
Vol.:(0123456789)

Data Mining and Knowledge Discovery (2021) 35:863–910
https://doi.org/10.1007/s10618-021-00740-0

1 3

Time series motifs discovery under DTW allows more robust 
discovery of conserved structure

Sara Alaee1  · Ryan Mercer1 · Kaveh Kamgar1 · Eamonn Keogh1

Received: 31 August 2020 / Accepted: 16 January 2021 / Published online: 16 February 2021 
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021

Abstract
In recent years, time series motif discovery has emerged as perhaps the most impor-
tant primitive for many analytical tasks, including clustering, classification, rule dis-
covery, segmentation, and summarization. In parallel, it has long been known that 
Dynamic Time Warping (DTW) is superior to other similarity measures such as 
Euclidean Distance under most settings. However, due to the computational com-
plexity of both DTW and motif discovery, virtually no research efforts have been 
directed at combining these two ideas. The current best mechanisms to address their 
lethargy appear to be mutually incompatible. In this work, we present the first effi-
cient, scalable and exact method to find time series motifs under DTW. Our method 
automatically performs the best trade-off of time-to-compute versus tightness-of-
lower-bounds for a novel hierarchy of lower bounds that we introduce. As we shall 
show through extensive experiments, our algorithm prunes up to 99.99% of the 
DTW computations under realistic settings and is up to three to four orders of mag-
nitude faster than the brute force search, and two orders of magnitude faster than the 
only other competitor algorithm. This allows us to discover DTW motifs in massive 
datasets for the first time. As we will show, in many domains, DTW-based motifs 
represent semantically meaningful conserved behavior that would escape our atten-
tion using all existing Euclidean distance-based methods.
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1 Introduction

Time series motif discovery—the unearthing of locally conserved behavior in a 
long time series—has emerged as one of the most important time series primitives 
in the last decade (Bagnall et al. 2017; Chiu et al. 2003). In recent years, there has 
been significant progress in the scalability of motif discovery, but essentially all 
algorithms use the Euclidean Distance (ED) (Dau and Keogh 2017; Mueen et al. 
2009). This is somewhat surprising, because in parallel, the community seems to 
have converged on the understanding that the Dynamic Time Warping (DTW) is 
superior in most domains, at least for the tasks of clustering, classification, and 
similarity search (Keogh and Ratanamahatana 2005; Rakthanmanon et al. 2013; 
Ratanamahatana and Keogh 2005; Tan et  al. 2019). Could DTW also be supe-
rior to ED for motif discovery? To preview our answer to this question, consider 
Fig. 1, which shows the top-1 motif discovered in a household electrical power 
demand dataset, using the Euclidean distance (Murray et al. 2017).

We have no obvious reasons to discount this motif. It clearly shows the highly 
conserved behavior of relatively low demand for power for about ¾ of an hour, 
followed by a high sustained demand. Note that the Euclidean distance is robust 
to the short “blip” that appears in just the blue time series (from the duration, 
shape and watts drawn, this pattern almost certainly represents an electrical 
kettle).

However, now let us consider Fig.  2, which shows a different pair of subse-
quences from the same dataset.

In retrospect, we would surely have preferred to have discovered this pair of 
motifs as the top-1 motif. The complexity of the pattern that is conserved points 
to a common mechanism. In fact, this is the case. This pattern corresponds to a 

Fig. 1  The top-1 Euclidean distance motif discovered in a one-month long electrical power demand data-
set

Fig. 2  A pair of subsequences from household electrical power demand data. The pattern corresponds to 
(A) short run of discharge pump to empty any liquid in the machine, (B) pumping water into reservoir, 
(C) spraying water over dishes, (D) pumping out water
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particular program from a dishwasher. Why was this pattern not discovered by the 
classic motif discovery algorithm? Fig. 3 offers a visual explanation.

As shown with the gray hatch-lines between the bottom pair of subsequences in 
Fig. 3, DTW’s ability to non-linearly match features that may be out of phase allows 
it to report a much smaller distance for subsequences that are semantically similar, 
but have local regions that are out-of-phase (Keogh and Ratanamahatana 2005; Min-
nen et al. 2007; Tanaka et al. 2005).

As we will show, given the ability to find motifs under DTW, examples like the 
one above are replete in diverse domains such as industry, medicine, and human/ani-
mal behavior. Given that there is a large body of literature on both motif discovery 
(Bagnall et al. 2017; Dau and Keogh 2017; Lagun et al. 2014; Minnen et al. 2007; 
Mueen et  al. 2009; Silva and Batista 2018; Tanaka et  al. 2005; Truong and Anh 
2015; Zhu et al. 2016, 2018) and Dynamic Time Warping (and its variants) (Geler 
et  al. 2019; Keogh et  al. 2009; Rabiner 1993; Rakthanmanon et  al. 2013; Ratan-
amahatana and Keogh 2005; Sakoe and Chiba 1978; Sankoff 1983; Shokoohi-Yekta 
et al. 2015; Silva et al. 2016; Tan et al. 2019), why are there essentially no DTW-
based motif discovery tools?

We believe that the following explains this omission. Both motif discovery and 
DTW comparisons are famously computationally demanding (Bagnall et al. 2017; 
Keogh and Ratanamahatana 2005; Ratanamahatana and Keogh 2005; Chiu et  al. 
2003). Recent years have seen significant progress for both, especially the Matrix 
Profile for the former (Zhu et al. 2016), but the main speed-up techniques for each 
are not obviously combinable.

Fig. 3  The four subsequences shown in Figs. 1 and 2 clustered using single-linkage with the Euclidean 
distance and the DTW distance. DTW does not greatly change this distance between the two “boring” 
motifs, merely reducing the distance from 4.08 to 3.84. In contrast, DTW reduces the distance between 
the dishwasher patterns from 9.79 to just 2.78
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In this work we introduce a novel algorithm that makes DTW motif discovery 
tenable for large datasets for the first time. We call our algorithm SWAMP, Scalable 
Warping Aware Matrix Profile. This is something of a misnomer, since we attempt 
to avoid computing most of the true DTW Matrix Profile by instead computing 
much cheaper upper/lower bounding Matrix Profiles.

We claim the following contributions for our work:

1. We show, for the first time, that there exists conserved structure in real-world time 
series that can be found with DTW motifs, but not with classic Euclidean distance 
motifs (Mueen et al. 2009; Truong and Anh 2015). It was not clear that this had 
to be the case, as Mueen et al. (2009) and others had argued for the diminished 
utility of DTW for motif discovery (all-to-all search), relative to its known utility 
for similarity search (one-to-all search).1

2. We introduce SWAMP, the first exact algorithm for DTW motif discovery that 
significantly outperforms brute force search by two or more orders of magnitude.

3. Our algorithmic approach uses a novel “adaptive hierarchy of lower bounds” 
methodology that may be useful for other problems.

The rest of the paper is organized as follows. In Sect. 2, we present the formal 
definitions and background, before outlining our approach in Sect. 3. Section 4 con-
tains an extensive experimental evaluation. Section 5 provides a case study on using 
SWAMP in classification. Section  6 introduces discord discovery algorithm using 
SWAMP. Finally, we offer conclusions and directions for future work in Sect. 7.

2  Background and related work

2.1  Time series notation

We begin by introducing the necessary definitions and fundamental concepts, begin-
ning with the definition of a Time Series:

Definition 1 A Time Series T = t1, t2, …, tn is a sequence of n real values.

Our distance measures quantify the distance between two time series based on 
local subsections called subsequences:

Definition 2 A subsequence �i,m is a contiguous subset of values with length m 
starting from position i in time series T; the subsequence �i,m is in form �i,m = ti, ti+1, 

1 In brief, the argument is this: Recall that cDTW is constrained by a parameter w, the maximum amount 
of warping allowed, and that as w approaches zero, cDTW degenerates to the Euclidean distance. It has 
been shown that the best setting for w decreases as the number of comparisons increase (see Fig. 6 of 
(Mueen et  al. 2009)). For similarity search, there are O(n) comparisons, but for motif search there are 
O(n2) comparisons, favoring a small value for w, perhaps approaching zero.
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…, ti+m-1 where ( 1 ≤ i ≤ n−m + 1 ) and m is a user-defined subsequence length with 
value in range of 4 ≤ m ≤ |�|.

Here we allow m to be as short as four, although that value is pathologically short 
for almost any domain (Rakthanmanon et al. 2013).

The nearest neighbor of a subsequence is the subsequence that has the smallest 
distance to it. The closest pairs of these neighbors are called the time series motifs.

Definition 3 A motif is the most similar subsequence pair 
of a time series. Formally, �a,m and �b,m is the motif pair iff 
dist

(
�a,m,�b,m

)
≤ dist

(
�i,m,�j,m

)
∀i, j ∈ [1, 2,… , n − m + 1] , where a ≠ b and i ≠ j, 

and dist is a distance measure.

One can observe that the potential best matches to a subsequence (other than 
itself) tend to be the subsequences beginning immediately before or after the sub-
sequence. However, we clearly want to exclude such redundant “near self matches”. 
Intuitively, any definition of motif should exclude the possibility of counting such 
trivial matches.

Definition 4 Given a time series T, containing a subsequence �i,m beginning at 
position i and a subsequence �j,m beginning at j, we say that �j,m is a trivial match to 
�i,m if j ≤ i + m − 1.

Following Dau and Keogh (2017) we use a vector called the Matrix Profile (MP) 
to represent the distances between all subsequences and their nearest neighbors.

Definition 5 A Matrix Profile (MP) of time series T is a vector of distances 
between each subsequence �i,m and its nearest neighbor (closest match) in time 
series T.

The classic Matrix Profile definition assumes Euclidean distance measure which 
computes the distance between the ith point in one subsequence with the ith point in 
the other (see Fig. 4.left). However, as shown in Fig. 4.center, the non-linear DTW 
alignment allows a more intuitive distance that matches similar shapes even if they 
are locally out of phase. For brevity, we omit a formal definition of the (increasingly 

Fig. 4  For two time series Q and T: (left) Their Euclidean Distance. (Center) Their DTW distance. 
(Right) Their  LBKeogh distance
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well-known) DTW, instead referring the interested reader to Ratanamahatana and 
Keogh (2005), Keogh and Ratanamahatana (2005) and Rakthanmanon et al. (2013).

Similarity search under DTW can be demanding in terms of CPU time. One way 
to address this problem is to use a lower bound to help prune sequences that could 
not possibly be a best match (Rakthanmanon et al. 2013). While there exist dozens 
of lower bounds in the literature, in our work we use a generalization of the LBKeogh 
(Keogh and Ratanamahatana 2005; Rakthanmanon et al. 2013).

