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Abstract
Electronic Health Records (EHR) data is routinely generated patient data that can
provide useful information for analytical tasks such as disease detection and clinical
event prediction. However, temporal EHR data such as physiological vital signs and
lab test results are particularly challenging. Temporal EHR features typically have
different sampling frequencies; such examples include heart rate (measured almost
continuously) and blood test results (a few times during a patient’s entire stay). Differ-
ent patients also have different length of stays. Existing approaches for temporal EHR
sequence extraction either ignore the temporal pattern within features, or use a prede-
fined window to select a section of the sequences without taking into account all the
information. We propose a novel approach to tackle the issue of irregularly sampled,
unequal length EHR time series using dynamic time warping and tensor decomposi-
tion. We use DTW to learn the pairwise distances for each temporal feature among the
patient cohort and stack the distance matrices into a tensor. We then decompose the
tensor to learn the latent structure, which is consequently used for patient represen-
tation. Finally, we use the patient representation for in-hospital mortality prediction.
We illustrate our method on two cohorts from the MIMIC-III database: the sepsis and
the acute kidney failure cohorts. We show that our method produces outstanding clas-
sification performance in terms of AUROC, AUPRC and accuracy compared with the
baseline methods: LSTM and DTW-KNN. In the end we provide a detailed analysis
on the feature importance for the interpretability of our method.
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1 Introduction

Electronic health record, or EHR data is patient data routinely generated from health
institutions, including demographics, diagnoses, vital measurements, clinical notes,
laboratory test results andmedical images. EHR data can provide valuable information
for analytical tasks including but not limited to disease detection and classification,
medical concept embedding and data augmentation (Xiao et al. 2018). However, EHR
data can be challenging due tomulti-modality of data types, lack of outcome labels and
missingness, temporality and irregularity (Ghassemi et al. 2018; Kruse et al. 2016).
Temporal EHR sequences are difficult to model due to two sources of variability in
length of sequence: feature-wise and subject-wise. Different features (also known as
variables or parameters) can vary greatly in terms of measurement frequency, from
measured nearly continuously (blood pressure) to daily or whenever necessary (lab-
oratory test). Different patients (or subjects) can have varying periods of stays in the
hospital or intensive care units. It is crucial to represent the data in meaningful ways
to proceed with further analytical tasks such as clinical event predictions, hence the
heterogeneity in sequence length poses challenges.

There have been several approaches to represent temporal EHR data. One simple
approach is to compute sample statistics (minimum, maximum, mean, standard devia-
tion, number of measurements, first measurement) for features at predefined intervals,
for instance the first 48 h of the hospital stay (Harutyunyan et al. 2018; Johnson et al.
2017; Guo et al. 2020a). Classification tasks are then completed using classifiers such
as logistic regression or gradient boosting machines. This approach produces human
readable and interpretable features and can adapt to both feature and subject sequence
length variability, however loses the temporal dependency which is valuable for mod-
eling pathophysiologic evolution and disease progression (Luo et al. 2016; Alaa and
van der Schaar 2018). Recent developments in deep learning, especially Recurrent
Neural Networks (RNN) are able to capture the temporal pattern in multiple features.
Long Short Term Memory (LSTM) networks are a type of state-of-the-art RNN, and
have shown many successful applications in temporal healthcare data representation
and classification. Such examples include sepsis prediction (Scherpf et al. 2019),
unplanned intensive care unit readmission (Lin et al. 2019), mortality risk monitor-
ing (Kaji et al. 2019; Purushotham et al. 2018) and other clinical event detection and
diagnosis (Lipton et al. 2016). Bidirectional LSTM (BiLSTM) is a variation of LSTM
which takes both forward and backward sequence dependency into account, and has
been successful in disease inference and predictions (Yu et al. 2020; Guo et al. 2020b).

LSTMs are typically trained on a specified window (first 24 or 48 h of
patient records) therefore ignore the irregular sequence lengths (Suresh et al. 2018;
Purushotham et al. 2018; Song et al. 2018; Lei et al. 2018).When there aremissing val-
ues or variables, it is necessary to impute: either withmean, zero or withmore complex
approaches such as Gaussian Processes (Lipton et al. 2016; Moor et al. 2019). Despite
of their outstanding performance in classification tasks, most deep learning methods
require a large amount of data to train and remain complex with tens of thousands
of hyperparameters that are hard to interpret (Lipton 2016). Recent works to improve
interpretability in deep learning using ‘attention’ mechanisms still require complex
architecture (Alaa and van der Schaar 2018; Song et al. 2018). We need therefore
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a more transparent tool that can account for temporal sequences sampled at various
frequencies for irregular length of periods from different patients.

Modeling unequal length temporal EHR features directly in the raw form requires
either extracting the summary statistics at a snapshot or segmenting the sequences into a
regularwindow, as outlined above.On theother hand, ifwemodel the relations between
sequences such as similarity instead of the raw sequence itself, the segmentation could
be avoided. It is natural to study the similarity or distance (we use these two terms
interchangeably) as patients with similar conditions might display similar patterns
of physiological trends (Luo et al. 2016). This forms clusters of patients that can
be used for personalized predictions and treatments (Che et al. 2017; Ruffini et al.
2017) and to help understand the underlying patient characteristics, also known as
phenotyping (Ho et al. 2014a, b; Perros et al. 2017). Powerful data mining tools such
as dynamic time warping (Keogh and Pazzani 1999) can align and compare two
time series of unequal lengths, and has proven effective in EHR temporal sequence
learning (Che et al. 2017; Moor et al. 2019). The distances computed for different
features then need to be integrated in some way for further classification tasks. Luo
et al. (2016) used frequent subgraph mining to group patients with similar temporal
trends, then used subgraph groups to predict 30-day mortality. Moor et al. (2019)
proposed to use a hybrid of dynamic timewarping (or DTW in short) and theK-nearest
neighbor ensemble algorithm to classify each feature, then ensemble the predictive
score together to predict sepsis onset. Outside healthcare related applications, nearest
neighbor type classifiers with some distance metric remains one of the most powerful
time series classification methods (Tan et al. 2019; Bagnall et al. 2016).

