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Abstract

Many real-world datasets are labeled with natural orders, i.e., ordinal labels. Ordinal
regression is a method to predict ordinal labels that finds a wide range of applications
in data-rich domains, such as natural, health and social sciences. Most existing ordinal
regression approaches work well for independent and identically distributed (IID)
instances via formulating a single ordinal regression task. However, for heterogeneous
non-IID instances with well-defined local geometric structures, e.g., subpopulation
groups, multi-task learning (MTL) provides a promising framework to encode task
(subgroup) relatedness, bridge data from all tasks, and simultaneously learn multiple
related tasks in efforts to improve generalization performance. Even though MTL
methods have been extensively studied, there is barely existing work investigating
MTL for heterogeneous data with ordinal labels. We tackle this important problem
via sparse and deep multi-task approaches. Specifically, we develop a regularized
multi-task ordinal regression (MTOR) model for smaller datasets and a deep neural
networks based MTOR model for large-scale datasets. We evaluate the performance
using three real-world healthcare datasets with applications to multi-stage disease
progression diagnosis. Our experiments indicate that the proposed MTOR models
markedly improve the prediction performance comparing with single-task ordinal
regression models.
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1 Introduction

Ordinal regression is capable of exploiting ordinal labels to solve multi-ordered clas-
sification problems, which has been widely applied to diverse application domains
(Domingo-Ferrer and Torra 2005; Henriques et al. 2015), e.g., medical diagnosis
(Brookmeyer et al. 2007; Davis et al. 2010; Chan and Norat 2015; Cruickshank et al.
2015), social science (Kaplan 2004; O’Connell 2006; Grosskreutz and Riiping 2009;
Lemmerich et al. 2016), education (Chen and John 2004; Hamidi et al. 2008), com-
puter vision (Kim 2014; Liu et al. 2017; Niu et al. 2016; Liu et al. 2018) and marketing
(Menon and Elkan 2010; Montafés et al. 2014; Lanfranchi et al. 2014). Specifically
in medical diagnosis, many major diseases are multi-stage progressive, for example,
Alzheimer’s Disease (AD) progresses into three stages that are irreversible with orders,
i.e., cognitively normal, mild cognitive impairment and AD (Brookmeyer et al. 2007).
Conventional methods either convert ordinal regression problems into multiple binary
classification problems (Frank and Hall 2001; Kato et al. 2008; Park and Fiirnkranz
2012) (e.g., health and illness) or consider them as multi-class classification problems
(Har-Peled et al. 2002; Gursoy et al. 2017). However, these methods fail to capture the
key information of ordinal labels (e.g., the progression of multi-stage diseases). There-
fore, ordinal regression is essential as it incorporates the ordinal labels in multi-class
classification (Cruz et al. 2001; Tran et al. 2015; Hong and He 2010).

In the real-world scenario, there is an increasing need to build multiple related
ordinal regression tasks for heterogeneous data sets. For instance, multi-stage disease
diagnosis in multiple patient subgroups (e.g., various age groups, genders, races),
student satisfaction questionnaire analysis in multiple student subgroups (e.g., various
schools, majors), customer survey analysis in multiple communities (e.g., various
incomes, living neighborhoods). However, most of the prior works merely concentrate
on learning a single ordinal regression task, i.e., either build a global ordinal regression
model for all sub-population groups, ignoring data heterogeneity among different
subgroups (Chu and Keerthi 2005, 2007; Schmidt-Richberg et al. 2015; Gu et al.
2015); or build and learn an ordinal regression model for each subgroup independently,
ignoring relatedness among these subgroups (Cruz et al. 2001; Tran et al. 2015; Hong
and He 2010).

To overcome the aforementioned limitations, multi-task learning (MTL) is intro-
duced to learn multiple related tasks simultaneously (Caruana 1998), which has been
extensively researched in tackle classification and standard regression problems. By
building multiple models for multiple tasks and learning them collectively, the training
of each task is augmented via the auxiliary information from other related subgroups,
leading to an improved generalization of prediction performance. MTL has achieved
significant successes in analyzing heterogeneous data, such as prediction of patients’
survival time for multiple cancer types (Wang et al. 2017), prioritzation of risk factors
in obesity (Wang et al. 2019) and HIV therapy screening (Bickel et al. 2008). However,
MTL for heterogeneous data with ordinal labels, such as multi-stage disease diagnosis
of multiple patient subgroups, remains a largely unexplored and neglected domain.
Multi-stage progressive diseases are rarely cured completely and the progression is
often irreversible, e.g., AD, hypertension, obesity, dementia and multiple sclerosis
(Brookmeyer et al. 2007; Chan and Norat 2015; Cruickshank et al. 2015). Hence new
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ordinal regression approaches are urgently needed to analyze emerging heterogeneous
and/or large-scale data sets.

To train multiple correlated ordinal regression models jointly, (Yu et al. 2006)
connect these models using Gaussian process prior within the hierarchical Bayesian
framework. However, multi-task models within the hierarchical Bayesian framework
are not sparse or performed well in high dimensional data. In Gao and Zhao (2018),
forecasting the spatial event scale is targeted using the incomplete labeled datasets,
which means not every task has a complete set of labels in the training dataset. The
objective function in Gao and Zhao (2018) is regularized logistic regression derived
from logistic ordinal regression; therefore, their approach also suffers from the limita-
tions of logistic regression, e.g., more sensitive to outliers comparing with our proposed
methods based on maximum-margin classification (Rennie and Srebro 2005; Frome
et al. 2007).

