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Abstract
In this paper, we consider the problem of classification of high dimensional queries
to high dimensional classes from discrete alphabets where the probabilistic model
that relates data to the classes is known. This problem has applications in various
fields including the database search problem in mass spectrometry. The problem is
analogous to the nearest neighbor search problem, where the goal is to find the data
point in a database that is the most similar to a query point. The state of the art
method for solving an approximate version of the nearest neighbor search problem
in high dimensions is locality sensitive hashing (LSH). LSH is based on designing
hash functions that map near points to the same buckets with a probability higher
than random (far) points. To solve our high dimensional classification problem, we
introduce distribution sensitive hashes that map jointly generated pairs to the same
bucket with probability higher than random pairs. We design distribution sensitive
hashes using a forest of decision trees and we analytically derive the complexity of
search. We further show that the proposed hashes perform faster than state of the art
approximate nearest neighbor search methods for a range of probability distributions,
in both theory and simulations. Finally, we apply our method to the spectral library
search problem in mass spectrometry, and show that it is an order of magnitude faster
than the state of the art methods.
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1 Introduction

Consider the problem of classifying a large number of high dimensional data Y =
{y1, . . . , yM } ⊂ BS into high dimensional classes X = {x1, . . . , xN } ⊂ AS , given
a known joint probability distribution P(x, y), where A and B are discrete alphabets.
Given a point y ∈ Y , the goal is to find the class x ∈ X that maximizes P(y | x);

argmax
x∈X P(y | x), (1)

where P(y | x) is factorizable to i.i.d. components, i.e.,1

P(y | x) =
S∏

s=1

p(ys | xs). (2)

In this paper, we refer to X = {x1, . . . , xN } as database points and Y = {y1, . . . , yM }
as queries. This problem has applications in various fields, including the clustering
of spectra generated by mass spectrometry instruments (Frank et al. 2011). Consider
the problem where there are billions of data points (mass spectra) and given a query
spectrum y the goal is to find the spectrum x that maximizes known probability
distribution P(y | x) (Aebersold and Mann 2003; Kim and Pevzner 2014). This is
similar to the nearest neighbor search problem (Dasarathy and Sheela 1977; Yianilos
1993), where instead ofminimizing a distance, wemaximize a probability distribution.
Nearest neighbour search problem has applications in machine learning (Duda et al.
1973), database querying (Guttman 1984) and computer vision (Mori et al. 2001;
Shakhnarovich et al. 2003) .

A naive approach to solve this problem is to compute P(y | x) for each x ∈ X , and
find the maximum. The runtime for this algorithm is O(NS) which is very slow when
the number of classes, N , is large.

In order to address this problem where the number of classes is massive, multiclass
classification methods have been established (Bentley 1975; Friedman et al. 1977;
Prabhu and Varma 2014; Choromanska and Langford 2015; Bhatia et al. 2015; Rai
et al. 2015; Jain et al. 2016; Yen et al. 2016; Liu and Tsang 2017; Nam et al. 2017;
Tagami 2017; Niculescu-Mizil and Abbasnejad 2017; Zhou et al. 2017). For example,
in Choromanska and Langford (2015) an approach to construct a tree with logarithmic
(in terms of number of classes) depth is presented and logarithmic train and test time
complexity is achieved. However, these methods are limited to low-dimensional data
(when the number of dimensions is less than 10), and their complexity grows expo-
nentially with the dimension. The methods in Bentley (1975), Friedman et al. (1977)
and Prabhu and Varma (2014) speed up the prediction by rejecting a significant por-
tion of classes for each query. However, all these methods suffer from the curse of
dimensionality, i.e., when the dimension of the data increases, the complexity of these

1 Here, we assume that P(x) is also factorizable to i.i.d. components.
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methods increases linearly with the number of classes.2 Dimension reduction can
also be utilized before applying nearest neighbor search algorithms to high dimen-
sional data (Beyer et al. 1999; Castelli et al. 2000; Min 2005; Anagnostopoulos et al.
2015). Moreover, Structure Preserving Embedding (SPE), which is a low-dimensional
embedding algorithm for Euclidean space is also used as a dimension reduction tool
(Shaw and Jebara 2009). Set similarity in nearest neighbor search literature is studied
extensively (Charikar 2002; Christiani and Pagh 2017). In (Christiani and Pagh 2017),
the authors develop a data structure that solves the problem of approximate set simi-
larity search under Braun–Blanquet similarity B(x, y) = |x∩y|

max(|x |,|y|) in sub-quadratic
query time.

A similar problem has been investigated in the field of nearest neighbor search. In
this problem, given a set of points in a database, the goal is to find the point in the
database that is closest to a query point. A popular approach to this problem is locality
sensitive hashing (Indyk andMotwani 1998; Gionis et al. 1999). This approach solves
ε-approximate nearest neighbor search problem by designing a family of hashes in a
way that near points are hashed to the same bucket with probability much higher than
random points. In ε-approximate nearest neighbor search problem, given a query point
y, the goal is to find x ∈ X for which d(x, y) ≤ (1 + ε)d(x ′, y) for all x ′ ∈ X and
X is the set of all feasible points (Indyk and Motwani 1998; Bawa et al. 2005). One
of the most popular methods for approximate nearest neighbor search is LSH (Indyk
and Motwani 1998; Gionis et al. 1999; Shrivastava and Li 2014; Andoni et al. 2017;
Christiani and Pagh 2017; Rubinstein 2018). For any metric space M = (M, d), a
family of hash functions h : M → S is F(R, cR, p1, p2)-sensitive if for any two
points x, y ∈ M:

If d(x, y) ≤ R, then hA(x) = hB(y) with probability at least p1. (3)

If d(x, y) ≥ cR, then hA(x) = hB(y) with probability at most p2. (4)

A family is interesting when p1 > p2. In the case of hamming distance, i.e., when
data are in the form of d-dimensional vectors from {0, 1}d , the family of hashes may
be defined simply as H = ∪d

i=1{h : {0, 1}d → {0, 1} | h(x) = xi } where xi is i-th
coordinate of x . From (3) and (4), we conclude that p1 = 1 − R

d and p2 = 1 − cR
d .3

In this paper, in addition to going from minimizing a distance to maximizing a
probabilistic measure, our approach differs from the classic LSH in the following
way. The proposed hashes in this paper are defined to be a subset of integers instead
of an integer and our goal is to ensure that4

Prob(HA(x) ∩ HB(y) 
= ∅ | (x, y) ∼ P) ≥ α, (5)

Prob(HA(x) ∩ HB(y) 
= ∅ | (x, y) ∼ Q) ≤ β. (6)

2 The curse of dimensionality holds for non-deterministic probability distributions. When p(y | x) is
deterministic, i.e., when it takes only a single value with probability one, there is no curse of dimensionality.
In this paper, we are interested in the case of non-deterministic probability distributions.
3 Note that d(x, y) ≤ R is equivalent to x and y being different for at most R coordinates.
4 In fact, to control the complexity, two more conditions are defined in Definition 2. P(x, y) is joint
probability distribution while P

A(x) and P
B(y) are marginal probability distributions of P(x, y). Q(x, y)

is also defined as Q(x, y) = P
A(x)PB(y).
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In words, these hashes hash the jointly-generated pairs of points to the same buckets
with probabilities higher than α while hash random pairs of points to the same buckets
with probabilities lower than β. Note that, in this case for data points x and y, collision
happens when we have HA(x)∩ HB(y) 
= ∅, while in the classic LSH, x and y have
collision if HA(x) = HB(y). The idea of defining hash collision as the intersection
of hash sets has been previously proposed in Christiani and Pagh (2017).

Currently, the locality sensitive hashing approach does not generalize to the cases
where the triangle inequality, i.e., d(x, y) ≤ d(x, z) + d(z, y) does not hold (Indyk
and Motwani 1998; Gionis et al. 1999; Miltersen 1999; Charikar 2002; Chakrabarti
and Regev 2010; Andoni and Razenshteyn 2015; Andoni et al. 2015, 2018). These
papers are based on constructing balls on some specific points in the metric space
and the notion of balls is well defined only for metric spaces that satisfy triangle
inequality.Recently, highdimensional approximate nearest neighbor search in aknown
probabilistic distribution setting have been investigated in (Bawa et al. 2005; Dubiner
2012). However, currently it is not possible to design efficient algorithms based on
these methods, due to the large number of parameters involved.

The problem of finding high dimensional approximate nearest neighbors in a known
probabilistic setting using a bucketing tree algorithm has been studied previously in
Dubiner (2010) and Dubiner (2012). Dubiner uses a strategy to hash the data points
from an arbitrary joint probability distribution into the leafs of the tree in a way that the
paired data collide with a probability higher than the random pairs. Here, paired data
refers to the pairs coming from a joint probability distribution, i.e., (x, y) ∼ P and the
random pairs are the pairs coming from an independent probability distribution, i.e.,
x ∼ P

A and y ∼ P
B. However, the algorithm introduced in Dubiner requires solving

computationally intractable optimizations, making it impossible to implement [e.g.
see equation (126) from Dubiner (2012)]. In this paper, for the specific case where the
distribution for any s ∈ {1, 2, . . . , S} is p(xs = 0, ys = 0) = p(xs = 1, ys = 1) =
p
2 , p(xs = 1, ys = 0) = p(xs = 1, ys = 0) = 1−p

2 , our theoretical and practical
results are compared to Dubiner (2012) for the range of 0 ≤ p ≤ 1.

In this paper, we propose to solve (1) by defining a family of distribution sensi-
tive hashes satisfying the following property. They hash the jointly-generated pairs
of points to the same buckets with probabilities much higher than random pairs.
We further design an algorithm to solve (1) in sub-linear time using these families
of hashes. Next, a method to find optimal family of hashes is presented to achieve
minimum search complexity using multiple decision trees. Note that, these deci-
sion trees have the same tree structure while they apply to different permutations
{1, 2, . . . , S} → {1, 2, . . . , S} of the data. This way, we design forest of decision trees
where each decision tree captures a very small ratio α of true pairs for some α ∈ R

+
and by recruiting #bands = O( 1

α
) independently permuted decision trees we can

reach near perfect recovery of all the true pairs. In this paper, we refer to each decision
tree as a band and #bands is referred to as the number of bands.

The main idea is that we construct decision-tree hashes, in a way that the chance of
true pairs hashing to the same leaf nodes in these decision trees is higher than random
points (Fig. 1). The decision tree is built in a way that the ratio P(x,y)

Q(x,y) is higher than a

minimum threshold, while the ratios P(x,y)
PA(x)

and P(x,y)
PB(y)

and the number of nodes in the
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graph are lower than a maximum thresholds, see Algorithm 4. We further determined
the optimal tree among many trees that can be constructed in this way. Two theorems
are presented here on the complexity of the decision tree built in Algorithm 4.

1. No decision tree exists with the overall search complexity below O(Nλ∗
) where

λ∗ is derived analytically from the probability distribution P(x, y).
2. The decision tree construction of Algorithm 4 described in (57) results in the

overall search with complexity O(Nλ∗
).

Our results show that our approach, Forest-wise distribution sensitive hashing
(ForestDSH), provides a universal hash design for arbitrary discrete joint probability
distributions, outperforming the existing state of the art approaches in specific range of
distributions, in theory and practice. Moreover, we applied this method to the problem
of clustering spectra generated from mass spectrometry instruments.

An alternative strategy for solving (2) is to reformulate the problem as minimum
inner product search problem (MIPS) (Shrivastava and Li 2014) by transferring the
data points into a new space. However, as we show in Sect. 6 the transferred data
points are nearly orthogonal to each other making it very slow to find maximum inner
product using the existing method (Shrivastava and Li 2014).

Note that, the algorithms presented in this paper are based on the assumption that
the true pairs are generated from a known distribution P. The distribution P can be
learned from a training dataset of true pairs. In practice, training data can be collected
by running a brute force search on smaller data sets or portion of the whole data. For
example, in case of mass spectrometry search, we collect training data by running
brute-force search on small portion of our data (Frank et al. 2011). Note that, we can
never perfectly learn the probability distribution that the data is generated from. In
Theorem 3, we prove that our algorithm is robust to noise in the distribution P and
demonstrate this in an experiment.

Notation The cardinality of a set A is denoted as |A|. The sets N and R stand for
the sets of natural and real numbers, respectively. We use P(·) and Q(·) to denote the
probability function Prob(·). E(ν) denotes the expected value of the random variable
v. Moreover, we use the notation f (x) = O(g(x)), if lim supx→∞

| f (x)|
g(x) < ∞ and the

notation f (x) = Ω(g(x)), if lim supx→∞
| f (x)|
g(x) > 0. In this paper, log x is computed

to the base e.

2 Definitions

Definition 1 Define the S-dimensional joint probability distribution P as follows:

P : AS × BS → [0, 1], P(x, y) =
S∏

s=1

p(xs, ys), (7)

where A = {a1, a2, . . . , ak}, B = {b1, b2, . . . , bl}, x = (x1, x2, . . . , xS) ∈ AS

and y = (y1, y2, . . . , yS) ∈ BS and k, l < ∞. On the other hand, we assume
that the probability distribution function p(a, b) is independent of s and satisfies
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∑
a∈[k],b∈[l] pa,b = 1. Similarly, we define the marginal probability distributions

P
A : AS → [0, 1], P

B : BS → [0, 1] and Q : AS × BS → [0, 1] as
P
A(x) = ∏S

s=1 p
A(xs), P

B(y) = ∏S
s=1 p

B(ys) and Q(x, y) = ∏S
s=1 q(xs, ys),

where

pA(xs) =
l∑

j=1

p(xs, b j ), (8)

pB(ys) =
k∑

i=1

p(ai , ys), (9)

q(xs, ys) = pA(xs) × pB(ys). (10)

We use pi j instead of p(ai , b j ) for simplicity. Moreover, pAi , pBj and qi j are defined

as
∑l

j=1 pi j ,
∑k

i=1 pi j and q(ai , b j ), respectively. Finally, we use compact notations
P = [pi j ] and Q = [qi j ] as the k × l matrices with pi j and qi j in their i th row and
j th column, respectively.

