0.986

Prop_Method_C5 0.810 0.903 0.913 0.987

glass4 ANN 0.361 0.736 0.818 0.982

SMOTE 0.817 0.934 0.943 0.985

ENN 0.655 0.798 0.859 0.976

SMOT_ENN 0.655 0.932 0.935 0.966

Tomek_link 0.680 0.739 0.820 0.982

SMOTE_Tomek 0.817 0.934 0.943 0.985

Prop_Method_C1 0.703 0.941 0.944 0.971

Prop_Method_C2 0.694 0.940 0.943 0.971

Prop_Method_C3 0.695 0.940 0.943 0.971

Prop_Method_C4 0.718 0.940 0.943 0.973

Prop_Method_C5 0.715 0.940 0.943 0.973

Table 10 F-measure, G-mean & AUC values for real-life data sets

Data sets Method F-measure_1 G-Mean AUC F-measure_0

KDD_Cup_2008_Breast_Cancer ANN 0.597 0.682 0.757 0.998

SMOTE 0.461 0.859 0.871 0.995

ENN 0.584 0.693 0.764 0.998

SMOT_ENN 0.400 0.864 0.875 0.992

Tomek_link 0.581 0.680 0.754 0.998

SMOTE_Tomek 0.461 0.859 0.871 0.993

Prop_Method_C1 0.423 0.886 0.893 0.991

Prop_Method_C2 0.431 0.884 0.891 0.991

Prop_Method_C3 0.440 0.868 0.878 0.992

Prop_Method_C4 0.443 0.862 0.872 0.993

Prop_Method_C5 0.478 0.791 0.812 0.994
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Table 10 continued