Here we propose a regularized multi-task ordinal regression (MTOR) model to
analyze heterogeneous and smaller datasets. Moreover, we develop a deep neural net-
works (DNN) based model for heterogeneous and large-scale data sets. The proposed
MTOR approach can be considered as the regularized MTL approach (Evgeniou and
Pontil 2004), where the assumption of task relatedness is encoded via regularization
terms that have been widely studied in the past decade (Argyriou et al. 2008; Liu
et al. 2009). In this work, the task relatedness is encoded by shared representation
layers. We note that Kato et al. (2008) formulates a single ordinal regression problem
as a multi-task binary classification problem whereas in our work we solve multiple
ordinal regression problems simultaneously within the MTL framework.

In this paper, we employ the alternating structure optimization to achieve an efficient
learning scheme to solve the proposed models. In the experiments, we demonstrate the
prediction performance of our models using three real-world datasets corresponding
to three multi-stage progressive diseases, i.e., AD, obesity and hypertension with well-
defined yet heterogeneous patient age subgroups. The main contributions of this paper
can be summarized as follows:

e We propose a regularized MTOR model for smaller yet heterogeneous datasets to
encode the task relatedness of multiple ordinal regression tasks using structural
regularization term;

e We propose a DNN based MTOR model for large-scale datasets to encode the task
relatedness via the shared hidden layers;

e We propose an alternating structure optimization framework to train our mod-
els, and within this framework the fast iterative shrinkage thresholding algorithm
(FISTA) is employed to update the model weights;

e Our comprehensive experimental studies demonstrate the advantage of MTOR
models over single-task ordinal regression models.

The rest of this paper is organized as follows: Sect. 2 summarizes relevant works
on ordinal regression and MTL. In Sect. 3, we review the preliminary knowledge on
the ordinal regression. Section 4 elaborates the details of MTOR models. In Section 5,
we extend the MTOR model to deep learning using DNN to accommodate large-scale
heterogeneous data sets. Section 6 demonstrates the effectiveness of the MTL ordinal
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regression models using three real-world healthcare datasets for the multi-stage disease
diagnosis. In Sect. 7, we conclude our work with discussion and future work.

2 Related works

In this section, we summarize the related works in the fields of ordinal regression
and multi-task learning, and discuss the relationships and primary distinctions of the
proposed methods compared to the existing methods in the literature.

2.1 Ordinal regression

Ordinal regression is an approach aiming at classifying the data with natural ordered
labels and plays an important role in many data-rich science domains. According
to the commonly used taxonomy of ordinal regression (Gutiérrez et al. 2016), the
existing methods are categorized into: naive approaches, ordinal binary decomposition
approaches and threshold models.

The naive approaches are the earliest approaches dealing with ordinal regression,
which convert the ordinal labels into numeric and then implement standard regression
or support vector regression (Witten et al. 2016; Kato et al. 2008). Since the distance
between classes is unknown in this type of methods, the real values used for the
labels may undermine regression performance. Moreover, these regression learners
are sensitive to the label representation instead of their orders (Gutiérrez et al. 2016).

Ordinal binary decomposition approaches are proposed to decompose the ordinal
labels into several binary ones that are then estimated by multiple models (Frank and
Hall 2001; Li and Lin 2007). For example, (Frank and Hall 2001) transforms the data
from U-class ordinal problems to U — 1 ordered binary classification problems and
then they are trained in conjunction with a decision tree learner to encode the ordering
of the original ranks, that is, train U — 1 binary classifiers using C4.5 algorithm as a
decision tree learner.

Threshold models are proposed based on the idea of approximating the real value
predictor followed with partitioning the real line of ordinal values into segments.
During the last decade, the two most popular threshold models are support vector
machines (SVM) models (Shashua and Levin 2003; Chu and Keerthi 2005, 2007,
Gu et al. 2015) and generalized linear models for ordinal regression (Williams 2006;
Baetschmann et al. 2015; Kockelman and Kweon 2002; Ye and Lord 2014); the former
is to find the hyperplane that separates the segments by maximizing margin using the
hinge loss and the latter is to predict the ordinal labels by maximizing the likelihood
given the training data.

In Shashua and Levin (2003), support vector ordinal regression (SVOR) is achieved
by finding multiple thresholds that partition the real line of ordinal values into several
consecutive intervals for representing ordered segments; however, it does not consider
the ordinal inequalities on the thresholds. In Chu and Keerthi (2005, 2007), the authors
take into account ordinal inequalities on the thresholds and propose two approaches
using two types of thresholds for SVOR by introducing explicit constraints. To deal

@ Springer



1138 L. Wang, D. Zhu

with incremental SVOR learning caused by the complicated formulations of SVOR,
Gu et al. (2015) propose a modified SVOR formulation based on a sum-of-margins
strategy to solve the computational scalability issue of SVOR.