We define family of distribution sensitive hashes as follows.

Definition 2 (Family of Distribution Sensitive Hashes) Assume that the four scalar
parameters α, β, γA and γB along with the probability distributions P, P

A, P
B, Q

and finite set VBuckets are given where P
A and P

B are marginal distributions of P and
Q = P

A
P
B. A family of hashes HA

z : AS → 2VBuckets and HB
z : BS → 2VBuckets is

called (P, α, β, γA, γB)-distribution sensitive, if the following hold

α =
∑

v∈VBuckets

Prob(v ∈ HA
z (x) ∩ HB

z (y) | (x, y) ∼ P), (11)

β =
∑

v∈VBuckets

Prob(v ∈ HA
z (x) ∩ HB

z (y) | (x, y) ∼ Q), (12)

γA =
∑

v∈VBuckets

Prob(v ∈ HA
z (x) | x ∼ P

A), (13)

γB =
∑

v∈VBuckets

Prob(v ∈ HB
z (y) | y ∼ P

B), (14)

| HA
z (x) ∩ HB

z (y) | ≤ 1, (15)

where 1 ≤ z ≤ #bands and #bands represent the number of bands, while VBuckets

represent a set of indices for the buckets. We show how to choose #bands in (51) in
Sect. 5 and how to select VBuckets in Algorithm 3. Intuitively, α represents the chance
of a true pair falling in the same bucket, while β represents the chance of random pairs
falling in the same bucket. We will show that γA and γB represent the complexity
of computing which buckets the data points fall into. In the next section, we will
describe how the families of distribution sensitive hashes can be used to design an
efficient solution for (1). Note that, in Christiani and Pagh (2017) definitions similar
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Fig. 1 Distribution sensitive hashing is based on a decision tree G and a set of buckets VBuckets which are
a subset of the leaf nodes of G. Construction of the tree and VBuckets are explained in Algorithm 4. Here,
VBuckets has six buckets in it. We map data points to buckets by propagating them down the tree, starting
from the root using Algorithm 3. If we reach a bucket node, we insert the data point. On the other hand,
only a subset of leaf nodes are labeled as bucket and if we reach a leaf node that is not a bucket node, we
will simply ignore it. The mapping of � = 000 and � = 001 are shown in the figure for S = 3. Each of the
data points � = 001 and � = 000 are mapped to two buckets. Consider data point � = 000. Mapping this
point by propagating down the tree, we end up with the two buckets v1 and v3. Note that, the first character
on each of the edges in the paths from root to v1 and v3 is 0. Similarly mapping � = 001 by propagating
down the tree, we end up with the two buckets v1 and v2 as the second alphabet on the edges should be 0
in all the first two depths and 1 at the third depth (Color figure online)

to Definition 2 have been made in order to speed up set similarity search. How the data
points are mapped through a decision tree is sketched in Fig. 1. The decision tree and
the set of buckets are explained in Algorithm 4. Finally, in Fig. 2, we show how the
rate of positive calls for true and random pairs, i.e., α and β are derived. The average
number of times that data points and queries fall in buckets, i.e., γA and γB are also
derived and shown in this figure.

Remark 1 In classic LSH, we have |HA(x)| = 1 and |HB(y)| = 1. Therefore, γA =
γB = 1. Our approach is more flexible in the following two ways. First, we allow for
γA and γB to be larger than one. Moreover, even in the case of γA = γB = 1, our
method can optimize over the larger set of possible hashes.

Here we present a general algorithm on how ForestDSH algorithm works.
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Fig. 2 Positive calls refer to the pairs of data points that are mapped to the same bucket (see Algorithm 2).
The rate of positive call for true and random pairs are shown as α and β. The average number of times
x and y data points appear in buckets are also shown as γA and γB . For formal definition of α, β,
γA and γB , see Definition 2. Here, we derive the empirical probabilities (11)–(14) in Definition 2. For
example, β is derived by counting the number of data points combinations in all the six buckets, i.e.,
2× 2+ 1× 2+ 2× 1+ 1× 1+ 1× 1+ 1× 1 over all the possible number of data points which is 6× 7.
Here the size of X is six, and the size of Y is 7. Similarly, γA is derived by counting the number of data
points from the set X designated to the buckets divided by |X |

Algorithm 1 ForestDSH
Inputs:Probability distributionP, X = {x1, . . . , xN } ⊂ AS , y ∈ BS , true positive rate T P and threshold
Δ.
Output: Classes x ∈ X satisfying P(y | x) > Δ.
Procedure:

Run Algorithm 5. This algorithm takes probability distribution P, M and N as
inputs and generates parameters for decision tree design such as μ∗, ν∗, η∗, λ∗, and δ.
Run Algorithm 4. Here, the parameters generated in Algorithm 5 are given as an
input while it generates G = (V , E, f ) and a subset of leaf nodes of the decision tree
VBuckets as outputs.

Run Algorithm 3. In this algorithm, list of buckets VBuckets , permutations
permz , 1 ≤ z ≤ #bands, and a set of data points X = {x1, . . . , xN } are given as
input while the outputs are HA

z (x) for each x ∈ X and each band 1 ≤ z ≤ #bands.

Similarly, HB
z (y) are derived from this algorithm.

Run Algorithm 2. This algorithm takes X = {x1, . . . , xN } ⊂ AS , y ∈ BS , #bands,
VBuckets , HA

z (x), HB
z (y) and threshold Δ and finds classes x ∈ X satisfying

P(y | x) > Δ as an output.

3 Forest distribution sensitive hashing algorithm

In this section, we assume an oracle has given us a family of distribution sensitive
hashes HA

z , HB
z , 1 ≤ z ≤ #bands that satisfies (11)–(15). Inspired by LSH method,

we present Algorithm 2 for solving (1) using this family.
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Algorithm 2 Solving maximum likelihood classification (1) by ForestDSH

Inputs: X = {x1, . . . , xN } ⊂ AS , y ∈ BS , #bands, VBuckets , H
A
z (x), HB

z (y) and threshold Δ.
Output: Classes x ∈ X satisfying P(y | x) > Δ.
For z ∈ {1, 2, . . . , #bands}

For v ∈ VBuckets
For {x ∈ X | v ∈ HA

z (x)}
If v ∈ HB

z (y)
Call (x, y) a positive, compute P(y | x) and report x if P(y | x) > Δ.

Remark 2 Note that, the number of times P(y | x) is computed in the brute force
method to solve (1) is |X |. Note that, in the optimization problem (1), the point y ∈ Y
is given. The goal of Algorithm 2 is to solve (1) with a much smaller number of
comparisons than the brute force.

Remark 3 In the special case when the hashes are coming from a decision tree, we
analyze the complexity of Algorithm 2 in Sect. 5. We show that the number of positive
calls in Algorithm 2 is proportional to β, while the complexity of computing |HA

z (x)|
and |HB

z (y)| are proportional to γA and γB. Moreover, the chance of true pairs being
called positive grows with α. Therefore, in the next sections, we attempt to design
buckets such that α is maximized, while β, γA and γB are minimized.

Now, the question is how we can design these families in a way to minimize the
complexity, and efficiently map data points to these families. We investigate these
questions in Sects. 4 and 4.1 .

4 Designing ForestDSH using a decision tree structure

In the previous section, we assumed that an oracle has given us a family of distribution
sensitive hashes. In this section, we design buckets that satisfy (11)–(15) using a
forest of decision trees with the same structure. Here, we focus on the probability
distributions that can be factorized as the product of i.i.d. components.

Each of our decision trees recovers ratio α of true pairs and by recruiting #bands =
O( 1

α
) decision trees we can recover nearly all true pairs. This can be more efficient

than using a single decision tree classifier as achieving near perfect true pair recovery
by the single decision tree would require near brute-force complexity. By allowing
α < 1, we can select decision tree that avoid paths with low P(x, y) resulting in
complexities much lower than the brute-force search. Note that α is the true positive
rate, e.g. the probability that a true pair (x, y) fall in the same bucket, therefore we
always have α ≤ 1, see Fig. 2.

Assume that a decision tree G = (V , E, f ) is given where V is the set of nodes,
E is the set of edges, Vl ⊂ V is the set of leaf nodes in the decision tree and f :
V /Vl ×A×B → V is the decision function, see Fig. 1. For the two nodes v1, v2 ∈ V ,
v1 is called an ancestor of v2 if v1 falls within the path from v2 to root. In this case,
v2 is called a descendant of v1. Furthermore, assume that a subset of leaf nodes
VBuckets ⊂ Vl is given and at depth s in the decision tree, the decisions depend
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only on xs and ys where x = (x1, . . . , xS) and y = (y1, . . . , yS) are S-dimensional
data point and query, respectively. We define functions SeqA : V → ∪S

s=0As and
SeqB : V → ∪S

s=0Bs recursively as:

SeqA(root) = ∅

SeqB(root) = ∅ (16)

SeqA( f (v, a, b)) = [SeqA(v), a] (17)

SeqB( f (v, a, b)) = [SeqB(v), b] (18)

where [S, a] stands for the concatenation of string S with character a, i.e., for a
string S = s1, . . . , sn of length n, [S, a] would be s1, . . . , sn, a which is a string of
length n + 1. Moreover, given permutations pz : {1, . . . , S} → {1, . . . , S}, 1 ≤
z ≤ #bands, x = (x1, . . . , xS) and y = (y1, . . . , yS) define permz(x) =
(xpz(1), xpz(2), . . . , xpz(S)) and permz(y) = (ypz(1), ypz(2), . . . , ypz(S)). Finally, the
family of buckets HA

z (x) and HB
z (y) are defined as

HA
z (x) = {v ∈ VBuckets | SeqA(v) is a prefix of permz(x)}, (19)

HB
z (y) = {v ∈ VBuckets | SeqB(v) is a prefix of permz(y)}. (20)

Note that the permutation permz is a deterministic function of z, i.e., at each band
the same permutation is used to randomly permute the data points x and y. These
permutations are chosen before mapping the data points. In Fig. 3, we show how both
x and y data points are first permuted randomly (using the same permutation) and then
are mapped to the buckets in decision trees. Note that, here we call a pair positive, if
they fall into the same bucket in at least one of the bands. Now, we show that these
hashes are distribution sensitive.

Definition 3 The functions Φ : V → R, ΨA : V → R and Ψ B : V → R are defined
as follows. At root, Φ(root) = 1, ΨA(root) = 1 and Ψ B(root) = 1, and for ai ∈ A,
b j ∈ B and v ∈ V , Φ(v), ΨA(v), and Ψ B(v) are defined recursively as

Φ( f (v, ai , b j )) = Φ(v)pi j ,∀v ∈ V , (21)

ΨA( f (v, ai , b j )) = ΨA(v)pAi ,∀v ∈ V , (22)

Ψ B( f (v, ai , b j )) = Ψ B(v)pBj ,∀v ∈ V . (23)

Moreover, Ψ : V → R is defined as

Ψ (v) = ΨA(v)Ψ B(v),∀v ∈ V . (24)

Lemma 1 The following properties hold:

Φ(v) = Prob(v ∈ HA
z (x) ∩ HB

z (y) | (x, y) ∼ P), (25)

Ψ (v) = Prob(v ∈ HA
z (x) ∩ HB

z (y) | (x, y) ∼ Q), (26)
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Fig. 3 With only a single band, many of the true pairs are missed (not called positives). Refer to (50) and
(51) in order to see how multiple bands improve true positive rate. While the decision tree are not affected
in any band 1 ≤ z ≤ #bands, classes and queries are permuted by permz (using the same permutation
permz ) and then mapped to the buckets in decision trees. In this figure, all classes and queries are permuted
through three permutations perm1(abc) = bac, perm2(abc) = cba and perm3(abc) = cab. We showed
how three of classes, i.e., �,�, ∀ and three of queries �,�,∀ are permuted. How � is mapped through
these three trees is shown similar to Fig. 1. In the end, all the classes and queries designated to the buckets
are shown. Note that, a pair (x, y) is called positive if x and y land in the same bucket in at least one band
(Color figure online)

ΨA(v) = Prob(v ∈ HA
z (x) | x ∼ P

A), (27)

Ψ B(v) = Prob(v ∈ HB
z (y) | y ∼ P

B). (28)

Remark 4 Note that the left side of (25)–(28) is independent of z while it seems like
the right side depend on band z. The proof of Lemma 1 in “Appendix 1” shows that
in fact it is independent of band z.

Lemma 2 For any decision tree G, satisfying the condition that for any pair of buckets
v1, v2 ∈ VBuckets , v1 is not an ancestor or descendant of v2, HA

z (x) and HB
z (y)

defined in (19) and (20) are (P, α(G), β(G), γA(G), γB(G))-sensitive where

α(G) =
∑

v∈VBuckets (G)

Φ(v), (29)

β(G) =
∑

v∈VBuckets (G)

Ψ (v), (30)

γA(G) =
∑

v∈VBuckets (G)

ΨA(v), (31)

γB(G) =
∑

v∈VBuckets (G)

Ψ B(v). (32)
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Proofs of Lemmas 1 and 2 are relegated to “Appendix 1”. So far, we showed how to
design ForestDSH using a decision tree structure. However, it is not yet clear how to
map data points to these buckets. In the next section, we investigate this and provide
an algorithm to design optimal decision trees.

4.1 Mapping data points

In the previous sections, we presented Algorithm 2 for solving (1) where we need to
compute HA

z (x) and HB
z (y) by mapping data points to the buckets. We did not clarify

how this mapping can be done efficiently. We present Algorithm 3 for mapping data
points to the buckets using hash-table search, see Fig. 2.

