
Data Mining and Knowledge Discovery (2021) 35:1225–1257
https://doi.org/10.1007/s10618-021-00753-9

Mining full, inner and tail periodic patterns with perfect,
imperfect and asynchronous periodicity simultaneously

Jen-Wei Huang1 · Bijay Prasad Jaysawal1 · Cheng-Chung Wang2

Received: 25 August 2019 / Accepted: 12 March 2021 / Published online: 5 April 2021
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021

Abstract
Periodic pattern has been utilized inmany real life applications, such as weather condi-
tions in a particular season, transactions in a superstore, power consumption, computer
network fault analysis, and analysis of DNA and protein sequences. Periodic pattern
mining is a popular though challenging research field in data mining because periodic
patterns are of different types (namely full, inner, and tail patterns) and varied period-
icities (namely perfect, imperfect, and asynchronous periodicity). Previous periodic
pattern mining methods have some disadvantages: (1) Previous methods have to find
different patterns separately; (2) They require postprocessing such as level-by-level
join strategies formining complex periodic patternswhich havewildcards between two
items. They cannot mine full, tail, and inner periodic patterns with perfect, imperfect,
and asynchronous periodicities simultaneously. Therefore, an effective and compre-
hensive approach capable of discovering the above specified kinds of periodic patterns
is needed. We propose a novel suffix tree-based algorithm, Mining dIfferent kinds of
Periodic Patterns Simultaneously, MIPPS, to address the above issues. MIPPS finds
different kinds of periodic patterns with different periodicities simultaneously with-
out level-by-level join techniques using a novel incremental propagation generator.
In addition, MIPPS mines periodic patterns efficiently using some pruning strategies.
For the performance evaluation, we use both synthetic and real data to confirm good
performance and scalability with complex periodic patterns.

Responsible editor: Eamonn Keogh.

B Jen-Wei Huang
jwhuang@mail.ncku.edu.tw

Bijay Prasad Jaysawal
bijay@jaysawal.com.np

Cheng-Chung Wang
smirkchung@gmail.com

1 Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan

2 Yuan Ze University, Taoyuan City, Taiwan

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10618-021-00753-9&domain=pdf
http://orcid.org/0000-0001-5482-8311
https://orcid.org/0000-0001-6958-0347

1226 J.-W. Huang et al.

Keywords Data mining · Periodic pattern · Periodicity · Symbolic sequence data

1 Introduction

A time series is a collection of data values gathered at uniform time intervals to reflect
the behavior of an entity. Some examples of time series are the weather conditions of
a particular place, transactions in a superstore, power consumption records, computer
network monitoring logs. Time series data mining (Fu 2011; Esling and Agon 2012)
has been applied in a wide range of real-life problems in various fields of research,
such as economic forecasting (Song and Li 2008), intrusion detection (Zhong et al.
2007), medical surveillance (Burkom et al. 2007), gene expression analysis (ho Lin
et al. 2008), hydrology (Ouyang et al. 2010), human behavior analysis (Pierson et al.
2018), and biological data (DNA and protein sequences) analysis (Katti et al. 2000;
Ahdesmäki et al. 2005; Glynn et al. 2005).

Some time series can be characterized by being composed of recurrent cycles. For
instance, power consumption has higher demand in summer, animals have certain
migration route during a year and so on. Identifying repeating periodic patterns may
reveal important observations about the behavior and future trends of the case repre-
sented by the time series (Weigend and Gershenfeld 1994), and hence leads to more
effective decision making. In addition, periodicity detection is a process for finding
temporal regularities within the time series. In other words, a goal of analyzing a time
series is to determine whether and how frequent a periodic pattern is repeated within
the time series (Rasheed et al. 2011). Mining periodic patterns (Berberidis et al. 2002;
Elfeky et al. 2005a; He et al. 2008) in time series databases is a popular research field
in data mining. Varied periodicities (Han et al. 1999; Yang et al. 2003; Ozden et al.
1998; Pujeri and Karthik 2012; Elfeky et al. 2005b; Sheng et al. 2006) have many
different applications.

The time series data could be discretized into finite symbols taken from an alphabet
set

∑
. For example, SAX (Symbolic Aggregate approXimation) representation (Lin

et al. 2007), discritization approach discussed in (Rasheed et al. 2011), et cetera, can
be used to discretize a time series into sequence of symbols. In this study, we do not
focus on discretization method. We assume that the time series data has been already
discretized into sequence of symbols. In different applications, different discretiza-
tion methods may be suitable which requires domain knowledge. In addition, there
are some applications where data exist in the form of sequence of symbols, such as
protein sequence. Let us take an example of discrete time series T = aababc with
length n = 6 and each value is taken from the alphabet set {a,b,c}. A pattern P is
a non-empty sequential subset of a time series. When a pattern appears periodically
in time series, it is known as a periodic pattern. For example, given a time series
T = abababacabccbcbb, there is a periodic pattern ab and its period is 2 within time
points t1–t6. In addition, the wildcard character, ∗, represents any item or it can be
viewed as an unimportant item. There are two periodic patterns containing wildcard
characters in the above time series T . The period of aba∗ is 4 within time points t1–t8,
and the period of c ∗ b is 3 within time points t8–t16.

123

Mining full, inner and tail periodic patterns… 1227

Table 1 Periodic patterns with different periodicities and period 2

Time series Pattern Periodicity Confidence

ab√√ ab√√ ab√√ ab Perfect periodicity 3/3

ab√√ ab√√ ac×× ab√√ cd×× ab Imperfect periodicity 3/5

ab√√ c ab√√ ac ab√√ ab√√ ab Asynchronous periodicity 4/5

The periodic patterns found by previous works can be classified as full and partial
periodic patterns, perfect and imperfect periodic patterns, synchronous and asyn-
chronous periodic patterns (Sirisha et al. 2014). Full periodic patterns are patterns
where each position in the period contains an item from the set of items. For example,
abc is a full periodic pattern of period 3. Partial periodic patterns (Han et al. 1999)
are the patterns with wildcard character, ∗, which represents any item or unimportant
items. For example, both a ∗ c and ab∗ are partial periodic patterns of period 3. For
details about different kinds of periodic patterns and related mining algorithms, we
refer the readers to the survey paper (Sirisha et al. 2014).

Now,we describe the periodic patterns based on periodicities, i.e. perfect and imper-
fect, synchronous and asynchronous. In a given time series, from the first occurrence
of the pattern to the end of the time series, if there is no gap between any two suc-
cessive patterns, the periodicity is called perfect periodicity (Ozden et al. 1998). The
patterns with perfect periodicity are called perfect periodic patterns. Table 1 shows
examples of periodic patterns with different periodicities having period 2. For exam-
ple, T = ababab has the pattern ab with period 2 and perfect periodicity. Usually,
the perfection of periodicity is represented by confidence. The confidence is the ratio
of the actual frequency to the maximum possible frequency of the pattern in the time
series. In the above example of perfect periodicity, the pattern has the actual frequency
3 and maximum possible frequency 3, so the confidence is 3/3. In perfect periodicity,
the confidence of patterns is always 100% because all possible occurrences of patterns
are present in the time series. It is possible to have some of the expected occurrences
of periodic patterns missing. These periodic patterns with the absence of possible
occurrences at some time points are said to have imperfect periodicity. The confi-
dence of imperfect periodicity is always less than 100% because some occurrences
of patterns are missing in the time series. The patterns with imperfect periodicities
are called imperfect periodic patterns. For example, the time series T = ababacabcd
has a periodic pattern ab with period 2 and imperfect periodicity. In this example,
the confidence of the pattern ab is 3/5. Furthermore, real data may contain noises
or outliers that will disturb the periodicity, i.e., periodicity may not be synchronous.
Asynchronous periodicity (Yang et al. 2003) allows a gap of different lengths to deal
with noise between two successive patterns. The patterns with asynchronous period-
icity are called asynchronous periodic patterns. The algorithm to find asynchronous
periodicity in (Yang et al. 2003) defines two parametersmin_rep andmax_dis, a.k.a.
gap. A valid segment of time series contains contiguous min_rep occurrences of pat-
terns. If the gap between two successive valid segments are no more than max_dis,
those segments are connected and the periodic patterns are said to have asynchronous

123

1228 J.-W. Huang et al.

periodicity. In our work, for simplicity, we assume min_rep equals to 1 for a valid
segment so that all possible patterns can be found and user does not need to set param-
eter for this. Note that this parameter can still be easily applied in our algorithm if it
is required. For example, given a time series T = abcabacabab and gap = 2, there
is a periodic pattern ab with period 2 and asynchronous periodicity. In this example,
the confidence of the ab pattern is 4/5.

Rasheed et al. in (Rasheed et al. 2011) proposed STNR algorithm to mine the
symbol periodicity, sequence periodicity, and segment periodicity using suffix tree.
Symbol and sequence periodicities are kind of partial periodic patterns whereas seg-
ment periodicity can be regarded as full periodic patterns. The authors also proposed
to mine periodic patterns with time tolerance which is the variation of asynchronous
periodic patterns. They also discussed to mine time series in a subsection of time
series by defining start and end position. By considering subsection of the time series,
the periodic pattern may have different periodicity. However, STNR cannot generate
patterns like ab ∗b that contains wildcard or unimportant event in between two events
(Nishi et al. 2013; Sirisha et al. 2014). Nishi et al. (Nishi et al. 2013) observed this
limitation of STNR and used apriori-like level-by-level pattern mining approach to
generate the patterns containing wildcard in between two events such as a ∗ b and
ab ∗ ∗d.

Partial periodic pattern was first proposed in (Han et al. 1999). Partial periodic
patterns allow wildcards which represent any item or unimportant item at the position
of wildcard. In this study, we propose to further classify the partial periodic pattern
into two types, one is tail periodic pattern and the other one is inner periodic pattern.
For the tail periodic pattern, the last item of the pattern is a wildcard, e.g., ab∗.
For inner periodic pattern, the first and last item of the pattern cannot be a wildcard
and the wildcards are located between any two items, e.g., a ∗ b and a ∗ ∗c. Both
types of periodic patterns have their individual peculiarities and we can use their
specific features to devise mining strategy. Inner pattern did not receivemuch attention
previously. However, we believe that inner pattern has significant importance and it is
more complex to find inner patterns than tail patterns in periodic pattern mining. For
example, during school days, a student leaves home, buys breakfast from a random
store, and then goes to school regularly each day. There are three items in the periodic
pattern and the middle item of the pattern is wildcard because the student may go to
different stores to buy breakfast. This kind of behavior is common in real life and can
be captured as an inner periodic pattern.

Han et al. (Han et al. 1999) andNishi et al. (Nishi et al. 2013) used apriori-like level-
by-level pattern mining approach to generate the complex inner pattern. Yang et. al
(Yang et al. 2003) found complex inner patterns by joining shorter known frequent peri-
odic patterns. Suchmethods generate unnecessary candidates and are time-consuming.
In addition, it is unfavorable for pruning redundant periodic inner patterns. Therefore,
how to find periodic inner patterns efficiently remains a difficult problem.

In this work, we devise a novel algorithm to find full, inner, and tail periodic
patterns with perfect, imperfect and asynchronous periodicities simultaneously. We
also consider finding the periodic patterns in the subsection of time series. Previous
works (Nishi et al. 2013) and (Sirisha et al. 2014) observed the limitation of the STNR,
which uses the suffix tree to generate the occurrence vectors of periodic patterns cannot

123

Mining full, inner and tail periodic patterns… 1229

generate the inner patterns. In this work, we devise a novel suffix tree-based approach
to generate the occurrence vectors of inner patterns along with other patterns. The
proposed novel suffix tree-based algorithm named Mining dIfferent kinds of Periodic
Patterns Simultaneously, MIPPS, mines all these full, tail and inner patterns with
different periodicities (perfect, imperfect and asynchronous) simultaneously.

Moreover, different periods have different kinds of periodic patterns. For example,
given a time series T = abababcabd, the pattern ab is a perfect periodic pattern when
its period is 2 within time points t1 to t6.When period is 3 and gap is 1, there is a partial
periodic pattern ab∗ with asynchronous periodicity in the entire time series. In order
to find all possible periodic patterns, we need to detect all possible periods in the time
series data, which makes discovering all the periodic patterns challenging. Therefore,
we further propose some optimization strategies for detecting periodic patterns and
prune unnecessary patterns to make MIPPS more efficient.