Generalized linear models perform ordinal regression by fitting a coefficient vector
and a set of thresholds, e.g., ordered logit (Williams 2006; Baetschmann et al. 2015) and
ordered probit (Kockelman and Kweon 2002; Ye and Lord 2014). The margin functions
are defined based on the cumulative probability of training instances’ ordinal labels.
Different link functions are then chosen for different models, i.e., logistic cumulative
distribution function (CDF) for ordered logit and standard normal CDF for ordered
probit. Finally, maximum likelihood principal is used for training.

With the development of deep learning, ordinal regression problems are transformed
into binary classifications using convolutional neural network (CNN) to extract fea-
tures (Niu et al. 2016; Liu et al. 2017). In Liu et al. (2018), CNN is also used to extract
high-level features followed by a constrained optimization formulation minimizing
the negative log-likelihood for the ordinal regression problems.

In this work, we propose novel ordinal regression models for heterogeneous data
with subpopulation groups under the MTL framework. Particularly, we implement two
different types of thresholds in the loss functions under different assumptions and use
alternating structure optimization for training our models, which are different from
existing threshold models using hinge loss or likelihood. Please refer to Sect. 4 for
details.

2.2 Multi-task learning

To leverage the relatedness among the tasks and improve the generalization perfor-
mance of machine learning models, MTL is introduced as an inductive transfer learning
framework by simultaneously learning all the related tasks and transferring knowledge
among the tasks. How task relatedness is assumed and encoded into the learning for-
mulations is the central building block of MTL. In Evgeniou and Pontil (2004), the
earliest MTL approach is to couple the learning process by using multi-task regu-
larizations. Regularized MTL is able to leverage large-scale optimization algorithms
such as proximal gradient techniques, so that the regularized MTL approach has a
clear advantage over the other MTL approaches (Nesterov 2013; Liu et al. 2009; Ji
and Ye 2009; Zhou et al. 2011). As aresult, the regularized MTL can efficiently handle
complicated constraints and/or non-smooth terms in the objective function.

Note that, we start this subsection by introducing some classical regularized MTL
approaches. They demonstrate their models performance in different applications. For
example on a benchmark dataset, i.e., School!, which considers each school as one
task to predict the same outcome exam scores in the multiple related tasks. Here we
focus our literature review on the methods instead of applications.

MTL has been implemented with many deep learning approaches (Ruder 2017) in
two ways, i.e., soft and hard parameter sharing of hidden layers. In the soft parameter
sharing, all tasks do not share representation layers and the distance among their
own representation layers are consytrained to encourage the parameters to be similar

1 https://ttic.uchicago.edu/~argyriou/code/
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(Ruder 2017), e.g., (Duong et al. 2015) and Yang and Hospedales (2016) use />-norm
and the trace norm, respectively. Hard parameter sharing is the most commonly used
approach in DNN based MTL (Ruder 2017) where all tasks share the representation
layers to reduce the risk of overfitting (Baxter 1997) and keep some task-specific layers
to preserve characteristics of each task (Lu et al. 2016). In this paper, we use the hard
parameters sharing for DNN based MTOR. These existing methods are to solve either
classification or standard regression problems. For the more challenging learning tasks
of multiple ordinal regression. We describe our regularized MTOR model in Sect. 4
and deep learning based MTOR model in Sect. 5 to solve the multiple related ordinal
regression problems simultaneously. Moreover, in the Sect. 6, the multi-stage disease
diagnosis are demonstrated in experiments using the proposed MTOR models.

3 Preliminary: latent variable model in ordinal regression

Given N training instances denoted as (X;, Y;)ie(1,....n}, the latent variable model is
used to predict the ordinal label (Williams 2006):

Y*=XW +b,
Yi=u if 9,1 <Y <9, (1)

1

where Y* is the latent variable and l?i is the ordered predicted label (i.e., Y i =W €
{1, ..., U}) for the i th training instance. ¥ is a set of thresholds, where 9 = —oo and
Yy = 00, so that we have U — 1 thresholds (i.e., 91 < 92 < ... < ¥y_1) partitioning
Y* into U segments to obtain Y , which can be expressed as:

1if 99 <Y* <9y,
Y = u 1f 0,1 < Y* <9, )
l:]i:fﬁy,l < Y* < vy.
As we see in Eq. (1) and Eq. (2), U ordered predicted labels, i.e., Y, are corresponding

to U ordered segments and each Y* has the value within the range: (J,—1, 9,,), the
latter is immediate thresholds, for © € {1, ..., U}.

4 Regularized multi-task ordinal regression (RMTOR) models

In this section, we formulate regularized multi-task ordinal regression (RMTOR) using
two different types of thresholds: 1) Immediate thresholds: the thresholds between
adjacent ordered segments including the first threshold ¥y and last threshold 9y .
In the real-world problems, ¥y and ¥y always remain in finite range. Hence, we
can use the first and last thresholds to calculate the errors for training instances in
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the corresponding segments. 2) All thresholds: the thresholds between adjacent and
non-adjacent ordered segments followed the traditional definition of the first and last
thresholds, i.e., 9 = —o0 and ¥y = o0. Thus, the first and last thresholds can not be
used for calculating the errors of training instances.