Data sets Method F-measure_1 G-Mean AUC F-measure_0

csv_result-1year ANN 0.252 0.339 0.590 0.983

SMOTE 0.099 0.432 0.596 0.343

ENN 0.261 0.426 0.618 0.976

SMOT_ENN 0.098 0.449 0.598 0.364

Tomek_link 0.307 0.406 0.614 0.983

SMOTE_Tomek 0.106 0.485 0.619 0.406

Prop_Method_C1 0.130 0.630 0.687 0.617

Prop_Method_C2 0.138 0.656 0.701 0.661

Prop_Method_C3 0.153 0.690 0.726 0.710

Prop_Method_C4 0.149 0.679 0.717 0.706

Prop_Method_C5 0.191 0.684 0.712 0.865

csv_result-2year ANN 0.029 0.082 0.507 0.980

SMOTE 0.093 0.406 0.577 0.320

ENN 0.082 0.177 0.524 0.980

SMOT_ENN 0.091 0.401 0.575 0.310

Tomek_link 0.021 0.071 0.505 0.980

SMOTE_Tomek 0.087 0.333 0.554 0.233

Prop_Method_C1 0.115 0.597 0.654 0.581

Prop_Method_C2 0.124 0.632 0.673 0.638

Prop_Method_C3 0.118 0.600 0.655 0.591

Prop_Method_C4 0.126 0.626 0.668 0.648

Prop_Method_C5 0.118 0.595 0.629 0.655

csv_result-3year ANN 0.113 0.208 0.536 0.975

SMOTE 0.112 0.406 0.584 0.316

ENN 0.090 0.204 0.528 0.973

SMOT_ENN 0.106 0.384 0.570 0.285

Tomek_link 0.078 0.179 0.523 0.975

SMOTE_Tomek 0.105 0.333 0.560 0.236

Prop_Method_C1 0.130 0.568 0.648 0.515

Prop_Method_C2 0.133 0.578 0.654 0.531

Prop_Method_C3 0.135 0.588 0.659 0.548

Prop_Method_C4 0.135 0.593 0.656 0.563

Prop_Method_C5 0.146 0.638 0.658 0.688

csv_result-4year ANN 0.092 0.216 0.524 0.973

SMOTE 0.144 0.546 0.638 0.500

ENN 0.192 0.360 0.564 0.969

SMOT_ENN 0.145 0.566 0.645 0.525

Tomek_link 0.129 0.258 0.536 0.974

SMOTE_Tomek 0.136 0.515 0.623 0.453

Prop_Method_C1 0.210 0.725 0.737 0.782

123



1682 S. A. Shahee, U. Ananthakumar

Table 10 continued

Data sets Method F-measure_1 G-Mean AUC F-measure_0

Prop_Method_C2 0.216 0.726 0.734 0.802

Prop_Method_C3 0.227 0.733 0.739 0.823

Prop_Method_C4 0.229 0.732 0.738 0.831

Prop_Method_C5 0.207 0.688 0.696 0.824

csv_result-5year ANN 0.256 0.390 0.577 0.967

SMOTE 0.176 0.514 0.625 0.449

ENN 0.381 0.561 0.652 0.961

SMOT_ENN 0.209 0.625 0.683 0.597

Tomek_link 0.270 0.403 0.583 0.967

SMOTE_Tomek 0.156 0.410 0.579 0.318

Prop_Method_C1 0.374 0.783 0.787 0.897

Prop_Method_C2 0.380 0.782 0.786 0.900

Prop_Method_C3 0.375 0.755 0.763 0.909

Prop_Method_C4 0.403 0.749 0.761 0.925

Prop_Method_C5 0.394 0.743 0.755 0.922

Table 11 F-Measure, G-Mean & AUC values for real-life data sets

Data sets Method F-measure_1 G-Mean AUC F-measure_0

Japan ANN 0.021 0.033 0.506 0.999

SMOTE 0.019 0.853 0.855 0.929

ENN 0.001 0.002 0.500 0.999

SMOT_ENN 0.019 0.786 0.793 0.940

Tomek_link 0.001 0.003 0.500 0.999

SMOTE_Tomek 0.021 0.804 0.810 0.944

Prop_Method_C1 0.019 0.708 0.734 0.923

Prop_Method_C2 0.018 0.703 0.730 0.924

Prop_Method_C3 0.019 0.697 0.726 0.926

Prop_Method_C4 0.021 0.694 0.725 0.930

Prop_Method_C5 0.032 0.413 0.572 0.955

USA ANN 0.000 0.000 0.500 0.995

SMOTE 0.005 0.491 0.575 0.461

ENN 0.000 0.002 0.500 0.995

SMOT_ENN 0.007 0.631 0.655 0.681

Tomek_link 0.000 0.000 0.500 0.995

SMOTE_Tomek 0.005 0.547 0.602 0.542

Prop_Method_C1 0.006 0.584 0.630 0.621

Prop_Method_C2 0.006 0.606 0.645 0.663

Prop_Method_C3 0.007 0.623 0.654 0.707

Prop_Method_C4 0.008 0.642 0.667 0.754

Prop_Method_C5 0.011 0.610 0.653 0.879
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Fig. 5 Averaged ROC curves for Corporate bankruptcy data sets
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Table 12 Illustration of significant test details of AUC between the proposed method and SMOTE

Data set Proposed method SMOTE Difference Rank

pima 0.763 0.739 0.024 10

yeast-2_vs_4 0.905 0.904 0.001 1.5

glass0 0.816 0.802 0.014 7

ecoli1 0.901 0.888 0.013 6

yeast1 0.735 0.716 0.019 8

winequality-red-4 0.790 0.690 0.1 18

winequality-red-8_vs_6-7 0.761 0.658 0.103 20

winequality-white-3-9_vs_5 0.770 0.685 0.085 15

wisconsin 0.976 0.967 0.009 5

yeast-1_vs_7 0.764 0.716 0.048 11

yeast-2_vs_8 0.772 0.709 0.063 13

yeast5 0.959 0.956 0.003 3

yeast6 0.884 0.876 0.008 4

ecoli4 0.958 0.905 0.053 12

glass4 0.944 0.943 0.001 1.5

KDD_Cup_2008_Breast_Cancer 0.893 0.871 0.022 9

csv_result-1year 0.726 0.596 0.13 22

csv_result-2year 0.673 0.577 0.096 17

csv_result-3year 0.659 0.584 0.075 14

csv_result-4year 0.739 0.638 0.101 19

csv_result-5year 0.787 0.625 0.162 23

Japan 0.734 0.855 -0.121 21

USA 0.667 0.575 0.092 16

W+ = 255,W− = 21;W = W− = 21

uniform weight less than or equal to the propensity score assigned to the overlapping
observations. Further, the weights of all the observations in the minority class are
proportionally increased to match the sum of majority class observations. Later, the
weights for different types of outliers are adjusted depending on its distance from the
centroid of the minority class. In this way, the resulting weights of safe zone observa-
tions are higher than those of overlapping observations which in turn are higher than
noisy observations. Thus, the computation of weights using this approach helps ANN
handle class imbalance as the total weight of minority class equals that of the majority
class. Also, the weights of the overlapping observations decreasing with the extent of
overlapping helps in increasing the true positive rate. Further, assigning least weight
to outliers minimizes the shift of the decision boundary towards the majority class,
resulting in reduction of false positive rate. Thus, the proposed method efficiently
handles class imbalance and class overlap simultaneously.
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Table 13 Summary of Significant test results

Feature Percentage Proposed method Existing Methods

AUC W+ = 276, W- = 0, W = 0 ANN

W+ = 255, W- = 21, W = 21 SMOTE

W+ = 275, W- = 1, W = 1 ENN

W+ = 260, W- = 16, W = 16 SMOTE_ENN

W+ = 275, W- = 1, W = 1 Tomek

W+ = 261.5, W- = 14.5, W = 14.5 SMOTE_Tomek

W+ = 276, W- = 0, W = 0 ANN

W+ = 255, W- = 21, W = 21 SMOTE

G-Mean W+ = 275, W- = 1, W = 1 ENN

W+ = 221, W- = 32, W = 32 SMOTE_ENN

W+ = 276, W- = 0, W = 0 Tomek

W+ = 260, W- = 16, W = 16 SMOTE_Tomek

W+ = 253, W- = 23, W = 23 ANN

W+ = 240, W- = 36, W = 36 SMOTE

F-Measure_1 W+ = 241.5, W- = 34.5, W = 34.5 ENN

W+ = 245, W- = 8, W = 8 SMOTE_ENN

W+ = 243, W- = 33, W = 33 Tomek

W+ = 242.5, W- = 33.5, W = 33.5 SMOTE_Tomek

W+ = 17.5, W- = 258.5, W = 258.5 ANN

W+ = 233, W- = 20, W = 20 SMOTE

F-Measure_0 W+ = 66.5 , W- = 170.5, W = 170.5 ENN

W+ = 248, W- = 5, W = 5 SMOTE_ENN

W+ = 20, W- = 235, W = 235 Tomek

W+ = 230.5, W- = 21.5, W = 21.5 SMOTE_Tomek

8 Conclusion

In this study, we have proposed an overlap sensitive neural network for handling
class imbalance along with class overlapping and presence of noisy observations.
The method incorporates different costs of misclassification by computing different
weights for observations depending on its location in the feature space. Twelve simu-
lated data sets that varywith respect to class imbalance and class overlapwere analyzed
and the results show that the proposed method outperforms the other methods in terms
of different metric measures. Further, the method tested on 23 publicly available data
sets also shows superior performance of the proposed method on various performance
measures such as F-measure, G-mean and AUC. Thus, this approach of training the
ANN efficiently handles the problem of class imbalance and class overlap.
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