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Abstract
Random projections is a technique primarily used in dimension reduction by mapping
high dimensional data to a low dimensional space, preserving pairwise distances in
expectation, such as the Euclidean distance, inner product, angular distance, and l p

distance for values of p which are even. These estimated pairwise distances between
observations in the low dimensional space can be rapidly computed to be used for
nearest neighbor searches, clustering, or even classification. This paper highlights how
these two disparate topics have a common thread, and expand upon two computational
statistical techniques in recent random projection literature to further improve the
accuracy of the estimate of the inner product between vectors under random projection
bymaking use of the properties of the respective dataset, as well as limitations of these
methods.

Keywords Bayesian inference · Bivariate normal · Control variate · Data mining ·
Estimating inner products · Multivariate normal · Random projection

1 Introduction

The basic random projection technique assumes a data matrix Xn×p with n obser-
vations and p features. Without loss of generality, assume each observation xi is
normalized to have a length of 1. We generate a random matrix Rp×k where ri j are
i.i.d. N (0, 1) and compute the matrix product V := X R.
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Supposewepickv1, v2 thefirst two rowsofV and look at the tuplesws = (v1s, v2s).
The expectation E [v1sv2s] is given by

E

⎡
⎣

p∑
i=1

x1i x2i r
2
is + 2

p∑
1≤i< j≤p

x1i x2 j risr js

⎤
⎦ = 〈x1, x2〉 (1)

which gives us
p∑

i=1

x1i x2i , the inner product between the vectors x1, x2. The Law of

Large Numbers guarantees that if k is sufficiently large, then the sum

∑k
s=1 v1sv2s

k
converges to the inner product 〈x1, x2〉. Using moment generating functions (Casella
and Berger 2001) with some multivariate theory (Mardia et al. 1979), we can show
that the variance

Var [v1sv2s] = 1 +
( p∑

i=1

x1i x2i

)2

= 1 + 〈x1, x2〉2 (2)

and with k observations, we have

Var

[∑k
s=1 v1sv2s

k

]
= 1 + 〈x1, x2〉2

k
(3)

We can also compute a Chernoff type bound (Vempala 2004) to find a value of k where
the sum is within some 1 ± ε, ε > 0 of the true inner product, which we give here
without proof

P

[∣∣∣∣
〈vi , v j 〉

k
− 〈xi , x j 〉

∣∣∣∣ < ε

]
≤ 1 − 4 exp

{
−(ε2 − ε3)k/4

}
(4)

We additionally note that the bound in (4) is independent of p. This implies that
regardless of the dimensionality of the original data, the user can project down to the
same k dimensions and keep the same relative error. Tighter bounds independent of p
can be computed as well (Kaban 2015).

This gives forth a recipe for the use of random projections to pre-process high
dimensional data. For somedegree of accuracy based on ε, the practitioner can generate
V which gives the estimates of the inner product with high probability. If we scale
the matrix V by 1√

k
, then the matrix can be used as a proxy of X in distance based

computational algorithms, since the norms of each row in V , Euclidean distances and
inner products of pairwise vectors in V are unbiased estimates of the actual values of
the norms of each row in X , and Euclidean distances and inner products of pairwise
vectors in X respectively. Table 1 shows the respective common estimates of distances,
with variances given without proof.
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1624 K. Kang

Table 1 Estimations using random projections

Distance Actual value Estimate Variance

Norm of vector ‖xi ‖22 v2is 2‖xi ‖42
Sq. Euclidean Distance ‖xi − x j ‖22 (vis − v js )

2 2‖xi − x j ‖42
Inner product 〈xi , x j 〉 visv js 1 + 〈x1, x2〉2

Alternatively, we can also look at the distribution of the tuples {(v1s, v2s)}k
s=1. Both

v1s, v2s for 0 ≤ s ≤ k are weighted sums of i.i.d N (0, 1) vectors which have mean 0
and variance of 1. While each tuple (v1s, v2s) are i.i.d., v1s and v2s are correlated with
correlation given by 〈x1, x2〉 as computed in (1). In fact, the tuples are seen as drawn
from a bivariate normal

(
v1
v2

)
∼ N

((
0
0

)
,

(
1 a
a 1

))
(5)

where we denote a to be the inner product between x1, x2. Li et al. (2006a) were one
of the first who made use of this fact, and used a maximum likelihood estimator to
improve upon the estimate of a. Concretely, the likelihood of a is proportional to

l(a) ∝ (1 − a2)−k/2 exp

⎧⎪⎪⎨
⎪⎪⎩

−
k∑

s=1

(v1s v2s)

(
1 −a

−a 1

) (
v1sv2s

)T

2(1 − a2)

⎫⎪⎪⎬
⎪⎪⎭

(6)

and the maximum likelihood estimator of â is given to be the root of the following
cubic

f (a) = a3 −
(

k∑
s=1

v1sv2s

)
a2 +

(
k∑

s=1

(v21s + v22s) − 1

)
a −

(
k∑

s=1

v1sv2s

)
(7)

which could be solved by numerical approximation methods. This maximum likeli-

hood estimator is asymptotically unbiased (Shao 2003), and converges to N
(

a, 1
I (a)

)
,

where I (a) is the Fisher information, with variance given by

Var
[
â
] = (1 − a2)2

k(1 + a2)
(8)

We now take a look at an unrelated problem in estimating the correlation in bivariate
normal datawhen there is a small sample size n. In 2011,Alkema et al. (2011) looked at
projecting the total fertility rate of all countries. However, Fosdick and Raftery (2012)
were concerned that there may be correlations in the fertility rate between countries in
this study. They modelled each pair of countries as a bivariate normal, and considered
estimators which could estimate the correlation ρ between countries. Follow up work
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by Fosdick and Perlman (2016) and Fu et al. (2013) include performing inference on
the correlation coefficient ρ.

The common thread tying these two disparate topics is simply estimating the value
of a (equivalently ρ), when the number of observations is small. However, the number
of observations is small in the first case due to dimension reduction, but small in the
second case due to constraints on observational data.

The paperwill be structured as such. Section 2will cover similarities and differences
between random projections and the bivariate normal. Section 3 will give our main
contributions in this manuscript and highlight how they are different from prior work.
Section 4 will cover the first computational statistics method, control variates with the
multivariate normal. Section 5 will cover the second computational statistics method,
using Bayesian inference. Section 6 shows the experimental results of both methods.
Section 7 discusses the experimental results. Section 8 concludes this paper with
potential future work and applications of the algorithms.

2 Random projections and the bivariate normal—two sides of the
same coin

While researchers facing both problems derived similar results independently, they
went in different directions. This is not surprising since they had very different goals,
despite sharing something in common - the estimation of the inner product (respec-
tively, correlation coefficient).

In applications of random projections, the goal is to quickly compute estimated
inner products between any pair of vectors xi , x j ∈ R

p, and we briefly describe two
of these applications here, similarity search and clustering.

For similarity search, the data matrix Xn×p is usually too large to be stored in
memory. Hence, directly computing the inner product between any two xi , x j involves
retrieving the vectors from hardware (which could take some time), as well as comput-
ing the inner product (which has time complexity of O(p)). Alternatively, we could
use random projections to compute the matrix Vn×k which comes with a time com-
plexity of O(npk) and store this in memory. Then 〈vi , v j 〉 can be computed with a
time complexity of O(k).