4.1 Regularized multi-task learning framework

In the real-world scenario, multiple related tasks are more common comparing with
many independent tasks. To employ MTL, many studies propose to solve a regularized
optimization problem. Assume there are 7 tasks and G input variables/features in each
corresponding dataset, then we have the weight matrix as W € R¢*T and regularized
MTL object function as:

J = m“i/n LW) 4+ Q(W), 3)

where (W) is the regularization/penalty term, which encodes the task relatedness.

4.2 RMTOR using immediate thresholds (RMTOR)
4.2.1 RMTOR; model

We define a margin function M (D) := log(1 + exp(D)) for the ordered pairwise
samples as the logistic loss is a smooth loss that models the posterior probability and
leads to better probability estimation at the cost of accuracy. The loss function of
RMTOR with the immediate thresholds is formulated as:

T n

L= Z Z [M(ﬁ(yr./*]) = XiiWo) + M(X;; Wi — 19Yx_/)] J “4)
=1 j=1

where ¢ is the index of task, n; is the number of instances in the " task, j is the
index of instance in the ' task, Y;; is the label of the j th instance in the ' task,
X, € R™C9, W, e RO and 9 € RT*V. Note that, ¥y, is a threshold in the ' task,
which is a scalar and its index is Y;;. To visualize our immediate thresholds method,
we show an illustration figure in Fig. 1.

Thus, we have the objective function RMT OR; as:

T ny

RMTOR; = Iv{/ug; 2} [M®,;—1) — Xij Wy)
= ]=

+M(X;j Wi — 9y,)] + AIWll21, Q)
where A is the tuning parameter to control the sparsity and [W|,; = Zgzl

/ 2 . . . .
ZLl |wg,‘ . Note that, g is the index of feature and wy, is the weight for the

g feature in the " task.
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Immediate (only adjacent) thresholds.

1 1 1 1
1 1 1 1 1
D ov=1 L oY=2 =3 N
1 1 1 1 _ 1
| I e 1 B °
1 ® 1 ® o ® ® 1 ® i ' EXf4 1 L 1
1 1 1 1 ® 1
1 o o 1 £ ® 1 @ ° e ° e,
1 o——2— 1 1
@ ° EXTA ® 10 ® 1 P
1 1 1 B (] 1 !
@ .0 < ¢ !

Y ® EY:3I 1 Y 1
! EJ=t 1 o | ]

[ A °®

1 — 1 P 1 Y 1
1 1 EAT o ! 1 1
] ] ] ] L
190 191 792 193 194 Y*

Fig. 1 Illustration of immediate-thresholds loss using four segments that only calculate the errors using
the neighbor/adjacent thresholds of each segment when first and last thresholds remain in finite range. We

denote EX?/C as the error for a data point in the class p, where A represents adjacent thresholds used

and + or — indicates the error value is positive or negative. Note that, the solid arrow lines represent the
errors calculated using neighbor/adjacent thresholds and the different direction of the arrow lines indicate
the error direction. For example, E Xfl denotes the error of a class 1 data point that equals g — X th:[ Wt

this error is represented with a right direction arrow line in this figure and as vy is smaller than X [Yj:l Wt,
s0 its value is negative

4.2.2 Optimization

Alternating structure optimization (Ando and Zhang 2005) is a used to discover the
shared predictive structure for all multiple tasks simultaneously, especially when the
two sets of parameters W and ¢ in Eq. (5) can not be learned at the same time.

Optimization of W With fixed 9, the optimal W can be learned by solving:

mui/nﬁl(W)vL)»IIWIIz,l, Q)

where L£; (W) is a smooth convex and differentiable loss function, and the first order
derivative can be expressed as:

ny
Ly (W) =" X;[G(X,j Wi — Dy,)
j=1
— G0, -1 — Xi; Wil

LW LW, LW
E/I(W)z[ I( 1)7”'7 ]( t)s"" 1( T)}v (7)
ni n; nr
where G(D) := 22 = L

D)
To solve the optimization problem in Eq. (6), fast iterative shrinkage thresholding
algorithm (FISTA) shown in Algorithm I is implemented with the general updating
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steps:
1
WD = mp(s — L5, ®

where [ is the iteration index, ﬁ is the largest possible step-size that is chosen by line
search (Beck and Teboulle 2009, Lemma 2.1, page 189) and £/, (SO is the gradient of
L7 (+) at search point SO O = wh 4 O WD — W=Dy are the search points for
each task, where «) is the combination scalar. 7 p (+) is I 1 —regularized Euclidean
project shown as:

0 . D2
mp(H(S ))=mul/n§||W—H(S e + AW]l2,1, ©)]

where || - || is the Frobenius norm and H(S?") = §® — ﬁﬁ’(S(l)) is the gradient

step of SO0, An efficient solution (Theorem 1) of Eq. (9) has been proposed in Liu
et al. (2009).

Theorem 1 Given A, the primal optimal point W of Eq. (9) can be calculated as:

S S (M 0
(1- i) HSD) if 2> 0,1 HSO), 2>

We = 0if x>0, | HSD), 1< 2 (10)
H(SD)g if 1 =0,

where H(S(l))g is the j™ row of H(S"), and Wg is the g row of w.