Definition 6 The  LBKeogh lower bound between a time series Q and another time 
series T, given a warping window size w, is defined as the distance from the closest 
of the upper and lower envelopes around T, to Q. Formally:

where the upper envelope ( Ui ) and lower envelope ( Li ) of T are defined as:

Figure 4 illustrates this definition.

For computationally demanding tasks, even the lower bound computation may 
take a lot of time. Thus, we plan to exploit a “spectrum” of lower bounds as we 
explain in Sect. 3.1, each of which makes a different compromise of fidelity versus 
tightness.

To create this spectrum, we exploit our ability to perform various computations 
on the reduced dimensionality data. More concretely, we can perform downsam-
pling using the Piecewise Aggregate Approximation (PAA).

Definition 7 The PAA of time series T of length n can be calculated by dividing 
T into k equal-sized windows and computing the mean value of data within each 
window. More specifically, for each window i, the approximate value is calculated 
by the following equation:

The vector of these values is the PAA representation of the time series. 
PAA(T , k) = t1, t2,… , tk.

It is convenient to express the compression rate of a PAA approximation as “D 
to 1”, or D ∶ 1 , where D = n∕k . This notation can be visualized as shown in Fig. 5.

(1)LBKeogh(Q,T) =

�������
n�
i=1

⎧
⎪⎨⎪⎩

�
qi − Ui

�2
if qi > Ui�

qi − Li
�2

if qi < Li
0 otherwise

(2)
Ui = max

(
ti−w, ti−w+1,… , ti+w

)

Li = min
(
ti−w, ti−w+1,… , ti+w

)

(3)ti =
k

n

n

k
.i∑

j=
n

k
(i−1)+1

tj
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Given that we can downsample time series, we can also generalize  LBKeogh to 
such downsampled data, with LBKeoghD:1 ( D ≥ 1):

Definition 8 The downsampled lowerbound  LBKeoghD:1(Q,T) between a time 
series Q and another time series T is defined as the distance from the closest of 
the downsampled upper and lower envelopes around T, to the downsampled Q. 
Formally:

where Q = PAA(Q, k),U = PAA
(
UT , k

)
, andL = PAA

(
LT , k

)
.

Figure 6 illustrates this definition.
Given these downsampled lower bounds, we can still use the  LBKeogh distance, 

but we need to scale the distance by 
√
n∕D to generate a tighter, yet still admis-

sible lower bound. The proof of this variation of the lower bound appears in a 
slightly different context in (Zhu and Shasha 2003). To see why it is needed, refer 
to Fig. 6.right. Here each gray hatch-line represents the aggregate distance for 16 
datapoints. If we only counted each line once, we would have a very weak lower 
bound. It seems that we could scale each line’s contribution by 16 (or more gen-
erally, D), but then we would not have an admissible bound. It can be shown that 

(4)LBKeoghD ∶ 1(Q,T) =

�������
n�
i=1

⎧⎪⎨⎪⎩

�
q̄i − ūi

�2
if q̄i > ūi�

q̄i − l̄i
�2

if q̄i < l̄i
0 otherwise

Fig. 5  A time series Q, downsampled using PAA to two different compression rates. (Left) 4:1 (right) 
16:1

Fig. 6  An illustration of parametrized  LBKeogh. Three possible settings that make different trade-offs on 
the spectrum of time-to-compute vs. tightness of lower bound. The special case of  LBKeogh1:1 is the clas-
sic lower bound also shown in Fig. 4, and used extensively in the community (Keogh and Ratanamaha-
tana 2005; Rakthanmanon et al. 2013; Ratanamahatana and Keogh 2005)
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√
n∕D is the optimally tight admissible scaling factor (Yi and Faloutsos 2000; 

Zhu and Shasha 2003).
To see how the parameterization affects the tightness of the lower bound, we 

selected 256 random pairs from the electrical demand dataset (see Fig. 14) and 
computed both their true distance and the lower bound distances at the dimen-
sionalities shown in Fig. 6. The results are shown in Fig. 7.

Note that while our examples use powers of two for both the original and reduced 
dimensionality, PAA and our parametrized lower bounds are defined in the more 
general case.

2.2  Related work

There is a huge body of literature on DTW (Rakthanmanon et al. 2013) and on motif 
discovery (Bagnall et al. 2017; Minnen et al. 2007; Mueen et al. 2009; Tanaka et al 
2005). However, there are very few papers on the intersection of these ideas.

In Truong and Anh (2015) the authors introduce “A fast method for motif dis-
covery in large time series database under dynamic time warping”. However, this 
method does not produce the top motifs as we have defined them in Definition 3. It 
is perhaps better seen as a clustering algorithm that produces centroids that could be 
considered “motifs”. Likewise, Lagun et al. (2014) created an algorithm to explore 
cursor movement data. The algorithm discovers “common motifs” and does use the 
DTW distance, but once again, it is better seen as a clustering algorithm that pro-
duces centroids that could be considered motifs. These papers speak to the utility of 
both motif discovery and to the use of DTW. However, these works do not offer us 
actionable insights for the task-at-hand.

Finally, a recent paper uses DTW and reports results for “Motif Discovery” 
(Ziehn et al. 2019). However, this paper is simply doing what the community com-
monly calls “range queries”, not motif discovery.

To the best of our knowledge, there is only one research effort that finds exact 
motifs under DTW (Silva and Batista 2018). This method creates a full DTW 
Matrix Profile but optimizes its creation by exploiting many of the techniques used 
by the UCR-Suite (Rakthanmanon et  al. 2013), including the lower-bounding and 

Fig. 7  An illustration of the tightness of the parametrized  LBKeogh. The tightness for each pair is 
inversely proportional to orthogonal distance to the diagonal line. For one randomly selected point, we 
show how this changes (inset)
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early abandoning tricks techniques that we will exploit. However, they only con-
sider a single-resolution representation of the data, as we will show, working on 
a multi-resolution data representation allows at least two further orders of magni-
tude speed-up. These optimizations used by Silva and Batista (2018) do produce a 
ten-fold improvement over a naïve brute force implementation. We also achieve a 
much more dramatic speed up by not computing the full DTW Matrix Profile, but 
rather computing as little of it as possible, in order to admissibly discover just the 
top DTW motifs.

The reader may wonder if we could replace exact DTW with one of the “fast 
approximations” to it, such as FastDTW (Salvador and Chan 2007). Recent works 
suggest that these approximations are actually not faster than the carefully optimized 
exact DTW (Wu and Keogh 2020). Moreover, all such work is empirical, there are 
no bounds on how bad the approximation can be (Wu and Keogh 2020). Thus, we 
do not see this as a promising avenue for acceleration.

3  Observations and algorithms

Before introducing our algorithm in detail, we will take the time to outline the intui-
tion behind our approach. In Fig. 8 we show a time series and its DTW MP.

The two lowest points [they must have tied values by definition (Zhu et al. 2016)] 
correspond to the top-1 DTW motif. Thus, while we have solved our task-at-hand, 
this brute force computation of the DTW MP required O

(
n2m2

)
 time. (n is the length 

of the time series and m is the subsequence length as shown in Fig. 8).
There are some optimizations (which we use) including early abandoning, using 

the squared distance, etc. (see Murray et al 2017; Rakthanmanon et al. 2013). How-
ever, these only shave off small constant factors. It is possible to index DTW. How-
ever, that only helps to accelerate future ad-hoc similarity search queries. Here, the 
time required to build the index would only dramatically increase the time above.

Note that the Euclidean distance is an upper bound for the DTW. Moreover, 
there are perhaps a few dozen known lower bounds to DTW, including the  LBKeogh 
(Keogh and Ratanamahatana 2005). In Fig. 9 we revisit the data shown in Fig. 8 to 

Fig. 8  A time series and its DTW MP. The lowest points of the DTW MP are the locations of the top-1 
DTW motifs
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include the MPs for these two additional measures. Note that they “squeeze” the 
DTW MP from above and below.

This figure suggests an immediate improvement to the brute force algorithm. 
The lowest value of the ED MP is an upper bound on the value of the top-1 DTW 
motif. Thus, before we compute the DTW MP, we could first compute the ED MP 
and use its smallest value to initialize the best-so-far value for the DTW MP search 
algorithm. This has two exploitable consequences. It would speed up the brute force 
algorithm, because the effectiveness of early abandoning is improved if you can find 
a good best-so-far early on. However, there is a much more consequential observa-
tion. Any region in the time series for which the lower bound is greater than the 
best-so-far can be admissibly pruned from the search space.

Note that this pruning can dramatically accelerate our search. For example, sup-
pose that the fraction p of the time series is pruned from consideration as the loca-
tion of the best motif. We then only have to compute (1 − p)2 of the possible pairs of 
subsequences. Moreover, this ratio can only get better, as we find good matches that 
further drive the best-so-far down.

In fact, as we shall see, on real datasets this pruning can be so effective that 
instead of doing O

(
n2
)
 invocations of DTW, we only need to do a small constant 

number. This reduces the time complexity to find the top-1 DTW motifs from 
O
(
n2m2

)
 , to the O

(
n2m

)
 time required to compute the lower bound. Because m 

can be in the range, of say, one hundred to ten thousand (see the insect example in 
Fig. 12), this offers a significant speedup. Nevertheless, it is natural to ask if we can 
further improve on this.

Let us revisit Fig. 9. Note that in some locations, the lower bound is much greater 
than the best-so-far. This suggests an opportunity. In general, it is often the case 
that there are multiple lower bounds for a distance measure, which produce different 
tradeoffs on the spectrum of time-to-compute versus average tightness. Thus, instead 
of always using the tightest lower bound available to us everywhere, it would be 
better to use faster “just tight enough” lower bounds wherever possible. As we shall 
see, this is exactly what SWAMP does.

Fig. 9  A time series and its ED MP, its DTW MP and its  LBKeogh1:1MP. Note that the lowest values in 
the ED MP (denoted with the horizontal dashed line) are an upper bound on the values of the top DTW 
motif
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3.1  Creating a spectrum of lower bounds

As noted above, our SWAMP algorithm depends on the availability of multiple 
lower bounds that make different tradeoffs on the spectrum of tightness versus speed 
of execution.

It is not meaningful to measure the tightness of lower bounds on a single pair of 
time series, as the idiosyncrasies of the particular pair of subsequences may favor 
different lower bounds. Instead, it is common to measure the tightness of a lower 
bound by averaging over many pairs of randomly chosen time series (Ratanamaha-
tana and Keogh 2005).