Algorithm 3Mapping data points to the buckets using hash-table search
Inputs: List of buckets VBuckets , permutations permz , 1 ≤ z ≤ #bands, and a set of data points
X = {x1, . . . , xN }.
Outputs: HA

z (x) for each x ∈ X and each band 1 ≤ z ≤ #bands.
Procedure:

Create an empty hash-table.
Initialize HA

z (x) = ∅ for all x ∈ X and 1 ≤ z ≤ #bands.
For v ∈ VBuckets

Insert SeqA(v) into the hash-table.
For z = 1 to #bands

For x ∈ X
Search permz(x) in the hash-table to find all v ∈ VBuckets for which SeqA(v)

is a prefix of permz(x), and insert v into HA
z (x) (see Fig. 3).

Remark 5 Queries aremapped to buckets using hash-table search throughAlgorithm3.

Note that we slightly modify the hash-table to search for values that are prefix of a
query, rather than being exactly identical. In Sect. 5, we show that the complexity of
Algorithms 2 and 3 can be formulated as:

ctree|V (G)| +
(
chash N

α(G)
+ chashM

α(G)

+cinsertion NγA(G)

α(G)
+ cinsertionMγB(G)

α(G)
+ cposMNβ(G)

α(G)

)
log

1

1 − T P
,

(33)

where ctree, chash , cinsertion and cpos are constants not depending on N . For
the intuition behind (33), note that the first term ctree|V (G)| stands for the time
required for calculating and storing the tree. The second and third terms, i.e.,(
chash N
α(G)

+ chashM
α(G)

)
log 1

1−T P denote the time needed for inserting data points to

the hash-table. The fourth and fifth terms, i.e.,
(
cinsertion NγA(G)

α(G)
+ cinsertionMγB(G)

α(G)

)

log 1
1−T P stand for the time required for mapping the data points from the hash-table
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to buckets. Finally, the last term, i.e.,
(
cpos MNβ(G)

α(G)

)
log 1

1−T P is the time of brute-force

checking within each bucket.
In order to bound (33) with O(Nλ) for some λ ∈ R

+, it is necessary and sufficient
to find a tree G that satisfies the following constraints:

|V (G)| = O(Nλ), (34)
α(G)

β(G)
= Ω(N 1+δ−λ), (35)

α(G)

γA(G)
= Ω(N 1−λ), (36)

α(G)

γB(G)
= Ω(N δ−λ), (37)

α(G) = Ω(Nmax(1,δ)−λ), (38)

where δ = logM
log N .

Theorem 1 Complexity of Algorithms 2 and 3 is equal to (33). Moreover, there exists
a decision tree G that is optimal and satisfies (34)–(38) for λ defined in Definition 4.

Theorem 1 is proved in three steps. In Sect. 5, we prove that the complexity is equal
to (33). Theorem 2 shows that the tree G constructed by Algorithm 4 and presented
in Sect. 6 satisfies (34)–(38) for λ defined in Definition 4. Theorem 3 shows that this
is optimal.

5 Complexity analysis

In this section, we bound the complexity of Algorithms 2 and 3 by (33). Note that, the
complexity of Algorithms 2 and 3 is the summation of the following terms.

1. Tree construction complexity ctree|V (G)| is the tree construction complexity
where ctree is a constant representing per node complexity of constructing a node
and |V (G)| is the number of nodes in the tree.

2. Data mapping complexity The complexity of this hash-table search grows with

chash(#bands)|X | + cinsertion

#bands∑

z=1

∑

x∈X
|HA

z (x)| (39)

+chash(#bands)|Y | + cinsertion

#bands∑

z=1

∑

y∈Y
|HB

z (y)|, (40)

where chash and cinsertion represent complexity of insertion in the hash-table and
insertion in the buckets, respectively.

3. Complexity of checking positive calls (#bands)cpos
∑

x∈X ,y∈Y |HA
z (x) ∩

HB
z (y)|) is the complexity of checking positive calls where cpos is a constant
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representing the complexity of computing P(y | x) for a positive. Note that, ctree,
chash , cinsertion and cpos are constants not depending on N . From (11)–(15), we
have

E

(
#bands∑

z=1

∑

x∈X
|HA

z (x)|
)

= E

⎛

⎝
#bands∑

z=1

∑

x∈X ,v∈VBuckets (G)

1x∈v

⎞

⎠ (41)

= (#bands)N
∑

v∈VBuckets (G)

ΨA(v) = (#bands)NγA(G) (42)

E

⎛

⎝
#bands∑

z=1

∑

y∈Y
|HB

z (y)|
⎞

⎠

= E

⎛

⎝
#bands∑

z=1

∑

y∈Y ,v∈VBuckets (G)

1y∈v

⎞

⎠ (43)

= (#bands)M
∑

v∈VBuckets (G)

Ψ B(v) = (#bands)MγB(G). (44)

Note that, the total number of collision for random pairs is the sum of number of
buckets that they intersect at. Therefore, we conclude that

E

⎛

⎝
#bands∑

z=1

∑

x∈X ,y∈Y
|HA

z (x) ∩ HB
z (y)|

⎞

⎠

=
#bands∑

z=1

∑

x∈X ,y∈Y
Prob

(|HA
z (x) ∩ HB

z (y)| = 1
)

(45)

=
#bands∑

z=1

∑

x∈X ,y∈Y

∑

v∈VBuckets (G)

Prob
(
v ∈ HA

z (x), v ∈ HB
z (y)

)
(46)

= (#bands)MN
∑

v∈VBuckets (G)

Ψ (v) = (#bands)MNβ(G), (47)

where (45) is concluded as | HA(x) ∩ HB(y) | ≤ 1.

Now, the question is howwe can select #bands such that the true positive rate, defined
as the ratio of true pairs that are called positive is high. In each band, the chance of
a pair (x, y) ∼ P being called positive is computed as α(G) = ∑

v∈VBuckets (G) Φ(v).
Therefore, the overall true positive rate can be computed as:

T P = Prob((x, y) called positive in Algorithm 2 | (x, y) ∼ P) (48)
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= 1 −
#bands∏

z=1

⎛

⎝1 −
∑

v∈VBuckets

Prob(v ∈ HA
z (x) ∩ HB

z (y) | (x, y) ∼ P)

⎞

⎠ (49)

= 1 − (1 − α(G))#bands . (50)

Using (50), and the inequality (1−x)
c
x < e−c, theminimum possible value of #bands

to ensure true positive rate T P can be computed as

#bands = � log
1

1−T P

α(G)
�, (51)

where �r� stands for the smallest integer greater than or equal to r . Therefore, the total
complexity is equal to (33).

6 Constructing optimal decision trees for ForestDSH

In this section, we present an algorithm to design decision trees with complexity
O(Nλ∗

), where λ∗ is defined below, and we show that it is the optimal decision tree.

Definition 4 Given probability distributions P = [pi j ] and Q = [qi j ], 1 ≤ i ≤ k, 1 ≤
j ≤ l, and number of queries and classes M and N define δ = logM

log N and

I = {(μ, ν, η) ∈ R
3|min(μ, ν) ≥ η ≥ 0,

∑

1≤i≤k,1≤ j≤l

p1+μ+ν−η
i j (pAi )

−μ
(pBj )

−ν = 1}, (52)

(μ∗, ν∗, η∗) = argmax
I

max(1, δ) + μ + νδ

1 + μ + ν − η
, (53)

r∗
i j = p1+μ∗+ν∗−η∗

i j (pAi )
−μ∗

(pBj )
−ν∗

, (54)

n∗ = (max(1, δ) − λ∗) log N
∑

r∗
i j log

pi j
r∗
i j

, (55)

λ∗ = max(1, δ) + μ∗ + ν∗δ
1 + μ∗ + ν∗ − η∗ . (56)

Remark 6 For any probability distribution P, the parameters μ∗, ν∗, η∗ and λ∗ can
be derived numerically from Algorithm 5 in “Appendix 2”. The intuition behind
the definition of I and (μ∗, ν∗, η∗) is that inLemma4 inSect. 6.1we show that for any
decision treeG and the variablesΦ(v),ΨA(v),Ψ B(v) andΨ (v) defined in (21)–(24),
we have

∑
v∈VBuckets (G)

(
Φ(v)

)1+μ+ν−η(
ΨA(v)

)−μ+η(
Ψ B(v)

)−ν+η(
Ψ (v)

)−η ≤ 1
if (μ, ν, η) ∈ I. Moreover, in proof of Theorem 2 we show that (μ∗, ν∗, η∗) are
Lagrangian multipliers in an optimization problem to minimize the search complexity
inAlgorithm 2while retaining a nearly perfect recovery. Consider the optimal decision
tree and all the nodes v satisfying
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1. Depth of the node v is n∗.
2. For any 1 ≤ i ≤ k, 1 ≤ j ≤ l, the ratio of times we have ai at s-th position of x

and b j at s-th position of y in all 1 ≤ s ≤ n∗ is ri j .

The node v or one of its ancestors is designated as a bucket by Algorithm 4. This is
proved in Sect. 6.2.

In Algorithm 4, we provide an approach for designing decision trees with complexity
O(Nλ∗

). The algorithm starts with the root, and at each step, it either accepts a node
as a bucket, prunes a node, or branches a node into kl children based on the following
constraints5:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Φ(v)
Ψ (v)

≥ C1N 1+δ−λ∗ : Accept bucket,
Φ(v)

ΨA(v)
≤ C2N 1−λ∗ : Prune,

Φ(v)

ΨB(v)
≤ C3N δ−λ∗ : Prune,

otherwise : Branch into the kl children.

(57)

Note that, for the cases where pi j = 0, we simply remove that branch, therefore, we
assume all the pi j are positive real numbers. In Sect. 5, we prove that in order to bound
the complexity in (33) with O(Nλ) for some λ ∈ R

+, it is necessary and sufficient to
find a decision tree G that satisfies the constraints (34)–(38).

Remark 7 In Theorem 3, we prove that the decision tree construction of Algorithm 4
results in a tree with complexity O(Nλ∗

) by setting C1 = C2 = C3 = p0q0 where p0
and q0 are defined as

∏
i, j pi j and min(

∏
i, j qi j ,

∏
i (p

A
i )

l
,
∏

j (p
B
j )

k
). Pessimistic

lower bounds C1 = C2 = C3 = p0q0 are derived in proof of Theorem 3 and in
practice C1, C2 and C3 are chosen in a way that the best complexity is achieved.

Example 1 Here, we focus on the case whereA = {0, 1},B = {0, 1}, P =
[
0.4 0.3
0.1 0.2

]
,

Q =
[
0.35 0.35
0.15 0.15

]
, δ = 1, and M = N = 4. From Algorithm 5, we have μ∗ =

12.0791, ν∗ = 13.4206, η∗ = 11.0959, λ∗ = 1.7203. The decision tree is constructed
from Algorithm 4 and is depicted in Fig. 4. The nodes in the tree that are selected
as bucket, i.e., satisfying Φ(v)

Ψ (v)
≥ C1N 1+δ−λ∗

, are shown with a green check mark,

and the pruned nodes, satisfying either Φ(v)

ΨA(v)
≤ C2N 1−λ∗

or Φ(v)

ΨB(v)
≤ C3N δ−λ∗

are shown with a red cross. For the non-leaf (intermediate) nodes, none of the above
constraints holds.

Theorem 2 No decision tree exists with overall complexity below O(Nλ∗
).

Theorem 3 The decision tree construction of Algorithm 4 described in Remark 7
results in a tree with complexity O(Nλ∗

).

5 If for any node the constraints for accepting as a bucket and pruning hold simultaneously, the algorithm
accepts the node as a bucket.
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Fig. 4 The decision tree and functions Φ(v), ΨA(v), ΨB(v) and Ψ (v) are illustrated forA = {0, 1},B =
{0, 1}, C1 = C2 = C3 = 0.8 and N = 5. For all of the nodes v1, v2 and w1, how the decisions are
made are explained in the figure. For instance, consider the node w1. For this node, Φ(w1), ΨA(w1),
ΨB(w1) are derived from (21)–(23). On the other hand, from (57) this node is accepted as a bucket as
Φ(w1)
Ψ (w1)

= 1.31 ≥ 0.8N2−λ∗ = 1.26. Note that, λ∗ = 1.72 from (56) and Algorithm 5

In other words, Theorem 3 proves that the tree G constructed by Algorithm 4 satisfies
(34)–(38), and Theorem 2 shows that this is the optimal decision tree. For proofs of
Theorems 2 and 3 , see Sects. 6.1 and 6.2 . Note that, not only Theorem 3 guarantees
that the number of the nodes in our decision tree is bounded by O(Nλ∗

) but also it
guarantees that the runtime for mapping the data points to the decision tree and the
number of comparisons that we need to do for the nodes with the collision is bounded
by O(Nλ∗

), see complexity equation (33) in Sect. 4.1.

Theorem 4 (NoiseRobustness)Assume that the decision tree described in Algorithm 4
is constructed based on distribution P = [pi j ] while the data is actually generated
from an unknown distribution P ′ = [p′

i j ]. Assume the distribution P ′ = [p′
i j ] is

satisfying
pi j
1+ε

≤ p′
i j ≤ pi j (1 + ε) for all 1 ≤ i ≤ k, 1 ≤ j ≤ l and some ε > 0.

Then, it is possible to design an algorithm with complexity O(Nλ∗(p)+3cd log(1+ε))

where cd = (λ∗−min(1,δ))

log(maxi, j min(
pi j

pAi
,
pi j

pBj
))
while maintaining arbitrary high true positive rate

T P.