In the experiments, we compare the performance of MIPPS algorithm with another
suffix tree-based algorithm STNR (Rasheed et al. 2011). We use synthetic and real
data in our experiments to investigate performances in different conditions such as the
number of distinct items, the size of periods for periodic patterns and various lengths
of the time series data. We also analyze memory usage for different steps of the
algorithm, which are building suffix tree and discovering periodic patterns from suffix
tree. The results of the experiments show that MIPPS outperforms STNR in mining
full, inner, and tail periodic patterns from time series data. We also apply MIPPS on
an important application of periodic pattern mining in biological data. According to
Katti et al. (Katti et al. 2000), the protein sequence P17437 (Skin secretory protein
xP2) has a known periodic pattern {APAPA ∗∗E ∗∗} and there are 25 repeats of this
pattern. MIPPS was able to determine the periodic pattern {APAPA ∗ ∗E ∗ ∗} with
25 repeats, which demonstrates that MIPPS can be applied to real life data. Moreover,
other interesting periodic patterns with repeats more than 25 were found by MIPPS.

The main contributions of our work can be summarized as follows:

– We propose a suffix tree-based data structure and a top down traversal approach to
generate three types of patterns and their occurrence positions in a discrete time
series (sequence of symbols) with only one scan.

– We propose a single method, MIPPS, to mine full, tail and inner patterns with
different kinds of periodicities (perfect, imperfect, and asynchronous) simultane-
ously.

– A number of optimization strategies are presented to efficiently detect periodic
patterns and prune unnecessary patterns and periods.

– MIPPS is shown to be applicable to real biological datasets such as DNA and
protein sequences. In addition,MIPPS is also able to find some other novel periodic
patterns.

The rest of the paper is organized as follows: Section 2 presents related works.
Section 3 discusses the preliminaries of periodic patterns in time series. Section 4
describes the proposed algorithm along with the suffix tree-based representation, the
utilized optimization and pruning strategies. Section 5 discusses the experimental
results using both real and synthetic data. Finally, Sect. 6 concludes this study.

123

1230 J.-W. Huang et al.

2 Related works

Periodic patternmining emerged from association rules. Thework, proposed byOzden
et al. (Ozden et al. 1998), observed that the confidence of some rules are very low
when considering total length of time. But when we specify a length of time, the
confidence is high. They developed a sequential algorithm to discover cyclic patterns.
It uses cycle-skipping to reduce access times, cycle-pruning to avoid repeated search
of some sub-patterns of known periodic patterns and the cycle-elimination to eliminate
the infrequent patterns. Han et al. (Han et al. 1999) noticed a useful related type of
periodic pattern, called partial periodic pattern. They proposed partial periodic pattern
with wildcard which represents any item or unimportant item in the sequence. Their
proposed max-subpattern hit-set starts from discovering frequent 1-patterns and then
uses the frequent 1-pattern to generatemax-pattern.Using themax-pattern hit-set, their
algorithm finds the max subpatterns and builds a max-subpattern tree. The resulting
tree can answer the number of occurrences of partial periodic patterns in the time
series and helps to mine frequent partial periodic patterns. Their algorithm needs only
two scans of the time series database. Cao et al. (Cao et al. 2004) presented a new
data structure named Abbreviated List Table (ALT) to improve max-subpattern hit-set
for discovering frequent 1-patterns over different periods. ALT can find the frequent
1-patterns of different periods in a single scan of the time series database.

Real life datamayhave noises and outliers that can disturb the synchronous behavior
of periodic patterns. Yang et al. (Yang et al. 2003) defined the maximum allowed
disturbance between two successive valid segments to resolve the noise problem in
real life data. It is called asynchronous periodic pattern. Their algorithm can find the
longest subsequence of asynchronous periodic pattern. Huang and Chang (Huang and
Chang 2005) proposed a general model for mining asynchronous periodic patterns in
temporal databases (SMCA). Temporal databases may have multiple items at one time
point. They arrange data in a vertical format which is more efficient than a horizontal
database. SMCA mines periodic segments starting from a single event and uses two
methods to generate multi-event patterns by timelist-based enumeration and segment-
based enumeration. The inner pattern is produced by combining valid segments of the
same period in depth-first order.

Previous researches employ different techniques to transform the time series data
into other useful structures to discover the periodic patterns efficiently. The suffix
tree (Rasheed et al. 2011; Nishi et al. 2013) is built to find frequent repeat patterns.
SMAC (Huang and Chang 2005) uses a vertical database which is more efficient
than a horizontal database to store the time series data. Elfeky (Elfeky et al. 2005a)
uses binary representation to transform the time series data into binary vectors which
allows efficient pattern matching. More researchers mined periodic patterns on several
different structures of time series data. Pujeri and Karthik (Pujeri and Karthik 2012)
applied periodic pattern mining in multiple time series sequences and proposed an
efficient and flexible constraint based periodicity mining technique.

The suffix tree based algorithm (Rasheed andAlhajj 2010, 2008;Xylogiannopoulos
et al. 2012) can determine the pattern and its positions of occurrences in a time series.
The collection of occurrence positions is called occurrence vector. Rasheed et al.
(Rasheed et al. 2011) proposed a suffix-tree-based noise-resilient (STNR) algorithm to

123

Mining full, inner and tail periodic patterns… 1231

mine periodic patterns and find symbol, sequence (partial periodic), and segment (full
cycle) periodicity in time series data. They also proposed tomine periodic patternswith
periodicity in subsection of time series rather than entire time series by specifying start
and end position. STNR algorithm can avoidmultiple types of noises like replacement,
insertion, deletion, or any mixture of these types of noise. They also introduced the
concept of time tolerance which lets the noise-resilient algorithm be more flexible.
However, STNR cannot determine the occurrence vectors of inner patterns, i.e., the
patterns with wildcard between two items and thus STNR is not able to mine such
periodic patterns. Nishi et al. (Nishi et al. 2013) also observed this problem of STNR
algorithm. They proposed an approach to define a maximum event skipping threshold
to constrain the number of wildcards between any two items and follow Apriori-like
level-by-level sequential pattern miningmethod to generate the complex inner pattern.
However, using the maximum event skipping threshold, the algorithm cannot mine all
possible periodic inner patterns. Furthermore, theApriori-based level-by-levelmethod
may generate many candidates and joining patterns can be time-consuming for large
periods.

As mentioned above, our proposed algorithm, MIPPS is designed to mine differ-
ent kinds of periodic patterns simultaneously without the maximum event skipping
threshold.

In recent years, some research works have developed methods for different variants
of periodic pattern mining. Among these, some research have focused on periodic-
frequent pattern mining (Tanbeer et al. 2009; Kiran and Kitsuregawa 2014; Kiran et al.
2015, 2017;Nofong andWondoh2019). The study in (Li et al. 2015) focuses onmining
periodicity from incomplete observations. Another study (Yuan et al. 2017) presents
a method to discover periodic mobility patterns. The study in (Chanda et al. 2017)
presents a framework for mining weighted periodic patterns. Similarly, the studies
(Chen et al. 2019; Yuan et al. 2019) discusses some other issues related to periodicity.
Nevertheless, the problem definitions of these works are different from the problem
definition discussed in this study.

3 Preliminaries

Definition 1 Time series A time series T {i1, i2, i3, ..., in} of length n is a set of n
values containing an item i j at every time point t j . Each item can be viewed as an
event and the time series can be viewed as an event sequence.

Definition 2 Periodic pattern Periodic pattern P{i1, i2, i3, ..., ix } is an ordered list of
items of length x that repeats itself in the time series.

A periodic pattern may contain a wildcard (∗) in place of an item. A wildcard, ∗,
represents any item or unimportant item at a particular time position.

Definition 3 Full periodic pattern A periodic pattern P{i1, i2, i3, ..., ix } is a full
periodic pattern if all items in P are selected from the possible set of items in the time
series. That is to say, a full periodic pattern does not contain any wildcard, ∗.
Definition 4 Partial periodic pattern A periodic pattern P{i1, i2, i3, ..., ix } is called
a partial periodic pattern, i f ∃ j, 1 ≤ j ≤ x, i j = ∗.

123

1232 J.-W. Huang et al.

Partial periodic patterns contain at least one wildcard. We never have any pattern
which starts with a wildcard because it is identical to other patterns with a shifted
starting position in the time series (Yang et al. 2003).

Definition 5 Inner periodic pattern A partial periodic pattern P{i1, i2, i3, ..., ix } is
called an inner periodic pattern, if some wildcards occur between two items and the
last item ix is not a wildcard. E.g., {a, ∗, b}, {a, ∗, b, ∗, c}.
Definition 6 Tail periodic pattern A partial periodic pattern P{i1, i2, i3, ..., ix } is
called a tail periodic pattern, if the last item ix is a wildcard. E.g., {a, b, ∗}, {a, ∗, c, ∗}.
Definition 7 The least-period-of-the-pattern, |P| The least-period-of-the-pattern
|P| is the size of pattern P , i.e., number of items in the pattern P including wild-
card. The least period of pattern is the minimum distance between two occurrences of
the periodic pattern. Since, in this work, we care about only non-overlapping periodic
patterns, the least period of periodic pattern is equal to the length of the pattern. For
example, the least-period-of-the-pattern value for the patterns {a, b, c}, {a, ∗, c} and
{a, ∗, ∗} is 3.
Definition 8 Perfect periodicity Given a time series T {i1, i2, i3, ..., in} and a pattern
P{i1, i2, i3, ..., ix }, let T ′ {i ′

1, i
′
2, i

′
3, ..., i

′
m} be a segment of time series T where 1 ≤

m ≤ n, and O{t1, t2, t3, ..., tk} be an ordered collection of starting time point of each
occurrence of P in T

′
. P has perfect periodicity in T

′
if ∀ j, 1 ≤ j ≤ k−1, t j+1−t j =

|P|.
Definition 9 Imperfect periodicity Given a time series T {i1, i2, i3, ..., in} and a
pattern P{i1, i2, i3, ..., ix }, let T

′ {i ′
1, i

′
2, i

′
3, ..., i

′
m} be a segment of time series T

where 1 ≤ m ≤ n, and O{t1, t2, t3, ..., tk} be an ordered collection of starting
time point of each occurrence of P in T

′
. P has imperfect periodicity in T

′
if

∀ j, 1 ≤ j ≤ k − 1,mod(t j+1 − t j , |P|) = 0 and ∃ j, 1 ≤ j ≤ k − 1, t j+1 − t j > |P|.
In other words, in imperfect periodicity at least one of the expected occurrences is

missing.

Definition 10 Asynchronous periodicity Given a time series T {i1, i2, i3, ..., in}, a
pattern P{i1, i2, i3, ..., ix } and a gap β, let T

′ {i ′
1, i

′
2, i

′
3, ..., i

′
m} be a segment of time

series T where 1 ≤ m ≤ n, and O{t1, t2, t3, ..., tk} be an ordered collection of starting
time point of each occurrence of P in T

′
. P has asynchronous periodicity in T

′
if

∀ j, 1 ≤ j ≤ k − 1, |P| ≤ t j+1 − t j ≤ |P| + β.

For example, if a time series T is ababcabdabab and the gap is 1, there is an
asynchronous periodic pattern “ab” with period 2 that occurs periodically at positions
{1, 3, 6, 9, 11}. In this example, after position 3, next occurrence is at 6 which is differ-
ent than the expected position 3+2=5 or 5+2=7 according to period=2 that makes this
pattern asynchronous periodic pattern. Note that, asynchronous periodicity does not
allow overlapping between the two successive neighbor patterns, which is different
than the periodicity with time tolerance (Rasheed et al. 2011). To find all the occur-
rences of frequent periodic patterns with asynchronous periodicity, we do not use the
gap parameter in our algorithm so that all possible gaps are examined. Nevertheless,
this parameter can be specified by the user for our algorithm if needed.

123

Mining full, inner and tail periodic patterns… 1233

Definition 11 Maximum support of perfect periodicity(|P|) The Maximum sup-
port of perfect periodicity(|P|) is the maximum number of all possible occurrences
of the |P|-period pattern with perfect periodicity in time series and is denoted by
� the length of time series

|P| 	

Definition 12 Actual Support of the |P|-period periodic pattern The support of the
|P|-period periodic pattern is the number of occurrences of |P|-period pattern with a
specific periodicity in a time series.

Definition 13 Confidence (|P|) The confidence of the |P|-periodic pattern is denoted
by Actual support o f the periodic pattern

Max_Support o f per f ect periodici t y(|P|)

Confidence is a formula to weigh the quality of a periodic pattern in the time series.
In general, given a user defined minimum confidence, when the confidence (|P|) of
periodic pattern is larger than or equal to the minimum confidence, the periodic pattern
is called a frequent periodic pattern.