For clustering purposes, distances between points need to be computed. When the
number of features p is large, the computational time taken to cluster is proportional to
p. But as distances are preserved under random projections, the vectors vi in V could
be clustered instead, with the computational time taken to cluster being proportional
to k. When k 
 p, random projections are preferred.

Research in randomprojections fromAchlioptas (2003),Ailon andChazelle (2009),
Li et al. (2006a), Liberty et al. (2008) focuses on the tradeoff between computational
cost, storage, and accuracy of the estimated distances.

On the other side of the coin, research in estimating the correlation coefficient
places no importance on the computational cost or storage, but more importance on
the type of estimator depending on the data and prior knowledge.

We give a few results from random projections and statistical inference here.

123



1626 K. Kang

Some examples of independent yet identical work include (Li et al. 2006a) re-
deriving a maximum likelihood estimator for the correlation a in (5) for random
projections, which was already known in Madansky (1965). Fosdick and Raftery
(2012) also proposed an empirical estimator for the correlation ρ when there are small

sample sizes, which was

∑k
s=1 v1sv2s

k
, the original random projection estimate.

Several results from both sides can complement the other as well. Viewing the
estimation of the correlation of a bivariate normal as a random projection helps in
placing bounds on the estimators suggested by Fosdick and Raftery (2012). We can
rewrite (4) as

P

[∣∣∣∣
SSxy

n
− ρ

∣∣∣∣ < ε

]
≤ 1 − 4 exp

{
−ε2(1 − ε)n/4

}
(9)

in the notation of Fosdick and Raftery. We can further place other bounds on these
estimators from random projection literature (Vempala 2004; Li et al. 2006a; Kaban
2015).

Appealing to the Central Limit Theorem allows us to use other i.i.d. ri j in the
random matrix R, not just N (0, 1), where the results for the normal distribution hold
as p gets large (Li et al. 2006b). This is of particular interest in speeding up the random
projection matrix multiplication. Probability distributions where the first moment is
zero and the second moment 1 such as the Rademacher distribution (Achlioptas 2003)
(ri j ∈ {−1, 1}), or sparse distributions (Li et al. 2006b) (ri j ∈ {−1/

√
s, 0, 1/

√
s})

can be used. Matrix multiplication when entries ri j come from these distributions are
faster, since the entries of R are integers (or mostly zeroes).

More could be done to exploit the relationship between random projections and
estimation of the correlation coefficient. Datasetswhich are used for randomprojection
algorithms can be used by statisticians to test the efficacy of their proposed inference
on the estimated correlation of the bivariate normal. Computer scientists can look
at inference done on the estimated correlation to see if two vectors are mutually
orthogonal or not, i.e. testing if a = 0. To the best of our knowledge, we know of no
such work mentioned in this paragraph.

Finally, we could tie the knot between statistics and computer science for random
projections, by using different statistical techniques to improve random projections,
based on the type of dataset given.

We highlight the constraints we require for random projections before moving on
to the next section. Recall that the purpose of random projections is to speed up the
computation of pairwise distances between vectors. Without random projection, the
computational complexity to compute all pairwise distances would be O(n2 p). With
random projections, the computational complexity would be O(npk + n2k).

In practice, the pre-processing period to compute V (which has a computational
complexity of O(npk)) could be ignored in some circumstances. For example, if X is
too large to store in memory, then the matrix V could be computed, and subsequent
computations and analysis done on V in perpetuity.

Any statistical techniques for random projections need to be have at most computa-
tional complexity of O(n2k), which would imply a computational complexity of O(k)
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Correlations between random projections and the bivariate normal 1627

to estimate the distance between a vector pair rather than a computational complexity
of O(p). This means that higher order computational complexity in estimating the the
correlation coefficient for a bivariate normal is not feasible.

3 Our contributions

In this paper, we synthesize the prior works done (Kang 2017a, b; Kang and Hooker
2017a) to give a rigorous treatment of the control variate estimator of the inner products
via random projection, and give insight on when we should use these methods to
estimate the inner product between vectors. More explicitly,

1. We give a demonstration of how the method of control variates can be used to
estimate any quadratic form in the bivariate normal case with lower variance, as
shown in Theorem 1.

2. We explain how to choose a basis of random variables for the control variate tech-
nique, using prior work as illustration.

3. We rigorously show that variance reduction always exists for control variates using
additional vectors.Moreover, we show that there is an exact formof the control vari-
ate correction and the coefficients with an arbitrary amount of extra vectors, given
in Theorem 2, Corollary 3 and 4. This allows the user to use these values directly,
instead of optimizing over more and more variables with multiple extra vectors.

4. We extend the experiments in our prior works to not just to look at the reduction in
overall RMSE across all vector pairs, but also to show the increase in precision and
recall in retrieving vector pairs whose true inner product ρ lie between intervals
a ≤ ρ ≤ b. This allows our methods to be used widely in more applications.

5. We discuss the performance of the methods in our prior works on several datasets,
and givemotivation for their performance. This allows users to choose whichmeth-
ods to use based on the distribution of their data.

4 Control variates and themultivariate normal

In this section, we describe how control variates can be used to improve the estimates
of the inner product when using random projections. We expand and unify existing
work on control variates for the bivariate normal (Kang and Hooker 2017a), and COV-
FEFE (COntrol Variates For Estimation via First Eigenvectors) for the multivariate
normal (Kang 2017b). We show the relationship between control variates and Li et al.
(2006a)’s maximum likelihood estimator. We also describe how control variates could
be used in getting better estimates of the correlation coefficient for a bivariate normal
in observational studies.

4.1 Control variates

Control variates have been used since the late 1970s (Lavenberg and Welch 1981),
and is a technique for reducing variance in Monte Carlo simulations, by looking at
correlated errors from the same random numbers.
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1628 K. Kang

Suppose we have a random number generator, and we use the generator to generate
some random variable Y , of which we are interested in getting the estimate E [Y ].
Further suppose we use the same random numbers from the generator to generate a
random variable Z , but we know the true mean E [Z ] = μZ . For any c, we have that
(Y + c(Z − μZ )) is an unbiased estimator of Y , as

E [Y + c(Z − μZ )] = E [Y ] + 0 (10)

The variance of (Y + c(Z − μZ )) is given by

Var [Y + c(Z − μZ )] = Var [Y ] + c2 Var [Z ] + 2cCov (Y , Z) (11)

The value of ĉ which minimizes the variance is

ĉ = −Cov (Y , Z)

Var [Z ]
(12)

and substituting this into (11) gives

Var [Y + c(Z − μZ )] = Var [Y ] − Cov (Y , Z)2

Var [Z ]
(13)

In this case, Z is called a control variate, and ĉ a control variate correction. We
observe that the theoretical variance of {Y + c(Z − μZ )} is always lower than the
theoretical variance of Y , with equality if there is no correlation between Y and Z

since
Cov (Y , Z)2

Var [Z ]
is always non-negative.

4.2 Control variates with the bivariate normal (CV-BN)

In 2017, Kang and Hooker (2017b) utilized control variates with the bivariate normal.
Suppose we are given a data matrix X , and wewant to estimate any linear combination
of the norms or inner products of any two vectors xi , x j . We compute V = X R as
before, look at the rows vi , v j , and consider each tuple ws := (vis, v js).