In lines 4-11 of Algorithm 1, the optimal ¥ ) is chosen by the backtracking rule
based on (Beck and Teboulle 2009 Lemma 2.1, page 189), y ) is greater than or equal
to the Lipschitz constant of £;(-) at search point S O which means y(l) is satisfied

for S® and ﬁ is the possible largest step size.

In line 7 of Algorithm 1, 0, (S®, WU+D) is the tangent line of £ (-) at S©), which
can be calculated as:

)4
0y SV, WD) = £,(8D) + S | WD — 502

+ (W(H-l) _ S(Z)7 E}(S(l))).
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Algorithm 1: Fast iterative shrinkage thresholding algorithm (FISTA) for training
RMTOR.

Input: A set of feature matrices {X1, X», --- , X7}, target value matrix Y for all T tasks, initial
coeifﬁcient matrix W© and A
Output: W
1 Initialize: W) = W@ g | =0,dy=1yO =11=1;
2 repeat

3 | Seta® = %’ SO = wb 4 O WO _ wi=Dy.
1—1
4 for j=1,2,--- do

5 Sety = 2/')/(1—1);
6 Calculate WUHD = 7550 — ﬁﬁz(s(”));
7 Calculate Q,, (SO, WD)y,
s if CI(W(H_])) = QV(SU), W(H'l)) then
i ‘ y® =y, break ;
10 end
1 end
b = lﬂ/@_
=Y
13 I=1+1;
14 until Convergence of W(l);
s W=wo;

Optimization of ¥ With fixed W, the optimal ¥ can be learned by solving
miny L£; (), where L£;(#)'s first order derivative can be expressed as:

ny U
L) =Y Y GWy—X;jW)
J=1 Y=
ny U
=D > GXii Wi — D),
J=1Yj=p
L L, L
L/I(ﬂ)z[ 1( 1)7"'7 [( t)""’ I( T)]a (11)
ni ng nr
where ¥, is the ul h threshold in task 7, so that © can be updated as:
9O =D O ), (12)

where ¢ is the step-size of gradient descent.

4.3 RMTOR using all thresholds (RMTOR,)
Alternatively, we describe another possible way of formulating the loss function for
ordinal regression, so-called all thresholds (Fig. 2), and use it as a strong baseline to

compare with the loss function formulated using adjacent thresholds only.
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All (adjacent and nonadjacent) thresholds.

Y=4
°
°
o °
°
°
°
°
°

Y*

Fig.2 Illustration of the all-thresholds loss using four segments that calculate the error using both neigh-
bor/adjacent and non-neighbor/non-adjacent thresholds. We denote EX:7_ and EX,?_’;_ as the error for a
data point in the class 1, where A and N represent adjacent thresholds and non-adjacent used, respectively.
In addition to Fig. 1, solid lines represent the errors calculated using adjacent thresholds, while dash lines
represent the errors calculated using non-adjacent thresholds. Same as Fig. 1, 4+ or — indicates the error
value is positive or negative and the different direction of the arrow lines indicate the error direction. Due
to the loss functions are different in immediate and all thresholds, the errors are also different in Fig. 1 and
Fig. 2. For example, EXil denotes the error of a class 1 data point using adjacent threshold that equals

to X th:l W; — ¥1; this error is represented with a left direction arrow line in Fig. 2 and as 1} is smaller
than X rYj:l W, so its value is positive. There are two E,’(i' in Fig. 2 denoting the errors of a class 1 data

point using non-adjacent threshold that equal to X th:l Wy —97 and X };:1 W — 93, respectively; these two
errors are represented with two right direction arrow dash lines in Fig. 2 and as 9, and 3 are smaller than
X th:l Wt, so their values are negative. Note that, in Eq. (13), the errors for data points in each class are
calculated summing over from it = 1to U — 1, so that % = 0 and ¥ = 4 are not presented in Fig. 2

4.3.1 RMTOR4 model

RMTOR with the all thresholds, loss function is calculated as:

T ng Yii—1

U—1
La= 3 Y M@ = XgWo + Y MW =90 |, (3)

t=1 j=1| p=1 n=Yj

i—1 . .
where Z;”: \ M(X;;W; — 9;,) is the sum of errors when u < Y;;, which means
the threshold’s index y is smaller than the ;' training instance label Y;j, while
Z;)l,tj M (¥, — X;jW;) is the sum of errors when > Y;;. To visualize our all

thresholds method, we show an illustration figure in Fig. 2.
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Thus, its objective function RMT O R4 is calculated as:

T n; Yii—1

RMTOR, = g}ngzz > M@y — XijWi)

t=1 j=1| p=1
U—1

+ Y MX Wi = B0,) | + MWl (14)
l/-=Ytj

4.3.2 Optimization

We also implement an alternating structure optimization method to obtain the optimal
parameters W and ¢, which is similar as we perform for RM T O R; optimization.