The actual support of the periodic pattern may have different values on the different
periodicities or different sizes of period. In order to determine whether the periodic
pattern meets the minimum confidence threshold or not, the minimum confidence can
be converted to the minimum support.

Definition 14 Minimum support (|P|) and Minimum repeat times α Minimum
support = �Max_support_of _per f ect_periodici t y(|P|) × Minimum_
Con f idence	

We observed that the maximum support of perfect periodicity changes with the size
of period. When the period is large, the maximum support of perfect periodicity(|P|)
is small. Hence, patterns appearing few times can also satisfy the minimum support
(|P|). For example, if the length of time series is 100 and the minimum confidence is
0.2,when the period of periodic pattern is 20, a pattern appearing only one time satisfies
the minimum confidence. In order to avoid this problem, we define a threshold named
minimum repeat times α. Any frequent periodic pattern should satisfy both minimum
support (|P|) and α.

4 AlgorithmMIPPS

We propose a novel algorithm to mine full and partial (inner and tail) periodic patterns
with different periodicities (perfect, imperfect, and asynchronous) simultaneously. In
the first phase, we build a suffix tree without suffix link which we describe in Section
4.1. Then in the second phase, we need to find different kinds of patterns and their
occurrence vectors containing the information of all the positions where the pattern
appears in the time series. We propose an incremental propagation generator to get
different kinds of patterns and their occurrence vectors. Finally, we mine periodic
patterns by detecting periods on occurrence vectors and by detecting different period-
icities simultaneously. The basic procedures of MIPPS algorithm are shown in Fig. 1.
We describe the details of MIPPS in following subsections.

123

1234 J.-W. Huang et al.

MIPPS algorithm
1. Build the suffix tree without suffix link
2. Start from the root and get the initial template pattern
3. Breadth-first search to traverse all accessible edges of branch

3.1. Get an item from the labels of current edge and produce patterns
- Prune and reduce redundant generated pattern on the edge list
- Store pattern on the current edges
- Store inner pattern and the longest full pattern on the candidate list

4. Detect periodic pattern on candidate list
4.1. Prune pattern while detecting periodic pattern on candidate list
4.2. Detect all kinds of periodic patterns on the pattern of candidate list

- Use optimization Strategies while detecting periodic pattern
4.3. Clear the candidate list

5. Repeat steps 3-4 until the template pattern is equal to the |max|-period pattern

Fig. 1 MIPPS algorithm

4.1 Suffix tree-based data structure

In this paper, we propose a novel suffix tree-based algorithm MIPPS. There are three
kinds of nodes in the suffix tree, say root, internal and leaf. The root node is the root of
suffix tree containing nothing. A suffix of a time series is represented as a path from the
root to a leaf. Internal nodes are in the path from the root and leaves. Except the root
node, every node has an edge above itself and each edge has a label representing items
in a suffix. A suffix tree can effectively find a substring which can be regarded as a
recurrent pattern in time series data. The occurrence positions of the recurrent pattern
are numbered on the leaves below the internal nodes. The collection of occurrence
positions is called an occurrence vector. The occurrence vectors of the internal nodes
of upper levels contain the occurrence vectors of each internal node of the lower levels
under its hierarchy. The downward closure property of occurrence vector in suffix tree
is useful to devise mining strategy. For a substring example, Fig. 2 shows a suffix
tree of the time series bababcbc$. The occurrence vector of “b” is {1, 3, 5, 7} and the
occurrence vector of “bab” is {1, 3}. The size of the occurrence vector of “bab” is 2,
representing the number of positions in the time series where the pattern occurs. If the
size of the occurrence vector of the pattern is not less than the minimum support, the
pattern is potential to be a frequent periodic pattern.

When we build a suffix tree, we cannot get the occurrence vector of the internal
nodes directly. The previous work (Rasheed et al. 2011) uses the Ukkonen’s algorithm
(Ukkonen 1995) to build the suffix tree and traverses the tree using a bottom-up
traversal to get the occurrence vector of the internal nodes. In this paper, we also
use the Ukkonen’s algorithms to build the suffix tree but do not use suffix link. The
building time of a suffix tree with suffix link is linear, O(m), where m is the length of
time series. Without suffix link the building time is O(2m) (Smyth and Smyth 2003).
The building time without suffix link is higher, but we can get the occurrence vector
of internal nodes directly without the additional bottom-up traversal of the suffix tree.
In addition, the bottom-up traversal algorithm needs to sort occurrence vectors of the
internal nodes, but our strategy does not have this requirement. Figure 3 shows an
example of suffix tree with occurrence vectors stored in the nodes.

123

Mining full, inner and tail periodic patterns… 1235

2 4

1 3 7 5

8 6

ab
b

c

abcbc$ cbc$

abcbc$ cbc$ $ bc$

ab c $ bc$

Fig. 2 The suffix tree of the String bababcbc$

ab
b

c

abcbc$ cbc$

abcbc$ cbc$ $ bc$

ab c $ bc$

n1 n2 n3

n4 n5 n6 n7 n8 n9

n10 n11 n12 n13

Node Occ. Vector
n1 [2, 4]
n2 [1, 3, 5, 7]
n3 [6, 8]
n4 [2]
n5 [4]
n6 [1, 3]
n7 [5, 7]
n8 [8]
n9 [6]
n10 [1]
n11 [3]
n12 [7]
n13 [5]

Fig. 3 The suffix tree of the String bababcbc$ with occurrence vector in the nodes

The strategy is that while finding the path of a new suffix string, the reference of
every internal node on the path is stored. If the end position of the path is reached, the
occurrence vectors of internal nodes are updated. In MIPPS algorithm, this strategy
is more suitable than using the bottom-up traversal of suffix tree. MIPPS is designed
for a top-down traversal because there are some advantages and techniques to prune
redundant generated patterns and periods for detecting periodic pattern. We discuss
about these strategies in later sections.

However, for very large sequence data, storing the list of integers as occurrence
vectors in the nodes is not efficient in terms of memory usage. Therefore, we devise a
strategy to use boolean vectors in the nodes in place of integer vectors for occurrence
information. The occurrence vector of the level-1 nodes (i.e., children nodes directly
under root) contain the all the occurrence positions for the subtree. The occurrence
vector of other nodes in subtree are subset of the occurrence vector of the level-
1 node in the suffix tree. Therefore, we can store the occurrence vector of level-1
nodes in a separate list and we can store the index along with boolean vector in the
nodes. Boolean vector contains either ‘1’ or ‘0’ boolean value for each number in the
occurrence vector. Figure 4 shows an example of this strategy, where in a separate list

123

1236 J.-W. Huang et al.

ab
b

c

abcbc$ cbc$

abcbc$ cbc$ $ bc$

ab c $ bc$

n1 n2 n3

n4 n5 n6 n7 n8 n9

n10 n11 n12 n13

Node Occ. Info.

n1 0, [1, 1]

n2 1, [1, 1, 1, 1]

n3 2, [1, 1]

n4 0, [1, 0]

n5 0, [0, 1]

n6 1, [1, 1, 0, 0]

n7 1, [0, 0, 1, 1]

n8 2, [0, 1]

n9 2, [1, 0]

n10 1, [1, 0, 0, 0]

n11 1, [0, 1, 0, 0]

n12 1, [0, 0, 0, 1]

n13 1, [0, 0, 1, 0]

Index Occ. Vector

0 [2, 4]

1 [1, 3, 5, 7]

2 [6, 8]

Fig. 4 The suffix tree of the String bababcbc$ with occurrence vector using boolean vector in the nodes

we store the occurrence vector of the three level-1 nodes. To access the occurrence
vector from the separate list, we store the index and boolean vector as occurrence
information in the nodes.

Above mentioned strategy saves memory usage for suffix tree with occurrence
vectors. However, for very large sequence data, many nodes in the suffix tree have to
store toomany leading and trailing zeros in the boolean vectors. To savemorememory,
we do not store leading and trailing zeros. Therefore, we store another integer in the
occurrence information of the nodes which represent the position of first ‘1’ in the
boolean vector, i.e., index inside the occurrence vector of level-1 node. Figure 5 shows
an example of this strategy. In the occurrence information of nodes, we have three
fields; first is the integer representing the index of main list where actual occurrence
vectors for level-1 nodes are stored, second is the integer representing the start position
or start index in the occurrence vector represented by first field, third is the boolean
vector without leading and trailing zeros. In addition, since boolean vector of level-1
nodes contains only 1s for all the positions in the occurrence vector, we store just a
single boolean value ‘1’ in the boolean vector to save memory. For level-1 nodes we
can simply retrieve the complete occurrence vector from main list using the index
value. This strategy is effective in terms of memory usage and it helps to retrieve the
actual occurrence vector of the nodes efficiently.

A suffix tree has exactly m leaves numbered from 1 to m but a suffix string may be
a prefix of other suffix strings which makes the suffix tree lose some numbered leaves.
To avoid this situation, an end marker symbol (usually $) is added at the end of string
S. Furthermore, no two edges starting out of a node can have string-labels beginning
with the same character, which ensures each sub-tree of the suffix tree is independent.
Therefore, we can split the suffix tree from the first level and run MIPPS algorithm on
each sub-tree. In Fig. 2, the suffix tree can be split into three sub trees that start from
“ab”, “b” and “c” respectively.

123

Mining full, inner and tail periodic patterns… 1237

ab
b

c

abcbc$ cbc$

abcbc$ cbc$ $ bc$

ab c $ bc$

n1 n2 n3

n4 n5 n6 n7 n8 n9

n10 n11 n12 n13

Node Occ. Info.

n1 0, 0, [1]

n2 1, 0, [1]

n3 2, 0, [1]

n4 0, 0, [1]

n5 0, 1, [1]

n6 1, 0, [1, 1]

n7 1, 2, [1, 1]

n8 2, 1, [1]

n9 2, 0, [1]

n10 1, 0, [1]

n11 1, 1, [1]

n12 1, 3, [1]

n13 1, 2, [1]

Index Occ. Vector

0 [2, 4]

1 [1, 3, 5, 7]

2 [6, 8]

Fig. 5 The suffix tree of the String bababcbc$ with occurrence vector using boolean vector without leading
and trailing zeros in the nodes

In order to mine full, inner, and tail periodic patterns, obtaining only the occurrence
vector of full pattern is not enough. In the next subsection, we introduce an incremental
propagation generator that can obtain the occurrence vectors of all these specified
patterns.

4.2 Incremental propagation generator

According to the previous definitions, periodic patterns are classified into three types,
say full, tail, and inner patterns. These patterns can be found by traversing the suffix
tree built in the first phase. The path of a full pattern is unique in the suffix tree.
Therefore, full patterns and their occurrence vectors can be found as substrings by
following paths from the root to any item of the label (label may contain multiple
items) on the edge. Inner pattern has wildcards that allow it to present at multiple
paths in the suffix tree. If we want to obtain an occurrence vector of an inner pattern,
we need to find all possible paths of the inner pattern. Finally, tail patterns can be
extracted by finding a new period larger than the previous period of full and inner
patterns. The following subsections explain the details of the incremental propagation
generator.

4.2.1 Generate candidate patterns and their occurrence vectors

The initial template pattern is the label of the unique internal node at the first level of the
sub tree. For example, in Fig. 2, there are three sub-trees and their initial templates are
“ab”, “b” and “c” respectively. The first step of the incremental propagation generator
produces the initial template pattern and it is also the first full pattern. Then, the

123

1238 J.-W. Huang et al.

1 3 7 5

b’:1,3,5,7

abcbc$ cbc$ $ bc$

ab:1,3 c:5,7

(a) first step of traversal

1 3 7 5

b’:1,3,5,7

abcbc$ cbc$ $ bc$

a’b:1,3 c’:5,7

(b) second step of traversal

1 3 7 5

b’:1,3,5,7

abcbc$ cbc$ $’ b’c$

a’b’:1,3 c’:5,7

(c) third step of traversal

Fig. 6 The results of each traversal

incremental propagation generator extends the template pattern by appending an item
or a wildcard (∗).