In other words, Theorem 4 proves that the tree G constructed by Algorithm 4 is noise
robust, i.e., for the case where our understanding from the distribution is not exact,
the arbitrary high true positive rate T P can still be maintained while the complexity
increases linearly with the noise. For proof of Theorem 4, see Sect. 6.3. For a high level
intuition behind the relationship between Algorithm 4 and Theorems 2 and 3 , note
that: Every constraint in the decision tree defined by constraints (57) directly relates
to the constraints (34)–(38). Therefore, we expect this decision tree to be optimal.
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Algorithm 4 Recursive construction of the decision tree
Inputs: C1, C2, C3, δ, A, B, P , M and N . We use Algorithm 5 to derive μ∗, ν∗, η∗, λ∗,δ.
Outputs: G = (V , E, f ) and a subset of leaf nodes of the decision tree VBuckets .
Initialization:

SeqA(root) ← ∅, SeqB(root) ← ∅.
Φ(root) ← 1, ΨA(root) ← 1, ΨB(root) ← 1, Ψ (root) ← 1.
Recursive TreeConstruction(root).

Procedure TreeConstruction(v):
For ai ∈ A

For b j ∈ B
Create a new node w. # The node is created only if pi j 
= 0.
Φ(w) ← Φ(v)pi j
ΨA(w) ← ΨA(v)pAi
ΨB(w) ← ΨB(v)pBj
Ψ (w) ← ΨA(w)ΨB(w)

f (v, ai , b j ) ← w

SeqA(w) ← SeqA(v), SeqB(w) ← SeqB(v)

SeqA(w).append(ai ), Seq
B(w).append(b j )

If Φ(w)
Ψ (w)

≥ C1N
1+δ−λ∗

#Accept bucket
VBuckets .insert(w)

Else If Φ(w)

ΨA(w)
≥ C2N

1−λ∗
and Φ(w)

ΨB(w)
≥ C3N

δ−λ∗
#Branch

TreeConstruction(w)

Else #Prune
f (v, ai , b j ) ← null.

Here, we present an intuition behind proof of Theorem 2. For rigorous proof of
Theorem 2, see “Appendix 3”.

6.1 Intuition behind proof of Theorem 2

Note that, from definition of Φ(v), ΨA(v), Ψ B(v) and Ψ (v) in (21)–(24), we have
Φ(wi j ) = pi jΦ(v) where v is the parent of wi j . Similar equations hold for ΨA(v),
Ψ B(v) andΨ (v). On the other hand, from (52), note that for any (μ, ν, η) ∈ I we have∑

1≤i≤k,1≤ j≤l p
1+μ+ν−η
i j (pAi )

−μ
(pBj )

−ν = 1. Therefore, we expect to have similar

relation between Φ(v), ΨA(v), Ψ B(v), Ψ (v), i.e.,

∑

v∈VBuckets (G)

(
Φ(v)

)1+μ+ν−η(
ΨA(v)

)−μ+η(
Ψ B(v)

)−ν+η(
Ψ (v)

)−η ≤ 1, (58)

for any (μ, ν, η) ∈ I. On the other hand, from (29)–(32), we have α(G) =∑
v∈VBuckets (G) Φ(v). Similar definitions hold for β(G), γA(G) and γB(G). There-

fore, from convexity of the function f (θ, θ1, θ2, θ3) = θ1+ρ1+ρ2+ρ3θ1
−ρ1θ2

−ρ2θ3
−ρ3

we conclude

1 ≥ (
α(G)

)1+μ∗+ν∗−η∗(
γA(G)

)−μ∗+η∗(
γB(G)

)−ν∗+η∗(
β(G)

)−η∗
, (59)
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using the lower bounds on α(G)
β(G)

, α(G)

γA(G)
, α(G)

γB(G)
and α(G) in (34)–(38) and (59), we

conclude λ ≥ λ∗.
Here, we present an intuition behind proof of Theorem 3. For rigorous proof of

Theorem 3, see “Appendix 4”.

6.2 Intuition behind proof of Theorem 3

Here, our goal is to prove that the tree construction steps in Algorithm 4, i.e., (57)
result in a tree that satisfies the following three statements:

1. There is at least one node in the tree which is accepted as a bucket.
2. [(35)–(38)] holds.
3. Number of nodes in the tree is bounded by O(Nλ∗

).

Let us intuitively prove all these three statements one by one.

1. Consider a node with the depth equal to n∗ given in (55). Moreover, assume that
the number of times we have ai at sth position of x and b j at sth position of y for
all 1 ≤ s ≤ n∗ are n∗r∗

i j . Then, we argue that this node is not pruned and accepted
as a bucket. In order to understand why intuitively it is true, we verify that this
node is accepted as a bucket, i.e., we have to verify that Φ(v)

Ψ (v)
≥ N 1+δ−λ∗

p0q0.
This is true as

Φ(v)

Ψ (v)
= Ω(e

∑
i, j n

∗r∗
i j log

pi j
qi j ) (60)

≥ Ω(N 1+δ−λ∗
), (61)

(60) follows from (21), (22) and the definition of node v, i.e., the number of times
we have ai at s-th position of x and b j at s-th position of y are n∗r∗

i j . (61) is
concluded from the definition of r∗

i j in (54). For further details, see “Appendix 4”.
2. Let us prove (35) as the rest of [(36)–(38)] follow similarly. From Algorithm 4,

for all the buckets we have

Φ(v)

Ψ (v)
≥ N 1+δ−λ∗

p0q0. (62)

Note that, at least there is one node that is accepted a a bucket. On the other hand,
α(G) = ∑

v∈VBuckets (G) Φ(v) and β(G) = ∑
v∈VBuckets (G) Ψ (v). Therefore, we

conclude that

α(G)

β(G)
=
∑

v∈VBuckets (G) Φ(v)
∑

v∈VBuckets (G) Ψ (v)
≥ N 1+δ−λ∗

p0q0. (63)

Note that
∑

i ai∑
i bi

≥ c if ai
bi

≥ c and bi > 0 for any i .

3. Finally, we prove that number of nodes in the tree is bounded by O(Nλ∗
). Note

that
∑

i, j pi j = 1, therefore, we expect to have
∑

v∈Vl (G) Φ(v) = 1. On the
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other hand, Φ(v) is expected to be greater than N−λ∗
for the intermediate nodes

from (57). Therefore, it is concluded that |Vl(G)| is at most Nλ∗
. This results

in |V (G)| = O(Nλ∗
) as for any decision tree we have |V (G)| ≤ 2|Vl(G)|. For

details, see “Appendix 4”.

.
Below, we present an intuition behind proof of Theorem 4. For rigorous proof of

Theorem 4, see “Appendix 5”.

6.3 Intuition behind proof of Theorem 4

Define Φ ′(v), α′(G), β ′(G), #bands′ for p′
i j the same way as Φ(v), α(G), β(G),

#bands for pi j . As
pi j
1+ε

≤ p′
i j ≤ pi j (1 + ε), we expect Φ(v) to be bounded as

Φ(v)
1

(1 + ε)d
≤ Φ ′(v) ≤ Φ(v)(1 + ε)d (64)

where d = depth(G). Therefore, from (29) we have

α(G) =
∑

v∈VBuckets (G)

Φ(v) (65)

≤
∑

v∈VBuckets (G)

Φ ′(v)(1 + ε)d (66)

≤ α′(G)(1 + ε)d . (67)

We conclude similar inequalities for γA(G) and γB(G), while for β(G) we have

β ′(G)(1 + ε)2d ≤ β(G) ≤ β ′(G)
1

(1 + ε)2d
. (68)

From (51), #bands is inversely related to α(G). Therefore, #bands′ can be bounded
from above by (1 + ε)d#bands. As a result, from (33) the total complexity is bounded
by (1 + ε)3d Nλ∗

from above. Assume that d is bounded by cd log N for some constant
cd . Therefore, we conclude Theorem 4. In order to see why d ≤ cd log N , note that
for all the leaf nodes, we have Φ(v)

ΨA(v)
≤ N 1+δ−λ∗

maxi, j
pi j
pAi

p0q0. On the other hand,

Φ(v)

ΨA(v)
can be bounded by

(
mini, j

pi j
pAi

)d
from below. Therefore, we conclude that

d = cd log N for some constant cd .

7 Experiments and observations

Experiment 1 In this experiment, we compare the complexity of ForestDSH with
the algorithm proposed by Dubiner in Dubiner (2012). Here, we set A = B =
{0, 1}, S = 1000, M = N = 1,000,000. For ForestDSH, we use Algorithm 5 to
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Fig. 5 Comparing the practical performances of Dubiner algorithm in Dubiner (2012) with ForestDSH for
S = 1000. ForestDSH outperformsDubiner’s method for all values of p. The pseudo code for the algorithm
presented in Dubiner (2012) for the case of hamming distance is generated in this paper in Algorithm 6 in
“Appendix 6”

derive μ∗, ν∗, η∗, λ∗ and δ while training C1, C2 and C3 to get the best complexity
in Algorithm 4. For Dubiner’s algorithm, equation (126) in Dubiner (2012) is com-
putationally intractable which makes it impossible to compute the complexity for the
algorithm presented there for general probability distributions. However, in the spe-

cial case where P(p) =
[

p
2

1−p
2

1−p
2

p
2

]
, 0.5 ≤ p ≤ 1 (hamming distance), a solution

has been provided for computing the complexity in Dubiner (2012). We implemented
that solution (see “Appendix 6” for the detail of implementation), and compared it
to ForestDSH. Note that currently no source code for the implementation of Dubiner
algorithm is available. Figure 5, shows that Dubiner algorithm’s performance is worse
than that of ForestDSH.

Observation 1 In this observation, we reformulate the problem of solving (2) to the
minimum inner product search problem (MIPS) (Shrivastava and Li 2014) by trans-
ferring the data points from AS and BS to RklS in a way that log

(
P(x,y)
Q(x,y)

)
is equal to

the dot product in this new space. We transformed x ∈ AS and y ∈ BS to T (x) ∈ R
klS

and T (y) ∈ R
klS as follows:

T (x) = (
fs,i, j

)
, 1 ≤ s ≤ S, 1 ≤ i ≤ k, 1 ≤ j ≤ l, (69)

fs,i, j =
⎧
⎨

⎩

log
( pi j
qi j

)

ωi j
if xs = ai

0 o.w.
, (70)

T (y) = (
gs,i, j

)
, 1 ≤ s ≤ S, 1 ≤ i ≤ k, 1 ≤ j ≤ l, (71)

gs,i, j =
{

ωi j if ys = b j

0 o.w.
. (72)
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Then, we have log
(
P(x,y)
Q(x,y)

)
=< T (x), T (y) > where < ., . > stands for the inner

product in R
klS . In other words, given any x = (x1, . . . , xS), each xs is transformed

into a kl × 1 vector with l non-zero elements. Similarly, given any y = (y1, . . . , yS),
each ys is transformed to a kl × 1 vector with k non-zero elements. Therefore, finding
pairs of data points with large P(x,y)

Q(x,y) is equivalent to finding transformed data points
with large dot product. Using this transformation, in “Appendix 7” we show that
the angle between both the true pairs and false pairs will be nearly π

2 for almost all

the probability distributions [ S0
M2 ≈ 0, using the notation from Shrivastava and Li

(2014)]. It is well known that MIPS performs poorly in detection of pairs that are
nearly orthogonal (Shrivastava and Li 2014). Therefore, solving (2) by transforming
it to a MIPS problem and using existing approaches fails. Note that, Shrivastava and
Li (2014) is based on data independent hashes for Euclidean distance that are not the
state of the art. Recently, data dependent hashes have been introduced for Euclidean
distance that improve on their data independent counterparts (Andoni et al. 2017;
Rubinstein 2018), while currently there is no data dependent strategy for maximum
inner product search. Therefore, MIPS is currently unable to solve (1) efficiently.

Experiment 2 In this experiment,we compared the complexity for the three algorithms
LSH-hamming, MinHash and ForestDSH for a range of probability distributions. We
benchmark the threemethods usingmatrices P(t) = P1(1−t)+P2t where 0 ≤ t ≤ 1,

P1 =
[
0.345 0
0.31 0.345

]
, P2 =

[
0.019625 0
0.036875 0.9435

]
, and δ = 1, i.e., M = N . The

selection of P1 was such that the complexity of MinHash minus the complexity of
LSH-hamming was maximized. P2 was selected such that the complexity of LSH-
hamming minus the complexity of MinHash was maximized. Figure 6a shows the
theoretical complexities of MinHash, LSH-hamming and ForestDSH for each matrix.
See “Appendix 8”, for the details on the derivation of complexities for MinHash,

LSH-hamming and ForestDSH. For instance, for P1 =
[
0.345 0
0.31 0.345

]
, the theoret-

ical per query complexities of MinHash, LSH-hamming and ForestDSH are equal
to 0.5207, 0.4672 and 0.4384, respectively. We further consider N data points of
dimension S, {x1, . . . , xN } and {y1, . . . , yN } where each (xi , yi ) is generated from
P(t), and xi is independent from y j for i 
= j (N = 2000, S = 2000). Then, we
used ForestDSH, LSH-hamming and MinHash to find the matched pairs. In each
case, we tuned #rows6 and #bands to achieve 99% true positive (recall) rate. Total
simulation time for each of the three methods is plotted for each probability distri-
bution in Fig. 6b. The simulation times in Fig. 6b are consistent with the theoretical
guarantees in Fig. 6a. Figure 6b, c show that for sparse matrices, (t ≈ 1), MinHash
and ForestDSH outperform LSH-hamming. In denser cases, (t ≈ 0), LSH-hamming
and ForestDSH outperform MinHash. For (t ≤ 0.4), ForestDSH outperforms both
MinHash and LSH-hamming. Note that, for the case when the data is coming from
sparse distribution, MinHash beats ForestDSH in practice (as opposed to Theory).