Optimization of W With fixed ¢, the optimal W can be learned by solving:

min Lo(W) + AW, (15)

where £ 4 (W) is a smooth convex and differentiable loss function. First, we calculate
its first order derivative w.r.t. W;:

ny U-—1

LW =Y Y X G(Xi W — D)
Jj=1 M=Ytj
Yij—1
= Y XiG Wiy — X W) | - (16)
n=1

We introduce an indicator variable z,;:

L u =Yy
in = {—l, nw< Yt/ (17)

Then the updated formulation of Eq. (16) and the first order derivative w.r.t. W are
calculated as:

n U—1
LyW) =3 X5 [eu - G (2 (X Wi — 1))
j=1 pu=1
A(W)=|:‘CA(W1)’"CA(WI)”‘CA(WT)] (18)
ni n: nr

Similar as we did for RM T O R optimization of W, we then use FISTA to optimize
with the parameters in RM T O R 4 updating steps:

1
WD = 7p(sO - Wﬁ’m(”)), (19)
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Multistage disease
diagnosis for young
people

Multistage disease
diagnosis for middle-
aged people

Multistage disease

Task-specific

diagnosis for old
output layer

people

r r 3
Task-speaf.lc [ Task 1 ] [ Task 2 ] Task 3
representation Y
layer
Shared
. .
representation .
layers
L Y J
InPUtIayer [. eee ']O..[. see '][. e .]
Features: Demography Medical records Social behaviors

Fig. 3 Illustration of DNN based multi-task ordinal regression (DMTOR). All tasks share the input and
representation layers, while all tasks keep several task-specific layers. Note that, circles represent the nodes
at each layer and squares represent layers

which is solved in Algorithm 1.

Optimization of ¥ With fixed W, the optimal ¥ can be learned by solving ming £ (%),
where L4 (¢)’s first order derivative can be expressed as:

,C%(l?t) = —lT [ZM -G (Z;,L . (Xt/ Wt - 191‘;1.))] ’

L@ L, L@
E’Am:[ 0D £a0 - Lal T)] 0)
ni ng nr
and hence ¢ can be updated as:
9 =p0=D O ). Q1)

5 Deep multi-task ordinal regression (DMTOR) models
In this section, we introduce two deep multi-task ordinal regression (DMTOR) models

implemented using deep neural networks (DNN). Fig. 3 illustrates the basic architec-
ture of the DMTOR.

5.1 DMTOR architecture

We denote input layer, shared representation layers and task-specific representation
layers as Ly, L(g.) and Ls.), respectively. Thus, we have the shared representation
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layers as:

Lray = ReLUW; - Ly),

Lroy = ReLU (W3 - L),

LR :.];(Wr, Lri-1)), (22)
where {Wj,---, W,} are the coefficient parameters at different hidden layers,

ReLU () stands for rectified linear unit that is the nonlinear activation function, r
is the number of hidden layers and f(-) is a linear transformation.
Task-specific representation layers are expressed as:

L‘S(l) = ReLU(B] - Lg(»),

Ll = ReLU(Bg - Ls(s—1)), (23)

where B! is the coefficient parameter corresponding to the *# task and s is the number
of task-specific representation layers.

5.2 Network training
Forward propagation calculation for the output is expressed as:

output’ = f(O', L), (24)

where O’ is the coefficient parameter corresponding to the ¢/ task.
Then the loss function of DM T O R; model can be calculated as:

T ny
L) = ZZ[M(ﬁ(y,j_l) — outputt)

=1 j=1
+ M(output’ — 9y,)]. (25)

Similarly, the loss function of DM T O R 4 model can be calculated as:

T ny Ytj*1
L= Z Z[ Z My — output")
=1 j=1 p=1
U-1
+ > M(output' — 9y,)). (26)
u=Ysj
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We use mini-batches to train our models’ parameters for faster learning with parti-
tioning the training dataset into small batches, and then calculate the model error and
update the corresponding parameters.

Stochastic Gradient Descent (SGD) is used to iteratively minimize the loss and
update all the model parameters (weights: W, B, O and thresholds: ©):

WO = W=D _ Oy, .

9O =nl=D _ Oy, r 27)

6 Experiments and results

To evaluate the performance of our proposed multi-task ordinal regression (MTOR)
models, we extensively compare them with a set of selected single-task learning (STL)
models. We first elaborate some details of the experimental setup and then describe
three real-world medical datasets used in the experiments. Finally, we discuss the
experimental results using accuracy and mean absolute error (MAE) as the evaluation
metrics.

6.1 Experimental setup

We demonstrate the performance of proposed RMTOR and DMTOR models on
small and large-scale medical datasets, respectively: 1). We use a small dataset (i.e.,
Alzheimer’s Disease Neuroimaging Initiative) to experimentally compare RMT OR;
and RMT O R4 with their corresponding STL ordinal regression models denoted as
STOR; and ST O R 4. We also compare them with two SVM based ordinal regression
(SVOR) models, i.e., support vector for ordinal regression with explicit constraints
(SVOREC) (Chu and Keerthi 2007) and support vector machines using binary
ordinal decomposition (SVM BO D) (Frank and Hall 2001). Both SVOR models
are implemented in Matlab within O RC A framework (Gutiérrez et al. 2016). 2).
Our experiments on two large-scale healthcare datasets (i.e., Behavioral Risk Fac-
tor Surveillance System and Henry Ford Hospital hypertension) compare DM T O R;
and DMT OR4 with their corresponding STL ordinal regression models denoted
as DSTOR; and DST OR4. In addition, we compare them with a neural network
approach for ordinal regression, i.e., N N Rank (Cheng et al. 2008), which is down-
loaded from the Multicom toolbox2. In our experiments, the models with DNN (i.e.,
DMTOR;,DMTORA,DSTOR; and DST O R,) are implemented in Python using
Pytorch and the other models without DNN (RMTOR;, RMTOR4, STOR; and
ST OR,) are implemented in Matlab.