We use CV-BN to denote control variates with the bivariate normal.
CV-BN allowed the user to estimate quadratic forms given by Y = wT Aw where

w is seen as a draw from the bivariate normal with A is a symmetric matrix.
We summarize and extend the results here with the aim to use these results as a

foundation for COVFEFE.
To use a control variate method, we require some random variable Z which we

know E [Z ] = μZ . Suppose we express

Zs = wT
s Bws (14)
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Table 2 Basis vectors for vector
space of 2D symmetric matrices

Bi wT
s Bws Expected value of wT

s Bws

B1

(
1 0
0 0

)
v21s 1

B2

(
0 0
0 1

)
v22s 1

B3

(
0 1
1 0

)
v1sv2s 2a

Table 3 Basis vectors for vector
space of symmetric matrices
used for 2D control variate

Bi wT
s Bws Expected value of wT

s Bws

B1

(
1 0
0 0

)
v21s 1

B2

(
0 0
0 1

)
v22s 1

where B is some symmetric matrix. Then Zs can be rewritten as

Zs = wT
s

(
α1 0
0 0

)
ws + wT

s

(
0 0
0 α2

)
ws + wT

s

(
0 α3
α3 0

)
ws (15)

= wT
s

(∑
i

αi Bi

)
ws (16)

where Bi can be seen as basis vectors for the space of symmetric matrices, and αi the
coefficient of B in this basis. Table 2 shows the basis vectors with their corresponding
expected value wT

s Bws .
In order to use the control variate method, we need to be able to know the true value

of μZ . Since we normalized each row of X , we know that the each xi is of unit length,
and we can use the basis vectors B1, B2 for our control variate. However, we do not
know the value of wT

s B3ws (as this is what we want to estimate).
Hence, we let B̃ be the subspace of symmetric matrices which we can use for

the control variate, and B̃ = span{B1, B2}. Table 3 shows the basis vectors for this
subspace.

By looking at (13), we want to maximize the value of

Cov (Y , Z)2

Var [Z ]
(17)

in order to get the most variance reduction, hence we need to compute

argmax
α1,α2

Cov
(
wT Aw,wT (α1B1 + α2B2)w

)2
Var

[
wT (α1B1 + α2B2)w

] (18)

We state the following lemma of which the proof can be found in Muirhead (2005).
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Lemma 1 Let w ∼ N (0, �), and A, B be symmetric matrices. Then

E

[
wT Aw

]
= Tr[A�] (19)

Var
[
wT Aw

]
= 2Tr[A� A�] (20)

Cov
(
wT Aw,wT Bw

)
= 2Tr[A�B�] (21)

In Kang and Hooker (2017b), the optimal coefficients of the basis vectors B1, B2
were given without any proof. It was indeed the best αi which maximized (18), but
we now rigorously prove this.

Theorem 1 In the bivariate normal case, choosing α1, α2 in the ratio

α1

α2
= 2aq12 + q22 + a2q22

q11 + a2q11 + 2aq12
(22)

yields the most variance reduction for the estimate of any quadratic form given by

(
vis v js

) (q11 q12
q12 q22

)(
vis

v js

)

Proof In the general quadratic form case, let Q =
(

q11 q12
q12 q22

)
. By applying Lemma 1,

(18) simplifies to argmax
α1,α2

f (α1, α2) where

f (α1, α2) = 2(α2(a2q11 + 2aq12 + q22) + α1(a2q22 + 2aq12 + q22))2

α2
1 + α2

2 + 2a2α1α2
(23)

Suppose α1, α2 are non-zero. We can express α2 = pα1 and thus f (α1, α2) becomes

f (p) = 2(q11 + a2 pq11 + 2a(1 + p)q12 + a2q22 + pq22)2

1 + 2a2 p + p2
(24)

which is a function of p. Taking its first derivative and solving for themaxima (calculus
omitted) yields

p̂ = 2aq12 + q22 + a2q22
q11 + a2q11 + 2aq12

(25)

��
and hence we choose α1 and α2 such that the ratio

α1

α2
= 2aq12 + q22 + a2q22

q11 + a2q11 + 2aq12
(26)
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Corollary 1 In the bivariate normal case, choosing α1 = α2 = 1 yields the most
variance reduction for the estimate of the inner product â between the vectors xi , x j .
The variance of â after using the control variate estimate is the same as the variance
reduction for Li’s MLE (Li et al. 2006a) where

Var
[
â
] = (1 − a2)2

1 + a2 (27)

The optimal control variate correction ĉ is given by

ĉ = − a

1 + a2 (28)

The variance of the inner product estimate â is lower than the original estimate of the
inner product via ordinary random projections, which is 1 + a2.

Proof Set A =
(
0 1

2
1
2 0

)
and apply Theorem 1. ��

Corollary 2 In the bivariate normal case, choosing α1 = α2 = 1 yields the most
variance reduction for the estimate of the squared Euclidean distance between the
vectors xi , x j .

The variance of the estimate θ̂ of the Euclidean distance after using the control
variate estimate is

Var
[
θ̂
]

= 4(a2 − 1)2

a2 + 1
(29)

The optimal control variate correction ĉ is given by

ĉ = −2(1 − a)2

(1 + 2a2)
(30)

The variance of the Euclidean distance estimate is lower than the original estimate of
the Euclidean distance via ordinary random projections, which is 8(a − 1)2.

Proof Set A =
(

1 −1
−1 1

)
and apply Theorem 1. ��

Corollaries 1 and 2 tell us how to get a better estimate for the inner product and
Euclidean distance respectively.

Instead of computing â =
∑k

s=1 visv js

k
, Corollary 1 gives

â =
∑k

s=1 visv js

k
− a

1 + a2

(∑k
s=1 v2is

k
+

∑k
s=1 v2js

k
− 2

)
(31)
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Fig. 1 Plots of the theoretical variances of estimates of squared Euclidean distance and inner product for
vector pairs against the normalized inner product. We compare the theoretical variance when using ordinary
random projections (RP) and using control variates (CV-BN). With normalized vectors, an inner product
of 1 means the vectors are in the same direction, an inner product of 0 means the vectors are orthogonal,
and an inner product of -1 means the vectors are in opposite directions

and we can rearrange the terms to get an estimate of a.
Equivalently, we can do something similar with Corollary 2 to get an estimate of

the Euclidean distance, but this either necessitates knowing the value of a, or using an
empirical estimate of the control variate correction from the data.

Figure 1 gives some intuition on how CV-BN performs by looking at the theoretical
variance reduction achieved for the estimate of the Euclidean distance as well as the
estimate of the inner product, assuming perfect knowledge of a. As Chernoff bounds
for estimates are computed based on second moments, the variance can be used as a
proxy to show how tight the probability bounds are. CV-BN achieves good variance
reduction for the estimate of the Euclidean distance when the vector pairs get farther
apart from each other. On the other hand, CV-BN does not achieve good variance
reduction when the vector pairs are nearly orthogonal.

Figures 2 and 3 show the average relative RMSE of the pairwise Euclidean dis-
tance estimates as well as the pairwise inner product estimates for all vectors in the
Gisette dataset (Lichman 2013) with CV-BN, where we have 13,500 observations in
R
5000.
We see that if we want to get a better estimate of the Euclidean distances, using

the empirical value of the control variate correction ĉ is better than ordinary random
projections, or using a secondary estimate of the inner product. This is due to the
estimate of the inner product having greater error compared to the estimate of the
Euclidean distance (Vempala 2004; Kaban 2015), and the empirical value of ĉ should
be used instead for a better estimate.

