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Abstract
Deep neural networks (DNNs) have introduced novel and useful tools to the machine
learning community.Other types of classifiers canpotentiallymakeuse of these tools as
well to improve their performance and generality. This paper reviews the current state
of the art for deep learning classifier technologies that are being used outside of deep
neural networks. Non-neural network classifiers can employ many components found
in DNN architectures. In this paper, we review the feature learning, optimization, and
regularization methods that form a core of deep network technologies. We then survey
non-neural network learning algorithms that make innovative use of these methods to
improve classification performance. Because many opportunities and challenges still
exist, we discuss directions that can be pursued to expand the area of deep learning
for a variety of classification algorithms.

Keywords Deep learning · Deep neural networks · Optimization · Regularization

1 Introduction

The objective of supervised learning algorithms is to identify an optimal mapping
between input features and output values based on a given training dataset. A super-
vised learning method that is attracting substantial research and industry attention
is DNN. DNNs have a profound effect on our daily lives; they are found in search
engines (Guo et al. 2017), self-driving cars (Ndikumana and Hong 2019), health care
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systems (Esteva et al. 2019), and consumer devices such as smart-phones and cameras
(Gjoreski et al. 2020; Yang et al. 2020). Convolutional Neural Networks (CNN) have
become the standard for processing images (Feng et al. 2019), whereas Recurrent
Neural Networks (RNN) dominate the processing of sequential data such as text and
voice (Smagulova and James 2019). DNNs allow machines to automatically discover
the representations needed for the detection or classification of raw input (LeCun
et al. 2015). Additionally, the neural network community developed unsupervised
algorithms to help with the learning of unlabeled data. These unsupervised methods
have found their way to real-world applications, such as creating generative adversar-
ial networks (GANs) that design clothes (Singh et al. 2020). The term deep has been
used to distinguish these networks from shallow networks with only one hidden layer;
in contrast, DNNs have multiple hidden layers. The two terms deep learning and
deep neural networks have been used synonymously. However, we observe that deep
learning itself conveys a broader meaning, which can also shape the field of machine
learning outside the realm of neural network algorithms.

The remarkable recent DNN advances were made possible by the availability of
massive amounts of computational power and labeled data. However, these advances
do not overcome all of the difficulties associated with DNNs. For example, there are
many real-world scenarios, such as analyzing power distribution data (Tang et al.
2018), for which large annotated datasets do not exist due to the complexity and
expense of collecting data. While applications like clinical interpretations of medi-
cal diagnoses require that the learned model be understandable, most DNNs resist
interpretation due to their complexity (Caruana et al. 2015). DNNs can be insensitive
to noisy training data (Nguyen et al. 2015; Zhang et al. 2017; Krueger et al. 2017),
and they also require appropriate parameter initialization to converge (Sutskever et al.
2013; Mishkin and Matas 2016).

Despite these shortcomings, DNNs have reported higher predictive accuracy than
other supervised learning methods for many datasets, given enough supervised data
and computational resources. Deep models offer structural advantages that may
improve the quality of learning in complex datasets as empirically shown by Ben-
gio (2009). Recently, researchers have designed hybrid methods which combine
unique DNN techniques with other classifiers to address some of these identi-
fied problems or to boost other classifiers. This survey paper investigates these
methods, reviewing classifiers that have adapted DNN techniques to alternative clas-
sifiers.

1.1 Survey objectives and outline

While DNN research is growing rapidly, this paper aims to draw a broader picture of
deep learning methods. Although some studies provide evidence that DNN models
offer greater generalization than classic machine learning algorithms for complex data
(Szegedy et al. 2015; Wu et al. 2016; Józefowicz et al. 2016; Graves et al. 2013; Ji
et al. 2013), there is no “silver bullet” approach to concept learning (Wolpert and
Macready 1997). Numerous studies comparing DNNs and other supervised learning
algorithms (King et al. 1995; Lim et al. 2000; Caruana and Niculescu-Mizil 2006;
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Fig. 1 Content map of the methods covered in this survey

Caruana et al. 2008; Baumann et al. 2019) observe that the choice of algorithmdepends
on the data—no ideal algorithm exists which generalizes optimally on all types of
data. Recognizing the unique and important role other classifiers thus play, we aim
to investigate how non-neural network machine learning algorithms can benefit from
the advances in deep neural networks. Many deep learning survey papers have been
published that provide a primer on the topic (Pouyanfar et al. 2019) or highlight diverse
applications such as object detection (Shickel et al. 2018), medical record analysis
(Han et al. 2018), activity recognition (Wang et al. 2019b), and natural language
processing (Hatcher and Yu 2018). In this survey, we do not focus solely on deep
neural network models but rather on how deep learning can inspire a broader range
of classifiers. We concentrate on research breakthroughs that transform non-neural
network classifiers into deep learners. Further, we review deep network techniques
such as stochastic gradient descent that can be used more broadly, and we discuss
ways in which non-neural network models can benefit from network-inspired deep
learning innovations.