2 http://sysbio.rnet.missouri.edu/multicom_toolbox/tools.html
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6.1.1 MTL ordinal regression experimental setup

In the three real-world datasets, tasks are all defined based on various age groups in
terms of the predefined age groups in MTOR models for the consistency. Also, all
tasks share the same feature space, which follows the assumption of MTL that the
multiple tasks are related.

For RMTOR; and RMT OR4, we use 10-fold cross validation to select the best
tuning parameter A in the training dataset.

For DMT O Ry and DMT O R4, we use the same setting of DNN, i.e., three shared
representations layers and three task-specific representation layers. For each dataset,
we set the same hyper-parameters, e.g., number of batches and number of epochs;
while these hyper-parameters are not the same in different datasets. We use random
initialization for parameters. Please refer to Sect. 5.2 to see the details of the network
training procedures.

6.1.2 STL ordinal regression experimental setup

In our experiments, STL ordinal regression methods are applied under two settings: 1)
Individual setting, i.e., a prediction model is trained for each task; 2) Global setting,
i.e., aprediction model is trained for all tasks. In the individual setting the heterogeneity
among tasks are fully considered but not the task relatedness; on the contrary, in the
global setting all the heterogeneities have been neglected.

For DSTOR; and DST OR,4, the setting of DNN uses three hidden representa-
tion layers, where each layer’s activation function is ReL U (). During the training
procedure, the loss functions use the same function M (-) with either immediate or all
thresholds. Same as we did for DMTOR, we set the same hyper-parameters within
each dataset and different ones among different datasets.

In the training of NN Rank, we use the default setting, .e.g., number of epochs is
500, random seed is 999 and learning rate is 0.01. In testing, we also use the default
setting, e.g., decision threshold is 0.5.

6.2 Data description

In this paper, Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Mueller et al.
2005) and Behavioral Risk Factor Surveillance System (BRFSS) are public medical
benchmark datasets, while Henry Ford Hospital hypertension (FORD) is the private
one. We divide these three datasets into training and testing using stratified sampling,
more specifically, 80% of instances are used for training and the rest of instances are
used for testing.

Age is a crucial factor when considering phenotypic changes in disease (Buja et al.
2014; Duricova et al. 2014; Westbrook and Viney 1983; Geifman et al. 2013). Thus,
we define the tasks according to the disjoint age groups in ADNI, BRFSS and FORD
datasets.
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6.2.1 Alzheimer’s disease neuroimaging initiative (ADNI)

The mission of ADNI is to seek the development of biomarkers for the disease and
advance in order to understand the pathophysiology of AD (Mueller et al. 2005). This
data also aims to improve diagnostic methods for early detection of AD and augment
clinical trial design. Additional goal of ADNI is to test the rate of progress for both
mild cognitive impairment and AD. As a result, ADNI are trying to build a large
repository of clinical and imaging data for AD research.

We pick one measurement from the participants of diagnostic file in this project
and delete two participants whose age information are missing, which leaves us 1, 998
instances and 95 variables including 94 input variables that are corresponding to mea-
surement of AD, e.g., FDG-PET is used to measure cerebral metabolic rates of glucose;
plus one output variable that is phase used to represent three stages of AD (cognitively
normal, mild cognitive impairment, and AD).

Since the age groups in ADNI dataset fall in mature adulthood and late adulthood,
we divide mature adulthood into three subgroups. Hence, the tasks are defined in
ADNI based on different stages of people shown as the first column in Tables 1 and
2, i.e., mature adulthood 1 (50 years to 59 years), mature adulthood 2 (60 years to 69
years), mature adulthood 3 (70 years to 79 years) and late adulthood (equal or older
than 80 years).

6.2.2 Behavioral risk factor surveillance system (BRFSS)

The BRFSS dataset is a collaborative project between all the states in the U.S. and
the Centers for Disease Control and Prevention (CDC), and aims to collect uniform,
state-specific data on preventable health practices and risk behaviors that affect the
health of the adult population (i.e., adults aged 18 years and older). In the experiment,
we use the BRFSS dataset that is collected in 2016°.

The BRFSS dataset is collected via the phone-based surveys with adults residing in
private residence or college housing. The original BRFSS dataset contains 486, 303
instances and 275 variables, after deleting the entries with missing age information
and the variables with all hidden values, the preprocessed dataset contains 459, 156
with 85 variables including 84 input variables and one output variable, i.e., categories
of body mass index (underweight, normal weight, overweight and obese).

The tasks are defined in BRFSS based on different stages of people shown in the
first column in Tables 3 and 4, i.e., early young (18 years to 24 years), young (25 years
to 34 years), middle-aged (35 years to 49 years), mature adulthood (50 years to 70
years) and late adulthood (equal or older than 80 years).