6 In MinHash and LSH-Hamming, we start with #bands × #rows randomly selected hashes from the
family of distribution sensitive hashes, where #rows is the number of rows and #bands is the number of
bands. We recall a pair (x, y), if x and y are hashed to the same value in all #rows rows and in at least one
of the #bands bands.
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Fig. 6 Total (opposed to per query) complexities of LSH-hamming,MinHash, andForestDSHare plotted for
all the probability distribution matrices P(t) = P1(1− t)+ P2t where 0 ≤ t ≤ 1. a Theoretical guarantees,
b simulation time for N = 2000 and S = 2000, c simulation time for N = 20,000 and S = 2000. Note
that ForestDSH performs faster than MinHash if the data is not sparse. While for N = 2000 MinHash is
superior to ForestDSH on sparse data, when N=20,000, ForestDSH is performing the same as MinHash.
This is mainly due to the fact that constant and log N terms vanish compared to N as N grows

Fig. 7 In this figure, V (G(N )), α(G(N ))
β(G(N ))

, α(G(N ))

γA(G(N ))
and α(G(N ))

γB(G(N ))
are depicted as a function of N and

constants c1, c2, c3 and c4 not depending on N . The parameters are chosen from Experiment 2. This figure
shows how these functions grow/decay proportional to Nλ∗

, N1+δ−λ∗
, N1−λ∗

and N δ−λ∗
, respectively.

(See proof of Theorem 3 in Sect. 6.2 for the justifications. This confirms [(34)–(38)] for trees G(N )

constructed by Algorithm 4)

This is because for sparse data the total complexity tends to its minimum, i.e., O(N ).
ForestDSH is inefficient compared to MinHash for small number of N and when the
data is sparse as the constant terms and logN terms which play a significant role in this
case are not optimized in ForestDSH. In Fig. 7, we further plotted V (G(N )), α(G(N ))

β(G(N ))
,

α(G(N ))

γA(G(N ))
and α(G(N ))

γB(G(N ))
as a function of N for trees G(N ) constructed by Algorithm 4

for P(t = 0.25), where M = N . As predicted by Theorem 3, we observed that these
quantities grow/decay proportional to Nλ∗

, N 1+δ−λ∗
, N 1−λ∗

and N δ−λ∗
, respectively.

In Fig. 8, true positive rate and total complexity are plotted in terms of #bands for the
case of N = 20,000, S = 10,000 and the probability distribution P2. From (50), i.e.,
T P = 1 − (1 − α(G))#bands , we expect true positive rate to increase while #bands
increases (see Fig. 8a). On the other hand, from (51) and (33), total complexity (Nλ∗

)

is expected to linearly increase while #bands increases (see Fig. 8b).

Experiment 3 In this experiment, we examine the robustness of our algorithm from
Theorem 4 for matrices considered in Experiment 2 while M = N = 300,000. For
each P(t),wegenerated randommatrices P ′(t)within 1+ε of P(t), seeTheorem4.We
derive the practical complexity and theoretical complexity, i.e., λ∗ from Definition 4.
Moreover, for each of these matrices, we derive the worst case complexity in the case
of ε = 0.03. This is sketched in Fig. 9.

Experiment 4 In this experiment, we used the mass spectral data from human micro-
biome (McDonald et al. 2018), extracted using MSCluster (Frank et al. 2011). In
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Fig. 8 a True positive rate and b total complexity (Nλ∗
) are plotted for the probability distribution matrix

P2(t), N = 2000 and S = 2000 in terms of #bands

Fig. 9 In this figure, practical,
theoretical and noisy complexity
are compared for
P(t) = P1(1 − t) + P2t given
in Experiment 4. Here,
M = N = 300,000 and the
noisy complexity is derived from
Theorem 4 with ε = 0.03

this problem, there are N spectra X = x1, . . . , xN , and a query spectrum y. Our
goal is to find the spectra xi that maximize a probabilistic model P(y|xi ). P(y|x) is
learned assuming that it can be factorized to i.i.d. components. To learn p(y | x),
each mass spectra is sorted based on the peak intensities, and in order to reduce
the number of parameters we need to learn, instead of the peak ranks we use log
of the peak ranks.7 Using these data, we learn the joint probability distribution
p(log Rank(ys) = i | log Rank(xs) = j). Among 90,753 data points, we used 70,753
for training, and 20,000 for the test. The joint probability distribution ofmatching pairs
are shown in Fig. 10, before and after logRank transformation.

After learning this probabilistic model, we applied ForestDSH method to the test
mass spectra (after log Rank transformation), and we were able to speed up the search
of 20000 mass spectra nine times, in comparison to brute force search while maintain-
ing true positive rate of 90%. For ForestDSHmethod, the total runtime is 705, 197ms,
while for brute force, the total runtime is 6,022,373ms (eight times slower than
ForestDSH), and for LSH, the runtime for achieving 90% TP rate is 5,495,518ms
(seven times slower than ForestDSH). The amount of memory used peaks at 220MB.

7 logb Rank of a peak is defined as the logb of its rank. For any natural number n, logb Rank = n for the
peaks at rank {bn−1, . . . , bn−1}, e.g., log2 Rank(m) = 3 form ∈ {4, 5, 6, 7}. Joint probability distribution
of logRanks for the data from Frank et al. (2011) is shown in Fig. 10a (4 × 4 data matrix is obtained using
log4 Rank), b (8 × 8 data matrix is obtained using log2 Rank) and c (51 × 51 data matrix is obtained not
using any logb Rank).
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Fig. 10 Mass spectrometry joint probability distribution in the case of a log4 Rank, b log2 Rank, and c no
log Rank filter. For further details on mass spectrometry joint probability distributions, see “Appendix 9”

↓ +N (μ, σ) ↓ +N (μ, σ) ↓ +N (μ, σ) ↓ +N (μ, σ) ↓ +N (μ, σ)

Fig. 11 In this figure, five grey-scale 32 × 32 pixels images along with their noisy versions are shown.
Here, ForestDSH is able to detect true pairs with the success rate of 99% while being nine times faster than
brute force and seven times faster than LSH

Experiment 5 In this experiment, we considered a set of 50,000 images (25,000 pairs
of images) from CIFAR-10 database (Krizhevsky 2009). Each pair of images consists
of a grey-scale 32 × 32 pixels image and a noisy version of the image constructed
by adding independent Gaussian noise N (μ = 0.5, σ = 0.039) and discretizing
pixels to binary. ForestDSH is able to detect true pairs with the success rate of 99%
in 1970s while brute force approach detects true pairs in 19,123s (nine times slower
than ForestDSH) and LSH detects true pairs within 15,080s (seven times slower than
ForestDSH).

7.1 Codes

For the codes, see https://github.com/mohimanilab/ForestDSH.

8 Conclusion

ForestDSHalgorithmproposed in this paper is comprehensive and efficient in the sense
that for a wide range of probability distributions it enables us to capture the difference
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between pairs coming from a joint probability distributions and independent pairs.
This algorithm is built upon a family of distribution sensitive hashes that are designed
using a decision tree structure which is constructed recursively. Moreover, we prove
that the decision tree introduced here has a complexity of O(Nλ∗

) and there is no
decision tree with lower overall complexity. We prove that this algorithm outperforms
existing state of the art approaches in specific range of distributions, in theory and
practice and enabled speeding up the spectral library search in mass spectrometry by a
factor of nine. Finally, we should note that ForestDSH has some limitations which are
discussed as follows. ForestDSH assumes that the probability distribution function
is factorizable to i.i.d. components. Generalizing ForestDSH to the case of general
probability distribution function is an open problem and our results here open a path
towards solving the general probability mass function problem. Moreover, the special
case of factorizable models are simple but crucial models that have been widely used
in computational biology, e.g., see Kim and Pevzner (2014), and other areas of data
sciences. In the future, we will address the more general problem of Markov chain
models. Note that ForestDSH performs faster than MinHash if the data is not sparse.
While for a small number of datapoints MinHash is superior to ForestDSH on sparse
data, for a larger number of datapoints ForestDSH is performing the same asMinHash.
This is mainly due to the fact that constant and logarithmic terms vanish in ratio as
the number of datapoints grows.

Appendix 1: Proof of Lemmas 1 and 2

Appendix 1.1: Proof of Lemma 1

Lemma1 is proved by induction on the depth of the node v. For example, consider v and
its children wi j = f (v, ai , b j ). From (21), we have Φ(wi j ) = Φ(v)pi j . Therefore,
(25) is proved by induction as follows. Assume (25) holds for any node with depth
less than d. Consider the node wi j which is a child of v, i.e., wi j = f (v, ai , b j ) and
depth(wi j ) = d.

Φ(wi j ) = Φ(v)pi j (73)

= Prob(v ∈ HA
z (x) ∩ HB

z (y) | (x, y) ∼ P)pi j (74)

= Prob
(
SeqA(v) is a prefix of permz(x),

SeqB(v) is a prefix of permz(y) | (x, y) ∼ P
)
pi j (75)

= Prob
(
SeqA(v) is a prefix of permz(x),

SeqB(v) is a prefix of permz(y), ai = (permz(x))d , b j

= (permz(y))d | (x, y) ∼ P
)

(76)

= Prob(wi j ∈ HA
z (x) ∩ HB

z (y) | (x, y) ∼ P). (77)
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See Sect. 4 for the Definition of permz . Note that (permz(x))d stands for d-th entry
of the vector (permz(x)). (74) follows from induction assumption for the nodes with
depth less than d, (76) is a result of i.i.d. assumption (2), i.e., P(y | x) = ∏S

s=1 p(ys |
xs) and the defnition of HA

z (x) in (19). [(26)–(28)] follow similarly.

Appendix 1.2: Proof of Lemma 2

Using [(25)–(28)], constraints [(11)–(14)] hold for α = α(G), β = β(G), γA =
γA(G) and γB = γB(G). Since no two buckets are ancestor/descendant of each
other, we have

| HA(x) ∩ HB(y) | ≤ 1. (78)

Therefore, (15) holds. This completes the proof that HA
z (x) and HB

z (y) defined in
(19) and (20) are (α(G), β(G), γA(G), γB(G))-sensitive.

Appendix 2: Deriving �∗, �∗, �∗, �∗, p0, q0 and ı for P,M and N

In this section, an algorithm for deriving μ∗, ν∗, η∗, λ∗, p0, q0 and δ for P, M and N
for the probability distribution P and δ is presented for a given probability distribution
P.

Algorithm 5 Deriving μ∗, ν∗, η∗, λ∗, p0, q0 and δ for P, M and N
Inputs: The probability distribution P, listμ, listν , listη , threshold T , M and N .
Outputs: μ∗, ν∗, η∗, λ∗, p0, q0 and δ.
Procedure:

δ ← logM
log N

λ∗ = 0
For μ ∈ listμ # For some set of listμ, e.g., {0, 0.1, 0.2, . . . , 10}.

For ν ∈ listν # For some set of listν , e.g., {0, 0.1, 0.2, . . . , 10}.
For η ∈ listη # For some set of listη , e.g., {0, 0.1, 0.2, . . . , 10}.

If |∑i, j p
1+μ+ν−η
i j (pAi )

−μ
(pBj )

−ν − 1| ≤ T and max(1,δ)+μ+δν
1+μ+ν−η

> λ∗.
μ∗ ← μ, ν∗ ← ν, η∗ ← η, λ∗ ← max(1,δ)+μ+δν

1+μ+ν−η

#p0, q0 are computed as follows.
p0 ← 1, q0 ← 1, pA0 ← 1, pB0 ← 1
For ai ∈ A

For b j ∈ B
p0 ← p0 pi j
q0 ← q0qi j
pA0 ← pA0 pAi
pB0 ← pB0 pBj

q0 ← min(q0, p
A
0 , pB0 ).

Remark 8 In Algorithm 5, the parameters μ∗, ν∗, η∗ and λ∗ could be derived from
newton method too.
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Appendix 3: Proof of Theorem 2

In order to prove Theorem 2, we first state the following two lemmas.

Lemma 3 The function f (θ, θ1, θ2, θ3) = θ1+ρ1+ρ2+ρ3θ1
−ρ1θ2

−ρ2θ3
−ρ3 is a convex

function on the region (θ, θ1, θ2, θ3) ∈ R
4+ where (ρ1, ρ2, ρ3) ∈ R

3+.8

Lemma 4
∑

v∈VBuckets (G)

(
Φ(v)

)1+μ+ν−η(
ΨA(v)

)−μ+η(
Ψ B(v)

)−ν+η(
Ψ (v)

)−η ≤ 1
for any (μ, ν, η) ∈ I.
Proof of Lemma 3 and Lemma 4, are relegated to “Appendices 3.1 and 3.2”,
respectively. Consider (μ∗, ν∗, η∗) that satisfy (53). For any decision tree satisfying
(34)–(38), we have:

(∑
v∈VBuckets (G) Φ(v)

|VBuckets(G)|
)1+μ∗+ν∗−η∗(∑

v∈VBuckets (G) ΨA(v)

|VBuckets(G)|

)−μ∗+η∗

×
(∑

v∈VBuckets (G) Ψ B(v)

|VBuckets(G)|

)−ν∗+η∗(∑
v∈VBuckets (G) Ψ (v)

|VBuckets(G)|
)−η∗

≤
∑

v∈VBuckets (G)

(
Φ(v)

)1+μ∗+ν∗−η∗(
ΨA(v)

)−μ∗+η∗(
Ψ B(v)

)−ν∗+η∗(
Ψ (v)

)−η∗

|VBuckets(G)|
(79)

≤ 1

|VBuckets(G)| , (80)

where (79) holds due to the convexity of f (θ, θ1, θ2, θ3) = θ1+ρ1+ρ2+ρ3θ1
−ρ1θ2

−ρ2

θ3
−ρ3 in Lemma 3 and (80) follows from Lemma 4. Therefore, we have

⎛

⎝
∑

v∈VBuckets (G)

Φ(v)

⎞

⎠
1+μ∗+ν∗−η∗⎛

⎝
∑

v∈VBuckets (G)

ΨA(v)

⎞

⎠
−μ∗+η∗

×
⎛

⎝
∑

v∈VBuckets (G)

Ψ B(v)

⎞

⎠
−ν∗+η∗⎛

⎝
∑

v∈VBuckets (G)

Ψ (v)

⎞

⎠
−η∗

≤ 1. (81)

On the other hand, using (80) and the definitions of α(G), β(G), γA(G) and γB(G)

in [(29)–(32)], we have

(
α(G)