Instead of classifying each feature individually and then integrate, an alternative to
collect all features together is to put theDTWdistancematrices into amultidimensional
array: a tensor. In this way data from more than two dimensions can be captured
conveniently. This tensor contains information about all features that were originally
irregular at feature level and subject level, and its decomposition can provide useful
insights on the characteristics of the features and the cohort. We therefore propose
a novel method to represent irregular length temporal EHR data via dynamic time
warping and tensor decomposition. Instead of using a fixed window of data, we use
the full patient sequences from various features that typically differ for each patient.
We learn the patient-pairwise feature distance for each feature using dynamic time
warping. Based on these distance matrices we construct a third order tensor, then
decompose the tensor using CANDECOMP/PARAFAC decomposition (Kiers 2000).
Our approach is referred to as DTW-CP. The learned latent feature matrix contains
information that can further produce patient representation for supervised learning
tasks.

We test DTW-CP on two different cohorts from the open MIMIC-III critical
care database with an in-hospital mortality prediction experiment, and compare with
baseline results produced by LSTM. With sufficient number of latent components,
DTW-CP has consistently better classification performance on both cohorts in three
metrics. We provide a detailed analysis of the features and learned latent components
to provide insight on which features contain more information for the classification
performance.
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The rest of the paper is organized as follow. Section 2 provides background informa-
tion for dynamic time warping and CP decomposition, and describes our methodology
of patient representation in detail. Section 3 outlines the experimental evaluation and
implementation details. Section 4 provides results for the experiments and analysis of
feature importance. Section 5 discusses the strength, limitation and future works and
conclude the paper.

2 Methodology

We give a brief review of dynamic timewarping and tensor decomposition in Sect. 2.1,
then describe our method for patient time series representation in Sect. 2.2.

2.1 Background

We first introduce the notations used in the paper (consistent with Kolda and Bader
2009). A tensor is a multidimensional array, the number of dimensions is called order,
modes or ways. In this work we focus on third order tensors. A slice is a two dimen-
sional section of a tensor with two fixed modes. For example X1:: is a horizontal slice,
which is the first layer or top matrix of a tensor (Table 1).

2.1.1 Tensor decomposition

Tensor decomposition has wide applications in signal processing and data mining
(Sidiropoulos et al. 2017; Acar et al. 2017), and has been applied successfully in
helathcare informatics (Ho et al. 2014a; Henderson et al. 2017, 2018). In this paper
we focus on CANDECOMP/PARAFAC or CP decomposition for short. For a third
order tensor X ∈ R

I×J×K , a CP decomposition for a chosen number of components

Table 1 List of notations Symbol Definition

X, D, M Matrix

XT Matrix transpose

xr r-th column of X

X ,D Tensor

xi j , xi jk Elements of a matrix and a tensor

Xi ::, X: j : Horizontal, lateral slice of tensor

X::k or simply Xk Frontal slice of tensor

x, y Vector

◦ Outer product
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r = 1, . . . , R can be formalized in the following way:

min
X̂

||X − X̂ || where X̂ =
R∑

r=1

ar ◦ br ◦ cr (1)

Here ar , br , cr are column vectors of size I , J , K . The vectors can be reorganised
into factor matrices [[A, B,C]] where A ∈ R

I×R, B ∈ R
J×R,C ∈ R

K×R , A =
[a1 a2 . . . aR]. If the columns of A, B,C are normalized to unit length, then the
weights are absorbed into λ ∈ R

R ,

X̂ =
R∑

r=1

λr ar ◦ br ◦ cr . (2)

More details on tensors and the CP decomposition can be seen in (Rabanser et al.
2017; Kolda and Bader 2009) and references therein.

2.1.2 Dynamic time warping

Dynamic time warping (DTW) is a technique to find the optimal alignment between
two time dependent sequences, specifically with time deformation and different speed
(Keogh and Pazzani 1999; Muller 2007). Given two time series x = (x1, x2, . . . , xN )

and y = (y1, y2, . . . yM ), construct a cost matrix C ∈ R
N×M with elements cn,m =

d(xn, ym). Hered is a distancemeasure.With squaredEuclidean distance,d(xn, ym) =
(xn − ym)2.

Awarping pathW = (w1, . . . , wQ) is a set of matrix indices that defines amapping
between x and y where Q is the length of the warping path. Let w1 = (1, 1), wQ =
(N , M), indicating that the warping path starts and ends in the opposite corner cells
of the matrix (boundary conditions). W also need to satisfy additional continuity and
monotonicity conditions (Keogh and Pazzani 1999). Let the total cost of a warping
path W between x, y be

TCW (x, y) =
Q∑

q=1

cwq , (3)

The optimal warping path W ∗ is the one that minimizes the total cost among all
possible paths, and the DTW distance is the total cost associated with W ∗,

DTW (x, y) = TCW∗(x, y)

= min{TCW (x, y)}.