On the other hand, ifwewanted to estimate the inner product, there is little difference
whether we use the empirical value or the theoretical value of the control variate
correction (substituting an estimate of a) for the estimate of the inner product.

123



Correlations between random projections and the bivariate normal 1633

10 20 30 40 50 60 70 80 90 100
Number of columns k of random matrix R

0.05

0.1

0.15

0.2

0.25

0.3

A
ve

ra
ge

 re
la

tiv
e 

R
M

SE

Average relative RMSE for pairwise Euclidean distances
Ordinary random projections
Empirical value of c
Theoretical value of c using Li's estimate of inner product
Theoretical value of c using RP estimate of inner product

Fig. 2 Plots of average relative RMSE of 91,118,250 pairwise Euclidean distance estimates of the
Gisette dataset, using training data, testing data, and validation data over 100 iterations. We use the ordi-
nary random projection estimate, the control variate estimate using an empirical value of c, control variate
estimate using Li’s estimate of the respective inner products, and control variate estimate using the vanilla
random projection estimate of the respective inner products
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Fig. 3 Plots of average relative RMSE of 91,118,250 pairwise inner product estimates of theGisette dataset,
using training data, testing data, and validation data over 100 iterations. We use the ordinary random
projection estimate, Li’s estimate, the control variate estimate using an empirical value of c, control variate
estimate using Li’s estimate of the respective inner products, and control variate estimate using the vanilla
random projection estimate of the respective inner products

CV-BN can also be applied to the estimation of a bivariate normal when variances
are known for observational studies. In fact, control variate estimators (Papamarkou
et al. 2014; Oates et al. 2017) which have higher computational costs could be used
for this estimation. For example, control functionals are a recent work by Oates et al.
(2017), and there is some possibility that a modification of their algorithm could be
used for this purpose. A grid search for kernel parameters as well as optimal ρ could
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be done to find the control functional which best estimates the (known) variances.
The optimal ρ found in grid search would correspond to the correlation coefficient.
The computational cost would have a greater time complexity of O(k), but would be
acceptable in the context of finding the correlation ρ in observational studies.

CV-BN unfortunately has three shortcomings described below:

1. The control variate correction ĉ is in terms of a for both the estimate of the inner
product and the Euclidean distance. While this made no difference to the estimate
when the number of columns k of the random matrix R is sufficiently large, the
value of k should be small under random projections.

2. The estimate of the inner product has a variance reduction when vector pairs are
highly correlated (inner product near 1 or −1), and there is little to no variance
reduction when the vector pairs are nearly orthogonal (inner product near 0), as
can be seen in Fig. 1.

3. The variance in estimating the inner product â via CV-BN is equal to the variance
in estimating the inner product â using Li’s MLE. There seems to be no purpose
in using a control variate estimate.

The authors next evolvedCV-BNby looking at themultivariate normalwhichwould
rectify these shortcomings.

4.3 Themultivariate normal distribution

In 2017, Kang (2017b) utilized control variates with the multivariate normal, which
was called COVFEFE (COntrol Variates For Estimation via First Eigenvectors). Their
theory focused on multiple control variates as in Glynn and Szechtman (2002), Portier
and Segers (2018).

4.3.1 An example of control variates in three dimensions

Given the matrix Xn×p, we compute its first singular vector e. We assume all xi

are normalized. Suppose we generate the random matrix Rp×k , with ri j i.i.d., and
we compute V = X R, ve = eT R, and scale our V , ve by 1√

k
. Further suppose we

compute and store the inner products 〈xi , e〉.
Suppose we want to estimate the inner product 〈xi , x j 〉, and consider the vectors

v1 = (vi1, vi2, . . . , vik) (32)

v2 = (v j1, v j2, . . . , v jk) (33)

ve = (ve1, ve2, . . . , vek) (34)

The 3-tuple ws := {(vis, v js, ves)}k
s=1 is drawn from the multivariate normal in three

dimensions given by

ws =
⎛
⎝

vis

v js

ves

⎞
⎠ ∼ N

⎛
⎝
⎛
⎝
0
0
0

⎞
⎠ , �

⎞
⎠ (35)
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Table 4 Basis vectors for vector
space of symmetric matrices
used for 3D control variate

Bi wT
s Bws Expected value of wT

s Bws

B1

⎛
⎝
1 0 0
0 0 0
0 0 0

⎞
⎠ v21s 1

B2

⎛
⎝
0 0 0
0 1 0
0 0 0

⎞
⎠ v22s 1

B3

⎛
⎝
0 0 0
0 0 0
0 0 1

⎞
⎠ v23s 1

B4

⎛
⎝
0 0 1
0 0 0
1 0 0

⎞
⎠ 2v1sv3s 2〈xi , e〉

B5

⎛
⎝
0 0 0
0 0 1
0 1 0

⎞
⎠ 2v2sv3s 2〈x j , e〉

where

� =
⎛
⎝

1 a a13
a 1 a23

a13 a23 1

⎞
⎠ (36)

All entries in � are known except for a which we want to estimate, with a13 =
〈xi , e〉, and a23 = 〈x j , e〉.

The estimate of the inner product 〈x1, x2〉can be written as

v1sv2s = wT
s

⎛
⎝

0 1
2 0

1
2 0 0
0 0 0

⎞
⎠ws, 1 ≤ s ≤ k (37)

and the control variate Z can similarly be written as

Z = wT

(∑
i

αi Bi

)
w (38)

where Bi are the basis vectors for the subspace of symmetric matrices used for the
control variate. The Bi s are represented in Table 4.

Here is where we rigorously extend (Kang 2017b)’s work.

4.3.2 An example of control variates in s + 2 dimensions

For control variates in s + 2 dimensions, we can similarly consider the multivariate
normal in s + 2 dimensions. Given the matrix Xn×p, we compute the singular vectors
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e1, . . . , es . We compute V = X R, and all vej = vT
j R, where 1 ≤ j ≤ s. We compute

and store the n(s + 2) + s!
2!(s−2)! inner products 〈xi , e j 〉, and 〈ei , e j 〉.

4.3.3 Finding the optimal control variate and its correction

One of the shortcomings of CV-BN is that the optimal control variate correction ĉ was
in terms of a, which was unknown. This could not be avoided since the covariance
matrix � was of size 2 × 2, and a was present in the off diagonal entries. This meant
that any basis vector Bi with non-zero terms the first two rows or first two columns
contributed to the term a in ĉ. With multiple extra vectors es , basis vectors with
non-zero terms in the first two rows and the first two columns can be omitted.

Kang (2017b) gave the coefficients αi , the basis vectors Bi , and the optimal correc-
tion ĉ for the multivariate normal in 3 dimensions and in 4 dimensions. We extend the
results to give the coefficients αi and the basis vectors Bi for the multivariate normal
in s + 2 dimensions, provided the vectors e1, e2, . . . , es are mutually orthogonal.