In Fig. 10 we average over six million pairs of random-walk for each setting.
It is important to ward off a possible misunderstanding. If we computed the 

entire  LBKeogh1:1 and found that it aggressively pruned off all but one pair of 
subsequences (the true top-1 motif), then we would achieve a speedup of about 
28.6 μs/1.84 μs = 15.5. This 15-fold speed would be impressive, but it appears to 
be the upper bound on speed-up. However, as hinted at above, we hope to prune off 
many of the  LBKeogh1:1 computations themselves, with the much cheaper  LBKeogh2:1 
calculations. Moreover, we plan to do this iteratively, using cheaper (but weaker) 
lower bounds to prune off as many as possible more expensive (but stronger) lower 
bounds.

(5)tightness(A,B) =
LB(A,B)

DTW(A,B)

Fig. 10  A spectrum of lower bounds for DTW plotted with time (note the log scale) versus tightness. 
Recall that DTW is a lower bound to itself, thus occupies the top right corner
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Note that the red dashed line in Fig. 10 forms a Pareto frontier. If there is any 
lower bound that is above the red line at any point, we should use it. We have inves-
tigated the dozens of alternative lower bounds, but we did not discover better per-
forming bounds. There are two main classes of lower bounds:

• Lower bounds such as  LBKimFL that are O(1) should in principle be on the 
Pareto frontier to the right of  LBKeogh32:1. However, their O(1) time complex-
ity assumes that the two time series are already normalized. If we are forced to 
normalize, these bounds are pushed to the interior of the frontier (however, as we 
will later show, the  LBKimFL can be used in a later phase of the algorithm, when 
the normalization is “free”, because it is computed for another purpose).

• There are at least a dozen lower bounds that are variants of the  LBKeogh, includ-
ing  LBImproved,  LBEnhanced,  LBNew,  LBRotation,  LBHust,  LBEn, etc. (Junkui et  al. 
2006; Rakthanmanon et al. 2013; Gong et al. 2015). All of these exploit  LBKeogh, 
plus some additional information to produce a tighter lower bound. However, 
in all cases we found that the additional time required to exploit the “additional 
information” did not pay for itself. We would have been better off spending that 
extra time to compute the  LBKeogh at a higher level. However, we note that in 
some cases a clever implementation insight might fix this overhead.

Note that while we did not discover any other lower bounds to help for the task at 
hand, this does not say anything about the utility of these bounds for other tasks. 
 LBKimFL has been shown to be useful for in-memory similarity search (Rakthan-
manon et al. 2013), and the more expensive lower bounds are useful for disk-based 
indexing (Keogh and Ratanamahatana 2005).

3.2  Introducing SWAMP

For notational simplicity we consider the task of finding the top-1 motif under DTW 
for a given value of w. The generalizations to top-K motifs or range motifs are trivial 
(Zhu et al. 2016).

We can best think of SWAMP as a two-phase algorithm. In Phase I it uses a sin-
gle upper bound, and an adaptive hierarchy of lower bounds to prune off as many of 
the candidate time series subsequences as possible (candidate for being one of the 
best DTW motif pairs). Then, in Phase II, any surviving pairs of subsequences are 
searched with a highly optimized “brute force” search algorithm. The algorithm in 
Table 3 formalizes SWAMP which includes subroutines that compute Phase I and 
Phase II.

3.2.1  Phase I of SWAMP

We start by reviewing the two exploitable facts that we previewed in Fig. 9.

• The ED MP is the upper bound for  LBKeoghMP.
• The  LBKeoghMP is the lower bound for DTW MP.
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Based on these observations, we know that any section of  LBKeoghMP (i.e. 
 LBKeogh1:1MP) that is greater than the minimum of ED MP (we consider that as the 
best-so-far), could not contain the best motif and can therefore be pruned. We can 
compute the DTW score for the region suggested by the lowest value of the pruned 
 LBKeogh1:1MP. If the score is lower than the minimum of ED MP, we can further 
lower the best-so-far. In this case, we can further reduce the number of DTW tests.

This basic strategy gains speedup, replacing most of the expensive DTW cal-
culations with cheaper lower bound calculations. However, while computing 
 LBKeogh1:1MP is much faster than full DTW, it is still computationally expen-
sive. Nevertheless, as we discussed in the previous section, we may not need to 
compute the full  LBKeogh1:1MP to find the best motifs. Instead, we can apply the 
above strategy on a hierarchy of cheaper downsampled  LBKeoghMP. The algorithm 
in Table 1 formalizes this process.

In line 1 we compute the classic Matrix Profile for the time series T with the 
given subsequence length m. This is needed to provide the upper bound of the 
distance between the DTW motifs we will discover. Using this Matrix Profile, we 
find the ED motifs, i.e. the pair of lowest values (Zhu et al. 2016, 2018). We then 

Table 1  ComputeDSMP: hierarchically computes the downsampled lower bound Matrix Profile and 
prunes off the unpromising locations

Table 2  LBKeoghDSMP: computes the  LBKeoghMP for the downsampled time series
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measure the distance between those motifs using the DTW distance rather than 
the ED distance, in order to initialize the best-so-far distance (lines 2–3).

Starting with a downsampling factor equal to the subsequence length (line 4), 
we first compute a very cheap lower bound for the entire time series using the 
algorithm in Table 2. If the DTW distance for the region suggested by the lowest 
value of this lower bound is smaller than the best-so-far, we update the best-so-
far. For regions where it is too weak to prune, we selectively compute a tighter 
bound and repeat the same process. The algorithm ends after it has explored the 
highest resolution (i.e. D = 1) (lines 6–12).

Note that when computing lower bounds at any resolution level, we take the 
pruned-off locations at the lower levels into account, meaning that we do not com-
pute a lower bound for those regions. The lower bound computation process is 
described Table 2.

Lines 1 and 2 downsample both the time series and the Boolean vector specifying 
the pruned and non-pruned locations. Line 3 scales downs the subsequence length 
relative to the downsampling rate. Lines 4–6 compute the downsampled lower 
bound  LBKeoghD:1, expand it to the size of the complete lower bound and scale up 
the result by the downsampling factor.

3.2.2  Phase II of SWAMP

Let us review the situation at the end of Phase I. From the original set of n−m + 1 
candidate time series subsequences that might have contained the top-1 motif, we 
pruned many (hopefully the vast majority) of them into a much smaller set c, of 
remaining candidates.

Globally, we know:

1. A best-so-far value, which is an upper bound on the value of the top-1 motif. We 
also know which pair from c is responsible for producing that low value.

Locally, for each subsequence, we know:

2. A DTW lower bound value on its distance to its nearest neighbor.
3. The location of its nearest neighbor in the lower bound space, which may or may 

not also be its DTW nearest neighbor.

We now need to process the set of candidates c to find the true top-1 motif, or if the 
current best-so-far refers to the top-1 motif, confirm that fact by pruning every other 
possible candidate.

Note that even if we processed all O
(
c2
)
 pairwise comparisons randomly, there is 

still the possibility of pruning more candidates. In particular, every time the best-so-
far value decreases, we can use the information in ‘3’ above to prune additional can-
didates in c, whose lower bounds now exceed the newly decreased best-so-far value.
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As shown in Table 3 we can see this search as a classic nested loop, in which the 
outer loop considers each candidate in c, finding its DTW nearest neighbor (non-
trivial match) in c.

Given our stated strategy of trying to drive the best-so-far down as fast as pos-
sible, the optimal ordering for our search is obvious. In the outer loop we should 
start with a candidate that is one of the true DTW motif pair, and in the inner loop 
we should start with the other subsequence of that motif pair. Clearly, we cannot 
do this, since that assumes we already know what we are actually trying to com-
pute. However, we can approximate this optimal ordering quite well. On average, 
the true DTW distance is highly correlated with its lower bound (see Fig. 9). Thus, 
we should order the outer loop in increasing order of the lower bounds provided by 
 LBKeogh1:1 in the last iteration of Phase I (line 2).

For the inner loop, for the very first iteration we consider the candidate’s nearest 
neighbor in lower bound space and replace it with its immediate neighbor (4–7). 
After this first comparison, the subsequent iterations can be done in any order. The 
algorithm in Table 3 formalizes these observations.

Note that we have added four further optimizations into the inner loop. We use 
a cheap but weak lower bound  LBKimFL to prune some subsequences (line 12). For 
those pairs that survive, we use a tighter but more expensive lower bound  LBKeogh1:1 

Table 3  SWAMP: discovers the top-1 DTW motifs
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(line 13). Moreover, we use the early abandoning version of  LBKeogh, as introduced 
in (Rakthanmanon et al. 2013). Finally, if all previous attempts at pruning fail, and 
we are forced to do DTW, we compute the early abandoning version of DTW, which 
was also introduced in Rakthanmanon et al. (2013) (line 14). If any candidates sur-
vive that step, we update the best-so-far and prune the remaining unpromising sub-
sequences (line 15–18).

Revisiting  LBKeogh1:1 in this phase is worth clarifying. We do already know the 
 LBKeogh1:1 distance to each candidate’s nearest neighbor (from Phase I), but not to 
all its neighbors. Therefore, it is possible that with another round of lower bound 
computation for the remaining pairs, we can potentially have more prunings.

3.3  A visual intuition of SWAMP

We conclude our introduction of SWAMP with a visual intuition and review. In a 
test that previews the experiment shown later in Fig.  14, we searched for the top 
DTW motif of length 400, in an electrical demand dataset of length 20,000, using a 
warping window of 16. We carefully recorded what elements of the SWAMP algo-
rithm are responsible for processing (pruning or computing) what fraction of the 
candidate pairs of subsequences. Figure 11 shows the results.

This trace shows that at least in this case, only a vanishing small percentage of 
candidates survive to Phase II, where increasingly expensive computations are used 
to prune them, except for just 0.0204% of the candidates, which actually need full 
DTW.

The figure also shows the utility of our hierarchy of lower bounds approach. For 
example,  LBKeogh2:1 pruned 65.71% of the candidates. Had we not used our hier-
archical approach, then  LBKeogh1:1 would also have pruned them, but would have 
taken about four times longer. In general, this figure suggests that every element of 
our algorithm is responsible for some speedup.