We use a breadth-first search to traverse all accessible edges below the internal
node that was traversed previously. For each edge, current patterns are generated and
stored in a list associated with the edge. The current pattern is generated from each
template pattern by appending a wildcard (∗) or one item taken from the label on the
edge. The item taken from the label on edge is marked as used. In Fig. 6, we use
the apostrophe (’) symbol to mark items as used. Each current pattern is a template
pattern for extending the periodic pattern. For example, Fig. 6a is a sub-tree of Fig. 2
and the initial template pattern is b. Next, in Fig. 6b, current patterns of the left edge
are produced, say ba and b∗, and current patterns of the right edge are bc and b∗.
These patterns are also called candidate periodic patterns. For the known accessible
edges, we only need to extend the template pattern of the edge which has an unmarked
item in the label. If all items of the label on the edge have been marked as used, we
traverse down to the next level and visit all new accessible edges. New accessible
edges get the template patterns from their parent. Moreover, if the next item is $ on
the label, we stop generating any pattern from this edge because $ is the end marker.
For example, in Fig. 6b, item b of the left label a′b has not been used. Therefore, we
take item b from this label. On the other hand, the item of the right label c′ is marked
as used. Therefore, we go down to the next level and take one item from label bc$ and
$. In Fig. 6c, the current patterns of the edge with label a′b′ are bab, b ∗ b, ba∗ and
b ∗ ∗. Current patterns of the edge with label b′c$ are bcb, b ∗ b, bc∗ and b ∗ ∗.

In the template patterns, one wildcard (∗) is added to generate tail patterns and one
item from the label of the edge is added to generate full and inner patterns. The full
pattern is found from the unique substring whose path starts from the root of the suffix
tree. Therefore, the occurrence vector of the full pattern is the occurrence vector of
the internal node below the edge. However, this is not applicable to the inner pattern
because the inner pattern has wildcards which make it possible to exist on multiple
paths in the suffix tree. In order to ensure that all paths containing the inner pattern
are visited, the incremental propagation generator adopts breadth-first search which
reaches all paths for the inner pattern. For example, in Fig. 6c, the occurrence vector
of b ∗ b is obtained after traversing all current branches. The paths bab {1, 3} and bcb

123

Mining full, inner and tail periodic patterns… 1239

{5} have a common inner pattern b ∗ b whose occurrence vector is {1, 3, 5} obtained
from joining the occurrence vectors {1, 3} and {5}. Finally, the tail pattern is generated
by appending one wildcard at the end of any pattern. Therefore, the occurrence vector
of the tail pattern is equal to the occurrence vector of the template pattern from which
the tail pattern is extended. For example, in the Fig. 6b, the occurrence vector of tail
pattern b∗ is equal to the occurrence vector of its parent b.

The incremental propagation generator continues to use breadth-first search to tra-
verse all accessible edges and extends template patterns until the template pattern
becomes the |max |-period pattern. |max |-period is the maximum possible period for
patterns. It is restricted by the user defined threshold α which requires the pattern
to appear the minimum repeat times (α) in a time series. Therefore, the maximum
possible period is calculated by � the length of time seris

α
	.

4.2.2 Pruning strategies used while generating candidate patterns on the edge

(a) Reduce generating full patterns: If the size of the occurrence vector of the
edge is smaller than the minimum repeat times(α), the corresponding periodic
pattern cannot be frequent. Therefore, the candidate full pattern is not generated
on this edge. In the suffix tree, there is only one path containing the specific full
pattern. Due to the downward closure property, the size of the occurrence vector
of extended patterns cannot be more than the size of the occurrence vector of the
template pattern. Therefore, we do not need to generate all full patterns down
below this pattern.

(b) Prune useless candidate inner patterns: Sometimes the candidate inner pattern
does not have other paths to support its existence. The candidate inner pattern P
is useless, if there exists a candidate inner pattern P ′ which has less number of
wildcards than P and has the same occurrence vector as P . When two candidate
inner patterns have the same occurrence vector on the same edge, the pattern with
a larger number of wildcards is useless. Such useless candidate patterns are not
extended further and are deleted. We remove such useless candidate inner patterns
to avoid generating useless candidate periodic patterns and template patterns.

4.3 Mining different kinds of periodic patterns simultaneously

As already stated in the previous sections, we can get all possible patterns and their
occurrence vectors. The next step is mining periodic patterns based on the occurrence
vectors of patterns in the candidate list. This step is divided into two sub-procedures.
The first sub-procedure detects all possible periods which may have periodic patterns.
The other sub-procedure classifies the periodic patterns into periodicities in which
they belong. MIPPS algorithm can do both sub-procedures simultaneously. Before
mining periodic patterns on candidate patterns, we use some pruning strategies to
prune candidate patterns. We explain these strategies in Section 4.3.1.

123

1240 J.-W. Huang et al.

4.3.1 Pruning candidate patterns

Before mining periodic patterns of the three kinds of patterns and their occurrence
vectors, we observe two properties about full and tail patterns that helps us to make
strategies to detect periodic patterns only on inner patterns and the longest full pattern
of the edge. We do not need to detect periodic patterns on tail and sub full patterns.
In addition, we observe another property with the minimum repeat times(α) that can
prune patterns while detecting periodic patterns.

Strategy 1 For full patterns, mine the periodic patterns from the occurrence vector
of the longest full pattern of the edge.

If an edge of the suffix tree contains multiple items, all the full patterns generated
from the same edge get the same occurrence vector from the internal node below the
edge. Therefore, the full patterns which end on the same edge but at different positions
have the same occurrence vector. For example, in Fig. 2, full pattern ba and bab have
the same occurrence vector {1, 3}. The substring which ends at the last position of
the label on the edge is the longest substring at this edge, i.e., the longest full pattern
on the edge. The generated candidate full patterns of the edge are sub-patterns of the
longest full pattern, i.e., sub full patterns. Therefore, we do not mine periodic patterns
on the generated candidate sub full patterns.We only need tomine periodic patterns on
the longest full pattern of the edge. Furthermore, this strategy also avoids discovering
some redundant periodic patterns. For example, the longest full pattern is abc and its
sub full pattern is ab and they have the same occurrence vector {1, 4, 7}. When the
period is three, the periodic pattern ab∗ is a redundant periodic pattern because there
is a better periodic pattern abc. In order to get the longest full pattern conveniently, our
strategy is to get the longest full pattern and its occurrence vector when we examine
a new edge. The longest full pattern is generated by appending the label of the edge
to the longest full pattern of the parent edge. We ignore mining periodic patterns on
sub full patterns without losing any interesting periodic sub full patterns. We explain
more about this in Sect. 4.3.2.

Strategy 2 Discover periodic tail patterns by discovering longer periods of the full
and inner patterns.

The tail pattern is generated by adding one more wildcard at the end of any pattern.
In other words, a wildcard added at the end of pattern can be regarded as an extra time
point in a longer period. Therefore, whenwe detect a longer period than the least period
of pattern, a wildcard can be automatically added on tail. For example, the pattern b
has the least-period-of-pattern of the pattern b is 1. If we can find a period 2 for pattern
b, the periodic tail pattern b∗ is also discovered. We can discover the periodic tail
patterns by detecting different periods on full and inner patterns. Nevertheless, we
still generate the tail patterns and its occurrence vector on the edge to use it as the
template pattern for further extension.

123

Mining full, inner and tail periodic patterns… 1241

Strategy 3 The candidate patterns having the size of the occurrence vector less than
the minimum repeat times (α) are pruned.

The candidate patterns which have the size of the occurrence vectors less than
the minimum repeat times(α) are deleted because such patterns and their extensions
cannot become a periodic pattern satisfying α. However, we cannot delete the pattern
which has the size of the occurrence vector less than the minimum support (|P|)
because minimum support (|P|) changes with the size of the period. The current
generated |P|-period pattern is infrequent according to the minimum support of the
current period. However, this does not imply that the extended |P + 1|-period pattern
is also infrequent.

According to the properties mentioned above, we only mine periodic patterns on
inner patterns and the longest full pattern of the edge whose size of the occurrence
vector is more than the minimum repeat times (α).

4.3.2 Discovering all possible periods

The periodic patterns of different periods and different periodicities can be discovered
from a candidate pattern. Periodic tail patterns can be discovered when the periodic
full and inner patterns are detected with longer periods than the current pattern length.
For both cases, we need to inspect all possible periods to find all possible periodic
patterns.

The least-period-of-pattern |P| is the least period that can include all items of
the pattern. Therefore, we detect the periodic pattern starting from the least period.
However, this property can apply on only inner patterns and cannot work on full
patterns. In Strategy 1, we have discussed that to prune the redundant generated full
pattern, only the longest full pattern needs to be mined for the periodic pattern. For
this reason, the least period of the longest full pattern should start from the length
of the longest full pattern of the parent edge plus one. This strategy can avoid losing
periodic patterns that are sub patterns of the longest full pattern. For example in the
Fig. 6b, to detect sub patterns from the longest full pattern bab, the period starts from
2, i.e. the length of the longest pattern of the parent edge b plus one. In this way, the
periodic pattern ba{1, 3} is found, which is a sub pattern of the longest full pattern
bab.

In addition, the maximum period is restricted by α. Therefore, the maximum possi-
ble period is calculated by � the length of time seris

α
	. All possible periods of the pattern

lies in the range starting from the least period to the maximum period.

4.3.3 Discovering periodicity connection

A periodic pattern is discovered by connecting more time points from the occurrence
vector of the same pattern. Between any two successive neighbor time points, there
exists a periodicity connection. In order to clearly recognize those periodicity connec-
tions, two values are used to analyze two successive neighbor time points. The first
value is Remainder, which is the result after comparing the moduli of two successive
time points by the same period, i.e., mod period. The second value isDifference, which

123

1242 J.-W. Huang et al.

Table 2 The category of detected periodicity

Category Remainder Difference Periodicity

1 Equal Zero Perfect

2 Equal More than zero Imperfect

3 Unequal More than zero (less than or
equal to gap if it is
specified)

Asynchronous

is the difference of two successive time points minus the period. These two values can
describe what kind of periodicity connection exists in the two successive time points.
For example, perfect periodicity only appears whenRemainder is equal andDifference
is zero. The other results of asynchronous and imperfect periodicities are shown in
Table 2.

Difference can also help us to know whether two successive neighbor patterns are
overlapping or there is a gap between two successive neighbor patterns. Overlapping
patterns share at least one common time point in the time series. Therefore, there is no
periodicity connection. If Difference is less than zero, there are overlapping patterns.
If Difference of two time points is larger than zero, there is a gap. If Remainder is
equal and there is a gap, there is an imperfect periodicity. When Remainder is equal,
the gap is synchronous, or in other words the gap is equal to period ∗ y where integer
y ≥ 1. Similarly, if Remainder is unequal and there is a gap, there is an asynchronous
periodicity.

Now, we introduce how to use these periodicity connection categories to mine full,
inner, and tail periodic patterns with perfect, imperfect, and asynchronous period-
icity simultaneously. While examining the periodicity connection category between
two successive time points of the occurrence vector, we may get different category
of periodicity connection at different positions in the occurrence vector. When the
category transforms from one to another, a periodic pattern with a previous periodic-
ity category is discovered. Perfect periodicity may become imperfect periodicity and
imperfect periodicity may change to asynchronous periodicity. Table 3 shows all pos-
sible cases for periodicity changes while examining the successive occurrence time
points of a periodic pattern for periodicity. If the periodicity connection category does
not transform to another category, the periodic pattern remains the same as the current
periodicity. As mentioned above, the categorywill determine howmany possible peri-
odicities there are. If the category is perfect periodicity, there are possibly three kinds
of periodic pattern which may exist, say perfect, imperfect and asynchronous. On the
other hand, if the category is imperfect periodicity or asynchronous periodicity, there
are only two possible kinds of periodic pattern based on periodicity because imperfect
periodicity or asynchronous periodicity does not transform to perfect periodicity.

Given a period and the occurrence vector of a pattern, we detect the periodic pat-
tern that starts from the first time point of the occurrence vector of the pattern and
calculate Remainder and Difference to know the first periodicity connection category
as in Table 2. This can help us to find the different periodic patterns when the cat-
egory transforms to other periodicity connection category. We continue to calculate

123

Mining full, inner and tail periodic patterns… 1243

Table 3 Periodicity transform table

Cases Transformation of periodicity category

Case 1 Perfect → Imperfect (Category 1 → Category 2)

Case 2 Perfect → Asynchronous (Category 1 → Category 3)

Case 3 Imperfect → Asynchronous (Category 2 → Category 3)

Case 4 Asynchronous contains Imperfect (Category 3 contains Category 2)

periodicity connection category to mine periodic patterns until all time points of the
occurrence vector are inspected. The start time point of different kinds of periodic
patterns will be discovered simultaneously.