Theorem 2 Suppose we generated extra orthogonal vectors e1, . . . , es and did all
the preliminary computations. Consider the (s + 2)-tuple wt := {(vi t , v j t , ve1t , . . . ,

ves ,t )}k
t=1. wt must be be distributed MVN (0(s+2)×1, �), where

� =
⎛
⎜⎝

�11 Ã2×s

ÃT
2×s Is×s

⎞
⎟⎠ (39)

with �11 =
(
1 a
a 1

)
, Ã2×s =

(
a1
a2

)
where a1 = (a13, a14, . . . , a1,s+2), and a2 =

(a23, a24, . . . , a2,s+2).
Suppose we want to estimate the inner product given by

wT Cw = wT

⎛
⎜⎝

C11 02×s

0s×2 0s×s

⎞
⎟⎠w (40)

where C11 =
(
0 1

2
1
2 0

)
. We write the optimal control variate Z as

Z = wT Bw = wT

⎛
⎜⎝

02×2 02×s

0s×2 αs×s

⎞
⎟⎠w (41)
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where

αs×s =

⎛
⎜⎜⎜⎝

α33 α34 . . . α3,s+2
α43 α44 . . . α4,s+2

. . .
. . .

. . .
...

αs+2,3 αs+2,4 . . . αs+2,s+2

⎞
⎟⎟⎟⎠ (42)

The optimal coefficients αi j s are described as

αi j =
{

0 if i ≤ 2 or j ≤ 2
a1i a2 j + a1 j a2i otherwise

(43)

with ĉ = − 1
2 .

Proof We prove that ĉ = − 1
2 . We write

B� =
⎛
⎜⎝

02×2 02×s

0s×2 αs×s

⎞
⎟⎠

⎛
⎜⎝

�11 Ã2×s

ÃT
s×2 Is×s

⎞
⎟⎠

=
⎛
⎜⎝

02×2 02×s

αs×s ÃT
s×2 αs×s

⎞
⎟⎠ (44)

and

C� =
⎛
⎜⎝

C11 02×s

0s×2 0s×s

⎞
⎟⎠

⎛
⎜⎝

�11 Ã2×s

ÃT
s×2 Is×s

⎞
⎟⎠

=
⎛
⎜⎝

C11�11 C11 Ã2×s

0s×s 0s×s

⎞
⎟⎠ (45)

We can now write

B�B� =
⎛
⎜⎝

02×2 02×s

αs×s ÃT
s×2 αs×s

⎞
⎟⎠

⎛
⎜⎝

02×2 02×s

αs×s ÃT
s×2 αs×s

⎞
⎟⎠

=
⎛
⎜⎝

02×2 02×s

αs×sαs×s ÃT
s×2 αs×sαs×s

⎞
⎟⎠ (46)
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and

B�C� =
⎛
⎜⎝

02×2 02×s

αs×s ÃT
s×2 αs×s

⎞
⎟⎠

⎛
⎜⎝

C11�11 C11 Ã2×s

0s×2 0s×s

⎞
⎟⎠

=
⎛
⎜⎝

02×2 02×s

αs×s ÃT
s×2C11�11 αs×s ÃT

s×2C11 Ã2×s

⎞
⎟⎠ (47)

We observe that C11 can be seen as three elementary row operations, one which
swaps the two rows of Ã2×s , and two which divides each row by 2. But that implies
C11 ÃT

s×2 Ã2×s = 1
2αs×s , by looking at the cross terms.

Therefore Tr[αs×s ÃT
s×2C11 Ã2×s] = 1

2Tr[αs×sαs×s] which leads us to conclude

ĉ = −2Tr[B�C�]
2Tr[B�B�] = −2Tr[C�B�]

2Tr[B�B�]
= − 1

2Tr[αs×sαs×s]
Tr[αs×sαs×s] = −1

2
(48)

��
Theorem 2 gives us a quick way to compute the control variates for large n, as well

as the optimal control variate correction. We also get the following corollary.

Corollary 3 The control variate correction in Theorem 2 gives us an improved variance
of

Var

[
Y − 1

2
(Z − μZ )

]
= Var [Y ] − Cov (Y , Z)2

Var [Z ]

= Var [Y ] − 1

2
Cov (Y , Z) (49)

Corollary 4 Adding extra vectors will always give a variance reduction, or do no
worse.

Proof Let Z (s) = wT Bw be the case where we use s extra orthogonal vectors. Then
Cov[Y , Z (s)] = 1

2Tr[αs×sαs×s] follows by Theorem 2. Let

T (s) := Tr[αs×sαs×s] =
s∑

i=1

s∑
j=1

α2
i+2, j+2 = ‖αs×s‖2F (50)

It follows that for s ≥ 2 we have

T (s) − T (s−1) = 2
s∑

t=1

α2
t+2,s+2 − α2

s+2,s+2 ≥ 0 (51)
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Therefore, always adding extra vectors will give us a greater variance reduction as
Cov

(
Y , Z (s)

)
increases monotonically as more vectors are added. ��

Corollaries 3 and 4 show that the magnitude of Cov[Y , Z (s)] is dependent on the
magnitude of ai j , and therefore we choose singular vectors e1, . . . , es as a heuristic
to maximize the variance reduction.

We note that COVFEFE does not use all additional information. In fact, if we
adopted a maximum likelihood approach and compute â from the covariance matrix
in (39), we could potentially get a greater variance reduction.

However, the resultant cubic equation that needs to be solved has complicated
coefficients, and involves computing the determinant of the covariance matrix. For
example, if we just add one extra vector and use the covariance matrix in (35) for the
3 dimensional case, the user has to solve for the root of the cubic

f (a) = a3 +
(

k∑
t=1

[
a13v j tvet − vi tv j t + a23vi tvet + a13a23v

2
et

]
− 3a13a23

)
a2

+2

(
k∑

t=1

[
v2i t + v2j t + 2a13a23vi tv j t − 2a13vi tvet − 2a23v j tvet

−a2
23

(
v2i t + v2et

)
+ a2

13

(
2a2

23 − v2j t + v2et

)]
+ a2

13 + a2
23 − 1

)
a

+
(

k∑
t=1

[
(−1 + a2

23)
(
vi t (v j t − a23vet )

) + a2
13vi t (v j t − 2a2

23v j t + a23vet )

+a3
13v j t (a23v j t − vet ) + a13(a

3
23v

2
i t + v j tvet

+a2
23v j tvet − a23(v

2
i t + v2j t + v2et ))

]
− a2

13a23 + a13a2
23 − a13a23

)
(52)

which can get a bit involved. On the other hand, with the multivariate control variate
method, Theorem 2 allows the user to compute

â =
∑k

t=1 vi tv j t

k
− 1

2

(
2a13a23

∑k
t=1 v2et

k
− 2a13a23

)
(53)

for the 3-dimensional case, and compute

â =
∑k

t=1 v1tv2t

k
−

s+2∑
r=3

a1r a2r

(∑k
t=1 v2er−2t

k
− 1

)

−
s+2∑

g,h≥3,g>h

(
(a1ga2h + a1ha2g)

∑k
t=1 veg−2tveh−2t

k

)
(54)
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for the general s + 2-dimensional case.
The latter computations are cleaner to implement in a programming language.

4.4 Storage and computational complexity of the algorithm

We necessarily need to compute the first s singular vectors, which can be costly,
with computational complexity of O(min(np2, n2 p)). If the matrix X is sparse, then
algorithms like Lanczos can be used to get the first few singular vectors. Probabilistic
algorithms can also be used (Halko et al. 2011) to estimate the first few singular vectors
with faster computational complexity of O(n2s), where s is a parameter chosen based
on X .