3.4  Complexity analysis

The Euclidean distance MP algorithms such as SCRIMP (Zhu et al. 2018) have iden-
tical best-case and worst-case times, independent of the data. In contrast, the perfor-
mance of SWAMP does depend on the data. For example, suppose we are given 
pure random data (not random-walk, which is actually an ideal case). Here we mean 
independent random samples; in Matlab these can be obtained by >  > worse_
case = randn(1,10000);. And further suppose we are given a large value for 
w. In such cases, the lower bounds become very weak. In essence, they report a 
lower bound of zero for almost all comparisons. In this case, the time complexity of 
SWAMP is the same as brute force search, O

(
n2m2

)
  time (recall: n is the length of 

the time series and m is the subsequence length). This is because after no pruning in 
Phase I, it will be forced to do O

(
n2
)
 comparisons that take O

(
m2

)
 time.

Of course, such a dataset is unlikely to yield interesting motifs anyway. It is 
reasonable to ask what the time complexity is for datasets that are likely to yield 
semantically meaningful motifs, such as those shown in Sect. 4. For those datasets, 
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we were able to prune at least 99.9% of all DTW calculations in Phase I alone. If we 
pessimistically assume that only the finest level of pruning (that is,  LBKeogh1:1) in 
Phase I actually did any pruning, then we have reduced the complexity to O

(
n2m

)
 . 

This is the same as the best time complexity known for Euclidean distance motif 
discovery before 2016 (Mueen et al. 2009) (since then a further factor of O(m) has 
been shaved off this time (Zhu et al. 2018). However, let us revisit our pessimistic 
assumption. Suppose that 99% of the pruning came from a coarser lower bound, let 
us say  LBKeoghD:1, then the time complexity reduces to O(n2m∕D2) . In real word 
datasets it is often the case that a coarser lower bound can prune the majority of 
DTW calculations. For example, for the dataset shown in Fig. 16, when D is 4 it still 
prunes off 82.7% of the DTW calculations. Because m is often approximately D2 , 
this means that the time complexity can be effectively O

(
n2
)
 , which is the same time 

complexity of SCRIMP (Zhu et  al. 2018) and the other state-of-the-art Euclidean 
motif discovery algorithms. This may seem unintuitive but recall that in order to find 
the closest pair of subsequences, SCRIMP computes the exact distance of every pair 
of subsequences. In contrast, SWAMP tries to compute as few exact distances as 
possible, preferring to prune virtually everything if possible.

In terms of space complexity, SWAMP only requires an inconsequential O(n) 
space overhead.

Fig. 11  For the power demand dataset (see Fig. 14), there are 184,348,801 pairwise subsequences that 
could be the top motif, which need to be pruned or compared. From top to bottom we see the progress of 
SWAMP in processing these candidate pairs. Numbers may not sum exactly to 100%, due to rounding for 
presentation
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4  Empirical evaluation

We begin by stating our experimental philosophy. We have designed all experiments 
such that they are easily reproducible. To this end, we have built a webpage that con-
tains all datasets, code and random number seeds used in this work, together with 
spreadsheets which contain the raw numbers (Alaee 2020). This philosophy extends 
to all the examples in the previous section.

4.1  Examples of DTW motifs

Before conducting more formal experiments, we will take the time to show some 
examples of DTW motifs we have discovered in various datasets, in order to sharpen 
the readers’ appreciation of the utility of DTW in motif discovery.

Entomologists use an apparatus called an Electrical Penetration Graph (EPG) to 
study the behavior of sap-sucking insects (Willett et al. 2016). It is known anecdo-
tally (Willett et al. 2016), and by the use of classic motif discovery (Mueen et al. 
2009), that such behaviors are often highly conserved at a time scale of 1 to 5  s. 
However, is there any behavior conserved at a longer time scale? As shown in 
Fig.  12.bottom.left, if we used the Euclidean distance, we might say “no”. While 
the two patterns in the motif are vaguely similar, we might attribute this to random 
chance.

However, if we simply use the DTW distance, we discover an unexpectedly well-
conserved long motif, corresponding to feeding behavior known as phloem inges-
tion (Willett et al. 2016).

Exploring such datasets rapidly gives one an appreciation as to how brittle the 
Euclidean distance can be. Consider the experiment on a different individual from 
the same insect species shown in Fig. 13.

As before, we cannot directly fault the ED. It does return a pair of subse-
quences that are similar, although somewhat “boring and degenerate”. However, 

Fig. 12  (Top) About 34 min of EPG data collected from an Asian citrus psyllid (ACP) that was feeding 
on a Troyer citrange (Sweet Orange) (Willett et al. 2016). (Bottom) The top-1 ED motif (left) and the 
top-1 DTW motif (right)
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an entomologist would surely prefer to see the DTW motif, which contains exam-
ples of a probing behavior (Willett et al. 2016). To understand why ED could not 
discover these, in Fig. 13.bottom we show the alignment both methods have on 
the sections corresponding to the behavior. ED, with its one-to-one alignment, 
cannot avoid mapping some peaks to valleys, incurring a large distance. In con-
trast, the flexibility of DTW allows it to map peak-to-peak and valley-to-valley, 
allowing the discovery of these semantically identical behaviors.

In Fig.  2 we showed a motif we discovered in consumer electrical-demand 
telemetry. However, for visual clarity we chose a very simple example, the data 
was from a single outlet that was attached to the dishwasher. In Fig. 14 we con-
sider a much more complex and difficult example; we examine the entire house-
hold demand, which includes the combination of refrigeration, cooking devices, 
laundry machines, entertainment devices, etc.

Fig. 13  (Top) The top-1 ED and DTW motifs discovered in seven-hour segment EPG data collected from 
an ACP (Willett et al. 2016). (Bottom) A zoom-in of the DTW motif visually explains why ED has dif-
ficulty finding the same motif as DTW

Fig. 14  (Top) The electrical power demand of a UK house over 18.5 days (Murray et al. 2017). (Bottom) 
The top-1 ED motif (left) and the top-1 DTW motif (right) for an eight-hour query length
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As before, it is hard to fault the ED motif. It tells us that sometimes there is a 
relatively long lull in demand, followed by a sharp increase. However, the DTW 
motif tells us much more. There is a highly conserved pattern, that surely has 
some semantic meaning. Based on its timing (in the middle of the night) we sus-
pect the following. Most power providers in England use a differential tariff to 
encourage users to shift power-hungry processes to run during the night, using 
off-peak electricity. For many people, there are few options, unless they have high 
thermal mass heaters (i.e. underfloor heating). However, many modern European 
washing machines support the use of programable timers, so many people run 
their machines at night. The DTW motif is surely a wash cycle.

One of the most common uses of motif discovery is in analyzing human behav-
ior. It is natural to ask if DTW motifs are helpful in that context. To avoid the 
conflict of interest of producing our own new datasets to test this, we simply 
examined the human behavior datasets in the UCI machine learning repository 
(Dua and Graff 2017). Figure 15 shows one sample experiment.

As this figure hints at, DTW is often able to find repeated structure that defeats 
the Euclidean distance.

In Fig. 16 we performed a similar experiment using a different sensor (gyro-
scope), physically mounted on the body. Note that the amount of warping visible 
in Fig.  16.bottom.left is very small, but once again, it is enough to defeat the 
Euclidean distance.

Note that if we review the motifs discovered by ED in Figs. 1, 14, 15 and 16 they 
are all very similar, in spite of coming from different domains. Moreover, they are 
all “simple”.

This “simplicity bias” was observed in Dau and Keogh (2017), which suggests 
a technique to bias the results away from simple motifs. However, it is not clear we 
can bias towards warped patterns.

Fig. 15  (Top) A time series created by tracking the left-hand of a volunteer, using the Kinect system 
(Feitosa et al. 2018). (Bottom) The top-1 ED motif (left) and the top-1 DTW motif (right) are very dif-
ferent. The ED motif corresponds to the rest position before two different gestures; however, the DTW 
motif is a repeated gesture
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4.2  An example of DTW motif join

One of the useful implications of framing our hunt for DTW motifs as a Matrix Pro-
file problem is that we can avail ourselves of the wealth of expanded definitions for 
the Matrix Profile (Zhu et al. 2016, 2018; Dau and Keogh 2017). In particular, here 
we show the utility of conducting time series joins. The Matrix Profile is defined for 
all types of joins. For example, classic motif discovery can be seen as a self-join. 
Here we are interested in a full-outer-join, equivalent to simply concatenating the 
two time series of interest, and running SWAMP on the result.

To demonstrate the utility of motif joins, we consider a dataset of cricket umpire 
signals. A carefully processed and contrived version of this dataset appears in the 
UCR Archive (Dau et al. 2019). However, the dataset shown in Fig. 17 was recorded 
in the same session, but in natural uninterrupted sequences. We took the full Z-axis 
right-hand acceleration time series from two participants and joined them. Because 
this is a full-outer-join, it is possible that subsequences from one person could join 
with themselves. That is exactly what happened with the ED motif, joining Grae-
me’s sign for “noball” with his (only superficially similar) sign for “six”. In contrast, 
the DTW motif joins examples of the sign for a “six”, in spite of the fact that Alex 
signs it more leisurely than Graeme.

In passing, we foreshadow the scalability results in Sect. 4.4 by noting that for 
this experiment, 99.8562% of all candidate motif pairs were pruned in Phase I, and 

Fig. 16  (Top) A time series created by a hip-worn gyroscope (Dua and Graff 2017). (Bottom) The top-1 
ED motif (left) and the top-1 DTW motif (right) are very different. The ED motif corresponds to two 
transitions (lie-to-sit and sit-to-stand), the DTW motif corresponds to periods of walking-
downstairs

Fig. 17  (Top) A dataset consisting of Graeme signaling, followed by Alex signaling cricket umpire signs. 
(Bottom.left) The top-1 ED motif joins the sign for “noball” with the sign for “six”. (Bottom.right) the 
top-1 DTW motif joins two signs for “six”, one each performed by Alex and Graeme
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that by the end of Phase II, 99.999692% of all candidate motif pairs were pruned. 
Thus, only 0.000308% of the possible DTW comparisons needed to be made.

4.3  DTW motifs create testable hypotheses

We continue our examples with a case study that hints at one of the major uses of 
motif discovery, i.e. finding interesting hypotheses to explore. In Fig. 18 we show 
the results of DTW motif discovery on a dataset obtained by attaching a sensor to a 
wild penguin. The discovered motif is highly conserved (except for a little warping 
that defeats the ED), suggesting that it has some semantic meaning. However, what 
is that meaning? We do not know. However, if we plot the data with the simultane-
ous pressure reading, we see that this behavior seems to happen just as the swim-
ming bird returns to the surface for a brief gulp of air before diving again. Testing 
this hypothesis on other datasets reveals it to be almost always true. However, under-
stating the meaning/mechanism is ongoing work.