It is time consuming to find the optimal warping path. By restricting the difference
between possible alignment indices between time series pairs, the search window is
narrowed around the diagonal of the warping cost matrix. Two well known global
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constraints are the Sakoe–Chiba band (Sakoe and Chiba 1978) and Itakura parallelo-
gram (Itakura 1975). A comparison between these two constraints has been made by
Geler et al. (2019). More recent works have investigated learning constraints from the
data for faster computation and better accuracy (Ratanamahatana and Keogh 2004;
Niennattrakul and Ratanamahatana 2009; Salvador and Chan 2007; Dau et al. 2017).
It is worth mentioning that constraints work well when the time series lengths do not
differ much, otherwise the warping path might not exist (Giorgino 2009).

2.2 Representation of EHR time series

In this section we describe the workflow of representing patient time series of unequal
length and sampling frequency. Each unique variable of such physiological time series
such as temperature or white blood cell count is referred to as a feature. We use the
term distance and similarity interchangeably. Denote the patient index i, i = 1, . . . N
and feature index k, k = 1, . . . K . The length of stay for different patients varies,
leading to patient-specific time index denoted by ti = (ti1, . . . , tiT ). The temporal
sequence of feature k associated to patient i is recorded as

pik = (pik,ti1 , . . . , pik,tiT ). (4)

2.2.1 Learning latent feature structure

Due to the irregularity in lengths of feature sequences across patients and features, we
transform the problem from modeling the individual feature itself for all patients to
modeling the similarity of feature between pairs of patients. As dynamic time warping
(DTW) can align and compute the distances between pairs of univariate sequences
with varying lengths, for each feature k, we compute the distance between each pair
of patients (i, j) denoted by

di jk = DTW ( pik, p jk). (5)

The procedure is illustrated in Fig. 1a. This forms a third order pairwise distance
tensor D ∈ R

N×N×K where the three modes correspond to patient, patient, feature
respectively (Fig. 1b). Each frontal slice D::k represents the pairwise distance matrix
for feature k. Elements in the same slice D::k have 0 as diagonal elements, diik = 0
for i = 1, . . . N .

We then proceed by decomposing the tensor D via CP decomposition with chosen
number of components R (Fig. 1c). The motivation for this step is twofold. On the
one hand, using CP allows us to learn the latent variables from a complex set of data
of multiple unequal-length time series across different patients; on the other hand we
reduce the dimensionality of the data andmake it possible to carry out predictive tasks.
CP produces three factor matrices M1 ∈ R

N×R, M2 ∈ R
N×R, M3 ∈ R

K×R that are
the combinations of the vectors from the rank-one components. They represent patient,
patient and feature modes. We refer to M3 as the feature factor matrix where each
element Mk,r is the loading or weight for feature k on component r .
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2.2.2 Patient representation for prediction

We further examine the distance tensor D from another perspective: its lateral slices
D:i :. Our approach is similarity based, hence it is necessary to have a common key
or pivot patient to compare with. A pivot patient is defined as the patient I in the
cohort whose features of other patients i = 1, . . . N , i �= I are compared to. For
instance, the first slice on the left D:1: ∈ R

N×K contains DTW distances for all
features comparing patient I = 1 with all other patients (Fig. 1d). Such a matrix is
referred to as a pivot distance matrix. Each pivot distance matrix is partial as it only
contains distances compared with one key patient. In order to complete a predictive
task such as mortality classification, directly using the distance matrix as input creates
problems because there is no rule as for which lateral slice (i.e. which pivot patient)
to choose. Each component of the feature factor matrix M3, however, contains feature
information (loadings) collected from all patient pairs that can be used for prediction.
We produce patient representation PI ∈ R

N×R by projecting the pivot distance matrix
onto the feature factor matrix (Fanaee-T et al. 2013) as shown in Fig. 1e,

PI = D:I :M3. (6)

Fig. 1 a, b, c: Procedure of learning latent feature factor, where d(i, j, 1) is the DTW distance between
patients (i, j) for feature 1. d, e: Learning patient representation for prediction. Similarly, d(1, j, k) is the
DTW distance between patients (1, j) for feature k
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2.2.3 Training and testing procedure

Nowwe describe theworkflow of the training and testing. First the data set is randomly
split into training and test sets with 70/30 proportion and class stratification. In the
training set, DTW distances are computed for all features. The distance tensor is
constructed and then decomposed, producing the feature factormatrix for a pre-chosen
number of latent components. To create the projection matrix for classification, we
choose an arbitrary lateral slice (of pivot patient I ) from the training tensor, and
project it onto the feature factor matrix. In the illustration of Fig. 1, I = 1 but it
can be different. This projection is used for training the classifier. For the test set,
it is necessary to compute the DTW distance for feature sequences between the test
subjects and the pivot patient I , thenmake the projection onto the feature factormatrix.
This is because we need to make the distance representation consistent: both training
and test distances for projection need to be compared with the same pivot.

3 Experimental evaluation

We carry out experiments using a publicly available database, theMedical Information
Mart for Intensive Care (MIMIC III) database (Johnson et al. 2016). This is a single
center database that contains information about patients admitted to critical care units
at Beth Israel DeaconessMedical Center, Boston, USA. The data types include, but are
not limited to structured data such as temporal physiological signs and laboratory test
results, static demographic information such as age and gender, as well as unstructured
data such as free text clinical notes. In the current work we will focus on the structured
temporal data. Recent works on reproducible studies using MIMIC-III data make it
possible to extract consistent patient cohorts and features. We select two cohorts for
our experiments, and our selection criteria is in line with (Johnson et al. 2017).