For example, given a minimum support 3, the pattern ab and its occurrence vector
is {1, 3, 5, 9, 14}, we want to find periodic patterns of period 2. The category is 1 from
time point 1 to 3. The category of the time point from 3 to 5 is the same as the current
category that lets the periodicity of the periodic pattern continue. At the time point
from5 to 9, the category changes to 2. Therefore, the first periodic pattern is discovered
at {1, 3, 5} and the repeat times is 3. It is a periodic pattern with perfect periodicity
because the current category from time point 1 to 5 is 1, i.e., perfect periodicity. From
time point 9, the current periodicity category is changed to 2, i.e., imperfect periodicity.
Continuing from time point 9, we find that the category becomes 3 at time point 14, i.e.,
asynchronous periodicity. The second periodic pattern is discovered at {1, 3, 5, 9} and
the repeat times is 4 with imperfect periodicity. Since the current periodicity category
is changed to 3 at time point 14 and all time points are visited, the last periodic pattern
is discovered with asynchronous periodicity at {1, 3, 5, 9, 14}.

To detect all possible periodic patterns, any time point of the occurrence vector
is possibly a start time point of the periodic pattern. Therefore, we need to consider
every time point of the occurrence vector as a start time point. We use the periodicity
connection category to mine periodic patterns, which allows us to try the time point
which is not connected by perfect periodicity simultaneously. There are four important
strategies that can help us to select a start time point to mine periodic patterns based
on periodicity.

Strategy 1When we find a time position range which has a perfect periodicity, we
skip to testwith another start timepointwithin this rangebecause the perfect periodicity
is the strongest connection for this range. Therefore, it includes the periodic patterns
that start from other time points. From the previous example, the periodic patterns
starting from time point 1 includes the periodic patterns that start from time point 3.

Strategy 2 If two successive neighbor time points are overlapping or there is a gap,
the later time point is the next start time point used to detect periodic patterns. For
example, pattern aba has occurrence vector {1, 3, 6, 9, 14, 17, 20}. For the period 3,
the first start time point is 1 and the next start time point is 3 because of the overlapping
patterns of time point 1 and time point 3. After time point 3, the next start time point
is 14 because there is a gap 2 between time points 9 and 14. The overlapping does not
allow the periodic pattern to include the later time point for the current periodicity.
Therefore, to avoid losing any periodic pattern that starts from this time point, we need

123

1244 J.-W. Huang et al.

to check for all possible periodic patterns. For example, pattern bab has occurrence
vector {1, 3, 7, 10}.When the period is 3, time point 1 and 3 are overlapping. If the start
time is 1, there is an imperfect periodicity at {1, 7, 10}. If the start time is 3, there is an
asynchronous periodicity at {3, 7, 10}. Similarly, gap will generate different patterns
starting at different time points. For example, pattern ab with the occurrence vector
{1, 5, 7, 9} and the period is 2. When the start time point is 1, there is an imperfect
periodicity at {1, 5, 7, 9}. Meanwhile, there is also a perfect periodicity at {5, 7, 9} that
starts from time point 5.

Strategy 3 To avoid wasting time to find a periodic pattern that starts from a time
point that cannot satisfy the minimum support, the difference between the size of the
occurrence vector and the index of the start time point in occurrence vector should
not be less than the minimum support, where index starts from 0. For example, the
occurrence vector of ab is {2, 4, 8, 10, 12} and minimum support is 3. From the time
point 10, the rest time points can be skipped since periodic patterns starting from those
time points cannot satisfy the minimum support.

Strategy 4 We allow any gap in the imperfect periodicity or asynchronous period-
icity. The imperfect periodicity in the periodic pattern that starts from the first time
point will include other imperfect periodicity which starts from another time position
for same period. The same scenario holds for asynchronous periodicity. Therefore,
we only need to find the longest periodic patterns with imperfect periodicity and/or
asynchronous periodicity that starts at the first time point of the occurrence vector.

4.4 Optimization strategies used while detecting periodic patterns

Strategy 1 Prune pattern while detecting periodic pattern:
If the size of the occurrence vector of the |P|-period pattern is less than theminimum

support, we do not need to detect any periodic pattern of period P from this candidate
pattern because none of them can be frequent.

Strategy 2 Prune periods while detecting periodic pattern:
Multiple periodic patternswith different periods can be discovered from a candidate

pattern. Therefore, we should inspect all possible periods for the pattern. If the number
of periods increase, the cost of time tomine periodic patterns increases too. Fortunately,
MIPPS can minimize this issue. After examining the initial template pattern for all
possible periods, the periods containing periodic patterns that satisfyminimumsupport
are stored. The generated patterns after the initial template pattern only need to be
examined for the periods which contain a frequent periodic pattern. Periods smaller
than the least-period-of-the-pattern can be skipped. MIPPS works on each sub suffix
tree. The occurrence vector of the initial template pattern contains all leaves of the
sub suffix tree. Top down traversal ensures the initial template pattern generated from
the suffix tree has downward closure property. The generated pattern after the initial
template pattern cannot have a size of occurrence vector larger than the size of the
occurrence vector of the initial template pattern. As mentioned above, the periods of
frequent periodic patterns of later generated patterns are one of the periods which
contain frequent periodic patterns from the initial template pattern. Moreover, the
maximal period from those periods is the max period of the sub tree. If the template

123

Mining full, inner and tail periodic patterns… 1245

pattern is extended to the |max |-period pattern, MIPPS stops, because we cannot have
any frequent periodic pattern larger than the |max |-period pattern.

Strategy 3 Overlapping pruning theorem:
The size of the occurrence vector of a pattern is the number of time points in the

occurrence vector. If the size of the occurrence vector of a pattern is not less than
the minimum support, the pattern may be a frequent periodic pattern. However, the
size of the occurrence vector does not provide information whether the two successive
neighboring time points overlap or not. For example, the occurrence vector of pattern
aba is {1, 4, 6, 10, 12} and the period is 3. The size of the occurrence vector of the
pattern is 5. When the minimum support is 4, there are two possible start time points,
1 and 4, where the periodic pattern may satisfy the minimum support. However, there
cannot be a frequent periodic pattern, because time points 4 and 10 overlap with 6
and 12 respectively, and only two time points can be chosen from these four time
points. This kind of overlapping case allows us to stop detecting periodic pattern after
time point 1. In order to detect the condition, we count the number of overlapping
time points in the occurrence vector while detecting periods. There may be different
overlaps according to different periods. Therefore, each detected period needs to be
checked. When overlapping happens, we calculate the difference between the size of
the occurrence vector and the index of the start time point in the occurrence vector
minus the current count of overlapping. This calculated result allows to follow the
following two corollaries.

– Overlapping corollary 1 If the result is less than the minimum support, the later
time points can be ignored to detect periodic pattern. This is because a periodic
pattern that starts from the later time points cannot satisfy the minimum support.

– Overlapping corollary 2When the result is less than theminimum repeat times (α),
the later periods can be ignored because patterns in those periods cannot satisfy
the minimum repeat times.

The minimum support changes for different periods. We cannot ignore the later
periods, when the result is less than the minimum support because there may be
smaller minimum support when the period increases. However, the minimum repeat
times (α) does not change. If the current period contains too many overlaps, the longer
periods contain more overlaps. When the result is less than the minimum repeat times
(α), we store the detected period as a limited period. Due to the downward closure
property, the occurrence vector of the extended generated pattern is smaller than the
occurrence vector of the template pattern. A limited period can restrict the extended
generated pattern to be a |limited period|-period pattern. If the occurrence vector of
the extended generated pattern is equal to the template pattern, overlaps still exist and
due to the overlaps, the size of the occurrence vector cannot bemore than theminimum
repeat times (α). When the occurrence vector of the extended generated pattern does
not have the overlap, the number of remaining occurrence time points still cannot be
more than the minimum repeat times (α). As a result, if the period of the generated
pattern is equal to the limited period of the template pattern, the generated pattern
will not be checked for periodic patterns. The generated pattern inherits the limited
period from the template pattern and it is useful to prune the later extended generated
patterns too.

123

1246 J.-W. Huang et al.

5 Experiments

In this section, we compare the performance of MIPPS with another existing suffix
tree based algorithm, STNR (Suffix-Tree-based Noise-Resilient algorithm), proposed
in (Rasheed et al. 2011). We use synthetic data and real data in our experiments. We
investigate the performance with different conditions such as the number of distinct
items, the size of periods for periodic patterns and the different length of time series.
Moreover, we also analyze memory usage for building suffix tree and discovering
periodic patterns from suffix tree. We implemented the algorithms using Java pro-
gramming language. The experiments are conducted on a computer with windows
10 64-bit operating system, an i7-3770 CPU of clock rate 3.40GHz, 32 GB of main
memory, and OpenJDK 12. Execution time and memory usage are recorded using the
Java API.

5.1 Synthetic data generation

For the purpose of performance evaluation, we generated synthetic time series data set
consisting of |N | distinct items, |D| time points, |K | patterns, |L| size of period and |G|
max gap. In order to inspect the accuracy of the proposed algorithms, the synthetic data
have three kinds of pattern (full, inner and tail pattern) and three kinds of periodicity
(perfect, imperfect and asynchronous). A synthetic data set was generated as follows:
First, we decide the period of a periodic pattern by normal distribution with the mean
as |L| and the standard deviation as 1. Then we use uniform distribution to generate
one of three kinds of patterns. Then the above steps are repeated until |K | periodic
patterns are produced. Second, we decide the periodicity of the periodic pattern using
uniform distribution for the three kinds of periodicities. The patterns of asynchronous
periodicity are randomly inserted in the data. The interval between two successive
neighbor patterns of perfect or imperfect periodic pattern have some limits. Therefore,
these periodic patterns are inserted as a time segment. The interval of two successive
neighbor patterns confirm the limit of periodicity in the time segment. The number of
occurrences of the periodic pattern is calculated by � |D|/|K |

period of periodic pattern 	. Finally,
theminimum repeat times (α) for this synthetic dataset can be set as the lowest number
of occurrences of periodic pattern. The minimum support for this synthetic dataset can
be set as the value, number of occurrence of periodic pattern

(|D|/period of periodic pattern)
.

5.2 Experiments on synthetic data

Before presenting the experimental results, we first describe how to implement STNR
(Rasheed et al. 2011) to mine full, tail, and inner periodic patterns. Originally, STNR
can find the full and tail periodic patterns. For the inner periodic pattern, STNR needs
an additional technique to combine full and tail patterns with the same period and
periodicity. The combining method is a depth first search which avoids generating
too many redundant periodic patterns. The interval of two successive neighbors vary
for different occurrences when the periodic pattern has imperfect or asynchronous
periodicity which makes the occurrence vector of combined periodic inner pattern

123

Mining full, inner and tail periodic patterns… 1247

2

8

32

128

512

2048

10 15 20 25 30 35

Ex
ec

u�
on

 T
im

e
(S

)

Alphabet Size

MIPPS

STNR+Join

(a) Execution Time

0

20

32

128

512

2048

10 15 20 25 30 35

M
em

or
y

U
sa

ge
 (M

B)

Alphabet Size

MIPPS Total Memory
STNR+Join Total Memory
MIPPS Suffix Tree
STNR Suffix Tree

(b) Memory Usage

Fig. 7 Execution time and memory usage on different number of distinct items

incorrect. Therefore, it needs to be checked again by scanning the database once. We
call this implementation as ‘STNR+Join’ for reporting the experimental results and
discussion.

Both MIPPS and STNR+Join algorithms find periodic patterns of all the possible
periods according to minimum confidence and minimum repeat parameters. Period
size parameter values specified in the experiments are only used for generating the
synthetic datasets.

5.2.1 Varying number of distinct items

Thefirst experiment investigates the performance on different number of distinct items,
i.e., alphabet size. The parameters of synthetic data are set as time points = 10K, pattern
= 5, size of period = 10 and max gap = 5.

The execution time and memory usage of this experiment are shown in Fig. 7a and
b respectively. In Fig. 7b, the total memory usage values of both algorithms are shown
on primary Y-axis, i.e., on the left side whereas memory usage of suffix tree of both
algorithms are shown on secondary Y-axis, i.e., on the right side. The Y-axis of Fig.
7a and Primary Y-axis of Fig. 7b are in the log scale of base 2.