We also need to compute and store all 〈xi , et 〉, for 1 ≤ i ≤ n, and 1 ≤ t ≤ s. This
has computational complexity of O(snp + s2 p), but can be thought of to be O(np)

if the number of extra vectors e1, . . . , es is small. The computational complexity of
O(np) in this context is still acceptable since pre-processing data (such as scaling,
normalizing, or centering) also costs O(np).

We also need to compute the control variate. This requires the values of each
vegsvehs , v2eg

, v2eh
for 1 ≤ g, h ≤ s, which has computational complexity O(s2k + sk).

However, this is a once off computation since the same values are used for all pairs of
vectors vi , v j .

If we discount the pre-processing time of generating the first s singular vectors,
the computational complexity taken for COVFEFE is of order O(snp + s2 p + npk +
n2k+s2k+sk) = O(npk+n2k)when s 
 k. This keeps to the same time as ordinary
random projections.

5 Random projections with Bayesian inference

Fosdick and Raftery (2012) motivated this work when they looked at estimating the
correlation coefficient of the bivariate normal using the uniform prior, Jeffrey’s prior
(1961), and the arc-sine prior (Jeffreys 1961), amongst other priors. Their estimate of
the correlation coefficient was given by

â =
∫ 1
−1 a p(a) l(a) da
∫ 1
−1 p(a) l(a) da

(55)

where p(a) is the prior chosen, l(a) is the log-likelihood, and the denominator the
normalizing constant.

Fosdick and Raftery simulated amillion experiments with varying sample sizes and
fixed correlation value in order to determinewhich priors performedwell. As expected,
their results showed that different priors performed well for correlation coefficients
with varying magnitudes.

In the case of estimating the correlation coefficient for one observational study,
there is usually no indication of what region the magnitude lies in. The arc-sine prior
and the uniform prior were preferred as they performed well for all magnitudes.
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On the other hand, there can be improvement from using an arc-sine prior or a
uniform prior in the estimation of n(n−1)

2 inner products via random projections.
We now discuss the statistical aspects of Kang (2017a) in random projections.

5.1 The Bayesian prior

Given a data matrix Xn×p, we can imagine the n observations as being random draws
from some arbitrarily large population. We can also imagine the n(n−1)

2 pairwise inner
products of X as randomvariables from some continuous probability distribution q(a).

While we do not know this probability distribution q(a), we can get a close enough
estimate to this distribution by sampling pairwise inner products a1, a2, . . . , as uni-
formly from the matrix Xn×p.

We assume that the n(n−1)
2 pairwise inner products in Xn×p are sufficiently large

enough to characterize the entire distribution, which is not an unreasonable assumption
to make as n is generally large. The sampling distribution of a1, . . . , as can be thought
of as the prior p(a).

5.1.1 Kernel density estimates and numerical integration

We do not necessarily need a closed-form expression for the prior p(a) in order to
compute the estimate â in (55).

Suppose we let f (a) = p(a)l(a), where l(a) is of the form (6). Then the goal is
to numerically integrate the functions

∫ 1
−1 a f (a) da and

∫ 1
−1 f (a) da to estimate the

inner product as in (55).
Numerical integration algorithms require evaluating f (a) at points a1, a2, . . . , as ,

and this requires computing values of f (a1), . . . , f (as). But if we had the values of
f (a1), . . . , f (as), then we do not need the actual function f (a) itself.
We can use kernel density estimators like theNadarayaWatson estimator (Nadaraya

1964;Watson 1964) to evaluate p(a) at equally spaced points over the interval [−1, 1].
The value of p(a) over these equally spaced points can be passed into a numerical
integration algorithm.

We give an example using Simpson’s Rule, and consider the interval [0, 1] with
equally spaced points at a0 := 0, a1, a2, . . . , a2s := 1, assuming we always have
non-negative inner products.

We let α denote the length of the interval [ai , ai+1], and evaluate p(a) at the points
a0, a1, . . . , a2s . We hence compute the numerator

∫ 1
0 a p(a) L(a) da as

∫ 1

0
a p(a) L(a) da = 2α

6

s∑
t=1

[
f (a2t−2) + 4 f (a2t−1) + f (a2t )

]
(56)

and do likewise for the denominator
∫ 1
0 p(a) L(a) da.

It is straightforward to show that the expected variance of the inner product estimate
is smaller than the original variance of the inner product estimate.
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However, this does not necessarily mean that the actual variance of the estimate is
smaller than the original variance of the inner product estimate.

Unlike COVFEFE where we had to store extra vectors and compute the control
variates, we have to sample pairwise inner products a1, . . . , as and use a kernel density
estimator to get a prior p(a).Moreover, after getting the prior p(a), we have to compute
the quotient of two integrals

∫ 1
0 a p(a) L(a) da∫ 1
0 p(a) L(a) da

(57)

with numerical integration tools.
We first look at the time taken to compute p(a) at s equally spaced points. This

is dependent on the number of actual (pairwise) inner products sampled. Suppose we

sample up to

⌊√
n(n−1)

2

⌋
inner products. This takes time of order O(np). Moreover,

evaluating p(a) at 2s equally spaced points with Nadaraya-Watson takes time of order
O(ns). Altogether, this takes an additional O(n(p + s)) of time.

5.2 Computational complexity of the algorithm

Wenowconsider the computational complexity to evaluate (56). For each inner product
pair, we have a computational complexity of O(k) to compute the constant terms in
(56). We then further take O(s) time to compute the integral for the estimate in
(56). The total computational complexity taken for all pairwise estimates is therefore
O(n2(k + s)).

Hence the overall computational complexity of this algorithm is O(npk + np +
ns + n2(k + s)) = O(npk + n2(k + s)), which is slower than COVFEFE or ordinary
random projections.

However, we show that in certain circumstances, using a Bayesian prior to estimate
the inner product gives more accuracy, and this may be an acceptable tradeoff.

6 Experiments

We perform two experiments in this paper. The first experiment is to verify that the
algorithms mentioned are better than ordinary random projections and other baseline
methods. In these experiments, we compute the average RMSE of all pairwise inner
product estimates on the Arcene dataset, Gisette dataset, and the MNIST test images
dataset. We look at the average RMSE of all pairwise inner product estimates as we
want to demonstrate that the estimators works well on all pairs of “good” and “bad”
vectors. We look at both centered and uncentered versions of the datasets, denoting C
as centered, and U as uncentered for the plots.

The second experiment measures the precision and the recall in identifying vector
pairs that are almost orthogonal from the centered datasets. We look at the average
precision and average recall for vector pairs that have an (absolute value of the) inner
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Fig. 4 Plots of average RMSE of all 404,550 pairwise inner product estimates for the Arcene dataset, using
the multivariate control variate estimates over 100 iterations

product less than {0.01, 0.02, . . . , 0.20}, together with their standard deviations. We
want to show that these algorithms are an improvement over CV-BN and Li’s method,
as they do not provide good variance reductionwhen the vectors are almost orthogonal,
as in Fig. 1.

For each experiment, we normalized each observation to have norm 1. We use
a random projection matrix Rp×k , where ri j are i.i.d. N (0, 1), and k ranges from
10, 20, . . . , 100. We repeat the experiments for 100 simulations on all three datasets.