3.1 Cohort and feature selection

3.1.1 Sepsis cohort

The first cohort we examine is a subset of the sepsis cohort originally studied in (Ribas
Ripoll et al. 2014) then reproduced by Johnson et al. (2017). We choose patients
who have a sepsis diagnosis (ICD-9 code 995.92 or 785.52) and Simplified Acute
Physiology Scores (SAPS) (Le Gall et al. 1993). We only keep patients who have
been in the ICU for no more than seven days (168 h), making a cohort of 1425 ICU
stays in total. Of these patients, 38.9% are associated with a mortality outcome. Our
study period is longer than other works using DTW or similarity-based methods that
used only 12 or up to 48 h (Luo et al. 2016; Moor et al. 2019). It is of interest to
see whether DTW still works well for longer sequences. We design an incremental
inclusion criterion: group 1 contains all subjects with below 24 h (1 day) records,
group 2 contains subjects with below 48 h (2 days) records and so on, until 7 days.
This suggests that patients within groups with shorter stays are also included in those
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Table 2 Information for the sepsis and the acute kidney injury (AKI) cohorts

Cohort index Length of stay (h) N patient (Case, Control)

Sepsis 1 [5, 24] 225 (136, 89)

Sepsis 2 [5, 48] 546 (240, 306)

Sepsis 3 [5, 72] 833 (338, 495)

Sepsis 4 [5, 96] 1048 (410, 638)

Sepsis 5 [5, 120] 1202 (468, 734)

Sepsis 5 [5, 144] 1329 (521, 808)

Sepsis 5 [5, 168] 1425 (554, 871)

AKI 1 [5, 24] 652 (189, 463)

AKI 2 [5, 48] 1676 (370, 1306)

AKI 3 [5, 72] 2448 (515, 1933)

AKI 4 [5, 96] 2959 (611, 2348)

AKI 5 [5, 120] 3284 (683, 2601)

AKI 6 [5, 144] 3521 (757, 2764)

AKI 7 [5, 168] 3705 (801, 2904)

Note that for the AKI experiment we use 50 fixed size of stratified random samples (500 subjects in total
with 150 cases, 350 controls) for each subgroup 1–7

with longer stays. In this waywe can observeDTW’s performance on datawith smaller
and larger sequence length variability.

3.1.2 Acute kidney injury cohort

The second cohort is the acute kidney injury (referred to as AKI in the rest of the paper)
cohort based on Johnson et al. (2017). We select patients who have ICD-9 diagnosis
of acute kidney injury (code 584.9) who have no more than seven days stay, similar
to the previous section. We end up with a cohort of 3705 patients (21.6% mortality).
Similar to the previous cohort, we segment the cohort into seven incremental groups:
below 24, 48, 72, 96, 120, 144, 168 h corresponding to 1 to 7 days. We modify the
experiment slightly to assess the stability of our method in a more controlled scenario.
We fix two aspects of the cohorts: sample size and class distribution. We perform
experiments on 50 random samples of fixed size 500 subjects from the five subgroups
corresponding to length of stay, shown in Table 2. The class distribution within each
sample is set to 30% case (dead) and 70% control (alive). This produced 350 random
samples in total.

3.1.3 Feature selection

In the temporal EHR prediction literature there have been some frequently used phys-
iological and laboratory test variables (Johnson et al. 2017; Moor et al. 2019; Luo
et al. 2016; Suresh et al. 2018). The majority of these features are the same, such as
heart rate, oxygen saturation and others. Nonetheless, there are some study-specific
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Table 3 Extracted features and abbreviations for our experiment

Heart rate HR Mean blood pressure MBP

Systolic blood pressure SBP Diastolic blood pressure DBP

Respiratory rate RR Temperature Temp

Oxygen saturation SpO2 Glasgow coma scale total GCS

GCS motor, verbal, eyes GCS_m, v, e Urine output UO

Endotracheal flag EndoFlag

Anion gap AG Albumin ALB

Immature Band forms Band Base excess BE_bg

Bilirubin BIL Blood Urea Nitrogen BUN

Bicarbonate HCO3* Carboxyhemoglobin CoHB_bg

Calcium Ca_bg Chloride CL*

Creatinine CR Glucose Glu*

Glucose chart Glu_c Hematocrit HCT*

Hemoglobin HGB* Lactate LAC*

Methemoglobin MetHb_bg International Normalized Ratio INR

Partial pressure (Oxygen) PO2_bg Partial pressure (CO2) PCO2_bg

pH pH Platelets PLT

Prothrombin time PT Partial thromboplastin time PTT

Potassium K* Sodium Na*

Total CO2 concentration totalCO2_bg White blood cell count WBC

The top panel consists of vital signs as well as urine output, Glasgow coma scales and endotracheal flag.
The bottom panel contains laboratory test variables. bg: arterial blood gas measurement
* Indicate that this feature has more than one measurement source, the other being blood gas

features included in each paper, for instance, Luo et al. (2016) uses volumes of gas
exchanged per minute which is not included in other studies. For consistency, we
extract a reproducible set of features from Johnson et al. (2017), listed in Table 3.
Repeated feature names such as glucose is due to multiple sources of data produced in
different test procedures, as explained by the authors (finger-stick glucose or arterial
blood gas glucose). The final number of features is 52.

3.2 Implementation details

For features other than lab test variables, we use the period starting from patient
admission into ICU until their discharge (from ‘0h’ to end of stay illustrated in Fig. 2).
For lab test features, we include an extended period of 24 h before admission (from
‘-24h’ to the end of stay). These features are typicallymeasured less frequently, and an
additional period may contain useful information (Johnson et al. 2017). Each feature
is standardized by substracting the mean and dividing by the standard deviation of its
own cohort.