When the number of distinct items, i.e., alphabet size decreases in the dataset, the
probability of repeat of items or patterns increases. Hence, the number of candidate
patterns increase with the decrease of alphabet size. Therefore, execution time of
both algorithms increases with the decrease of number of distinct items, i.e., alphabet
size. The experimental results illustrates that MIPPS is efficient in comparison to
STNR+Join in terms of execution time as well as memory usage. Since MIPPS stores
occurrences with suffix tree, memory usage for suffix tree of STNR is less than that
of MIPPS. However, In terms of total memory usage, MIPPS uses less memory than
STNR+Join. MIPPS generates the promising candidates and finds full, tail, and inner
patterns simultaneously while traversing the suffix tree. In addition, pruning strategies
helps to prune the search space by pruning useless candidates and periods. However,
STNR+Join can only find full and tail periodic patterns while traversing the suffix
tree. In order to mine inner periodic patterns, STNR+Join depends on an additional
technique to join periodic patterns of the same period and periodicity which is time
consuming. Due to these reasons, MIPPS is efficient against STNR+Join in terms of
execution time.

123

1248 J.-W. Huang et al.

The memory usage of a suffix tree based algorithm can be divided into building
suffix tree, storing all occurrence time points and storing candidates. Our building
strategy does not need the suffix link. Therefore, MIPPS conserves a little memory. In
order to get the occurrence vector of the edge conveniently and makeMIPPS efficient,
the occurrence vector is stored on the nodes for the edges above it, which makes
MIPPS use more memory than STNR. For the candidates, MIPPS generates patterns
by extending the last generated template patterns. Therefore, MIPPS only needs to
store the last generated template patterns and the current generated candidates in each
iteration. In order to mine full, tail, and inner periodic patterns, STNR+Join depends
on an additional technique to join periodic patterns of the same period and periodicity.
Therefore, STNR+Join needs to store all the generated candidates for periodic inner
patterns along with the mined full and tail periodic patterns. Due to these reasons,
STNR+Join requires more memory than MIPPS in terms of total memory usage.

5.2.2 Varying periods

The second experiment is executed to show the performance on various period sizes.
The parameters of the synthetic data are set as distinct items = 15, time points = 10K,
pattern = 5, and max gap is the period size divided by 2. The synthetic datasets are
generated using the period sizes 5, 10 and 15.

The execution time andmemory usage on synthetic datasets generated using various
period sizes are shown in Fig. 8a and b respectively. In Fig. 8b, the total memory usage
values of both algorithms are shown on primary Y-axis, i.e., on the left side, whereas
memory usage of suffix tree of both algorithms are shown on secondary Y-axis, i.e.,
on the right side. The Y-axis of Fig. 8a and Primary Y-axis of Fig. 8b are in the log
scale of base 2.

The complexity of inner patterns usually increases when the size of period is
large. MIPPS can handle complex patterns and still have better performance than
STNR+Join. In STNR+Join, a large period of the pattern can include more wildcards
and causes the combining method to spend more time for checking the combination
of inner patterns. However, MIPPS prunes the useless candidates and periods while
traversing the suffix tree for finding full, tail and inner periodic patterns. Therefore,
MIPPS achieve better performance in comparison to STNR+Join in terms of execution
time. In addition, MIPPS uses less memory than STNR+Join and performs better in
terms of total memory usage aswell. Thememory usage of STNR+Join is significantly
more when the period is large. The reason behind this is that small periodic patterns
have very less inner patterns and the memory usage of candidates is low. When the
period is larger, STNR+Join uses more memory since it generates many candidates
for complex inner patterns and stores these candidates along with all the found full
and tail periodic patterns.

5.2.3 Different size of datasets

The third experiment is executed to illustrate the performance on different lengths of
time series. The parameters of the synthetic data are set as distinct items = 15, period

123

Mining full, inner and tail periodic patterns… 1249

2

8

32

128

512

2048

8192

5 10 15

Ex
ec

u�
on

 T
im

e
(S

)

Period

MIPPS

STNR+Join

0

20

32

128

512

2048

5 10 15

M
em

or
y

U
sa

ge
 (M

B)

Period

MIPPS Total Memory
STNR+Join Total Memory
MIPPS Suffix Tree
STNR Suffix Tree

(a) Execution Time (b) Memory Usage

Fig. 8 Execution time and memory usage on different period size

0.125

2

32

512

8192

131072

0 20 40 60 80 100

Ex
ec

u�
on

 T
im

e
(S

)

Sequence Size (in thousand)

MIPPS

STNR+Join

0

200

40032

128

512

2048

0 20 40 60 80 100

M
em

or
y

U
sa

ge
 (M

B)

Sequence Size (in thousand)

MIPPS Total Memory
STNR+Join Total Memory
MIPPS Suffix Tree
STNR Suffix Tree

(a) Execution Time (b) Memory Usage

Fig. 9 Execution Time and Memory Usage on Different Length of Time Series

= 10, and pattern = 5. The datasets used for this experiments are of sequence sizes 1,
10, 20, 40, 60, 80, and 100K.

The execution time and memory usage of this experiments are shown in Fig. 9a
and b respectively. In Fig. 9b, the total memory usage values of both algorithms are
shown on primary Y-axis, i.e., on the left side, whereas memory usage of suffix tree
of both algorithms are shown on secondary Y-axis, i.e., on the right side. The Y-axis
of Figs. 9a and Primary Y-axis of Fig. 9b are in the log scale of base 2.

The execution time and total memory uses of both algorithm increases with the
increase of sequence size. Nevertheless, MIPPS always has good performance in
comparison to STNR+Join in terms of execution time. In addition, MIPPS uses less
memory than STNR+Join in terms of total memory usage. When the length of time
series is very large, the size of the occurrence vectors increases. Therefore, suffix tree
of MIPPS uses more memory in comparison to STNR.

5.2.4 Different no. of patterns

The fourth experiment is executed to illustrate the performance on the datasets gener-
ated using varying number of patterns. The parameters of the synthetic data are set as
distinct items = 15, period = 10, and sequence size 10K.

The execution time and memory usage of this experiments are shown in Fig. 10a
and b respectively. In Fig. 10b, the total memory usage values of both algorithms are
shown on primary Y-axis, i.e., on the left side, whereas memory usage of suffix tree
of both algorithms are shown on secondary Y-axis, i.e., on the right side. The Y-axis
of Fig. 10a and Primary Y-axis of Fig. 10b are in the log scale of base 2.

123

1250 J.-W. Huang et al.

1

4

16

64

256

1024

4096

3 4 5 6 7 8

Ex
ec

u�
on

 T
im

e
(S

)

N_Pa�erns

MIPPS

STNR+Join

0

20

32

128

512

2048

3 4 5 6 7 8

M
em

or
y

U
sa

ge
 (M

B)

N_Pa�erns

MIPPS Total Memory
STNR+Join Total Memory
MIPPS Suffix Tree
STNR Suffix Tree

(a) Execution Time (b) Memory Usage

Fig. 10 Execution Time and Memory Usage on Different No. of Patterns

Table 4 Description of real
biological data

ID (Name) Sequence length

A2ASS6 (TITIN_MOUSE) 35,213

Q8WZ42 (TITIN_HUMAN) 34,350

P17437 (Skin secretory protein xP2) 439

P09593 (S-antigen protein) 375

The execution time of both algorithms increases with the increase of number of
patterns used for generating dataset. However, the execution time of MIPPS increases
slightly. When there are more frequent periodic patterns in dataset, the number of
candidate inner patterns increases too. Thus, STNR+Join requires more time during
join operation. Therefore, we can see the difference between MIPPS and STNR+Join
in execution time when there is increase in number of patterns. In addition, MIPPS
requires less memory in comparison to STNR+Join in terms of total memory usage.

5.3 Experiments on real data

To compare the performance evaluation on real data, we perform experiments on the
two real biological sequence data A2ASS6 and Q8WZ42, which are downloaded from
UniProt website (https://www.uniprot.org/uniprot/). The description of these dataset
are shown in Table 4.

5.3.1 Effect of varying minimum confidence

This experiment is executed to demonstrate the performance of both algorithms on real
biological sequence dataset A2ASS6 and Q8WZ42 for various minimum confidence
values. The minimum repeat value is set at 400 for this experiment.

The experimental results of this experiment on dataset A2ASS6 and Q8WZ42 are
shown in Figs. 11 and 12 respectively. In Figs. 11b and 12b, the total memory usage
values of both algorithms are shown on primary Y-axis, i.e., on the left side, whereas
memory usage of suffix tree of both algorithms are shown on secondary Y-axis, i.e., on
the right side. The Y-axis of Figs. 11a and 12a are in the log scale of base 2. Similarly,
Primary Y-axis of Figs. 11b and 12b are in the log scale of base 2.

123

https://www.uniprot.org/uniprot/

Mining full, inner and tail periodic patterns… 1251

1

4

16

64

256

1024

4096

0.4 0.5 0.6 0.7 0.8

Ex
ec

u�
on

 T
im

e
(S

)

Minimum Confidence

MIPPS

STNR+Join

(a) Execution Time

0

40

80

64

256

1024

4096

0.4 0.5 0.6 0.7 0.8

M
em

or
y

U
sa

ge
 (M

B)

Minimum Confidence

MIPPS Total Memory
STNR+Join Total Memory
MIPPS Suffix Tree
STNR Suffix Tree

(b) Memory Usage

Fig. 11 Effect of varying minimum confidence on A2ASS6 dataset

1

4

16

64

256

1024

4096

0.4 0.5 0.6 0.7 0.8

Ex
ec

u�
on

 T
im

e
(S

)

Minimum Confidence

MIPPS

STNR+Join

0

40

80

64

256

1024

4096

0.4 0.5 0.6 0.7 0.8

M
em

or
y

U
sa

ge
 (M

B)

Minimum Confidence

MIPPS Total Memory
STNR+Join Total Memory
MIPPS Suffix Tree
STNR Suffix Tree

(a) Execution Time (b) Memory Usage

Fig. 12 Effect of varying minimum confidence on Q8WZ42 dataset

The experimental results shown in Figs. 11 and 12 illustrate that MIPPS is efficient
in comparison to STNR+Join in terms of both execution time and total memory usage.
Because MIPPS prunes the candidates and periods at each level while traversing the
suffix tree, MIPPS can prune more when minimum confidence increases. However,
STNR+Join needs post-processing, i.e., join operation.

5.3.2 Effect of varying minimum repeat

This experiment is executed to demonstrate the performance of both algorithms on
real biological sequence dataset A2ASS6 and Q8WZ42 for various minimum repeat
values. Minimum confidence for this experiment is set at 0.6.

The experimental results of this experiment on dataset A2ASS6 and Q8WZ42 are
shown in Figs. 13 and 14 respectively. In Figs. 13b and 14b, the total memory usage
values of both algorithms are shown on primary Y-axis, i.e., on the left side, whereas
memory usage of suffix tree of both algorithms are shown on secondary Y-axis, i.e., on
the right side. The Y-axis of Figs. 13a and 14a are in the log scale of base 2. Similarly,
Primary Y-axis of Figs. 13b and 14b are in the log scale of base 2.

The experimental results shown in Figs. 11 and 12 illustrate that with decrease of
minimum repeat execution time of both algorithms increase. However, MIPPS sig-
nificantly outperforms STNR+Join in terms of both execution time and total memory
usage.

The experiments onboth synthetic datasets and real datasets illustrate the superiority
of MIPPS over STNR+Join in terms of execution time as well as total memory usage.

123

1252 J.-W. Huang et al.

16

64

256

1024

4096

16384

200 300 400 500 600

Ex
ec

u�
on

 T
im

e
(S

)

Minimum Repeat

MIPPS

STNR+Join

0

40

80

64

256

1024

4096

200 300 400 500 600

M
em

or
y

U
sa

ge
 (M

B)

Minimum Repeat

MIPPS Total Memory
STNR+Join Total Memory
MIPPS Suffix Tree
STNR Suffix Tree

(a) Execution Time (b) Memory Usage

Fig. 13 Effect of varying minimum confidence on A2ASS6 dataset

16

64

256

1024

4096

16384

200 300 400 500 600

Ex
ec

u�
on

 T
im

e
(S

)

Minimum Repeat

MIPPS

STNR+Join

0

40

80

64

256

1024

4096

200 300 400 500 600

M
em

or
y

U
sa

ge
 (M

B)

Minimum Repeat

MIPPS Total Memory
STNR+Join Total Memory
MIPPS Suffix Tree
STNR Suffix Tree

(a) Execution Time (b) Memory Usage

Fig. 14 Effect of varying minimum repeat on Q8WZ42 dataset

5.4 Use case on real biological data

We apply MIPPS on biological data. This is a practical application of periodic pattern
mining to find recurrent patterns in DNA or protein sequences. DNA sequences are
constructed using four bases represented by letters A, T , C , and G. Protein sequences
are based on 20 amino acids. These sequences have their own specific properties.
For example, periodic patterns are only found in a subsection of the sequence and do
not span the entire sequence length. In addition, pattern occurrence may be shifted
from the expected position. The biological data are from the PROSITE database of
the ExPASy Molecular Biology Server (http://www.expasy.org/). According to Katti
(Katti et al. 2000), the protein sequence P17437 (Skin secretory protein xP2) has a
known periodic pattern {APAPA ∗ ∗E ∗ ∗} whose number of repeats is 25. When
MIPPS is applied, the periodic pattern {APAPA∗∗E ∗∗} and the repeat number of 25
is found, which confirms that MIPPS can be applied towards real life data. In addition,
MIPPS also finds that the {APAPA ∗ ∗E ∗ ∗} pattern has 19 repeats with perfect
periodicity starting at position 118. Moreover, other interesting periodic patterns with
more than 25 repeats are found. The periodic pattern {APA ∗ ∗ ∗ AP} has 30 repeats
and the periodic pattern {EG ∗ AP ∗ PA} has 28 repeats. SMCA (Huang and Chang
2005) confirms the periodic pattern {APAPA ∗ ∗E ∗ ∗} and further reports finding
an interesting longer pattern {APAPAEGE AP} with 11 repeats. MIPPS finds this
pattern {APAPAEGE AP} with more repeats, say 17 repeats. Some of the results of
this experiment are shown in Table 5.