The literature provides evidence that non-neural network models may offer
improved generalizability over deep networks, depending on the amount and type
of data that is available. By surveying methods for transforming non-neural network
classifiers into deep learners, these approaches can become stronger learners. To pro-
vide evidence of the need for continued research on this topic, we also implement
a collection of shallow and deep learners surveyed in this paper, both network and
non-neural network classifiers, to compare their performance. Figure 1 highlights the
deep learning components that we discuss in this survey. This graph also summarizes
the deep classifiers that we survey and the relationships that we highlight between
techniques.
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2 Brief overview of deep neural networks

2.1 The origin

In 1985, Rosenblatt introduced the Perceptron (Rosenblatt 1958), an online binary
classifier which flows input through a weight vector to an output layer. Perceptron
learning uses a form of gradient descent to adjust the weights between the input and
output layers to optimize a loss function (Widrow and Hoff 1960). A few years later,
Minsky proved that a single-layer Perceptron is unable to learn nonlinear functions,
including theXOR function (Minsky andPapert 1987).Multilayer perceptrons (MLPs,
see Table 1 for a complete list of abbreviations) addressed the nonlinearity problem by
adding layers of hidden units to the networks and applying alternative differentiable
activation functions, such as sigmoid, to each node. Stochastic gradient descent was
then applied to MLPs to determine the weights between layers that minimize function
approximation errors (Rumelhart et al. 1985). However, the lack of computational
power caused DNN research to stagnate for decades, and other classifiers rose in
popularity. In 2006, a renaissance began in DNN research, spurred by the introduction
of Deep Belief Networks (DBNs) (Hinton et al. 2006).

2.2 Deep neural network architectures

Due to the increasing popularity of deep learning, many DNN architectures have been
introduced with variations such as Neural Turing Machines (Graves et al. 2014) and
CapsuleNeural Networks (Sabour et al. 2017). In this paper, we summarize the general
form of DNNs together with architectural components that not only appear in DNNs
but can be incorporated into other models. We start by reviewing popular types of
DNNs that have been introduced and that play complementary learning roles.

2.3 Supervised learning

2.3.1 Multilayer perceptron

A multilayer perceptron (MLP) is one of the essential bases of many deep learning
algorithms. The goal of a MLP is to map input X to class y by learning a function y =
f (X , θ), where θ represents the best possible function approximation. For example, in
Fig. 2 the MLP maps input X to y using function f (x) = f (3)( f (2)( f (1)(x))), where
f (1) is the first hidden-layer, f (2) is the hidden-second layer, and f (3) represents
the third, output layer. This chain structure is a common component of many DNN
architectures. The network depth is equal to the length of the chain, and the width of
each layer represents the number of nodes in that layer (Goodfellow et al. 2016).

In networks such as the MLP, the connections are not cyclic and thus belong to a
class of DNNs called feedforward networks. Feedforward networks move information
in only one direction, from the input to the output layer. Figure 2 depicts a particular
type of feedforward network which is a fully-connectedmultilayer perceptron because
each node at one layer is connected to all of the nodes at the next layer. Special cases
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Table 1 The list of abbreviations and their descriptions utilized in this survey

Abbreviation Description

AE Autoencoder

ANT Adaptive Neural Tree

CNN Convolutional Neural Network

CondNN Conditional Neural Network

DART Dropout Multiple Additive Regression Trees

DBT Differentiable Boundary Tree

DBN Deep Belief Network

DCCA Deep Canonical Correlation Analysis

Deep PCA Deep principal components analysis

DF Deep Forest

DGP Deep Gaussian Processes

DKF Deep Kalman Filters

DNDT Deep Network Decision Tree

DNDF Deep Network Decision Forest

DNN Deep Neural Network

DSVM Deep SVM

DT Decision tree

DTA-LS-SVM Deep Transfer Additive Kernel Least Square SVM

eForest Encoder Forest

FC Fully Connected

FSDT Frosst Soft Decision Tree

GAF Generative Adversarial Forest

GAN Generative Adversarial Network

GRRF Guided Regularized Random Forest

LMM Level-wise Mixture Model

mGBDT Multilayer Gradient Decision Tree

ML-SVM Multilayer SVM

MLP Multilayer perceptron

NLP-SVM Newton Linear Programming SVM

NPL Neural Prototype Learning

R2-SVM Random Recursive SVM

RBM Restricted Boltzmann Machine

RNN Recurrent Neural Network

RRF Regularized Random Forest

SCAD-SVM Smoothly Clipped Absolute Deviation SVM

SDF Siamese Deep Forest

SNN Siamese Neural Network

TAO Tree Alternation Optimization

VAE Variational Autoencoder
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Fig. 2 An illustration of a
three-layered MLP with j nodes
at the first hidden layer and k at
the second layer

of feedforward networks and MLPs have drawn considerable recent attention, which
we describe next.