We evaluate our DTW-CP method on a binary classification task: in-hospital mor-
tality. DTW is carried out on 52 standardized features for the training set, producing
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Fig. 2 Time intervals for feature extraction from an individual patient’s ICU stay

52 pairwise distance matrices. We use three options for the warping path of DTW:
without any constraint, Itakura parallelogram, and Sakoe–Chiba constraint with band-
width that is half of the maximum length of the two series of interest. In the case when
a constrained warping path does not exist, we use the unconstrained warping path to
compute the distance. The distance matrices are then stacked into a third order tensor
as described in Fig. 1 for CP decomposition. The selected number of components to
decompose into is from 2 to 30. The rest of the procedure is as described in Sect. 2.2.
We use logistic regression, support vector machine with linear and radial basis func-
tion kernel as our classifiers. The tuning parameters for SVM are chosen via 5-fold
cross validation.We use three options of pivot patient in our experiments: (1) a random
pivot such as the first patient (Sect. 4.1.1, part 1); (2) all patients as pivots (Sect. 4.1.1,
part 2); (3) we choose 10 random pivots, split the training set into training and val-
idation data and fit the models with each pivot. The one that has the best validation
AUC is picked as the final pivot (Sect. 4.1.2). The metrics to evaluate the classifica-
tion performance on the test data are Area under Receiver Operating Characteristic
curve (AUROC, or AUC in the rest of the paper), Area Under Precision Recall curve
(AUPRC) and accuracy (defined by the proportion of correct classifications). The use
of AUPRC is to provide a better metric when the class distribution is imbalanced. We
report the average of the above three metrics over the random splits from the test sets
from each experiment.

We consider two types of comparison methods: K-nearest neighbor combined with
dynamic time warping (DTW-KNN), and Long Short Term Memory (LSTM) neural
networks. For DTW-KNN, we use the DTW distance computed in the previous task.
For all features, we sum up the pairwise DTW distances matching the patient index:
the resulting matrix is the multivariate DTW distance matrix with elements dmi, j =∑52

k=1 di, j,k for patients i, j . This is equivalent to the independent multivariate DTW
distance (Shokoohi-Yekta et al. 2017). We experiment KNN classifiers with k =
1, 3, 5.

There are numerous variations of LSTM architectures (Harutyunyan et al. 2018;
Song et al. 2018). A typical LSTM application of temporal EHR data requires each
patient record to have at least 24 h of records, then only take the first 24 h for model-
ing, indicated as the interval between ‘0h’ to ‘23h’ in Fig. 2. While producing good
classification results with huge amount of training data, this inclusion criterion ignores
patients with shorter records. We adjust this approach to make patient inclusion more
flexible. For cohorts with shorter than 24 h records (day1), we make predictions on
data periods of both 12 and 18 h for subjects who have at least 12 and 18 h records,
respectively. For cohorts with longer records we use 12, 18, 24 h. We use the average
performance over these windows as our final metric for that cohort.
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We fit LSTM type models of three different architectures for the hidden layers: (1)
one LSTM hidden layer; (2) two LSTM hidden layers and (3) one bidirectional LSTM
hidden layer (BiLSTM). We use the rectified linear unit (ReLu) activation for hidden
layers, and the sigmoid activation for the dense output layer to complete the binary
classification.We test two different numbers of units, 64 and 128, for the LSTM layers.
We use RMSProp as our optimizer. The batch size is fixed at 32. We train each model
with 20 epochs and we use an early stopping if the validation loss stops decreasing
for 5 epochs. It is uncommon to have more than two LSTM layers in practice as the
number of parameters to estimate explodes. An optimal set of hyperparameters for
LSTM does not exist in the literature and the impact of number of units or architecture
can be insignificant (Reimers andGurevych 2017). Our choice of configuration should
be representative for this type of methods. We compute the average AUC, AUPRC
and accuracy over the random splits from the test set for each window.

Software for implementation: R (version 3.6.1) has been used for data preparation,
DTW (with dtw package created by Giorgino 2009) and classification. MATLAB
Tensorlab (Vervliet et al. 2016) has been used for CP decomposition. Keras
(Chollet 2015) with TensorFlow backend has been used for LSTM models.

4 Results

In this section,we report the classification performance tested onboth the sepsis and the
acute kidney injury (AKI) cohorts, followed by the analysis of features using data from
the sepsis cohort.We answer the followingquestions: (1) howdoes ourmethodperform
in data sets with different combinations of feature sequence heterogeneity compared
to the baseline methods? (2) are we able to identify features that are important for the
patient representation and the classification performance?

4.1 Classification performance

4.1.1 DTW-CP performance analysis

Figure 3 compares the classification performance (measured by AUC) using DTW
distances computed with three warping path options (unconstrained, Itakura paral-
lelogram, and Sakoe–Chiba band) as features, and logistic regression(LR) and linear
SVM as classifiers for the sepsis cohort for each group (sepsis 1–7, Table 2) over 10
random splits of the training and test sets. The pivot is fixed at the first patient. We
use ‘group’ and ‘day’ interchangeably in the rest of the paper. On the x-axis is the
number of components or latent features as predictors. Overall, different constraints
do not give very different classification performance. Computation times for the con-
straints can be found in Sect. 4.3. When the number of components grows, the AUC
increases and stabilizes for all groups. This upward-then-stable pattern is common
for tensor-based phenotyping and prediction applications (Ho et al. 2014a, b). The
exception is day1 (dark green) with the LR classifier: after component 20 to 25 the
performance start to deteriorate yet still stays above 0.8. This was not the case for
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Fig. 3 AUC of DTW-CP with LR and linear SVM classifier on 1–7 groups for the sepsis cohort, fixed
pivot at the first patient. DTW distances are computed with no constraint (‘None’), Itakura parallelogram,
and Sakoe–Chiba band. Lines represent the mean AUC over 10 randomly split test sets for each number of
components from 2 to 30

the SVM classifier. This indicates that the optimal component r for day1 with LR is
smaller than 30; alternatively a classifier with penalization could be applied tomitigate
the problem.