123

http://www.expasy.org/

Mining full, inner and tail periodic patterns… 1253

Ta
bl
e
5

E
xp

er
im

en
ta
lr
es
ul
ts
on

bi
ol
og

ic
al
da
ta
-
P1

74
37

Pe
ri
od

Pa
tte
rn

R
ep
ea
ts

O
cc
ur
re
nc
e
po
si
tio

ns

10
A
P
A
P
A

∗∗
E

∗∗
25

[4
4,

62
,8
0,
90

,1
00

,1
18

,1
28

,1
38

,1
48

,1
58

,1
68

,1
78

,1
88

,1
98

,
20

8,
21

8,
22

8,
23

8,
24

8,
25

8,
26

8,
27

8,
28

8,
29

8,
33

6]

10
A
P
A
P
A

∗∗
E

∗∗
19

(P
er
fe
ct
)

St
ar
tin

g
at
po
si
tio

n
11
8

8
A
P
A

∗∗
∗A

P
30

[3
0,

38
,4
8,
56

,7
4,
84

,9
4,

10
4,
11

2,
12

2,
13

2,
14

2,
15

0,
16

0,
17

0,
18

0,
19

0,
20

0,
21

2,
22

2,
23

2,
24

2,
25

2,
26

2,
27

2,
28

2,
29

0,
30

0,
31

0,
32

8]

8
A
P
A
E
G

∗∗
P

29
[3
0,

38
,4
8,
56

,6
6,
84

,9
4,

10
4,
11

2,
12

2,
13

2,
14

2,
15

0,
17

0,
18

0,
19

0,
20

0,
21

2,
22

2,
23

2,
24

2,
25

2,
26

2,
27

2,
28

2,
29

0,
30

0,
31

0,
32

8]

8
A
P
A
E
G

∗A
P

28
[3
0,
38

,4
8,
56

,8
4,
94

,1
04

,1
12

,1
22

,1
32

,1
42

,1
50

,1
70

,1
80

,1
90

,
20

0,
21

2,
22

2,
23

2,
24

2,
25

2,
26

2,
27

2,
28

2,
29

0,
30

0,
31

0,
32

8]

8
E
G

∗A
P

∗P
A

28
[3
3,
41

,5
1,
59

,8
7,
97

,1
07

,1
15

,1
25

,1
35

,1
45

,1
53

,1
73

,1
83

,1
93

,
20

3,
21

5,
22

5,
23

5,
24

5,
25

5,
26

5,
27

5,
28

5,
29

3,
30

3,
31

3,
33

1]

10
A
P
A
P
A
E
G
E
A
P

17
[4
6,

12
0,
13

0,
14

0,
16

8,
17

8,
18

8,
19

8,
21

0,
22

0,
23

0,
24

0,
25

0,
26

0,
27

0,
28

0,
29

8]

123

1254 J.-W. Huang et al.

Ta
bl
e
6

E
xp

er
im

en
ta
lr
es
ul
ts
on

bi
ol
og

ic
al
da
ta
-
P0

95
93

Pe
ri
od

Pa
tte
rn

R
ep
ea
ts

O
cc
ur
re
nc
e
po
si
tio

ns

11
K
G
T
G
G
P
G
S

∗∗
∗

21
[1
13

,1
24

,1
35

,1
46

,1
57

,1
68

,1
79

,1
90

,2
01

,2
12

,2
23

,2
34

,2
45

,2
56

,2
67

,2
78

,2
89

,3
00

,3
16

,3
31

,3
46

]

11
K
G
T
G
G
P
G
S
E

∗∗
20

[1
13

,1
24

,1
35

,1
46

,1
57

,1
68

,1
79

,1
90

,2
01

,2
12

,2
23

,2
34

,2
45

,2
56

,2
67

,2
78

,2
89

,3
00

,3
16

,3
31

]

11
E

∗P
K
G
T
G

∗∗
G

∗
21

[1
10

,1
21

,1
32

,1
43

,1
54

,1
65

,1
76

,1
87

,1
98

,2
09

,2
20

,2
31

,2
42

,2
53

,2
64

,2
75

,2
86

,2
97

,3
08

,3
28

,3
43

]

11
E

∗P
K
G
T
G
G
P
G
S

20
[1
10

,1
21

,1
32

,1
43

,1
54

,1
65

,1
76

,1
87

,1
98

,2
09

,2
20

,2
31

,2
42

,2
53

,2
64

,2
75

,2
86

,2
97

,3
28

,3
43

]

11
E
G
P
K
G
T
G
G
P
G
S

19
[1
10

,1
21

,1
32

,1
43

,1
54

,1
65

,1
76

,1
87

,1
98

,2
09

,2
20

,2
31

,2
42

,2
53

,2
64

,2
75

,2
97

,3
28

,3
43

]

11
P
K
G
T
G
G
P
G
S

∗∗
21

[1
12

,1
23

,1
34

,1
45

,1
56

,1
67

,1
78

,1
89

,2
00

,2
11

,2
22

,2
33

,2
44

,2
55

,2
66

,2
77

,2
88

,2
99

,3
15

,3
30

,3
45

]

11
P
K
G
T
G
G
P
G
S
E

∗
20

[1
12

,1
23

,1
34

,1
45

,1
56

,1
67

,1
78

,1
89

,2
00

,2
11

,2
22

,2
33

,2
44

,2
55

,2
66

,2
77

,2
88

,2
99

,3
15

,3
30

]

11
G
P
K
G
T
G
G
P
G
S∗

20
[1
11

,1
22

,1
33

,1
44

,1
55

,1
66

,1
77

,1
88

,1
99

,2
10

,2
21

,2
32

,2
43

,2
54

,2
65

,2
76

,2
98

,3
14

,3
29

,3
44

]

11
G
P
K
G
T
G
G
P
G
S
E

19
[1
11

,1
22

,1
33

,1
44

,1
55

,1
66

,1
77

,1
88

,1
99

,2
10

,2
21

,2
32

,2
43

,2
54

,2
65

,2
76

,2
98

,3
14

,3
29

]

11
G
G
P
G
S
E

∗P
K
G
T

19
(P
er
fe
ct
)

St
ar
tin

g
at
po
si
tio

n
10
5

11
G
P
G
S
E

∗P
K
G
T
G

19
(P
er
fe
ct
)

St
ar
tin

g
at
po
si
tio

n
10
6

11
G
G
P
G
S
E
G
P
K
G
T

18
[1
05

,1
16

,1
27

,1
38

,1
49

,1
60

,1
71

,1
82

,1
93

,2
04

,2
15

,2
26

,2
37

,2
48

,2
59

,2
70

,2
92

,3
03

]

11
G
P
G
S
E
G
P
K
G
T
G

18
[1
06

,1
17

,1
28

,1
39

,1
50

,1
61

,1
72

,1
83

,1
94

,2
05

,2
16

,2
27

,2
38

,2
49

,2
60

,2
71

,2
93

,3
04

]

11
G
G
P
G
S
E
G
P
K
G
T

16
(P
er
fe
ct
)

St
ar
tin

g
at
po
si
tio

n
10
5

11
G
P
G
S
E
G
P
K
G
T
G

16
(P
er
fe
ct
)

St
ar
tin

g
at
po
si
tio

n
10
6

11
P
G
S
E
G
P
K
G
T
G
G

16
(P
er
fe
ct
)

St
ar
tin

g
at
po
si
tio

n
10
7

11
G
S
E
G
P
K
G
T
G
G
P

16
(P
er
fe
ct
)

St
ar
tin

g
at
po
si
tio

n
10
8

11
S
E
G
P
K
G
T
G
G
P
G

16
(P
er
fe
ct
)

St
ar
tin

g
at
po
si
tio

n
10
9

11
E
G
P
K
G
T
G
G
P
G
S

16
(P
er
fe
ct
)

St
ar
tin

g
at
po
si
tio

n
11
0

11
G
P
K
G
T
G
G
P
G
S
E

16
(P
er
fe
ct
)

St
ar
tin

g
at
po
si
tio

n
11
1

123

Mining full, inner and tail periodic patterns… 1255

Wealso runMIPPS on the protein sequenceP09593 (S-antigen protein). (Katti et al.
2000) reported that {GGPGSEGPKGT } pattern with period 11 has 19 repeats.
As described in (Rasheed et al. 2011), a particular repeating pattern is only differ-
ent by one amino acid at position 6 which has S instead of G. Similar to (Rasheed
et al. 2011), MIPPS also finds this pattern with 18 repeats. (Rasheed et al. 2011)
also reported that they found an interesting pattern {GPGSEGPKGTG}, which is a
shifted version of the {GGPGSEGPKGT } patternwith 18 repeats.MIPPS also finds
this shifted version of the pattern. In addition, MIPPS also finds another interesting
pattern {GPKGTGGPGSE} with 19 repeats starting at position 111. The P09593
protein sequence has the pattern {GGPGSEGPKGT } with perfect periodicity and
16 repeats starting at position 105. MIPPS finds this as well as another 6 of its shifted
versions with same periodicity and repeats, i.e., perfect periodicity and 16 repeats
starting from the 106 to 111 positions. In addition, MIPPS finds some interesting peri-
odic patterns with more than 19 repeats. Some of the results of period 11 from this
experiment are shown in Table 6.

According to the above results, MIPPS not only finds patterns reported by previous
literature, but also discovers some interesting novel periodic patterns in the real life
protein sequences.

6 Conclusions

In this study, we proposed a suffix-tree based algorithm, Mining dIfferent kinds of
Periodic Patterns Simultaneously (MIPPS), to find full, inner, and tail periodic pat-
terns with perfect, imperfect and asynchronous periodicities simultaneously. Using
top down traversal and the proposed incremental propagation generator, MIPPS can
generate occurrence vectors of all the full, inner, and tail periodic patterns simulta-
neously. MIPPS use three properties that can prune redundant generated patterns to
avoid producing useless patterns in the suffix tree. Then, MIPPS use a single method
for periodicity detection, that can detect periodic patterns with perfect, imperfect, and
asynchronous periodicities simultaneously. In addition, MIPPS uses some optimiza-
tion strategies to make the periodicity detection more efficient. The results of several
experiments show that MIPPS has good performance on the different conditions of
synthetic data. Moreover, the experimental results on biological data illustrates that
MIPPS algorithm can be applied to real life data and find more interesting novel pat-
terns. There may be scalability issue for very very long dataset that have too many
periods and periodicities. In this case, parallel and distributed algorithms may be suit-
able. We would like to work on these area in our future work.