)1+μ∗+ν∗−η∗(
γA(G)

)−μ∗+η∗(
γB(G)

)−ν∗+η∗(
β(G)

)−η∗ ≤ 1. (82)

Therefore, from (34)–(38) and (82) we have

1

8 For any natural number n, R
n+ denotes as the set of all n-tuples non-negative real numbers.
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≥ (
α(G)

)1+μ∗+ν∗−η∗(
γA(G)

)−μ∗+η∗(
γB(G)

)−ν∗+η∗(
β(G)

)−η∗

= α(G)

(
α(G)

γA(G)

)μ∗−η∗(
α(G)

γB(G)

)ν∗−η∗(
α(G)

β(G)

)η∗

(83)

≥
(
Nmax(1,δ)−λ

) (
N 1−λ

)μ∗−η∗(
N δ−λ

)ν∗−η∗(
N 1+δ−λ

)η∗
(84)

= Nmax(1,δ)+μ∗+δν∗−(1+μ∗+ν∗−η∗)λ. (85)

Therefore, we conclude Theorem 2 as follows

λ ≥ λ∗ = max(1, δ) + μ∗ + δν∗

1 + μ∗ + ν∗ − η∗ . (86)

Appendix 3.1: Proof of Lemma 3

The Hessian matrix for f (θ, θ1, θ2, θ3) is represented as

H(θ, θ1, θ2, θ3)

= f (θ, θ1, θ2, θ3)

×

⎡

⎢⎢⎢⎢⎢⎢⎣

(1+ρ1+ρ2+ρ3)(ρ1+ρ2+ρ3)

θ2
−ρ1(1+ρ1+ρ2+ρ3)

θθ1

−ρ2(1+ρ1+ρ2+ρ3)
θθ2

−ρ3(1+ρ1+ρ2+ρ3)
θθ3−ρ1(1+ρ1+ρ2+ρ3)

θθ1

ρ1(ρ1+1)
θ21

ρ1ρ2
θ1θ2

ρ1ρ3
θ1θ3

−ρ2(1+ρ1+ρ2+ρ3)
θθ2

ρ1ρ2
θ1θ2

ρ2(ρ2+1)
θ22

ρ2ρ3
θ2θ3

−ρ3(1+ρ1+ρ2+ρ3)
θθ3

ρ1ρ3
θ1θ3

ρ2ρ3
θ2θ3

ρ3(ρ3+1)
θ23

⎤

⎥⎥⎥⎥⎥⎥⎦

= f (θ, θ1, θ2, θ3)

×

⎡

⎢⎢⎢⎢⎢⎢⎣

W 2 + ρ1+ρ2+ρ3
θ2

WW1 − ρ1
θθ1

WW2 − ρ2
θθ2

WW3 − ρ3
θθ3

W1W − ρ1
θθ1

W 2
1 + ρ1

θ21
W1W2 W1W3

W2W − ρ2
θθ2

W2W1 W 2
2 + ρ2

θ22
W2W3

W3W − ρ3
θθ3

W3W1 W3W2 W 2
3 + ρ3

θ23

⎤

⎥⎥⎥⎥⎥⎥⎦
, (87)

where W = ρ1+ρ2+ρ3
θ

, Wi = ρi
θi

for any i ∈ {1, 2, 3}. In order to show that the
function f (θ, θ1, θ2, θ3) is a convex function it is necessary and sufficient to prove
that H(θ, θ1, θ2, θ3) is positive semidefinite on R

4+ On the other hand, for positive
semidefinite matrices we have

1. For any non-negative scalar a and positive semidefinite matrix M , aM is positive
semidefinite.

2. For positive semidefinite matrices M1 and M2, M1 + M2 is positive semidefinite.
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As f (θ, θ1, θ2, θ3) > 0 for any θ, θ1, θ2, θ3, it is sufficient to prove that H(θ,θ1,θ2,θ3)
f (θ,θ1,θ2,θ3)

is positive semidefinite. Define, M1 =

⎡

⎢⎢⎣

W 2 WW1 WW2 WW3

W1W W 2
1 W1W2 W1W3

W2W W2W1 W 2
2 W2W3

W3W W3W1 W3W2 W 2
3

⎤

⎥⎥⎦ and

M2 =

⎡

⎢⎢⎢⎢⎣

ρ1+ρ2+ρ3
θ2

− ρ1
θθ1

− ρ2
θθ2

− ρ3
θθ3− ρ1

θθ1

ρ1
θ21

0 0

− ρ2
θθ2

0 ρ2
θ22

0

− ρ3
θθ3

0 0 ρ3
θ23

⎤

⎥⎥⎥⎥⎦
. Therefore, we have M1 + M2 = H(θ,θ1,θ2,θ3)

f (θ,θ1,θ2,θ3)
.

In order to prove that f (θ, θ1, θ2, θ3) is positive semidefinite, it is sufficient to prove
that M1 and M2 are positive semidefinites. The matrices M1 and M2 are positive
semidefinite as for any non-zero vector z = [

a b c d
]
, we have zM1zT ≥ 0 and

zM2zT ≥ 0, i.e.,

[
a b c d

]

⎡

⎢⎢⎣

W 2 WW1 WW2 WW3

W1W W 2
1 W1W2 W1W3

W2W W2W1 W 2
2 W2W3

W3W W3W1 W3W2 W 2
3

⎤

⎥⎥⎦

⎡

⎢⎢⎣

a
b
c
d

⎤

⎥⎥⎦

= (Wa + W1b + W2c + W3d)2 (88)

≥ 0, (89)

[
a b c d

]

⎡

⎢⎢⎢⎢⎣

ρ1+ρ2+ρ3
θ2

− ρ1
θθ1

− ρ2
θθ2

ρ3
θθ3− ρ1

θθ1

ρ1
θ21

0 0

− ρ2
θθ2

0 ρ2
θ22

0

− ρ3
θθ3

0 0 ρ3
θ23

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎣

a
b
c
d

⎤

⎥⎥⎦

= ρ1
(a
θ

− b

θ1

)2 + ρ2
(a
θ

− c

θ2

)2

+ρ3
(a
θ

− d

θ3

)2
(90)

≥ 0, (91)

where (91) is concluded as ρ1, ρ2, ρ3 ≥ 0.

Appendix 3.2: Proof of Lemma 4

First, note that Ψ (v) = ΨA(v)Ψ B(v). Let us define

D(v) =
∑

v∈VBuckets (G)

Φ(v)1+μ+ν−η
(
ΨA(v)

)−μ(
Ψ B(v)

)−ν
. (92)
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We show

∑

v∈VBuckets (G)

D(v) ≤ 1, (93)

by induction on the number of nodes in the tree. If the tree has only one node, i.e.,
root, then (93) is holds as Φ(root) = 1, ΨA(root) = 1 and Ψ B(root) = 1 from
the definition of Φ(v), ΨA(v) and Ψ B(v) in [(21)–(23)]. Assume that (93) holds for
any decision tree with |G| < Z . Our goal is to prove that (93) holds for a decision
tree with |G| = Z . Assume v11 is the node with maximum length in G and consider
a tree G ′ constructed by removing v11 and all its siblings vi j , 1 ≤ i ≤ k, 1 ≤ j ≤ l
belonging to the same parent v. In other words, for the tree G ′ we have9

V (G ′) = V (G)/{v11, . . . , vkl}, (94)

VBuckets(G
′) = (VBuckets(G) ∪ {v}) /{v11, . . . , vkl}. (95)

(95) is true as for the gragh G ′, the node v in now a leaf node while the nodes
v11, . . . , vkl are removed. Then, we have

∑

v∈VBuckets (G)

D(v)

≤
∑

v∈VBuckets (G ′)
D(v) − Φ(v)1+μ+ν−η

(
ΨA(v)

)−μ(
Ψ B(v)

)−ν

+
∑

i, j

Φ(vi j )
1+μ+ν−ηΨA(vi j )

−μ
Ψ B(vi j )

−ν
(96)

=
∑

∈VBuckets (G ′)
D(v) − Φ(v)1+μ+ν−η

(
ΨA(v)

)−μ(
Ψ B(v)

)−ν

+
∑

i, j

(
Φ(v)1+μ+ν−η

(
ΨA(v)

)−μ+η(
Ψ B(v)

)−ν

×pi j
1+μ+ν−η(pAi )

−μ
(pBi )

−ν
)

(97)

=
∑

v∈VBuckets (G ′)
D(v) − Φ(v)1+μ+ν−η

(
ΨA(v)

)−μ(
Ψ B(v)

)−ν

×
⎛

⎝1 −
∑

i, j

pi j
1+μ+ν−η(pAi )

−μ
(pBj )

−ν

⎞

⎠ (98)

=
∑

v∈VBuckets (G ′)
D(v) (99)

= 1, (100)

9 Note that, Vb(G
′) satisfies bucket-list property, e.g., there is no bucket in the tree that is ancestor of

another bucket.
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where (96) holds from the definition of tree G ′, (97) follows from the recursive def-
inition of Φ(v), ΨA(v) and Ψ B(v) in [(21)–(23)] and (99) holds, note that from the
definition of μ, ν and η in (52), i.e.,

∑

i, j

pi j
1+μ+ν−η(pAi )

−μ
(pBj )

−ν = 1. (101)

Therefore, we conclude that

∑

v∈VBuckets (G)

D(v) ≤ 1. (102)

Note that, the inequality (96) becomes an equality only in cases where none of the
children are pruned.

Appendix 4: Proof of Theorem 3

In order to prove Theorem 3, we first present the following lemma.

Lemma 5 Given a fixed N ∈ N and probability distribution P, consider the following
region Rλ

R(λ, ri j , n) =
⎧
⎨

⎩λ, ri j , n s.t. λ ≥ 0,
∑

i, j

ri j = 1, ri j ≥ 0, ri j ∈ R
+, n ∈ R

+,

(103)
∑

i, j

ri j log pi j −
∑

i, j

ri j log ri j ≥ (max(1, δ) − λ) log N

n
, (104)

∑

i, j

ri j log pi j −
∑

i, j

ri j log pAi ≥ (1 − λ) log N

n
, (105)

∑

i, j

ri j log pi j −
∑

i, j

ri j log pBj ≥ (δ − λ) log N

n
, (106)

∑

i, j

ri j log pi j −
∑

i, j

ri j log qi j ≥ (1 + δ − λ) log N

n

}
(107)

10 Then, (λ∗, r∗
i j , n

∗) defined in Definition 4 is a member of R(λ, ri j , n).

The proof of Lemma 5 is relegated to “Appendix 4.4”. Let us prove that the following
tree construction steps in Algorithm 4 result in a tree that satisfies (34)–(38).

10 Recall that, for simplicity we use the notation
∑

i, j and
∏

i, j instead of
∑

1≤i≤k,1≤ j≤l and∏
1≤i≤k,1≤ j≤l , respectively.
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Φ(v)
Ψ (v)

≥ N 1+δ−λ∗
p0q0 : accept bucket,

Φ(v)

ΨA(v)
≤ N 1−λ∗

p0q0 : prune,
Φ(v)

ΨB(v)
≤ N δ−λ∗

p0q0 : prune,
otherwise : branch into the kl children.

(108)

Consider the set of r∗
i j = p1+μ∗+ν∗−η∗

i j (pAi )
−μ∗

(pBj )
−ν∗

and n∗ = (max(1,δ)−λ∗) log N
∑

r∗
i j log

pi j
r∗i j

.

Note that we assume pi j and qi j are non-zero.11 Consider ni j = �n∗r∗
i j� if r∗

i j > 1
2

and ni j = �n∗r∗
i j� if r∗

i j ≤ 1
2 . Therefore, we have n

∗ − kl <
∑

i j ni j ≤ n∗. For any
v ∈ V (G), define the set Si j (v) as follows

Si j (v) = {s | 1 ≤ s ≤ depth(v), SeqAs (v) = ai&SeqBs (v) = b j }, (109)

where depth(v) is the depth of node v in the tree, SeqAs (v) and SeqBs (v) stand for
the character at position s in the strings SeqA(v) and SeqB(v), respectively. Now,
consider a node v∗ in the graph that satisfies the following constraints:

|Si j (v)| = ni j ,∀1 ≤ i ≤ k, 1 ≤ j ≤ l. (110)

The number of nodes v that satisfy this constraint is
( n∗
n11,...,nkl

)
. Moreover, define

|Vn11,...,nkl | = {v ∈ V (G) | |Si j (v)| = ni j ,∀1 ≤ i ≤ k, 1 ≤ j ≤ l}. (111)

Appendix 4.1: Node v∗ or one of its ancestors is designated as a bucket by
Algorithm 4

Here, we prove that the node v or one of its ancestors is designated as a bucket by
Algorithm 4. In order to show this, we need to prove that:

Φ(v∗)
Ψ (v∗)

≥ e
∑

n∗r∗
i j log pi j e−∑ n∗r∗

i j log qi j p0q0 ≥ N 1+δ−λ∗
p0q0, (112)

Φ(v∗)
ΨA(v∗)

≥ e
∑

n∗r∗
i j log pi j e−∑ n∗r∗

i j log pAi p0q0 ≥ N 1−λ∗
p0q0, (113)

Φ(v∗)
Ψ B(v∗)

≥ e
∑

n∗r∗
i j log pi j e−∑ n∗r∗

i j log pBj p0q0 ≥ N δ−λ∗
p0q0, (114)

where p0 and q0 are defined as
∏

i, j pi j and min(
∏

i, j qi j ,
∏

i (p
A
i )

l
,
∏

j (p
B
j )

k
).

Note that, Φ(v∗), Ψ (v∗), ΨA(v∗) and Ψ B(v∗) are computed as follows

Φ(v∗) =
∏

i, j

p
ni j
i j = e

∑
i, j ni j log pi j ≥ e

∑
i, j (n

∗r∗
i j+1) log pi j

11 Note that in the cases where qi j is zero, then from the definition of qi j , pi j would also be equal to zero.
Therefore, we will ignore those branches during the tree construction.