2.3.2 Deep convolutional neural network

A convolutional neural network (CNN) (LeCun et al. 1989) is a specialized class of
feedforward DNNs for processing data that can be discretely presented. Examples
of data that can benefit from CNNs include time series data that can be presented
as samples of discrete regular time intervals and image data presented as samples
of 2-D pixels at discrete locations. Most CNNs involve three stages: a convolution
operation; an activation function, such as the rectified linear activation (ReLU) function
(Krizhevsky et al. 2012); and a pooling function, such as max pooling (Zhou and
Chellappa 1988). A convolution operation is a weighted average or smooth estimation
of a windowed input. One of the strengths of the convolution operation is that the
connections between nodes in a network become sparser by learning a small kernel
for unimportant features. Another benefit of convolution is parameter sharing. A CNN
makes an assumption that a kernel learned for one input position can be used at
every position, in contrast to an MLP, which deploys a separate element of a weight
matrix for each connection. Applying the convolution operator frequently improves
the network’s learning ability.

A pooling function replaces the output of specific nearby nodes by their statistical
summary. For example, the max-pooling function returns the maximum of a rectan-
gular neighborhood. The motivation behind adding a pooling layer is that statistically
down-sampling the number of featuresmakes the representation approximately invari-
ant to small translations of the input by maintaining the essential features. The final
output of the learner is generated via a Fully-Connected (FC) layer that appears after
the convolutional and max-pooling layers (see Fig. 3 for an illustration of the process).

2.3.3 Recurrent neural network

A recurrent Neural Network (RNN) is a sequential model that can capture the rela-
tionship between items in a sequence. Unlike traditional neural networks, wherein
all inputs are independent, RNNs contain artificial neurons with one or more feed-
back loops. Feedback loops are recurrent cycles over time or sequence, as shown in
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Fig. 3 An illustration of a three-layered CNN made of six convolution filters followed by six max pooling
filters at the first layer, and eight convolution filters followed by seven max pooling filters at the second
layer. The last layer is a fully-connected layer (FC)

Fig. 4 An illustration of a simple RNN and its unfolded structure through time t

Fig. 4. An established RNN problem is exploding or vanishing gradients. For a long
data sequence, the gradient could become increasingly smaller or increasingly larger,
which halts the learning. To address this issue, Hochreiter and Schmidhuber (1997)
introduced a long short-term memory (LSTM) model and Cho et al. (2014) proposed
a gated recurrent unit (GRU) model. Both of these networks allow the gradient to flow
unchanged in the network, thus preventing exploding or vanishing gradients.

2.3.4 Siamese neural network

There are settings where the number of training samples is limited, such as in facial
recognition scenarios where only one image is available per person. When there is
a limited number of examples for each class, DNNs struggle with generalizing the
model. One strategy for addressing this problem is to learn a similarity function. This
function computes the degree of difference between two samples instead of learning
each class. As an example, let x1 represents one facial image and x2 represents a
second. If d(x1, x2) ≤ τ , we can conclude that the images are of the same person
while d(x1, x2) > τ implies that they are different people. Siamese Neural Networks
(SNN) (Taigman et al. 2014) build on this idea by encoding examples xi and x j on two
separate DNNs with shared parameters. The SNN learns a function d using encoded
features, as shown in Fig. 5. The network then outputs y > 0 for similar objects (i.e.,
when d is less than a threshold value) and y < 0 otherwise. Thus, SNNs can be
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Fig. 5 An illustration of an SNN. In this figure, xi and x j are two data vectors corresponding to a pair
of instances from the training set. Both networks share the same weights and map the input to a new
representation. By comparing the outputs of the networks using a distance measure such as Euclidean, we
can determine the compatibility between instances xi and x j

used for similarity learning by learning a distance function over objects. In addition
to their value for supervised learning from limited samples, SNNs are also beneficial
for unsupervised learning tasks (Riad et al. 2018; Alaverdyan et al. 2020).

2.4 Unsupervised learning

2.4.1 Generative adversarial network

Until this point in the survey, we have focused on deep learning for its power in
classifying data points. However, researchers have exploited deep learning for other
uses as well, such as generating synthetic data that shares characteristics with known
real data.