References

Ahdesmäki M, Lähdesmäki H, Pearson R, Huttunen H, Yli-Harja O (2005) Robust detection of periodic
time series measured from biological systems. BMC Bioinform 6(1):1–18. https://doi.org/10.1186/
1471-2105-6-117

123

https://doi.org/10.1186/1471-2105-6-117
https://doi.org/10.1186/1471-2105-6-117

1256 J.-W. Huang et al.

Berberidis C, Aref WG, Atallah M, Vlahavas I, Elmagarmid AK (2002) Multiple and partial periodic-
ity mining in time series databases. In: Proceedings of the 15th European Conference on Artificial
Intelligence, ECAI’2002, Lyon, France, July 2002, pp 370–374

Burkom HS, Murphy SP, Shmueli G (2007) Automated time series forecasting for biosurveillance. Stat
Med 26(22):4202–4218. https://doi.org/10.1002/sim.2835

Cao H, Cheung DW, Mamoulis N (2004) Discovering partial periodic patterns in discrete data sequences.
In: Pacific-Asia conference on knowledge discovery and data mining, pp 653–658, https://doi.org/10.
1007/978-3-540-24775-3_77

Chanda AK, Ahmed CF, Samiullah M, Leung CK (2017) A new framework for mining weighted periodic
patterns in time series databases. Expert Syst Appl 79:207–224. https://doi.org/10.1016/j.eswa.2017.
02.028

Chen J, Li K, Rong H, Bilal K, Li K, Yu PS (2019) A periodicity-based parallel time series prediction
algorithm in cloud computing environments. Inform Sci 496:506–537. https://doi.org/10.1016/j.ins.
2018.06.045

Elfeky MG, Aref WG, Elmagarmid AK (2005a) Periodicity detection in time series databases. IEEE Trans
Knowl Data Eng 17(7):875–887. https://doi.org/10.1109/TKDE.2005.114

Elfeky MG, Aref WG, Elmagarmid AK (2005b) Warp: time warping for periodicity detection. In: Fifth
IEEE International Conference onDataMining (ICDM’05), pp 8 pp.–, https://doi.org/10.1109/ICDM.
2005.152

Esling P, Agon C (2012) Time-series data mining. ACMComput Surv 45(1):1–34. https://doi.org/10.1145/
2379776.2379788

Fu TC (2011) A review on time series data mining. Eng Appl Artificial Intell 24(1):164–181. https://doi.
org/10.1016/j.engappai.2010.09.007

Glynn EF, Chen J, Mushegian AR (2005) Detecting periodic patterns in unevenly spaced gene expression
time series using lomb-scargle periodograms. Bioinformatics 22(3):310–316. https://doi.org/10.1093/
bioinformatics/bti789

Han J, Dong G, Yin Y (1999) Efficient mining of partial periodic patterns in time series database. In:
Proceedings 15th International Conference on Data Engineering (Cat. No.99CB36337), pp 106–115,
https://doi.org/10.1109/ICDE.1999.754913

He Z, Wang XS, Lee BS, Ling ACH (2008) Mining partial periodic correlations in time series. Knowl
Inform Syst 15(1):31–54. https://doi.org/10.1007/s10115-006-0051-5

Huang KY, Chang CH (2005) Smca: a general model for mining asynchronous periodic patterns in temporal
databases. IEEE Trans Knowl Data Eng 17(6):774–785. https://doi.org/10.1109/TKDE.2005.98

Katti MV, Sami-Subbu R, Ranjekar PK, Gupta VS (2000) Amino acid repeat patterns in protein sequences:
their diversity and structural-functional implications. Protein Sci 9(6):1203–1209. https://doi.org/10.
1110/ps.9.6.1203

Kiran RU, Kitsuregawa M (2014) Novel techniques to reduce search space in periodic-frequent pattern
mining. In: International Conference on Database Systems for Advanced Applications, Springer Inter-
national Publishing, Cham, pp 377–391, https://doi.org/10.1007/978-3-319-05813-9_25

Kiran RU, Shang H, Toyoda M, Kitsuregawa M (2015) Discovering recurring patterns in time series. In:
Proceedings of the 18th International Conference on Extending Database Technology, EDBT 2015,
Brussels, Belgium, March 23–27, 2015, pp 97–108. https://doi.org/10.5441/002/edbt.2015.10

Kiran RU, Shang H, Toyoda M, Kitsuregawa M (2017) Discovering partial periodic itemsets in temporal
databases. In: Proceedings of the 29th International Conference on Scientific and Statistical Database
Management, Association for Computing Machinery, New York, NY, USA, SSDBM ’17, pp 1–6,
doi:https://doi.org/10.1145/3085504.3085535

Li Z, Wang J, Han J (2015) Eperiodicity: mining event periodicity from incomplete observations. IEEE
Trans Knowl Data Eng 27(5):1219–1232. https://doi.org/10.1109/TKDE.2014.2365801

Lin J, Keogh E, Wei L, Lonardi S (2007) Experiencing sax: a novel symbolic representation of time series.
Data Min Knowl Discovery 15(2):107–144. https://doi.org/10.1007/s10618-007-0064-z

Lin T-H, Kaminski N, Bar-Joseph Z (2008) Alignment and classification of time series gene expression in
clinical studies. Bioinformatics 24(13):147–155. https://doi.org/10.1093/bioinformatics/btn152

Nishi MA, Ahmed CF, Samiullah M, Jeong BS (2013) Effective periodic pattern mining in time series
databases. Expert Syst Appl 40(8):3015–3027. https://doi.org/10.1016/j.eswa.2012.12.017

Nofong VM, Wondoh J (2019) Towards fast and memory efficient discovery of periodic frequent patterns.
J Inform Telecommun 3(4):480–493. https://doi.org/10.1080/24751839.2019.1634868

123

https://doi.org/10.1002/sim.2835
https://doi.org/10.1007/978-3-540-24775-3_77
https://doi.org/10.1007/978-3-540-24775-3_77
https://doi.org/10.1016/j.eswa.2017.02.028
https://doi.org/10.1016/j.eswa.2017.02.028
https://doi.org/10.1016/j.ins.2018.06.045
https://doi.org/10.1016/j.ins.2018.06.045
https://doi.org/10.1109/TKDE.2005.114
https://doi.org/10.1109/ICDM.2005.152
https://doi.org/10.1109/ICDM.2005.152
https://doi.org/10.1145/2379776.2379788
https://doi.org/10.1145/2379776.2379788
https://doi.org/10.1016/j.engappai.2010.09.007
https://doi.org/10.1016/j.engappai.2010.09.007
https://doi.org/10.1093/bioinformatics/bti789
https://doi.org/10.1093/bioinformatics/bti789
https://doi.org/10.1109/ICDE.1999.754913
https://doi.org/10.1007/s10115-006-0051-5
https://doi.org/10.1109/TKDE.2005.98
https://doi.org/10.1110/ps.9.6.1203
https://doi.org/10.1110/ps.9.6.1203
https://doi.org/10.1007/978-3-319-05813-9_25
https://doi.org/10.5441/002/edbt.2015.10
https://doi.org/10.1145/3085504.3085535
https://doi.org/10.1109/TKDE.2014.2365801
https://doi.org/10.1007/s10618-007-0064-z
https://doi.org/10.1093/bioinformatics/btn152
https://doi.org/10.1016/j.eswa.2012.12.017
https://doi.org/10.1080/24751839.2019.1634868

Mining full, inner and tail periodic patterns… 1257

Ouyang R, Ren L, Cheng W, Zhou C (2010) Similarity search and pattern discovery in hydrological time
series data mining. Hydrol Process 24(9):1198–1210. https://doi.org/10.1002/hyp.7583

Ozden B, Ramaswamy S, Silberschatz A (1998) Cyclic association rules. In: Proceedings 14th International
Conference on Data Engineering, pp 412–421, doi:10.1109/ICDE.1998.655804

Pierson E, Althoff T, Leskovec J (2018) Modeling individual cyclic variation in human behavior.
In: Proceedings of the 2018 World Wide Web Conference, International World Wide Web Con-
ferences Steering Committee, Republic and Canton of Geneva, CHE, WWW ’18, pp 107–116,
doi:10.1145/3178876.3186052

Pujeri RV, Karthik GM (2012) Constraint based periodicity mining in time series databases. Int J Comput
Netw Inform Secur 4(10):37–46. https://doi.org/10.5815/ijcnis.2012.10.04

Rasheed F, Alhajj R (2008) Using suffix trees for periodicity detection in time series databases. In: 2008 4th
International IEEE Conference Intelligent Systems, pp 11–8–11–13, doi:10.1109/IS.2008.4670501

Rasheed F, Alhajj R (2010) Stnr: a suffix tree based noise resilient algorithm for periodicity detection in
time series databases. Appl Intell 32(3):267–278. https://doi.org/10.1007/s10489-008-0144-9

Rasheed F, Alshalalfa M, Alhajj R (2011) Efficient periodicity mining in time series databases using suffix
trees. IEEE Trans Knowl Data Eng 23(1):79–94. https://doi.org/10.1109/TKDE.2010.76

Sheng C, Hsu W, Lee ML (2006) Mining dense periodic patterns in time series data. In: 22nd International
Conference on Data Engineering (ICDE’06), pp 115–115, doi:10.1109/ICDE.2006.97

Sirisha G, Shashi M, Raju GP (2014) Periodic pattern mining–algorithms and applications. Global J Comp
Sci Technol 13(13-C). https://computerresearch.org/index.php/computer/article/view/268

Smyth B, Smyth W (2003) Computing patterns in strings. Pearson Education, London
Song H, Li G (2008) Tourism demand modelling and forecasting-a review of recent research. Tour Manag

29(2):203–220. https://doi.org/10.1016/j.tourman.2007.07.016
Tanbeer SK, Ahmed CF, Jeong BS, Lee YK (2009) Discovering periodic-frequent patterns in transactional

databases. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining, Springer Berlin
Heidelberg, pp 242–253, doi:10.1007/978-3-642-01307-2_24

Ukkonen E (1995) On-line construction of suffix trees. Algorithmica 14(3):249–260. https://doi.org/10.
1007/BF01206331

Weigend AS, Gershenfeld NA (1994) Time series prediction: forecasting the future and understanding the
past. Addison-Wesley. https://dblp.org/rec/books/aw/WeigendG94.bib

Xylogiannopoulos KF, Karampelas P, Alhajj R (2012) Periodicity data mining in time series using
suffix arrays. In: 2012 6th IEEE International Conference Intelligent Systems, pp 172–181,
doi:10.1109/IS.2012.6335132

Yang J, Wang W, Yu PS (2003) Mining asynchronous periodic patterns in time series data. IEEE Trans
Knowl Data Eng 15(3):613–628. https://doi.org/10.1109/TKDE.2003.1198394

Yuan H, Qian Y, Bai M (2019) Efficient mining of event periodicity in data series. In: International
Conference onDatabase Systems for AdvancedApplications, Springer, pp 124–139, doi:10.1007/978-
3-030-18576-3_8

Yuan Q, Zhang W, Zhang C, Geng X, Cong G, Han J (2017) Pred: Periodic region detection for mobility
modeling of social media users. In: Proceedings of the Tenth ACM International Conference on Web
Search and Data Mining, Association for Computing Machinery, New York, NY, USA, WSDM ’17,
pp 263–272, doi:10.1145/3018661.3018680

Zhong S, Khoshgoftaar TM, Seliya N (2007) Clustering-based network intrusion detection. Int J Reliab
Qual Safe Eng 14(02):169–187. https://doi.org/10.1142/S0218539307002568

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1002/hyp.7583
https://doi.org/10.5815/ijcnis.2012.10.04
https://doi.org/10.1007/s10489-008-0144-9
https://doi.org/10.1109/TKDE.2010.76
https://computerresearch.org/index.php/computer/article/view/268
https://doi.org/10.1016/j.tourman.2007.07.016
https://doi.org/10.1007/BF01206331
https://doi.org/10.1007/BF01206331
https://dblp.org/rec/books/aw/WeigendG94.bib
https://doi.org/10.1109/TKDE.2003.1198394
https://doi.org/10.1142/S0218539307002568

	Mining full, inner and tail periodic patterns with perfect, imperfect and asynchronous periodicity simultaneously
	Abstract
	1 Introduction
	2 Related works
	3 Preliminaries
	4 Algorithm MIPPS
	4.1 Suffix tree-based data structure
	4.2 Incremental propagation generator
	4.2.1 Generate candidate patterns and their occurrence vectors
	4.2.2 Pruning strategies used while generating candidate patterns on the edge

	4.3 Mining different kinds of periodic patterns simultaneously
	4.3.1 Pruning candidate patterns
	4.3.2 Discovering all possible periods
	4.3.3 Discovering periodicity connection

	4.4 Optimization strategies used while detecting periodic patterns

	5 Experiments
	5.1 Synthetic data generation
	5.2 Experiments on synthetic data
	5.2.1 Varying number of distinct items
	5.2.2 Varying periods
	5.2.3 Different size of datasets
	5.2.4 Different no. of patterns

	5.3 Experiments on real data
	5.3.1 Effect of varying minimum confidence
	5.3.2 Effect of varying minimum repeat

	5.4 Use case on real biological data

	6 Conclusions
	References