123



A. G. Davoodi et al.

≥ e
∑

i, j n
∗r∗

i j log pi j (
∏

i, j

pi j ) = e
∑

i, j n
∗r∗

i j log pi j p0, (115)

Ψ (v∗) =
∏

i, j

q
ni j
i j = e

∑
i, j ni j log qi j

≤ e
∑

i, j (n
∗r∗

i j−1) log qi j ≤ e
∑

i, j n
∗r∗

i j log qi j
∏

i, j qi j
= e

∑
i, j n

∗r∗
i j log qi j

q0
, (116)

ΨA(v∗) =
∏

i, j

(pAi )
ni j = e

∑
i, j ni j log pAi

≤ e
∑

i, j (n
∗r∗

i j−1) log (pAi ) ≤ e
∑

i, j n
∗r∗

i j log pAi
∏

i, j p
A
i

= e
∑

i, j n
∗r∗

i j log pAi

q0
, (117)

Ψ B(v∗) =
∏

i, j

(pBj )
ni j = e

∑
i, j ni j log pBj

≤ e
∑

i, j (n
∗r∗

i j−1) log pBj ≤ e
∑

i, j n
∗r∗

i j log pBj
∏

i, j p
B
j

= e
∑

i, j n
∗r∗

i j log pBj

q0
. (118)

Therefore, from Lemma 5 and [(115)–(118)] we conclude [(112)–(114)]. This means
v∗ or one of its ancestors is an accepted bucket.

Appendix 4.2: Proof of bounds [(35)–(38)]

First, we derive a lower bound on α(G) as follows.

α(G) =
∑

v∈VBuckets (G)

Φ(v)

≥
∑

v∈Vn11,...,nkl

Φ(v) (119)

≥ |Vn11,...,nkl |Φ(v) (120)

≥ |Vn11,...,nkl |e
∑

i, j n
∗r∗

i j log pi j p0, (121)

where Vn11,...,nkl is the set of nodes that satisfies (110). |Vn11,...,nkl | is lower bounded
as

|Vn11,...,nkl | =
(

n∗

n11, . . . , nkl

)

≥ n∗!
(kl)!∏i, j ni j !

≥ ( n
∗
e )n

√
2πn∗

(kl)!∏i, j (
ni j
e )ni j

√
2πni j e

(122)

≥
∏

i, j

(
ni j
n∗ )−ni j (n∗)

1−kl
2

(2π)
1−kl
2 e−kl

(kl)! (123)
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= ce−∑i, j ni j log(
ni j
n∗ )

(n∗)
1−kl
2 (124)

≥ ce−n∗∑
i, j r

∗
i j log r

∗
i j , (125)

for some constant c = (2π)
1−kl
2 e−kl

(kl)! (n∗)
1−kl
2 depending on n, k and l. (122) is true as

for any natural number m we have
√
2πm(me )

m ≤ m! <
√
2πm(me )

me. (125) follows
as a log 1

a is an increasing function for 0 ≤ x ≤ 0.5, and a decreasing function for
0.5 ≤ x ≤ 1. Therefore, from (121) and (125), α(G) ≥ Nmax(1,δ)−λ∗

is concluded.
Similarly, (34)–(38) are proved as follows.

α(G)

β(G)
=
∑

v∈VBuckets (G) Φ(v)
∑

v∈VBuckets (G) Ψ (v)
≥ N 1+δ−λ∗

p0q0, (126)

α(G)

γA(G)
=

∑
v∈VBuckets (G) Φ(v)

∑
v∈VBuckets (G) ΨA(v)

≥ N 1−λ∗
p0q0, (127)

α(G)

γB(G)
=

∑
v∈VBuckets (G) Φ(v)

∑
v∈VBuckets (G) Ψ B(v)

≥ N δ−λ∗
p0q0, (128)

where (126) and (128) are concluded from (112)–(114) and the fact that
∑

i ai∑
i bi

≥ c is

true for any i if ai
bi

≥ c and bi > 0.

Appendix 4.3: Bounding number of nodes in the tree, i.e., (34)

The number of nodes in the decision tree defined in (57), is bounded by O(Nλ∗
) using

the following three lemmas.

Lemma 6 For any leaf node v of the decision tree defined in (57), we have

Φ(v) ≥ N−λ∗
min
i, j

pi j p0q0. (129)

Lemma 7 For any tree G, the summation of Φ(v) over all the leaf nodes is equal to
one, i.e.,

∑
v∈Vl Φ(v) = 1.

Lemma 8 The number of nodes in the decision tree defined in (57) is at most two times
of the number of leaf nodes.

For proof of Lemmas 6, 7 and 8 , see “Appendices 4.5, 4.6 and 4.7”. Therefore, we
have

1

=
∑

v∈V1(G)

Φ(v) (130)

≥
∑

v∈V (G)

N−λ∗
min
i, j

pi j p0q0 (131)
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= |Vl(G)|N−λ∗
min
i, j

pi j p0q0 (132)

≥ |V (G)|
2

N−λ∗
min
i, j

pi j p0q0, (133)

where (130) follows from Lemma 7, (131) is true from (167) and (133) is concluded
from Lemma 8. Therefore, we conclude that |V (G)| = O(Nλ∗

).

Appendix 4.4: Proof of Lemma 5

Consider the optimization problem of finding the member of (λ, ri j , n) ∈ R(λ, ri j , n)

with minimum λ. This optimization problem is a convex optimization problem.12

Therefore, writing the KKT conditions, we have

F(ri j , n, λ)

= λ +
∑

i, j

μ1i j (−ri j ) + μ2
( (max(1, δ) − λ) log N

n
−
∑

i, j

ri j log pi j

+
∑

i, j

ri j log ri j
)

+μ3
( (1 − λ) log N

n
−
∑

i, j

ri j log pi j +
∑

i, j

ri j log pAi
)

+μ4
( (δ − λ) log N

n
−
∑

i, j

ri j log pi j +
∑

i, j

ri j log pBj
)

+μ5
( (1 + δ − λ) log N

n
−
∑

i, j

ri j log pi j +
∑

i, j

ri j log qi j
)

+μ6
(∑

i, j

ri j − 1
)
, (137)

where

μ2, μ3, μ4, μ5, ri j ≥ 0, μ1i j ri j = 0,
∑

i, j

ri j − 1 = 0, (138)

12 Note that f1(n) = 1
n , f2(r) = r log r and f3(r) = ar are convex functions. Therefore, as the sum of

the convex functions is a convex function, the optimization problem (103)–(107) is in the form of convex
optimization problem

Minimize
λ

f (x), (134)

subject to {gi (x) ≤ 0, i ∈ {1, . . . ,m}, (135)
h j (x) = 0, j ∈ {1, . . . , p}}, (136)

where x ∈ R
n , f (x) and gi (x) are convex functions and h j (x) is affine functions.
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(max(1, δ) − λ) log N

n
−
∑

i, j

ri j log pi j +
∑

i, j

ri j log ri j ≤ 0, (139)

μ2

⎛

⎝ (max(1, δ) − λ) log N

n
−
∑

i, j

ri j log pi j +
∑

i, j

ri j log ri j

⎞

⎠ = 0, (140)

(1 − λ) log N

n
−
∑

i, j

ri j log pi j +
∑

i, j

ri j log pAi ≤ 0, (141)

μ3

⎛

⎝ (1 − λ) log N

n
−
∑

i, j

ri j log pi j +
∑

i, j

ri j log pAi

⎞

⎠ = 0, (142)

(δ − λ) log N

n
−
∑

i, j

ri j log pi j +
∑

i, j

ri j log pBj ≤ 0, (143)

μ4

⎛

⎝ (δ − λ) log N

n
−
∑

i, j

ri j log pi j +
∑

i, j

ri j log pBj

⎞

⎠ = 0, (144)

(1 + δ − λ) log N

n
−
∑

i, j

ri j log pi j +
∑

i, j

ri j log qi j ≤ 0, (145)

μ5

⎛

⎝ (1 + δ − λ) log N

n
−
∑

i, j

ri j log pi j +
∑

i, j

ri j log qi j

⎞

⎠ = 0. (146)

From (138), μ1i j is zero if ri j is a non-zero number. Therefore, we only keep i and j
where ri j 
= 0 and μ1i j = 0.

dF(ri j , n, λ)

dri j
= 0 → μ2 + μ2 log ri j + μ3 log pAi + μ4 log pBj + μ5 log qi j + μ6

−(μ2 + μ3 + μ4 + μ5) log pi j = 0 (147)

→ rμ2
i j = pμ2+μ3+μ4+μ5

i j (pAi )
−μ3

(pBj )
−μ4q−μ5

i j e−μ2−μ6 . (148)

Consider the following two cases.

1. μ2 = 0. In this case, all the constraints are affine functions and therefore we have
a linear programming problem and the feasible set of this linear programming
problem is a polyhedron. From (103), the polyhedron is bounded, i.e., 0 ≤ ri j ≤ M
for some constant M . Assume that the polyhedron is nonempty, otherwise the
solution is ∞. Moreover, a nonempty bounded polyhedron cannot contain a line,
thus it must have a basic feasible solution and the optimal solutions are restricted
to the corner points.

2. μ2 
= 0. As ri j 
= 0 and μ1i j = 0, we have

dF(ri j , n, λ)

dri j
= 0 → μ2 + μ2 log ri j + μ3 log pAi
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+μ4 log pBj + μ5 log qi j + μ6

−(μ2 + μ3 + μ4 + μ5) log pi j = 0 (149)

→ rμ2
i j = pμ2+μ3+μ4+μ5

i j (pAi )
−μ3

(pBj )
−μ4q−μ5

i j e−μ2−μ6 (150)

→ ri j = cp
μ2+μ3+μ4+μ5

μ2
i j (pAi )

− μ3
μ2 (pBj )

− μ4
μ2 q

− μ5
μ2

i j , (151)

dF(ri j , n, λ)

dn
= 0

→ − (μ2(max(1, δ) − λ) + μ3(1 − λ) + μ4(δ − λ)

+μ5(1 + δ − λ))
log N

n2
= 0 (152)

→ μ2(max(1, δ) − λ) + μ3(1 − λ)

+μ4(δ − λ) + μ5(1 + δ − λ) = 0 (153)

→ λ = μ2 max(1, δ) + μ3 + μ4δ + μ5(1 + δ)

μ2 + μ3 + μ4 + μ5
. (154)

Summing (140), (142), (144) and (146) and using (151), we have

(μ2(max(1, δ) − λ) + μ3(1 − λ) +μ4(δ − λ) + μ5(1 + δ − λ))
log N

n
= μ2 log c. (155)

From (154) and μ2 
= 0, we conclude that c = 1. Moreover, we have λ =
max(1,δ)+μ+νδ

1+μ+ν+η
, where μ, ν and η are defined as:

μ = μ3 + μ5

μ2
, (156)

ν = μ4 + μ5

μ2
, (157)

η = μ′
2 − μ5

μ2
. (158)

Assume that η > 0, therefore ri j < pi j as pi j ≤ min(qi , q j ). On the other hand,∑
i, j ri j = ∑

pi j = 1 which contradicts our assumption that η > 0. Thus, η ≤ 0.
Define (μ∗, ν∗, η∗) as follows

(μ∗, ν∗, η∗) = arg max
min(μ,ν)≥η≥0,

∑
i, j p

1+μ+ν−η
i j (pAi )

−μ
(pBj )

−ν=1

max(1, δ) + μ + νδ

1 + μ + ν − η
. (159)

Therefore, from (140), (151) and (154) we conclude Lemma 5 as follows

r∗
i j = p1+μ∗+ν∗−η∗

i j (pAi )
−μ∗

(pBj )
−ν∗

, (160)
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λ∗ = max(1, δ) + μ∗ + ν∗δ
1 + μ∗ + ν∗ − η∗ , (161)

n∗ = (max(1, δ) − λ∗) log N
∑

r∗
i j log

pi j
r∗
i j

. (162)

Appendix 4.5: Proof of Lemma 6

In order to prove Lemma 6, consider a leaf node v0 and its parent v1. From (57), for
the node v1 we have

Φ(v1)

Ψ (v1)
≤ N 1+δ−λ∗

p0q0, (163)

Φ(v1)

ΨA(v1)
≥ N 1−λ∗

p0q0, (164)

Φ(v1)

Ψ B(v1)
≥ N δ−λ∗

p0q0. (165)

(163)–(165) follow from (57) and the fact that the node v1 is niether pruned nor
accepted as it is not a leaf node. Therefore, from (164)×(165)/(163), we conclude
that,

Φ(v1) ≥ N−λ∗
p0q0. (166)

Therefore, from definition of Φ(v), for the leaf node v0 we have

Φ(v0) ≥ N−λ∗
min
i, j

pi j p0q0. (167)

(167) is true for all the leaf nodes as (163)–(167) were derived independent of the
choice of the leaf node.

Appendix 4.6: Proof of Lemma 7

The proof is straightforward based on proof of Lemma4.
∑

v∈Vl Φ(v) = 1 is proved by
the induction on depth of the tree. For the treeG with depth(G) = 1,

∑
v∈Vl Φ(v) = 1

is trivial as for the children vi j of the root we have Φ(vi j ) = pi j and
∑

i j pi j = 1.
Assume that

∑
v∈Vl Φ(v) = 1 is true for all the trees G with depth(G) ≤ depth.

Our goal is to prove that
∑

v∈Vl Φ(v) = 1 is true for all the trees G with depth(G) =
depth + 1. Consider a tree G with depth(G) = depth + 1 and the tree G ′ obtained
by removing all the nodes at depth depth + 1.