4.4  Scalability of SWAMP

To demonstrate the scalability of SWAMP we revisited the experiments shown 
in Figs.  12, 14 and 16. We computed the time needed for brute force search. 
We measured the time needed for SWAMP. Finally, we also computed the time 
needed to find the best Euclidean motif, using the highly optimized state-of-
the-art SCRIMP algorithm (Zhu et al. 2018). This comparison is unfair to us, as 
SCRIMP is returning a different, and much easier-to-compute answer than our 
algorithm. However, it offers what is surely an upper bound on the speedup that 
can be obtained. Figure 19 shows the results.

The results can be summarized as follows. SWAMP is two to three orders of 
magnitude faster than brute force search, and an order of magnitude slower than 
the fastest Euclidean motif algorithm.

Fig. 18  (Top) Telemetry from a wild penguin hunting at sea. (Bottom) A zoom-in of the region that hap-
pens to contain the top-1 DTW motif [the ED motif is shown at Alaee (2020)] and is not obviously inter-
esting). By aligning the motifs with a recording of pressure (red line) we find tentative meaning of the 
motifs (Color figure online)
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These experiments also offer us a chance to do a lesion study. We spent consid-
erable effort motivating the need for a spectrum of lower bounds in Phase I of our 
algorithm (Table 1, lines 6–14). Suppose instead we only use the highest resolu-
tion,  LBKeogh1:1. The returned answer would clearly be the same, but how would 
this affect speed? We tested this, discovering that the time needed increased by 
187%, 1,028% and 113% respectively, showing that the “use the cheapest lower 
bound you can” approach really does help.

Finally, we compared to Silva and Batista (2018), which is the only other exact 
algorithm for finding DTW motifs. On the three datasets above this algorithm 
was slower by 17,274%, 185,511% and 13,857% respectively.

Given the utility of our algorithm for several data mining tasks, we chose to 
conduct additional detailed experiments which we discuss in the following. Fig-
ure 20 shows the time to compute and pruning rate for motif discovery with fixed 
subsequence length 400, fixed warping window size 16 and increasingly long 
time series. The time series in question is an extended version of the household 
electrical power demand dataset we used in Sect. 4.1.

Clearly, the time to compute SWAMP would increase as we increase the length of 
the time series. However, as shown in Fig. 20.right, the pruning rate remains close 
to 1 for all lengths, meaning that we avoid computing most of the true DTW Matrix 
Profile even for very large datasets. With a dataset as large as 1,000,000 data points, 
the time to compute SWAMP is about 9 h as shown in Fig. 20.left. Here, the brute 
force algorithm would simply be untenable.

Fig. 19  The times required by three algorithms to find motifs in the three examples shown in Figs. 12, 
14, and 16. Note that the bars are normalized by the slowest performing algorithm, i.e. brute force search
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4.5  Objective evidence of the superiority of DTW over Euclidean distance

As shown in previous sections, DTW motif discovery can be used to spot conserved 
patterns in real datasets. However, the comparison to Euclidean distance was mostly 
anecdotal. In this section, we will compare the utility of DTW over Euclidean dis-
tance on a large-scale experiment with real and complex data.

In Fig. 21, we show an example of a “sentence” created by concatenating words 
spelled out by the eye movements of an individual modeling Locked-In Syndrome 
(Fang and Shinozaki 2018). The participants learn a code to translate words into a 
sequence of eye-movements, in which the eye traces along the eight cardinal direc-
tions of the compass (and “blinking” as a special character). For example, the 
word “moth” (ガ) can be communicated as the sequence: “left right down 
left upper-right lower-left blinking”. These eye movements 
can be tracked with an inexpensive apparatus and can then be used to transcribe 
movement-to-text.  

To compare the accuracy of DTW and Euclidean distance on the task of discov-
ering conserved structure, we propose the following experiment. From a vocabulary 

Fig. 20  (Left) Time to compute SWAMP increases linearly as we increase the length of the time series 
(note the log scale). (Right) However, since we have pruning rate of almost 100% in every case, the 
increase would be tolerable for very large datasets

Fig. 21  A time series corresponding to a sentence (in Japanese) spelled out by the eye movements of 
an individual modeling Locked-In Syndrome. Only vertical axis is shown. Each colored box shows one 
word. All words have been rescaled to exactly the same length, to facilitate comparison to Euclidean dis-
tance (Color figure online)
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of 150 words, each of which was performed three times by a single individual, we 
randomly create a sentence that has exactly one repeated word. As shown in Fig. 21, 
because the default position of the eye at the beginning and end of word is straight 
ahead, we can concatenate words without producing any obvious artifacts in-
between them.

We generated sentences consisting of 8, 16, 32 and 64 words. We performed 
one hundred runs of motif discovery on these time series using both ED (using the 
Matrix Profile Zhu et al. 2016, 2018) and DTW (using SWAMP with w = 24). While 
all words are of length 600 (possible including a relatively constant prefix and suffix, 
because the participant was in a relaxed state of looking straight ahead), we wanted 
to avoid giving the algorithm this exact value. So, for every experiment we gave 
both ED and DTW a random subsequence length between 540 and 660. Figure 22 
shows the motif discovery success rates for different algorithms.

Both ED and DTW work much better than the default rate (random guessing in 
proportion to the prior probability of events). However, DTW is clearly superior to 
both.

Let use briefly consider the sources of error. Because each time series is gener-
ated by concatenating words without any pause or noises in between, we might cre-
ate “artificial” repeated words. For example, suppose the unique words we embed-
ded happened to include “wombat”, “mangos” and “batman”. When embedded 
into a sentence they could form: …wombatmangosbatman…, making an acciden-
tal motif of “batman”, which really has only one occurrence. This issue is more 
likely in the domain under consideration, which has a cardinality of just nine distinct 
symbols.  Figure 23 shows one such example of a spurious word we discovered.

Fig. 22  SWAMP (red) with a warping window size 24 performs better than both ED MP (blue) and the 
default rate (yellow) in finding the correct motifs on different settings (Color figure online)
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As shown in Fig. 24, another reason why SWAMP can fail here is simply because 
we are only using the X-axis time series. This motivates the need for multidimen-
sional DTW motif discovery. The issues in generalizing to multidimensional DTW 
are subtle (should we allow each dimension to warp independently, or force them to 
warp in synchronicity? See Shokoohi-Yekta et al. (2015)), however they are orthog-
onal to SWAMP’s speed-up mechanisms.

Finally, we should note that even the research effort that produced this dataset, 
and introduced a custom classification model that included information from the 
shape of the time series, and linguistic information (which we ignore), only manage 
to achieve a 81.2% classification accuracy. Therefore, some error seems intrinsic to 
this domain.

We provide another example to demonstrate that DTW can discover motifs that 
would evade classic ED motif discovery. We embedded real patterns extracted from 
Bhattacharjee et al. (2018) into a smoothed random walk. The embedded data con-
sists of motion capture data where a fork was used to feed a dummy. The original 
data contains X, Y, Z components. Here we only use the X component. From a sin-
gle class, we take an exemplar and concatenate it with an exemplar from a different 
class, to produce a higher-level semantic eating event “eating-carrotnoodle”. Carrot 
noodle is a popular dish in Thai restaurants. Figure 25 shows an example of a data-
set with the motif “eating carrots and noodles” embedded in otherwise unstructured 
data.

In order to compare DTW motif discovery algorithm with the classic motif 
discovery algorithm, we performed a similar experiment to the one suggested by 
Imani and Keogh (2019). We created 100 random walks, of four different lengths 
and embedded pairs of examples of the eating-carrot-noodles behavior as shown in 
Fig. 25. We then ran motif discovery on these time series using both ED and DTW 

Fig. 23  The suffix and prefix of two words concatenated to each other (red) is similar to the suffix and 
prefix of two other words concatenated to each other (green). These two words have been mistaken with 
the semantic motifs (the red circles) (Color figure online)

Fig. 24  Two different words that are more similar (red and green) than the embedded motifs (the red cir-
cles) when considering only the vertical axis (Color figure online)
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(SWAMP with w = 8), to see if we could recover the embedded motif. Figure  26 
shows the motif discovery success rates for different algorithms.

This is an intrinsically hard problem. As hinted at in Fig. 25, random walk can 
produce any possible shaped time series, including a pair of subsequences that are 
similar enough to be the motif. However, as shown in Fig. 26, both ED and DTW 
work much better than the default rate, but DTW is clearly superior to both.

5  Discussion

We conclude with a discussion that will help practitioners decide if they should use 
DTW or ED when searching for motifs, and also help them decide on a warping 
window size. Note that the second question really subsumes the first, as in the spe-
cial case of w = 0, DTW is logically identical to ED.

In some domains there is aZeitgeber,2 an external stimulus that synchronizes 
processes. In nature, this can be daily, lunar or annual cycles. In culture, this can 
include the weekly cycles of the typical nine-to-five constraints of the western work-
day. For example, Fig. 27.left shows pedestrian traffic outside a train station in Mel-
bourne for two randomly chosen weeks. There are differences between two weeks, 
but they can mostly be explained by changes in volume at a given time. For example, 
a school holiday reducing lunch time traffic on Monday. Likewise, some physical 
devices (mostly solid state) can produce highly regular outputs. Of course, these dis-
tinctions may not be hard and fast. A pacemaker may give an otherwise erratic pulse 

Fig. 25  An example of a dataset with a pair of motifs “eating carrot and noodle” embedded in otherwise 
unstructured data. One pair is highlighted and shown with a zoom-in version

2 German for “time-giver”, Zeitgeber is normally only used for biological processes. Here we extend the 
meaning to social and cultural processes.
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rate a metronome-like regularity. Such “Zeitgeber time series” will rarely benefit 
from DTW.

In contrast, as Fig.  27.right hints at, many biological signals can have simi-
lar shapes but develop at varying rates of time. This is also true of many physical 
processes. For example, the motif shown in Fig. 14.bottom.right was created by an 
integrated circuit (IC) controlling a device. One might imagine that the IC would 
produce perfect timing. However, it is at the mercy of the varying water pressure and 
water temperature in the house.

Fig. 26  SWAMP (red) with a warping window size 8 performs better than both ED MP (blue) and the 
default rate (yellow) in finding the correct motifs on different settings (Color figure online)

Fig. 27  Two pairs of time series subsequences with seven peaks, aligned with DTW. For the foot traffic 
dataset, the DTW alignment is almost linear, essentially the Euclidean Distance. In contrast, respiration 
data has highly non-linear alignment
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5.1  SWAMP variants

In the last forty years there have been many modifications or extensions of DTW 
proposed. A twenty year old classic reference lists dozens of variants (Sankoff 
1983), and the pace of research has greatly accelerated since then (Geler et al. 2019; 
Keogh and Ratanamahatana 2005; Shokoohi-Yekta et  al. 2015; Silva et  al. 2016). 
We believe that the SWAMP algorithm can support most or all variants of DTW. 
Moreover, there may be reasons to use some of these variants, at least because they 
may be faster. In the following section we discuss this idea.