Similarly,we show themeanAUCfor the acute kidney injury (AKI) cohort for group
1–7 over 50 randomly sampled test sets under differentDTWconstraints and classifiers
(Fig. 4). Similar to the sepsis cohort results, the AUC displays an upward-then-stable
trend as the number of components increases. As the day grows (hence the variation
among the sequences within the cohort) the performance slightly deteriorates. The
patterns in the AKI cohort is more consistent than the sepsis cohort and less variable.

We then test the performance of DTW-CP over different choices of pivots: we carry
out classification tasks using all the pivot patients in the training tensor for each day
from the sepsis cohort (with only one random split) with component R = 30 and no
DTW constraint, and report the mean and standard error of the metrics in Table 4. The
results can be compared with Figs. 3 and 6. Apart from day1 where the classification
performance is slightly worse and with higher LR standard errors, the other metrics
fluctuate with an SE around 0.02. It is not straight-forward to identify the potential
outliers in the cohort because there are multiple features, and all distances are relative
to which pivot to compare with. Instead of iterating over all possible pivots, one way
to choose the pivot is to randomly choose a few (for instance, 10) and pick one that
produces the best validation AUC.

4.1.2 Comparison with KNN and LSTM

In this section we compare DTW-CP with KNN and LSTM methods. We make use
of the procedure described in the previous section: we randomly choose 10 training
pivot patients and take the pivot with best validation AUC as the optimal pivot. The
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Fig. 4 AUC of DTW-CP with LR and linear SVM classifier on 1–7 groups for the AKI cohort, fixed pivot
at the first patient. DTW distances are computed with no constraint (‘None’), Itakura parallelogram, and
Sakoe–Chiba band. Lines represent the mean AUC over 50 randomly split test sets for each number of
components from 2 to 30

Table 4 Performance (mean, SE) on the sepsis cohort with different pivot patients

Metric/Classifier Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

AUC LR

Mean 0.836 0.876 0.900 0.881 0.852 0.874 0.884

SE 0.044 0.020 0.018 0.021 0.020 0.018 0.022

AUC SVM

Mean 0.873 0.871 0.889 0.864 0.832 0.863 0.872

SE 0.030 0.023 0.020 0.023 0.024 0.020 0.024

Accuracy LR

Mean 0.773 0.809 0.850 0.819 0.798 0.830 0.841

SE 0.042 0.021 0.019 0.020 0.019 0.019 0.016

Accuracy SVM

Mean 0.806 0.805 0.831 0.800 0.788 0.822 0.830

SE 0.040 0.021 0.020 0.020 0.020 0.020 0.019

AUPRC LR

Mean 0.853 0.883 0.890 0.874 0.801 0.820 0.850

SE 0.050 0.017 0.018 0.022 0.026 0.030 0.024

AUPRC SVM

Mean 0.897 0.876 0.879 0.848 0.778 0.802 0.827

SE 0.041 0.021 0.022 0.026 0.031 0.029 0.030

123



1774 C. Zhang et al.

Fig. 5 Three metrics (mean, 95% CI) for the AKI cohort, comparing DTW-CP with LSTM, KNN over 7
groups. DTW-CP (LR = logistic regression, SVM-L = SVMwith linear kernel, SVM-R = SVMwith radial
basis function kernel) performance are extracted at component 30 with unconstrained DTW

results are averaged over 10 random splits from the sepsis cohort, and 50 random
splits from the AKI cohort. We focus on the case with 30 components. In Fig. 5 we
illustrate the three metrics from the AKI cohort. It can be seen that for DTW-CP, LR
and SVM-L classifiers produce similar results, while SVM-R is slightly worse. The
impact of adding sequence length variation (from day 1 to day 7) is not as obvious as
in Fig. 4, and the AUC is higher after selecting the optimal pivot. Compared with the
baselinemethods, DTW-CPwith LR or SVM-L produce the best AUC.When it comes
to the accuracy and AUPRC, DTW-CP is constantly better than LSTM methods, and
has better or similar performance as the best KNNmethod from day 1 to day 5. As the
prediction horizon increases, the deterioration of the LSTMmethods is more obvious.
This is not surprising, as there is not enough information to predict in a long term by
using only the first 24 h without huge amounts of training data. BiLSTM seems to
have the best performance among the LSTM methods.

In Fig. 6 we show the performance comparison on the sepsis cohort. DTW-CP
outperforms LSTMs and KNN (k = 1) in all metrics on all groups except day1. It also
produces better or equal performance in all metrics as the best KNN in day 3, 4 and 5.
In day 2, 6 and 7, DTW-CP has comparable or marginally lower performance than the
best KNN (k = 5) in one of the three metrics. We also observe that the performance
of DTW-CP in day 1 is worse than the other groups in terms of AUC and accuracy,
although the metric values are still decent. This is consistent with Fig. 3 and Table 4.