The Matlab code is attached in the supplementary material. The results in this
paper come from experiments which have been initialized from a random seed of 0
for comparison purposes.

6.1 Control variates and themultivariate normal

We denote RP to be the ordinary random projection estimator of the inner product,
Li to be Li’s estimate of the inner product, CV-BN to be the bivariate control variate
estimate of the inner product. We denote CV-MVN-s to be the COVFEFE estimate
with extra vectors e1, . . . , es of the inner product.

The first two plots in Figs. 4, 5, and 6 compares the average RMSE of the baseline
algorithms denoted as solid lines (RP, Li, CV-BN) with the average RMSE of CV-
MVN denoted as dashed lines, where we add extra vectors in multiples of 4 up to
twenty extra vectors. We use a log scale for the y axis with the Gisette dataset.

The last two plots in Figs. 4, 5, and 6 show the average RMSE (solid horizontal
lines, red asterixes) with 3 standard deviations (dotted horizontal lines, red crosses)
for all estimators, when the number of columns k is fixed at 100. The x axis of these
plots signify the number of extra vectors ei added.

For theArcene dataset, it takes up to three extra vectors e1, e2, e3 to get a comparable
averageRMSEwithLi’s estimate and theBNestimate for both centered anduncentered
data, yet achieve a significantly smaller error. Adding further vectors e4, e5, . . . , e20
only give a marginal improvement for the average RMSE.
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Fig. 5 Plots of average RMSE of all 49,995,000 pairwise inner product estimates for theMNIST test dataset,
using the multivariate control variate estimates over 100 iterations

For the MNIST test dataset, it can take up to seven extra vectors e1, . . . , e7 before
achieving an average RMSE comparable to the BN estimate for the uncentered data,
but only five extra vectors for centered data. However, adding further vectors causes
the average RMSE to decrease further.

The Gisette dataset can be a “bad” dataset for random projections, as the extent
of improvement in the estimation of inner products is negligible compared to the
Arcene and MNIST datasets. However, adding extra vectors e does result in a gradual
decrease in the average RMSE.

The empirical results also show that for centered data, we need fewer eigenvectors
to achieve a lower average RMSE than the next best estimate (CV-BN or Li’s MLE)
compared to uncentered data. On the other hand, the average RMSE for all the esti-
mators of centered data is higher than the corresponding average RMSE for all the
estimators of centered data.

We further note that while CV-BN and Li’s MLE eventually have the same average
performance as k increases, the performance of Li’s MLE is actually worse on average
than the ordinary random projection estimate when k is extremely small (as denoted
by the blue lines in Figs. 4, 5, and 6. CV-BN (as well as CV-MVN) on the other
hand consistently performs better on average than the ordinary random projection
estimate for all values of k. We hypothesize that this is due to the fact that maximum
likelihood estimators are only asymptotically unbiased, hence with extremely small
k, the estimator can have large errors.

We make the case (empirically) that while CV-BN has the same variance as Li’s
MLE,CV-BN is easier to implement as there is no need for numerical root finding algo-
rithms, and can improve the ordinary random projection performance with extremely
small values of k.

We now describe the plots for the second experiment with COVFEFE. The x-axis
of Figs. 7, 8, and 9 correspond to the proportion of inner products which are less than
s, where we have s ∈ {0.01, . . . , 0.20}.

We show the plots of the average precision and recall with 3 standard deviations
when we use k = 10, 50, 100 columns of the random projection matrix. Similar to the
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Fig. 6 Plots of average RMSE of all 91,118,250 pairwise inner product estimates for the Gisette dataset,
using the multivariate control variate estimates over 100 iterations
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Fig. 7 Plots of average precision, recall with 3 standard deviations of retrieval of inner products less than
s, for s ∈ {0.01, 0.02, . . . , 0.20} of all 404,550 pairwise inner products for the Arcene dataset, using the
multivariate control variate estimates over 100 iterations
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Fig. 8 Plots of average precision, recall with 3 standard deviations of retrieval of inner products less than s,
for s ∈ {0.01, 0.02, . . . , 0.20} of all 49,995,000 pairwise inner products for the MNIST test dataset, using
the multivariate control variate estimates over 100 iterations

123



1646 K. Kang

0.05 0.1 0.15
0

0.2

0.4

0.6

0.8

1
A

ve
ra

ge
 P

re
ci

si
on

Gisette (C), k = 10

RP
Li
CV-BN
CV-MVN-4
CV-MVN-12
CV-MVN-20

0.05 0.1 0.15
0

0.2

0.4

0.6

0.8

1
Gisette (C), k = 50

0.05 0.1 0.15
0

0.2

0.4

0.6

0.8

1
Gisette (C), k = 100

0.05 0.1 0.15
0

0.2

0.4

0.6

A
ve

ra
ge

 R
ec

al
l

Gisette (C), k = 10
RP
Li
CV-BN
CV-MVN-4
CV-MVN-12
CV-MVN-20

0.05 0.1 0.15
0

0.2

0.4

0.6

0.8

1
Gisette (C), k = 50

0.05 0.1 0.15
0

0.2

0.4

0.6

0.8

1
Gisette (C), k = 100

0.05 0.1 0.15
Inner product range

0

0.005

0.01

0.015

0.02

A
ve

ra
ge

 P
re

ci
si

on
 3

SD

RP
Li
CV-BN
CV-MVN-4
CV-MVN-12
CV-MVN-20

0.05 0.1 0.15
Inner product range

0

0.01

0.02

0.03

0.05 0.1 0.15
Inner product range

0

0.01

0.02

0.03

0.05 0.1 0.15
Inner product range

0

0.02

0.04

0.06

A
ve

ra
ge

 R
ec

al
l 3

SD

RP
Li
CV-BN
CV-MVN-4
CV-MVN-12
CV-MVN-20

0.05 0.1 0.15
Inner product range

0

0.01

0.02

0.03

0.04

0.05

0.05 0.1 0.15
Inner product range

0

0.01

0.02

0.03

0.04

Fig. 9 Plots of average precision, recall with 3 standard deviations of retrieval of inner products less than
s, for s ∈ {0.01, 0.02, . . . , 0.20} of all 91,118,250 pairwise inner products for the Gisette dataset, using the
multivariate control variate estimates over 100 iterations

first experiment, the baseline algorithms are denoted by solid lines, and CV-MVN as
dashed lines. All measurements here are done with the respective centered datasets.

We note that out of the baseline algorithms, CV-BN has lower standard errors
for precision in retrieving inner products in most of the cases where s ∈
{0.01, 0.02, . . . , 0.20}. However, CV-BN has higher standard errors for the recall in
retrieving inner products.

CV-MVN performs quite well in general with the addition of extra vectors, having
greater precision and recall than the baseline algorithms as well as lower standard
errors. For example, CV-MVN-4 has much lower standard errors for the precision and
recall for the Arcene and MNIST dataset at k = 50, 100, with comparable standard
errors at k = 10.

6.2 Bayesian prior

We denote RP to be the ordinary random projection estimator of the inner product,
Li to be Li’s estimate of the inner product, CV-BN to be the bivariate control variate
estimate of the inner product.