5.2  Itakura constraint on warping path

Virtually all works on DTW define a global constraint which determines how far 
the warping path is allowed to deviate from the diagonal. Up to this point, we have 
used the Sakoe-Chiba constraint (Rabiner 1993), which is the most commonly used 
variant by the data mining community (Dau et al. 2019; Keogh and Ratanamahatana 
2005; Rakthanmanon et al. 2013; Silva and Batista 2018; Silva et al. 2016; Tan et al 
2019). However, there exists other constraints including the Itakura parallelogram 
(Sakoe and Chiba 1978). Figure 28 illustrates the two schemes.

As we will show below, there are two reasons to expect that the Itakura paral-
lelogram could be faster than Sakoe-Chiba band for motif discovery. However, if 
we are to advocate the Itakura parallelogram, we must first address the quality of 
results it can return. It seems to be generally believed by the data mining com-
munity that the Itakura constraint is inferior to the Sakoe-Chiba band. For exam-
ple, a recent head-to-head comparison of the two methods on eighty-five datasets 
finds “…although the Itakura parallelogram is generally inferior to the Sakoe-
Chiba band…” The clustering experiment shown in Fig.  29.top.panel seems to 
confirm this.

Fig. 28  Global constraints limit the scope of the warping path to the grey areas. The two most common 
constraints are (left) Sakoe-Chiba band, and (right) Itakura parallelogram. w is a term defining allowed 
range of warping for a given point in a sequence



892 S. Alaee et al.

1 3

However, these results are based solely upon data from the UCR archive (Dau 
et al. 2019). Most of these datasets consist of individual exemplars extracted from 
a longer time series. For example, individual heartbeats extracted from an elec-
trocardiogram. Sometimes, these individual heartbeats, gait cycles or gestures are 
not perfectly extracted, and may have small artifacts at their beginning or end. 
This is modeled by the data object D shown in Fig. 29.

This issue is compounded by the fact that most heartbeats extraction algo-
rithms, and gait-cycle extraction algorithms tend to define the beginning point of 
a cycle at the most dynamic locations of the cycle. For heartbeats this is the peak 
of the R-wave, and for gait it is (typically) the heel strike. Both warping methods 
can tolerate differences between two time series that happen towards the middle 
of the time series, but as we get closer to either of the ends, the narrowing apex 
of the parallelogram mean that any differences are more keenly felt by the Itakura 
approach. The issues caused by these small artifacts at the Prefix and Suffix of a 
time series have been noted before in a classification context (Silva et al. 2016), 
and techniques have been suggested to solve this problem. However, this issue is 
largely irrelevant if we generalize from the (somewhat unnatural) UCR-contrived 

Fig. 29  (Top.panel) Three data objects, A, B and C, clustered using either the Sakoe-Chiba band or the 
Itakura constraint produce essentially identical results. However, if we replace C with D, which is almost 
identical, but just slightly circularly shifted (see bottom.panel) the Sakoe-Chiba band is largely unaf-
fected, but the Itakura constraint produces an unintuitive clustering, grouping C and A together, and con-
sidering D as the outlier



893

1 3

Time series motifs discovery under DTW allows more robust…

classification setting and consider subsequence similarity search or motif discov-
ery. In such case we are implicitly or explicitly “sliding the subsequences against 
each other” and reporting the smallest distance. Thus, global misalignment of 
patterns (as opposed to local misalignments addressed by DTW itself) are not an 
issue.

To summarize, while the community may be correct to (slightly) prefer Sakoe-
Chiba band over the Itakura constraint for classification of extracted time series 
snippets (Geler et al. 2019) this preference does not seem to have implications for 
motif discovery from long streams. Moreover, as we explain below, the Itakura 
approach can produce tighter lower bounds, hence speeding up our algorithm.

5.3  Exploiting the Itakura speed up part I: tighter lower bounds

Recall that we defined the upper and lower envelopes enclosing a time series Q in 
Eq. (2). In this equation w is the band or the maximum allowed range of warping. In 
the case of Sakoe-Chiba, w is independent of the index i of the time series. However, 
for Itakura it is a function of i. Figure 30 shows the envelopes created for the time 
series Q using the two schemes.

Fig. 30  An illustration of the envelopes U and L, created for time series Q (shown in red), using (left) the 
Sakoe-Chiba band and (right) the Itakura parallelogram (Color figure online)

Fig. 31  An illustration of the lower bounding function  LBKeogh(Q,T). Time series Q (shown in red), is 
enclosed in the bounding envelope of U and L using (left) the Sakoe-Chiba band and (right) the Itakura 
parallelogram (Color figure online)
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We defined the lower bounding function between the time series T and Q, i.e. 
 LBKeogh(T,Q), in Eq.  (1). The example in Fig. 4 shows the lower bound generated 
using the Sakoe-Chiba band. Figure 31 illustrates the lower bounds generated using 
the Sakoe-Chiba and Itakura for the same time series in Fig. 4.

Since the tightness of the bounds is proportional to the area filled with the gray 
hatch lines, we can see that in this example the Itakura parallelogram provides a 
tighter bound than the Sakoe-Chiba band.

The reader will appreciate that with equal w in these two cases, the parallelo-
gram always produces a tighter lower bound. It is suggestive of a significant speed 
up. However, it is not necessarily the case. Recall that for the SWAMP algorithm, 
the speed depends upon both tightness of lower bounds and the value best-so-far. If 
the best-so-far is small, the algorithm can prune more efficiently. While the Itakura 
parallelogram has a tighter lower bound, the motif distance under the Itakura paral-
lelogram can be higher, if there is significant warping near the beginning or end of 
the motif. If that is the case, the final best-so-far will not be as low as in the Sakoe-
Chiba case. It is not obvious how these competing factors will affect the final result, 
but a brief review of some previous results gives us hope. Consider again the DTW 
motifs discovered in Figs.  2, 13, 14 and 15. In each case the warping variability 
is concentrated in the center of the subsequence. This means that the Itakura and 
Sakoe-Chiba distances will be almost identical, but as noted above, the Itakura par-
allelogram will have a much tighter lower bound. To compare the speed-up using 
the Itakura band against the Sakoe-Chiba for our algorithm, we repeated our experi-
ments for three datasets described in Fig. 19, this time using Itakura constraint. The 
discovered motifs in every case remained essentially the same. However, the time 
needed to compute SWAMP changed as follows: On the three datasets in Figs. 12, 
14 and 16 and the Itakura parallelogram was faster by 80%, 9% and 80%.

5.4  Exploiting the Itakura speed up part II: earlier early‑abandoning

While the results in the previous section suggest that Itakura is more efficient than 
Sakoe-Chiba in some datasets, there is still another observation that we can exploit.

Normally when we want to compute the lower bound  LBKeogh, we do it in a left-
to-right order. However, if we want to early abandon as early as possible, we should 
do it in order of the largest (in expectation) value first. This way, the incrementality 
computed error grows as fast as possible, and as soon as it exceeds the best-so-far 
we can abandon.

For the Sakoe-Chiba, every point on the subsequences has the same expected 
contribution, hence our use of simple left to right. However, as Fig.  31 shows, 
Itakura parallelogram tends to have most of its lower bound contribution at either 
end, where the envelopes are thinner. This suggests the following heuristic: sort the 
indices in the ascending order of their distance between lower and upper envelopes 
and compute the lower bound in that order. This means visiting the endpoints of the 
sequence first and then moving towards the middle points. To be clear, instead of 
scanning the indices of Eq. (4) in the order 1, 2, 3,…,m − 1, m, we visit them in the 
order 1, m, 2, m − 1, 3, m − 2, …, m/2. As before, as soon as the distance between 
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the endpoints of two sequences is higher than the best-so-far, we can stop the lower 
bound calculation as shown in Fig. 32.

To see what difference this optimization makes, without regard to implementa-
tion dependent details of a language, we revisited Phase II of the experiment shown 
in Fig. 14. We measured at what point the early abandoning could actually abandon 
for all comparisons in Phase II. Figure 33 shows the results.

Note that in the act of sorting the indices we have been able to shift the early 
abandoning to the most beginning offsets, cutting the number of all point-wise com-
parisons to almost half the length of the sequence, as shown in Fig. 33. However, 

Fig. 32  An illustration of early abandoning of  LBKeogh using Itakura constraint. We have a best-so-far 
value of bsf. After incrementally summing the first fourteen (of sixty four) individual contributions to the 
lower bound (seven on each endpoint) we have exceeded bsf, thus it is pointless to continue the calcula-
tion (Keogh et al. 2009)

Fig. 33  The distribution of early abandoning offsets for all comparisons in Phase II of the experiment 
in Fig. 14. The distribution is spread out over the whole range of values with the left to right ordering 
(red), while it is mostly skewed to the beginning offsets with the optimized ordering (blue) (Color figure 
online)
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without the optimized ordering, the distribution would be spread out over the whole 
range of values from zero to the full length of the sequence.

We refer the interested readers to the companion website (Alaee 2020) where we 
have made available all the source codes for this algorithm to download and execute.

6  A case study in using swamp to support a classification task

We conclude this work by showing how SWAMP can be used to help build a time 
series classification algorithm. There are literally hundreds of time series classifi-
cation algorithms in the literature (Bagnall et  al. 2017). However, the vast major-
ity of them only consider the UCR archive datasets or similar data sources, which 
have had individual examples carefully extracted, normalized and processed. As 
Dau et al. (2019) and others have recently noted, these works largely bypass the real 
difficulty of creating a practical time series classifier. We argue that the key ques-
tion is how we can extract high quality exemplars from noisy and weakly labeled 
data and estimate a distance threshold. The latter issue is typically glossed over by 
researchers that rely on the UCR archive datasets to motivate and test their contri-
butions. For example, one of the most famous datasets in the UCR archive is Gun/
Point, which tasks us with the problem of discriminating between aiming a gun, and 
merely pointing with a finger. It is obvious that in any practical situation, most of 
the time, an individual is doing neither action. This suggests that there should be a 
third, highly polymorphic class, neither, with a very high prior probability. It is 
not clear how most proposed methods would generalize to this more realistic setting.