We make the following comments on the performance differences between the
sepsis and the AKI cohort. With DTW-CP, when we use any random pivot (such as the
first patient, Figs. 3, 4), the overall performance in terms of AUC is better in the sepsis
than the AKI cohort, with an exception day1. The worse performance in sepsis-day1
compared to other days in the sepsis data is probably due to much fewer samples (only
225, see Table 2); when the sample size is larger (AKI) , day1 has better performance
than all other days. In all the other days, sepsis has larger sample size than AKI, which
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Fig. 6 Three metrics (mean, 95% CI) for the sepsis cohort, comparing DTW-CP with LSTM, KNN over 7
groups. DTW-CP performance are extracted at component 30 with unconstrained DTW

could explain why performance is still competitive when sequence length variation
gets bigger. With controlled sample size in all its subgroups, the AKI cohort displays
rather constant deterioration as length variation grows (day1, 2 has better AUC than
day6, 7). We summarize that DTW-CP could perform better under two conditions:
when there is more data, and when the sequences are shorter. If we select the pivot
that produces that best validation AUC among a few randomly chosen ones, then the
sequence length variation has less impact on the performance.

4.2 Analysis of feature importance

Following the good classification performance,we further investigate the interpretabil-
ity using data from the sepsis cohort. The aim is to understand which features play
an important role in the patient representation. We look at three aspects, namely the
measurement frequency of the features, the distance matrix for one pivot patient and
the learned latent feature matrix from CP decomposition. The feature names and
abbreviations are consistent with Table 3.

4.2.1 Measurement frequency

The featureswe use vary greatly in terms ofmeasurement frequency, and consequently,
in terms of total number of measurements and length of sequence. Figure 7 illustrates
the average number of measurements for patients in the sepsis cohort. The time stamp
of feature recording is rounded to the nearest hour; if more than one measurement
per hour is made, an average is taken. The total number of hours of patient stay in
hospital or intensive care unit (length of stay, LOS) is therefore the maximum number
of measurements for this patient. The cohort mean (median) length of stay is 56.65
(52) h. Vital features such as heart rate, blood pressures and oxygen saturation are
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Fig. 7 Average number of total measurements for features in sepsis cohort. Cohort mean (median) length
of stay is 56.65 (52) h. The red dashed line distinguishes the non-lab and lab test features

measured almost hourly while laboratory tests are taken only a few times during a
patient’s entire hospital stay. At the same time, even within the same feature (i.e. heart
rate), the number of measurements can vary across patients given different LOS.

4.2.2 Distance matrix

To deal with the heterogeneity of time series outlined in the previous section, we work
with the similarity (distance) between patient pairs computed via DTW. Figure 8
presents a heatmap for a pivot distance matrix for an arbitrary patient, as described in
Fig. 1. It is important to point out that this matrix varies for different pivot patients. The
X-axis represents the subject index of the cohort. Each colored element represents the
DTW distance for each individual patient compared to the pivot for the corresponding
feature, plotted on the y-axis. The features are ordered in the same way as Fig. 7. The
top rows represent very frequently measured features (vitals and procedures) having
close to zero distances with low variability, colored in deep red. Most blood gas test
results (end with _bg) are measured very infrequently and display the same pattern as
the vitals. This effect could be interpreted as follows: frequently measured features are
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Fig. 8 Distance matrix for one patient from the sepsis cohort

vital signs that are inherently similar, hence little distance; while features with very
few measurements simply contain too little information.

Noticeably, for this pivot patient the urine output, GCS measurements, blood urea
nitrogen, creatinine, lactate, PaO2/FiO2 ratio, platelet counts and white blood cell
count display higher distance variability, colored inwhite and blue.We assume features
with high variance provide more information for classification.

4.2.3 Latent feature matrix

The pivot distance matrix only contains DTW distances of one particular patient com-
pared to others in the cohort, therefore it is patient-specific. Tensor decomposition (CP)
provides a useful tool to summarize information from the whole cohort. The latent
featurematrix of the sepsis cohort is 52 rows (feature) by R = 2, . . . 30 columns (com-
ponent). By examining each component, we can identify which feature was important
or unimportant by examining the magnitude of its loadings. In contrast to to Principal
Component Analysis (PCA), the first component from CP does not necessarily cor-
respond to the direction explaining the largest variance: there is no ordering among
the components. We illustrate with an example of three arbitrary components out of
30 from the CP decomposition in Fig. 9, as it is infeasible to visualize more than
three dimensions. We normalize loadings of each component to unit length. In this
particular factorization, it can be observed that most features have low factor weights
or loadings, as they are concentrated around 0, and some are more spread out.
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Fig. 9 Normalized factor loadings for three arbitrary components out of 30 from the CP decomposition,
corresponding to the sepsis day 1 cohort. Green and Red color indicate feature categories Lab and Vital.
Only loadings of magnitude greater than 0.1 in any direction is labeled for readability

To further investigate the importance of each particular feature, we calculate the
average factor loading in the following way. For the decomposed feature factor matrix
M ∈ R

52×R where each row corresponds to the kth feature’s Rth component loading,
and we define the average loading of feature k as the average magnitude of all its R
loadings. We illustrate the average loadings for the sepsis tensor decomposition over
7 days with fixed number of components, R = 30 in Fig. 10. Comparing with Fig. 7
it can be observed that the factor loading does not correspond with the measurement
frequency: temperature andSpO2aremeasured rather frequently but have low loadings
across all 7 days constantly; creatinine, lactate, PaO2/FiO2 fraction aremeasured fewer
times but have greater loadings. Regarding trend corresponding to one to seven day
data, features display various patterns: increasing (GCS verbal), constant (heart rate)
and decaying (lactate). This examination also reveals which features play very little
role (close to zero loading for all 7 days) in the patient tensor structure.