Let rnd2(x) denote x rounded up to the nearest power of 2, i.e. rnd2(x) ≡
2� log2(x)�. Let N ≡ n(n + 1)/2, the total number of pairwise inner products from
the respective datasets.

We denote BP-s to be the Bayesian prior estimate where we sample s inner prod-
ucts, BP-LOG to be the Bayesian prior estimate where we sample rnd2(log2 N ) inner
products, and BP-SQRT to be the Bayesian prior estimate where we sample rnd2(

√
N )

inner products.
The first two plots in Figs. 10, 11, and 12 compares the average RMSE of the

baseline algorithms (RP, Li, CV-BN) with the average RMSE when we sample up to
rnd2(

√
N ) inner products to estimate the prior.

The last two plots in Figs. 10, 11, and 12 show the average RMSE with 3 standard
deviations for all estimators, when the number of columns k is fixed at 100. The x axis
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Fig. 10 Plots of average RMSE of all 404,550 pairwise inner product estimates for the Arcene dataset,
using our Bayesian prior estimates over 100 iterations
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Fig. 11 Plots of average RMSE of all 49,995,000 pairwise inner product estimates for the Arcene test
dataset, using our Bayesian prior estimates over 100 iterations

of the plots signify the number of inner products sampled, as a power of 2, and can be
thought of as a log scale. The vertical dotted lines show the actual values (in terms of
the powers of 2) of log(N ) and

√
N .

We focus on log(N ) and
√

N as the number of inner products to be sampled to get
a good estimate of the distribution of the inner products.

For both uncentered and centered data, we see that for all three datasets, the aver-
age RMSE decreases when more inner products are sampled. However, the Bayesian
prior algorithm does better for the MNIST and Gisette datasets compared to the
Arcene dataset, by substantially reducing the overall RMSE.

We can also see that sampling about log(N ) inner products already achieves a low
RMSE, and sampling about

√
N inner products does not yield a substantially better

RMSE.
We now describe the plots for the second experiment with the Bayesian prior. The

x-axis of Figs. 13, 14, and 15 correspond to the proportion of inner products which
are less than s, where we have s ∈ {0.01, . . . , 0.20}.
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Fig. 12 Plots of average RMSE of all 91,118,250 pairwise inner product estimates for the Arcene dataset,
using our Bayesian prior estimates over 100 iterations
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Fig. 13 Plots of average precision, recall with 3 standard deviations of retrieval of inner products less than
s, for s ∈ {0.01, 0.02, . . . , 0.20} of all 404,550 pairwise inner products for the Arcene dataset, using the
Bayesian prior estimates over 100 iterations

We show the plots of the average precision and recall with 3 standard deviations
when we use k = 10, 50, 100 columns of the random projection matrix. Similar to
the first experiment, the baseline algorithms are denoted by solid lines, and CV-BP as
dashed lines. All measurements here are done with the respective centered datasets.

Here, the Bayesian prior algorithm has a higher precision on the Arcene dataset, but
lower precision on the other two datasets, when compared with baseline algorithms.
However, theBayesian prior achieves a higher recall on theGisette andMNIST datasets
when compared to other baseline algorithms.

7 Discussion

To understand the performance of COVFEFE and the Bayesian prior on the above
datasets, we should look at the singular vectors of the data matrix as well as the
distribution of inner products of these data.
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Fig. 14 Plots of average precision, recall with 3 standard deviations of retrieval of inner products less than
s, for s ∈ {0.01, 0.02, . . . , 0.20} of all 49,995,000 pairwise inner products for the MNIST test dataset, using
the Bayesian prior estimates over 100 iterations
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Fig. 15 Plots of average precision, recall with 3 standard deviations of retrieval of inner products less than
s, for s ∈ {0.01, 0.02, . . . , 0.20} of all 91,118,250 pairwise inner products for the Gisette dataset, using the
Bayesian prior estimates over 100 iterations

Figure 16 shows the cumulative proportion of variation in the data explained by
the singular vectors of the respective three datasets. In all of these datasets, we see
that the singular values of uncentered data explain more of the variation as compared
to centered data. Moreover, for the Arcene and MNIST dataset, the proportion of
variation explained by the first few singular vectors are extremely high, compared to
the Gisette dataset.

Therefore, the performance of COVFEFE continually improves in Figs. 4 and 5 as
more of the singular vectors are added as extra information. On the other hand, we
see that the performance of COVFEFE in Fig. 6 has negligible performance as more
singular vectors are added, since the first few singular vectors of the Gisette dataset
does not account for much of the variation.

To summarize, if a few singular vectors account for most of the proportion of vari-
ation in the data, COVFEFE works well in reducing the RMSE of the inner product
estimates. In fact, we are actually incorporating the information provided by the sin-
gular vectors in the data with respect to the distance. Mathematically, we can think of
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Fig. 16 Cumulative proportion of variation explained by singular values of the Arcene dataset, MNIST test
dataset, and Gisette dataset. We use a log scale for the x axis
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Fig. 17 Distribution of pairwise inner products from the centered Arcene dataset, centered MNIST test
dataset, and centered Gisette dataset

the improvement as storing the first few coordinates of a “better” basis to represent
the data.

In fact, COVFEFE unites the strengths of random projections (preserving distances
in expectation) and PCA (finding a different coordinate system where variation is
maximal along these axes), which to the best of our knowledge is unpresidented.

We now consider the distribution of inner products for these datasets. Figure 17
shows the distribution of inner products for the centered and uncentered datasets.

Recall that the ordinary estimate of the inner product between pairwise vectors
under random projections has a higher variance (see Fig. 1) when the vectors are
nearly orthogonal to each other. We can see that for centered Gisette and centered
MNIST data, the distribution of inner products is almost symmetrical about zero, with
the Gisette data having a very narrow peak. Hence the Bayesian prior algorithm per-
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forms better in terms of recall, since observations far from zero (due to high variance)
would be pulled towards the center.

On the other hand, if the distribution of the inner products is not “nice” (for example,
bimodal distribution like the Arcene dataset), then the Bayesian prior algorithm can
perform badly compared to baseline algorithms.

To summarize, the Bayesian prior algorithm has a better performance if our distri-
bution of inner products is near to zero.

8 Conclusion

As high dimensional data becomes more ubiquitous, common learning algorithms
perform badly due to the curse of dimensionality. Random projections can be used to
mitigate this, by projecting data down to a lower dimensional space, making it more
tractable for analysis.

On the other hand, there will always be small sample estimation when more data
is expensive or infeasible to get, e.g. getting data in medical trials.

Given that control variates, numerical integration, bayesian inference, kernel den-
sity estimators are common in the modern statistician’s toolbox, there is no reason
why they should not be applied to random projections or small sample estimation to
improve their estimates.

These algorithms can also further be improved on. For example, while the method
of control variates (CV-BN, COVFEFE) is only useful with random projections, we
believe that zero variance control variate techniques or control functionals may work
well in estimating the correlation coefficient of the bivariate normal in such observa-
tional studies or reducing the generalization error in classification algorithms when
used with random projections.

The time taken for the Bayesian prior algorithm can also be reduced if we choose a
model for the distribution of inner products, rather than constructing the distribution
via kernel density estimators.

We have shown examples of how these tools could be used to improve estimates,
and we hope that our paper would lead to increased cross-disciplinary work and col-
laboration between computer scientists and statisticians.
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