6.2.3 Henry ford hospital hypertension (FORD)
FORD dataset is collected by our collaborator from Emergency Room (ER) of Henry

Ford Hospital. All participants in this dataset are all from metro Detroit. All variables
except for the outcomes are collected from the emergency department at Henry Ford

3 https://www.cdc.gov/brfss/annual_data/annual_2016.html
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Hospital. Some diagnostic variables are collected from any hospital admissions that
occurred after the ER visits. The index date in FORD dataset for each patient started
in 2014 and went through the middle of 2015. They then collect outcomes for each
patient for one year after that index date. So, the time duration from the date that a
patient seen in ER to his/her diagnostic variable collection date may be longer than
one year. For example, a patient may have been seen in the ER on July 2, 2015 and
they would have had diagnosis variable collected date up to July 2, 2016.

Originally, this FORD dataset contains 221, 966 instances and 63 variables includ-
ing demographic, lab test and diagnosis related information. After deleting the entries
with missing values, the preprocessed dataset contains 186, 572 instances and 23 vari-
ables including 22 input variables and one output, i.e., four stages of hypertension
based on systolic and diastolic pressure: normal (systolic pressure: 90-119 and dias-
tolic pressure: 60-79), pre-hypertension (120-139 and 80-89), stage 1 hypertension
(140-159 and 90-99) and stage 2 hypertension (> 160 and > 160).

Since the number of instances in the age groups of infant, children and teenager
are much less than other age groups, we combine these three age groups into one
age group as minor. Hence, the tasks are defined in FORD based on different ages of
people shown as the first column in Tables 5 and 6, i.e., minor (1 year to 17 years),
early young (18 years to 24 years), young (25 years to 34 years), middle-aged (35
years to 49 years), mature adulthood (50 years to 70 years) and late adulthood (equal
or older than 80 years).

6.3 Performance comparison

To evaluate the overall performance of each ordinal regression method, we use both
accuracy and MAE as our evaluation metrics. Accuracy reports the proportion of
accurate predictions, so that larger value of accuracy means better performance. With
considering orders, MAE is capable of measuring the distance between true and pre-
dicted labels, so that smaller value of MAE means better performance.

To formally define accuracy, we use i and j to represent the index of true labels
and the index of predicted labels. A pair of labels for each instance, i.e., (Y,-,IA/ i), 18

positive if they are equal, i.e., ¥; = IA/j, otherwise the pair is negative. We further
denote N7 as the number of total pairs and Np as the number of positive pairs. Thus,
accuracy = %—’T’ MAE is calculated as MAE = Zﬁ%ﬁ’_m, where n; is the number
of instances in each testing dataset.

We show the performance results of prediction accuracy of different models along
with their standard deviations using the aforementioned three medical datasets ADNI,
BRFSS and FORD in Tables 1, 3 and 5, respectively. We also present the performance
results of MAE of different models along with their standard deviations using the
aforementioned three medical datasets ADNI, BRFSS and FORD in Tables 2, 4 and
6, respectively. Each task in our experiments is to predict the stage of disease for
people in each age group. In the experiments of MTOR models, each task has its own
prediction result. For each task, we build one STL ordinal regression model under the
global and individual settings as comparison methods.
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Overall, the experimental results show that the MTOR models perform better than
other STL models in terms of both accuracy and MAE. MTOR models outperform STL
ones across all the tasks in each dataset. MTOR models with immediate thresholds
largely outperform the ones with all thresholds in both evaluation metrics, which
confirms the assumption that first and last thresholds are always remaining in finite
range in the real-world scenario.

Under the proposed MTOR framework, both deep and shallow models have descent
performance for different types of datasets: RMTOR model with immediate thresholds
performs better for small dataset whereas DMTOR model with immediate thresholds
is more suitable for large-scale dataset. More specifically, the DM T O R; model out-
performs the competing models in the most tasks of BRFSS and FORD datasets. In
ADNI dataset, RM T O R; outperforms other models in terms of accuracy and MAE.
Note that, the accuracy and MAE do not always perform consistently for all tasks. For
example in the experiment using ADNI dataset, for the first task with ages ranging
in (50-59), RMT O R; shows the best (largest) accuracy whereas RM T O R 4 exhibits
the best (lowest) MAE.

For SVM based STL ordinal regression models, the distance between classes is
unknown in this type of methods, the real values used for the labels may under-
mine regression performance. Moreover, these regression learners are sensitive to the
label representation instead of their orders. While our MTOR models with predefin-
ing margin function that utilizes shared information between tasks can overcome the
aforementioned shortcomings.

7 Conclusion

In this paper, we tackle multiple ordinal regression problem by proposing a regularized
MTOR model for smaller data sets and a DNN based MTOR model for large-scale
data sets. The former belongs to the regularized multi-task learning, where the ordi-
nal regression is used to handle the ordinal labels and regularization terms are used to
encode the assumption of task relatedness. The latter is based on DNN with shared rep-
resentation layers to encode the task relatedness. Particularly, the DNN based MTOR
outperforms other models for the large-scale datasets and the regularized MTOR are
appropriate for small datasets. In the future, we plan to develop a weighted loss func-
tion for MTOR using both immediate and all thresholds in one unified function.

Acknowledgements This paper is based upon work supported by the National Science Foundation under
grants CNS-1637312 and CCF-1451316.
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