From the factor loadings we can try to link to the physical meanings of feature
importance. Urine output is measured frequently and is a marker for acute kidney
injury that is associated with high hospital mortality (Legrand and Payen 2011; Zhang
et al. 2014). Lactate (serum and blood gas) has both shown up as important features,
and lactate level elevation is associated with increased risk of death (Sanderson et al.
2018; Filho et al. 2016; Trzeciak et al. 2007). The other features such as PaO2/FiO2
ratio (Allardet-Servent et al. 2009), glucose (Park et al. 2013), creatinine, bilirubin,
platelet counts, INR (Murali et al. 2014; Li et al. 2018) are indicators for functionality
in different organs, and GCS scores (Ting et al. 2010) provides information for the
mobility of a patient. Our method could be one step forward to understanding which
features are most indicative for classification for similar datasets, in contrast to includ-
ing all features available and utilizing models with complex architecture. It is crucial
to point out that physiological patterns are extremely complex especially for critically
ill patients, and all interpretations are data and context dependent. Therefore any use
of machine learning models need to be carefully verified by clinicians.
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Fig. 10 Average loading for 52 features over all R = 30 components for the CP decomposition, sepsis
data, day 1 to 7

4.3 Scalability of DTW and CP

We provide the execution time for Dynamic time warping and CP decomposition for
the sepsis dataset. Computations are performed on a High Performance Computer
running Red Hat Enterprise Linux 7. The hardware includes Intel ®Xeon ®Platinum
8160 (2.10 GHz) CPU and 1TB of RAM.

The average time for DTWcomputations in hours (mean, standard deviation) for all
features is reported in Table 5. Itakura parallelogram and Sakoe–Chiba constraint (of
bandwidth half of the maximum sequence length) improve the DTW speed compared
to unconstrained DTW. The higher standard deviation in the unconstrained DTW is
due to longer time required for features with longer sequences, such as heart rate
(Table 6).

We also provide the time required for CP decomposition with varying size of ten-
sors and number of components to decompose. The computation is carried out using
MATLAB tensorlab toolbox. We report the execution time in seconds for the sepsis
data set, day 1 to 7 subgroups (averaged over 10 random splits) where the dimension
of target tensor grows from 158 × 158 × 52 to 998 × 998 × 52.
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Table 5 Average DTW
execution time (h) for 52
features

Constraint Mean SD

None 1.047 0.351

Itakura 0.980 0.178

Sakoe–Chiba 0.904 0.096

Table 6 CP decomposition execution time (seconds) into 10, 20, 30 components

Data index Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7
Size of patient mode 158 383 584 734 842 931 998

10 13.01 36.37 56.62 80.66 90.49 98.74 114.09

20 18.81 111.99 134.69 156.64 190.05 229.46 323.64

30 143.30 169.91 211.02 275.45 283.10 302.19 356.80

5 Discussions and conclusion

We have proposed a novel approach, a hybrid of dynamic time warping with tensor
decomposition (DTW-CP) to tackle a prevalent but challenging issue with temporal
EHR sequences: varying sampling frequency among features for different lengths of
patient stays. Our approach utilizes DTW to learn information about feature similari-
ties for patients in the cohort, and consequently uses tensor decomposition to learn the
latent feature structures. In addition, we have done a detailed analysis of the temporal
features used in many clinical prediction applications using the MIMIC-III database.
We illustrated that the importance of a feature (i.e. high factor loading from decom-
position) is not directly related to how often it is measured, and linked the ‘important’
features to their clinical interpretations.

Among all the works using DTW or tensor decomposition in healthcare, we are the
first to combine these two. Moreover, we have extended the DTW time period to up
to seven days, and illustrated how classification performance changes with different
variation in sequence length. We carried out careful experiments using (1) distance
matrices computed by differentDTWconstraints (Itakura parallelogram, Sakoe–Chiba
band versus unconstrained DTW); (2) different pivot options; (3) different classifiers
(logistic regression, linear and radial basis function kernel SVM). By comparing with
two baseline methods: LSTM with three architectures, and DTW-KNN methods, we
have shown that our method is able to outperform them in three different metrics. We
also give interpretations of the classification performance with different data sets and
different settings.

DTW-CP is a similarity (distance) based approach, this has two implications. Firstly
it is necessary to compute the distance between all pairs of patients in the cohort for
each feature. This step can be time consuming when the sequences are long and when
the cohort is large, as pointed out inMoor et al. (2019) (who did not use any constraint,
but used fastDTW in their implementation). Although DTW computation time can be
reduced with constraints, it can only be used when the sequence length do not differ
much; also it is unclear which constraint is the best (Geler et al. 2019). Secondly, the
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interpretation of features is based on patient similarity instead of the feature value
themselves. This means there is always a need for pivot patient to compare the rest of
the cohort with, to make the interpretation meaningful. We have chosen to optimize
the choice of pivot based onmaximizing AUC. This choice should of course be guided
by which metric is most important for any given application.

Our choice of decomposition algorithm (CP) does not have non-negative constraint,
hence the interpretation of latent feature matrix distinguishes itself from Ho et al.
(2014a, b); Afshar et al. (2018) and others where each component is a combination
of positive phenotype memberships. There is no standard way to choose the number
of components to decompose into, hence we suggest that in practice this should be
where the classification performance stabilizes. Lastly, we have only utilized tempo-
ral EHR sequences. Most works on patient clustering and clinical event predictions
include static demographic data in addition to the dynamic data (Suresh et al. 2018;
Purushotham et al. 2018), thus combining static data with temporal sequences is a
direction we could investigate further. Possible solutions include coupled matrix and
tensor factorization (CMTF).
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