Here we present an end-to-end example of how SWAMP can be used to build a 
classifier. This is meant to be a demonstration; a more rigorous evaluation is beyond 
the scope of this paper. For simplicity, we will confine our attention to a single time 
series, the Z-axis gyroscope on the right wrist. However, generalization to multidi-
mensional data is straightforward.

We consider the OPPORTUNITY Activity Recognition Dataset (Chavarriaga 
et al. 2013). This activity recognition environment and scenario has been designed 
to generate many activity primitives in a realistic setting. Subjects operated in a 
room simulating a studio flat with furniture and kitchen. The subjects were moni-
tored using body-worn sensors. In addition, various items and utensils also had sen-
sors, some binary (such as door open/closed) and some real-valued acceleration val-
ues (including the cup). It can be helpful to transform these real-valued data into 
binary data, equivalent to “cup was moved”.

The data creators “instructed users to follow a high-level script but leaving them 
free interpretation as how to achieve the high-level goals.” In one experiment they 
asked the user to perform a drill comprising of the following actions:

1. Open then close the fridge.
2. Open then close the dishwasher.
3. Open then close 3 drawers (at different heights).
4. Open then close door 1.
5. Open then close door 2.
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6. Toggle the lights on then off.
7. Clean the table.
8. Drink while standing.
9. Drink while seated.

As Fig. 34 shows, even if we know this script, it can be difficult to semanti-
cally segment this data. Fortunately, we can use the sensors on the implements 
to at least weakly label this data. For example, if there is significant accelera-
tion of the cup, this is suggestive of either the Drink-while-standing or 
Drink-while-seated class. However, there are two reasons why this does 
not completely solve our problem at hand. First, it is possible that the cup could 
move during other behaviors, especially Clean-the-table. Second, even if 
we are sure that the motion of the utensils is associated with a particular class, 
we cannot be sure exactly what part of the behavior is conserved. For example, it 
may be the case that some motion before the cup is lifted is conserved (as the user 
reaches for it). It may also be the case that some motion during drinking is not 
well conserved. For example, perhaps the path from the table to the user’s lip is 
well conserved, but once at the lip, the level of the liquid in the cup specifies the 
amount of rotation needed to imbibe. Thus, that part of the behavior is not well 
conserved. To be clear, this is pure speculation on our part. However, most clas-
sification tasks surely have similar uncertainties.

This motivates our approach. Even in this most familiar domain, we cannot tell 
from prior knowledge what part of a behavior is conserved. However, SWAMP 
can find the most conserved patterns in the time series. If these motifs happen 
to approximately line up with a weak label for a behavior, we can assume that 
the motif is likely to be a good prototype to recognize future occurrences of that 
behavior. Moreover, even if we have only two weak labels, we have at least a 
starting point to produce a threshold. The motif distance reflects the smallest 
match between two instances; as such it is clearly a lower bound to a good thresh-
old value, but clearly it is at least the correct order of magnitude.

Our experiments consist of two parts. The first part demonstrates use of 
SWAMP for intra-subject activity classification. We chose the motion data cor-
responding to the Right Wrist Inertial Measurement (RLA) Gyroscopic Z. Train-
ing was done on the first ten repetitions of the activity set. The first test was done 
on the remaining ten repetitions in the same Drill 1 session. Figure  35 shows 
the top motifs discovered from the training data. The input time series was of 

Fig. 34  A sequence of nine activities performed by the user in OPPORTUNITY Activity dataset
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length 28,330 with a subsequence length of 300 (chosen to reflect the approxi-
mate length of Drink-while-standing) and a warping window of 4. 

To classify the test data, we computed the DTW distance between the first top 
motif in the train data and each test subsequence as shown in Fig. 36. We then 
validated the matches against the weak labels associated with the time series as 
shown in Fig. 37. The weak labels were pre-processed before the classification. 
First, we z-normalized Gyroscope Z-axis. The results were set to binary values by 
using a threshold value of 2.0. There are two events of drinking from cup in the 
dataset, Drinking-while-standing and Drinking-while-seated. 
We manually removed activity for Drinking-while-seated which is 

Fig. 35  About sixteen minutes of the activity sequence associated with the first Drill session of the 
OPPORTUNITY dataset. The top DTW motif was the pair [20102, 25575] and corresponds to Drink-
while-standing, with a distance of 4.41. The best Euclidean distance motif was the pair [3867, 
20098] with a distance of 6.93, which also corresponds to Drink-while-standing 

Fig. 36  DTW query distances (red) between the training set’s first top motif (blue) and the first test set 
(grey) (Color figure online)

Fig. 37  The intra-subject variability of the Drink-while-standing activity is well captured by 
both ED and DTW. However, DTW outperforms ED with no false positives. The reason that ED has 
some false positives so close to true positives in some cases is that it is matching with Drink-while-
sitting rather than Drink-while standing 
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visually straightforward. Finally, we activated all points within 2 s of activity (i.e. 
60 samples). All locations where the distance is minimum on Fig. 36 correspond 
to the activity of Drink-while-standing which have been correctly classi-
fied using DTW as shown in Fig. 37. Here the default rate is just 9.8%.

This test demonstrates that even though an activity may be the top-1 motif for 
both DTW and ED, DTW outperforms ED when querying for all instances of such 
an activity. If there is a phase variation in this activity, ED will have difficulty, espe-
cially if the motif is complex. In this first test, ED performs closely to DTW, but 
we speculate that intra-subject phase variations are minimal when performing a 
monotonized task like repeating a set of activities twenty times.

The second experiment uses the same training data as the first (i.e. the first ten 
activity set repetitions of the right wrist time series in Drill 1), but now we con-
sider inter-subject variability. The test data from the Drill 2 session also corresponds 
to the right wrist motion. Figure  38 shows the test data and the DTW distances 
between the first top-1 motif in the train data and each test subsequence. Figure 39 
illustrates the classification results for this time series.

As Fig. 39 shows, the inter-subject variability of the Drink-while-stand-
ing activity is well captured by DTW. Out of twenty events on this time series, sev-
enteen events have been correctly classified (i.e. true positives) while three events 
have been missed (i.e. false negatives). Compare it to the results from ED where 
only nine have been correctly classified. Note that here the default rate is just 11%. 
This test demonstrates that DTW queries using a motif of motion data can effec-
tively be used as an activity classifier despite inter-subject variability.

Without motif discovery, a reasonable idea would have been to assume that the 
beginning of the cup activation indicated the beginning of the pattern to extract in 
the Gyroscopic Z axis. We also tried this, using the same length query. Since there 

Fig. 38  DTW query distances (red) between the training set’s first top motif and the second test set 
(grey) (Color figure online)

Fig. 39  DTW correctly finds seventeen instances of the Drink-while-standing activity out of 
twenty events. However, ED discovered only nine correct instances
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are twenty such locations in the training data, we tried all of them. The average 
result is 15.7 true positives and 4.3 false positives. Recall that using SWAMP gave 
us seventeen true positives and three false positives. This suggests that the simple 
heuristic of using the most conserved pattern is a promising idea.

While the above results are limited, they clearly show the utility of using motifs 
as a starting point in any attempt to build a time series classifier from the ground up.

7  Discord discovery using swamp

We have shown that SWAMP can find DTW motifs efficiently by using the Matrix 
Profile framework. Instead of computing the entire DTW Matrix Profile, we gain 
scalability by only computing the smallest values in it (i.e. the motifs themselves), 
plus some other values that we could not prune. However, there are several other 
interesting properties of the Matrix Profile (Zhu et al. 2016, 2018). In particular, the 
highest value in the Matrix Profile coincides with the definition of time series dis-
cords, a primitive introduced in Keogh et al. (2005). Since their introduction, time 
series discords have emerged as a competitive approach for discovering anomalies. 
For example, a team led by Vipin Kumar conducted an extensive empirical com-
parison and concluded “on 19 different publicly available data sets comparing 9 dif-
ferent techniques, time series discords is the best overall technique among all tech-
niques.” (Chandola et al. 2009). We attribute much of this success to the simplicity 
of the definition. Time series discords are intuitively defined as the subsequences of 
a time series that are maximally far away from their nearest neighbors. This defini-
tion only requires a single user specified parameter, the subsequence length. With 
only a single parameter to set, it is harder to overfit the anomaly definition, and over-
fitting seems to be the major source of false positives (Chandola et al. 2009). The 
first algorithm to find time series discords, Heuristically Order Time series using 
Symbolic Aggregate Approximation (HOTSAX), required a worst-case O

(
n2
)
 dis-

tance comparisons but was efficient in the average case. A later algorithm was dis-
covered that required only worst-case O(n) distance comparisons (albeit, with a high 
constant factor (Yankov et al. 2008)). Unfortunately, that algorithm requires the tri-
angular inequality property, which is not satisfied by the DTW distance.

The reader will appreciate that an “inversion” of the SWAMP algorithm may help 
here. We can quickly compute the ED Matrix Profile, which is an upper bound to the 
DTW Matrix Profile. We can then find the highest value and compute its DTW near-
est neighbor with any fast DTW subsequence search method (we use the UCR suite 
(Rakthanmanon et  al. 2013)). This reduced distance is our best-so-far (higher the 
better, the reverse of motif discovery). If this value is greater than all other locations 
in the ED Matrix Profile, then we have discovered the top-1 DTW discord. If not, we 
can examine the next highest value in the ED Matrix Profile and prune all locations 
on the ED MP that are below the current best-so-far. We repeat this process until 
there are no more qualifying candidates, at which point we are assured that we have 
found the true DTW discord. The algorithm in Table 4 formalizes this process.

In line 1 we compute the classic Matrix Profile for the time series T with the given 
subsequence length m. At this moment, the value of the best-so-far is initialized to 
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zero. Using this Matrix Profile, we find the highest values, i.e. ED discord (line 6). 
We then measure the distance between the discord and its nearest neighbor under 
Dynamic Time Warping (DTW) (line 9) and prune all locations in the ED Matrix 
Profile that are above this value (line 10). If the DTW distance for the region indi-
cated by the highest value of Matrix Profile is greater than the best-so-far, we update 
the best-so-far. We repeat the same process with the next highest value in ED Matrix 
Profile (line 15). The algorithm ends when there are no regions in the ED Matrix 
Profile that have higher values than the best-so-far (lines 16–18).