∑

v∈Vl (G)

Φ(v)

=
∑

v∈Vl (G),depth(v)=depth+1

Φ(v)
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−
∑

w∈V (G),w is a parent of a leaf node,depth(w)=depth

Φ(w)

+
∑

v∈Vl (G ′)
Φ(v) (168)

=
∑

v∈Vl (G ′)
Φ(v) (169)

= 1. (170)

(168) is a result of definition of G ′, i.e., G ′ is obtained from G by removing all the
nodes at depth depth + 1. (169) is true as for any node w and its children vi j we
have Φ(w) = ∑

i j Φ(vi j ) which is a result of the fact that Φ(vi j ) = Φ(w)pi j . (170)
is concluded from the induction assumption, i.e.,

∑
v∈Vl Φ(v) = 1 is true for all the

trees G with depth(G) ≤ depth.

Appendix 4.7: Proof of Lemma 8

For any decision tree which at each node either it is pruned, accepted or branched into
kl children, number of nodes in the tree is at most two times number of leaf nodes, i.e.,
|V (G)| ≤ 2|Vl(G)|. This is true by induction on the depth of the tree. For a treeG with
depth(G) = 1,wehave |Vl(G)| = kl and |V (G)| = kl+1.Therefore, Lemma8 is true
in this case.Assume that |V (G)| ≤ 2|Vl(G)| is true for all the treesGwithdepth(G) ≤
depth. Our goal is to prove that |V (G)| ≤ 2|Vl(G)| is true for all the trees G with
depth(G) = depth+1. Consider a treeG with depth(G) = depth+1. Consider the
tree G ′ obtained by removing all the nodes v where depth(v) = depth + 1. Assume
there are klr of them (each intermediate node has kl children). Therefore, we have
|V (G)| = |V (G ′)| + klr , |Vl(G)| = |Vl(G ′)| + (kl − 1)r and |V (G ′)| ≤ 2|Vl(G ′)|.
This results in |V (G)| ≤ 2|Vl(G)|.

Appendix 5: Proof of Theorem 4

First, note that from
pi j
1+ε

≤ p′
i j ≤ pi j (1 + ε), we conclude that

pAi
1+ε

≤ p′A
i ≤

pAi (1 + ε),
pBj
1+ε

≤ p′B
j ≤ pBj (1 + ε) and

qi j
(1+ε)2

≤ q ′
i j ≤ qi j (1 + ε)2. Assume that

depth(G) = d. Define the variables Φ(v), ΨA(v), Ψ B(v), Ψ (v), α(G), γA(G),
γB(G), β(G) and T P for the tree with the distribution p′ as Φ ′(v), Ψ ′A(v), Ψ ′B(v),
Ψ ′(v), α′(G), γ ′A(G), γ ′B(G), β ′(G) and T P ′. Therefore, from (29)–(32) we have

α(G) =
∑

v∈VBuckets (G)

Φ(v) (171)

≤
∑

v∈VBuckets (G)

Φ ′(v)(1 + ε)d (172)

≤ α′(G)(1 + ε)d , (173)
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(172) follows from Φ(v) ≤ Φ ′(v)(1 + ε)d which is a result of the definition of Φ(v)

in (22), i.e., Φ( f (v, ai , b j )) = Φ(v)pi j ,∀v ∈ V . Similarly, we have

α(G)

(1 + ε)d
≤ α′(G) ≤ α(G)(1 + ε)d , (174)

γA(G)

(1 + ε)d
≤ γ ′A(G) ≤ γA(G)(1 + ε)d , (175)

γB(G)

(1 + ε)d
≤ γ ′B(G) ≤ γB(G)(1 + ε)d , (176)

β(G)

(1 + ε)2d
≤ β ′(G) ≤ β(G)(1 + ε)2d . (177)

On the other hand, from (48)–(51), we have

T P = 1 − (1 − α′(G))
#bands ≥ 1 − (1 − α(G)

(1 + ε)d
)
#bands

, (178)

Due to the inequality (1 − x)
c
x < e−c, the minimum possible value of #bands to

ensure true positive rate T P can be computed as

#bands = � log
1

1−T P
α(G)

(1+ε)d

�. (179)

Thus, the total complexity is computed as

ctree|V (G)| +
(
chash N

α(G)
+ chashM

α(G)
+ cinsertion Nγ ′A(G)

α(G)
+ cinsertionMγ ′B(G)

α(G)

+cposMNβ ′(G)

α(G)

)
.(1 + ε)d log

1

1 − T P
(180)

≤ (1 + ε)3d Nλ∗
(181)

≤ Nλ∗+3cd log(1+ε), (182)

where (181) follows from (174)–(177) and the fact that the total complexity for distri-
bution p′ is O(Nλ∗(p′)). Finally, (182) is obtained from the following lemma in which
we prove that the depth of the tree is bounded by cd log N where cd is a constant
depending on the distribution.

Lemma 9 For the decision tree G, depth(G) = cd log N where cd = min(
(λ∗−1)

log(maxi, j
pi j

pAi
)
,

(λ∗−δ)

log(maxi, j
pi j

pBj
)

)
.

For proof of Lemma 9, see “Appendix 5.1”.
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Appendix 5.1: Proof of Lemma 9

From (57), for the decision tree G we have

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Φ(v)
Ψ (v)

≥ N 1+δ−λ∗
p0q0 : Accept bucket,

Φ(v)

ΨA(v)
≤ N 1−λ∗

p0q0 : Prune,
Φ(v)

ΨB(v)
≤ N δ−λ∗

p0q0 : Prune,
otherwise : Branch into the kl children.

(183)

Our goal here is to prove that for any pruned node v and any accepted node v,
depth(v) ≤ cd log N where cd is a constant depending on the distribution. Consider
a pruned or accepted node v. For its parent w, we have

N 1−λ∗
p0q0 <

Φ(v)

ΨA(v)
. (184)

Therefore, we conclude that

d ≤ (λ∗ − 1) log N

log(maxi, j
pi j
pAi

)
. (185)

Similarly, we have

N δ−λ∗
p0q0 <

Φ(v)

Ψ B(v)
(186)

→ d ≤ (λ∗ − δ) log N

log(maxi, j
pi j
pBj

)
. (187)

Thus, cd is defined as min
(

(λ∗−1)

log(maxi, j
pi j

pAi
)
,

(λ∗−δ)

log(maxi, j
pi j

pBj
)

)
. (185) and (187) are true as

p0, q0 ≤ 1.

Appendix 6: Pseudo code

Here, we present the pseudo code to compute the complexity of the algorithm in
Dubiner (2012) in the case of hamming distance (see Experiment 1).

123



ForestDSH: a universal hash design for discrete…

Algorithm 6 Algorithm for Dubiner (2012) for the case of hamming distance
Inputs: Probability p, number of data points N , and dimension S.
Output: Complexity of dubiner algorithm.
Procedure:

For d ∈ {1, 2, . . . , S}
Generate data points x ∈ {0, 1}S and buckets b ∈ {0, 1}S from Bernoulli( 12 ).

P1(d) ← ratio of data points x falling within distance d of b.

Generate data points x, y ∈ {0, 1}S by

[
0.5 − p p

p 0.5 − p

]
and buckets b ∈ {0, 1}S

from Bernoulli( 12 ).

P2(d) ← ratio of pairs of data points (x, y) both falling within distance d of b.

Select d0 such that P1(d0) ≈ 1
N .

Return log(P2(d0))
log(P1(d0))

.

Appendix 7: Further discussion onMIPS

In order to use MIPS to solve this problem, i.e., (2), we need to derive optimal weights
ωi j to minimize the norm M2 in Shrivastava and Li (2014). The term M stands for

the radius of the space which is computed as follows: M2 = E
(||x ||)2 + E

(||y||)2.
Therefore, from (69)–(72) we conclude that M2 = ∑

i j

(
pBj ω2

i j + pAi log2(
pi j
qi j

)

ω2
i j

)

which results in optimal ωi j = ( pAi
pBj

)0.25( | log pi j
qi j

| )0.5. On the other hand, for

(x, y) ∼ Q(x, y) we have

E
(||x ||||y||) ≥ E(< T (x), T (y) >) = S

∑

i j

qi j | log( pi j
qi j

) |. (188)

In order to have nearly one true positive rate and sub-quadratic complexity we need
S0 ≤ SdK L(pi j ||qi j ) and cS0 ≥ −SdK L(qi j ||pi j ) where dK L stands for kullback
leibler divergence. Moreover, we should have M2 ≥ S

∑
i j

√
qi j | log( pi j

qi j
)|. Setting

c = 0, S0 andM as above, the complexitywill bemore than 1.9 for any 2×2 probability
distribution matrix. The reason is that the transferred data points are nearly orthogonal
to each other and this makes it very slow to find maximum inner product using the
existing method (Shrivastava and Li 2014).
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Appendix 8: Complexities of MinHash, LSH-hamming and ForestDSH

In this section, we derive the complexities ofMinHash, LSH-hamming and ForestDSH

in the case of P1 =
[
0.345 0
0.31 0.345

]
. Complexities are computed for any 2 × 2 proba-

bility distributions similarly.

Appendix 8.1: Complexity of MinHash

For MinHash the query complexity is

Nmin(mh1,mh2,mh3,mh4), (189)

where mh1 = log p00
1−p11

log q00
1−q11

, mh2 = log p01
1−p10

log q01
1−q10

, mh3 = log p10
1−p01

log q10
1−q01

and mh4 = log p11
1−p00

log q11
1−q00

. For

P1, the per query complexity is derived and is equal to 0.5207.

Appendix 8.2: Complexity of LSH-hamming

In the case of LSH-hamming, the query complexity is

O

(
N

min
(
log(p00+p11)

log(q00+q11)
,
log(p01+p10)

log(q01+q10)

))
, (190)

and the storage required for the algorithm is O(N
1+min( log(p00+p11)

log(q00+q11)
,
log(p01+p10)

log(q01+q10)
)
). Simi-

larly for P1, the per query complexity is derived and is equal to 0.4672.

Appendix 8.3: Complexity of ForestDSH

From Definition 4, we derive λ∗ as follows

(μ∗, ν∗, η∗) = arg max
min(μ,ν)≥η>0,

∑
i, j p

1+μ+ν−η
i j (pAi )

−μ
(pBj )

−ν=1

1 + μ + ν

1 + μ + ν − η
(191)

= (4.6611, 4.6611, 3.1462) (192)

λ∗ = 1 + μ∗ + ν∗

1 + μ∗ + ν∗ − η∗ (193)

= 1.4384. (194)

Note that δ = 1 and the per query complexity is equal to 0.4384.
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Appendix 9: Joint probability distributions learnedonmass spectrom-
etry data

The mass spectrometry data for experiment 4, is shown in Fig. 10a–c in case of
log Rank at base 4 (a 4 × 4 matrix), log Rank at base 2 (an 8 × 8 matrix), and no
log Rank transformation (a 51×51 matrix). For the mass spectrometry data shown in
Fig. 10a, the probability distribution P4×4 is given in (195). Note that, in the case of
LSH-hamming the query complexity for these 4 × 4, 8 × 8 and 51 × 51 matrices are
0.901, 0.890 and 0.905, respectively. Similarly, per query complexity for MinHash
for these 4× 4, 8× 8 and 51× 51 matrices are 0.4425, 0.376 and 0.386, respectively.

For the mass spectrometry data shown in Fig. 10a, b, the probability distribution
p(x, y) is represented as

P4×4 =

⎡

⎢⎢⎣

0.000125 5.008081 × 10−5 9.689274 × 10−8 0.000404
5.008082 × 10−5 0.000209 6.205379 × 10−6 0.001921
9.689274 × 10−8 6.205379 × 10−6 2.688879 × 10−5 0.000355

0.000404 0.001921 0.000355 0.994165

⎤

⎥⎥⎦ ,

(195)

P8×8 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3.458 × 10−5 1.442 × 10−5 5.434 × 10−6 1.723 × 10−6

1.442 × 10−5 3.708 × 10−5 2.550 × 10−5 8.706 × 10−6

5.434 × 10−6 2.550 × 10−5 3.907 × 10−5 2.948 × 10−5

1.723 × 10−6 8.706 × 10−6 2.948 × 10−5 4.867 × 10−5

2.921 × 10−7 1.561 × 10−6 6.442 × 10−6 1.813 × 10−5

7.496 × 10−8 4.809 × 10−7 2.008 × 10−6 6.098 × 10−6

6.718 × 10−8 2.680 × 10−7 1.251 × 10−6 4.531 × 10−6

5.023 × 10−5 1.574 × 10−4 3.671 × 10−4 5.539 × 10−4

(196)

2.920 × 10−7 7.496 × 10−8 6.718 × 10−8 5.023 × 10−5

1.561 × 10−6 4.809 × 10−7 2.680 × 10−7 1.575 × 10−4

6.442 × 10−6 2.008 × 10−6 1.251 × 10−6 3.672 × 10−4

1.813 × 10−5 6.098 × 10−6 4.532 × 10−6 5.539 × 10−4

2.887 × 10−5 6.892 × 10−6 5.309 × 10−6 4.138 × 10−4

6.892 × 10−6 2.123 × 10−5 5.826 × 10−6 3.246 × 10−4

5.309 × 10−6 5.826 × 10−6 6.411 × 10−5 8.364 × 10−4

4.138 × 10−4 3.246 × 10−4 8.364 × 10−4 0.994

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (197)

From (56), for P4×4, (μ∗, ν∗, η∗, λ∗) are derived as

μ∗ = 1.151016, (198)

ν∗ = 1.151016, (199)

η∗ = 0.813168, (200)

λ∗ = 1.326723. (201)
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Similarly, for P8×8, we have

μ∗ = 0.871147, (202)

ν∗ = 0.871147, (203)

η∗ = 0.624426, (204)

λ∗ = 1.294837. (205)

For the mass spectrometry data shown in Fig. 10c, (μ∗, ν∗, η∗, λ∗) are

μ∗ = 0.901208, (206)

ν∗ = 0.901208, (207)

η∗ = 0.615797, (208)

λ∗ = 1.281621. (209)
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