To demonstrate the utility of this algorithm, we created a toy problem as shown 
in Fig. 40. This time series is a good model for the walking or running gait cycle; 
it is periodic, but not exactly so. There is an embedded anomaly inside the time 
series at location 1990 (highlighted in green). The anomaly is simply a dropped 
value. We can say it is a “true” anomaly in the sense that if we assume the time 
series was a gait cycle, the abrupt change would correspond to an acceleration 
that could not be achieved by a bullet, much less a human limb. The classic 
Matrix Profile does not find the induced anomaly as the top discord. According 

Table 4  DTWDiscordDiscovery: finds the top-1 discord using DTW

Fig. 40  (Top) The discord at location 1990 (shown in green) was discovered by DTW. However, ED 
finds the discord to be at location 1261 (shown in red). (Bottom) A zoom-in of the region that happens to 
contain the top-1 DTW motif and ED motif (Color figure online)
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to the ED, the top discord is at 1261 (highlighted in red). However, the DTW dis-
cord discovery algorithm finds the discord to be in top place.

This tells us that if we have a fast way to discover the top DTW discord, same 
as the top DTW motif, then we also have a superior algorithm to ED in finding 
the discords. As we shall show in Fig. 41 our DTW discord discovery algorithm 
allows such fast computations.

As Fig.  41 shows, for different sizes of the warping window, less than 10% of 
the pairs need to be compared using DTW, i.e. more than 90% of the pairs can be 
pruned from the search space. The maximum time needed to calculate DTW dis-
tance between a pair of subsequences with UCR suite in this dataset is 0.0001  s. 
The maximum time needed to calculate the ED Matrix Profile is 0.28 s. Overall, the 
maximum time needed to find the top discord is about 0.62 s on average which is 
about 143.2 speed up over the time to compute the brute force DTW Matrix Profile.

7.1  Respiratory data exploration with discords

We consider the problem of finding anomalies in respiration data. We investi-
gated a time series showing a patient’s respiration (measured by thorax exten-
sion), as they wake up. We chose a discord length of 256. In Fig. 42, we see the 
outcome of the experiment.

As Fig.  42 shows, using only a small warping window (of size 2), we are 
able to find a meaningful discord in this time series. The discord found by DTW 
(highlighted in green) corresponds to shallow breaths that indicated the transition 

Fig. 41  Only a tiny fraction of the pairs need to be compared using DTW before finding the discord. For 
all warping window sizes, the DTW calculation rate is below 10%
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of sleeping states. However, the discord found by ED (highlighted in red) does 
not correspond to any anomalies.

8  Conclusion and future work

We have introduced SWAMP, the first practical tool to find DTW-based motifs in 
large datasets. Moreover, we have shown that on many real datasets, DTW returns 
more meaningful motifs than Euclidian distance-based motifs.

SWAMP offers many avenues for improvement. The time the classic Matrix 
Profile algorithms takes depends only on n, thus it is possible to know how long 
it will take to find the motifs and build a perfectly accurate progress bar for an 
interactive tool. In contrast, the time required for SWAMP depends on m, w and 
the data itself. We would like to be able to tell the user (at least approximately) 
how long our algorithm will take to finish.

The time for brute force DTW motif discovery is completely dominated by the 
cost of computing DTW. However, SWAMP is dominated by the time computa-
tion of the lower bounds. There has been little effort to optimize the time needed 
to compute these bounds, because they are most commonly used for disk-based 
indexing, which is itself dominated by I/O costs. Thus, we suspect that lower 
bounds computation may be amiable to many further algorithmic and implemen-
tation optimizations. Such optimizations could be trivially plugged into SWAMP 
to improve its performance. We also plan to explore the possibility of framing 
SWAMP as an anytime algorithm (Zhu et al. 2018).

Fig. 42  The top-1 discords found in a time series of a patient’s respiration as they wake up, using both 
ED (red) and DTW (green) (Color figure online)
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Appendix

Reproducibility

We have taken extraordinary steps to make sure that every experiment (including 
the figures and samples that proceed the official experimental section) are easy to 
reproduce. To this end:

• For experiments that have a stochastic element, we initialize with the same ran-
dom number generator seed before each iteration. This ensures that a reader can 
exactly reproduce our output, independent of their platform.

• Every data used in each figure or table is explicitly labeled with the name of the 
figure/table and archived at Alaee (2020) in a universally readable ASCII plain 
text format, in addition to the.mat format that we use internally.

• We have created a presentation that gives additional information about anything 
we did to create our final figures. For example, purely for aesthetic reasons, we 
“flipped” one of the dendrograms shown in Fig. 3 upside down (without chang-
ing its topology or distances). The presentation reconciles the slight differences 
between the output of the code, and the final figures.

• In addition to the main code, we have included all the minor code, including the 
code to produce dendrograms, etc.

 For many experiments we choose to use time series and query lengths that are 
powers of two. This is not required for SWAMP but is a consideration for future 
researchers who may try to improve on our results with either DFT or DWT meth-
ods, both of which have their best cases when the data lengths are powers of two.

As noted in the paper but reiterated here, in many works, the size of the warping 
window is often given as a percentage of the length of the time series (Keogh and 
Ratanamahatana 2005; Ratanamahatana and Keogh 2005), in this work we give it 
as an absolute number. One reason for this is because a given percentage may not 
evenly divide a time series length, and different rounding policies may affect the 
results.

Where warranted, we presented some details in the paper very tersely. For exam-
ple, we noted in the main text:

Finally, we compared to Silva and Batista (2018), which is the only other exact 
algorithm for finding DTW motifs. On the three datasets above this algorithm was 
17,274%, 185,511% and 13,857% respectively.

The details are a little sparse in that text. However:

• The differences are so large that we hope the reader will understand our decision 
not to spend too much of the page limits here.

• The full detailed results are available at Alaee (2020), together with the full code 
and data needed to reproduce the results.
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Table 5  A pair of calibration 
time series

T Q

0.40  − 0.30
0.20  − 0.30
 − 0.10  − 0.30
 − 0.10  − 0.40
 − 0.30  − 0.60
 − 0.60  − 0.90
 − 0.70  − 1.30
 − 0.80  − 1.50
 − 0.90  − 1.50
 − 1.00  − 1.30
 − 1.20  − 0.90
 − 1.10  − 0.50
 − 1.20  − 0.10
 − 1.30 0.10
 − 1.30 0.20
 − 1.30 0.20
 − 1.20 0.10
 − 1.10 0.20
 − 1.00 0.30
 − 0.90 0.50
 − 0.80 0.80
 − 0.80 1.00
 − 0.50 1.10
 − 0.40 1.20
 − 0.20 1.20
0.00 1.30
0.10 1.30
0.30 1.40
0.50 1.50
0.60 1.60
0.80 1.70
0.90 1.60
1.10 1.50
1.20 1.40
1.30 1.20
1.50 1.00
1.60 0.90
1.60 0.80
1.70 0.70
1.50 0.70
1.60 0.70
1.50 0.60
1.50 0.50
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 Here we note that this comparison was completely fair. We used the exact same 
computer, same datasets, and same implementations of all common subroutines, 
including the various lower bounds, ED and DTW comparison algorithms, etc. 
Moreover, we further optimized the original algorithm extensively. The origi-
nal algorithm finds both discords and motifs under DTW, but we made it faster by 
removing the need to find discords, and only requiring it to find the top-1 motif.

Likewise, our comparison to brute-force search was rigorously fair. There are 
many ways to make a DTW-based algorithm perform poorly. For example, one 
could implement the rival method using the recursive version of DTW instead of 
the iterative version. The recursive version of DTW is one to two orders of magni-
tude slower than the iterative version. However, here we again used the exact same 
computer, same datasets, and most importantly same implementations of all com-
mon subroutines, including the various lower bounds, ED and DTW comparison 
algorithms.

Table 5  (continued) T Q

1.50 0.40
1.30 0.20
1.20 0.00
1.10  − 0.20
0.90  − 0.40
0.80  − 0.60
0.60  − 0.70
0.40  − 0.80
0.30  − 0.90
0.10  − 0.90
 − 0.20  − 0.90
 − 0.40  − 0.90
 − 0.50  − 1.00
 − 0.60  − 1.20
 − 0.80  − 1.50
 − 0.90  − 1.60
 − 1.10  − 1.70
 − 1.10  − 1.60
 − 1.20  − 1.30
 − 1.30  − 0.90
 − 1.30  − 0.70
Mean =  − 0.001562, STD = 1.0015055 Mean = 0.003125, 

STD = 1.002848
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Fig. 43  (Top to bottom) For the two time series listed in Table  1, a visual intuition that shows: the 
Euclidean distance, the cDTW, the classic  LBKeogh lower bound, and the reduced dimensionality  LBKeogh 
lower bound
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A reproducibility “ROSETTA STONE”

As noted above, we have made all our code publicly available in perpetuity (Alaee 
2020). However, a reader may wish to implement and test our ideas on another plat-
form. If we both agree on all distance measures, including the Euclidean distance, 
cDTW distance and parametrized lower bounds, then we can be virtually assured 
that all other steps will be in agreement. It may seem unlikely that we could disagree 
on such matters. However, our experience suggests otherwise. For example, we have 
seen the w parameter in cDTW interpreted as the total freedom to wander off the 
diagonal. In essence, that (mis)understanding will give only half the w value that 
we mean to communicate (and is more commonly understood (Rakthanmanon et al. 
2013)). Likewise, by default, some DTW programs normalize the distance by the 
path length. This makes only a very subtle difference when w is small, nevertheless 
it could cause our lower bounds to no longer be admissible. Thus, in order to make 
sure we agree on all measures, in Table 5 we will create a pair of time series that 
the interested reader can literally cut-and-paste into their framework and compare 
results on all measures.

Note that after we z-normalized these time series, we rounded them to have just 
two significant digits, in order to further facilitate a detailed forensic tracing of the 
computation. However, this rounding means that the two time series are no longer 
exactly z-normalized. All subsequent analysis assumes the exact values in Table 5.

In Fig. 43 we show a visual intuition for the various measures that are key to this 
work. The Euclidean distance ED(Q,T) is 7.88098.

Recall that in our implementation we perform the optimization of not using the 
squared root function (see Sect. 4.1.1 of Rakthanmanon et al. 2013). However, we 
ignore that optimization here. Using a value of eight for the warping parameter w, 
cDTW(Q,T) is 2.4240. The value of Keogh’s classic lower bound, in our notation 
 LBKeogh1:1(Q,T), is 1.5865. It is important to recall that this function is not symmet-
ric, in general  LBKeogh1:1(Q,T) ≠ LBKeogh1:1(T,Q). Finally, Fig. 43.bottom illustrates 
the four-fold reduced lower bound,  LBKeogh4:1(Q,T), which has a value of 0.4999.

Note that  LBKeogh4:1(Q,T) ≤ LBKeogh1:1(Q,T) ≤ cDTW(Q,T) ≤ ED(Q,T) as we 
should expect.
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