One way to create synthetic data is to learn a generative model. A generative model
learns the parameters that govern a distribution based on observation of real data
points from that distribution. The learned model can then be used to create arbitrary
amounts of synthetic data that emulate real data observations. Recently, researchers
have found away to exploit multiplayer games for the purpose of improving generative
machine learning algorithms. In the adversarial training scenario, two agents compete
against each other, as inspired by Samuel (1959) who designed a computer program
to play checkers against itself. Goodfellow et al. (2014) put this idea to use when
developing Generative Adversarial Networks (GANs), in which a DNN (generator)
tries to generate synthetic data that is so similar to real data that it fools its opponent
DNN (discriminator), whose job is to distinguish real from fake data (see Fig. 6 for
an illustration). The goal of GANs is to simultaneously improve the ability of the
generator to produce realistic data and of the discriminator to distinguish synthetic
from real data. GANs have found successful application in diverse tasks, including
translating text to images (Reed et al. 2016), discovering drugs (Kadurin et al. 2017),
and transforming sketches to images (Chen and Hays 2018; Park et al. 2019).

123



54 A. Ghods, D. J. Cook

Fig. 6 An illustration of a GAN. The goal of the discriminator network is to distinguish real data from fake
data, and the goal of the generator network is to use the feedback from the discriminator to generate data
that the discriminator cannot distinguish from real

Fig. 7 An illustration of an AE. The first part of the network, called the encoder, compresses input into a
latent-space by learning the function h = f (x). The second part, called the decoder, reconstructs the input
from the latent-space representation by learning the function ŷ = g(h)

2.4.2 Autoencoder

Yet another purpose for deep neural networks is to provide data compression and
dimensionality reduction. An Autoencoder (AE) is a DNN that accomplishes this
goal by creating an output layer that resembles the input layer, using a reduced set
of terms represented by the middle layers (Goodfellow et al. 2016). Architecturally,
an AE combines two networks. The first network, called the encoder, learns a new
representation of input x with fewer features h = f (x); the second part, called the
decoder, maps h onto a reconstruction of the input space ŷ = g(h), as shown in
Fig. 7. The goal of an AE is not simply to recreate the input features. Instead, an AE
learns an approximation of the input features to identify useful properties of the data.
AEs are vital tools for dimensionality reduction (Hinton and Salakhutdinov 2006),
feature learning (Vincent et al. 2008), image colorization (Zhang et al. 2016), higher-
resolution data generation (Huang et al. 2018), and latent space clustering (Yeh et al.
2017). Additionally, other versions of AEs such as variational autoencoders (VAEs)
(Kingma and Welling 2014) can be used as generative models.
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Fig. 8 The loss surface on the left depicts a well-conditioned model where local minima can be reached
from all directions. The loss surface on the right depicts an ill-conditioned model where there are several
ways to overshoot or never reach the minima

2.5 Optimization for training deep neural networks

In the previous section, we described common DNN architecture components. In this
section, we offer a brief overview of optimization approaches for training DNNs.
Learning methods may optimize a function f (x) (e.g., minimize a loss function)
by modifying model parameters (e.g., changing DNN weights). However, as Bengio
(2013) point out, DNN optimization during training may be further complicated by
local minima and ill-conditioning (see Fig. 8 for an illustration of an ill-condition).

The most common type of optimization strategy employed by DNNs is gradient
descent. This intuitive approach computes the error derivative with respect to a higher-
level layer of the network to learn the weights of connections between layers, which
reduces the network’s objective function. Input x is fed forward through a network to
predict ŷ. A cost function J (θ) measures the error of the network at the output layer.
Gradient descent then directs the cost value to flow backward through the network by
computing the gradient of the objective function ∇θ J (θ). This process is sometimes
alternatively referred to as backpropagation because the training error propagates back-
ward through the network from output to input layers. Many variations of gradient
descent have been tested for DNN optimization, such as stochastic gradient descent,
mini-batch gradient descent, momentum (Sutskever et al. 2013), Ada-Grad (Duchi
et al. 2011), and Adam (Kingma and Ba 2015).

Deep network optimization is an active area of research. Along with gradient
descent, many other algorithms such as derivative-free optimization (Rios and Sahini-
dis 2013) and feedback-alignment (Nøkland 2016) have appeared. However, none of
these algorithms are as popular as the gradient descent algorithms.

2.6 Regularization

Regularization was an optimization staple for decades prior to the development of
DNNs. The rationale behind adding a regularizer to a classifier is to avoid the overfit-
ting problem,where the classifier fits the training set too closely instead of generalizing
to the entire data space. Goodfellow et al. (2016) defined regularization as “anymodifi-
cation to a learning algorithm that is intended to reduce its generalization error but not
its training error”. While regularization methods such as bagging have been popular
for neural networks and other classifiers, recently, the DNN community has devel-
oped novel regularization methods that are unique to deep neural networks. In some
cases, backpropagation training of fully-connected DNNs results in poorer perfor-
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mance than shallow structures because the deeper structure is prone to being trapped
in local minima and overfitting the training data (Zhang et al. 2017). To improve the
generalizability of DNNs, regularizationmethods have thus been adopted during train-
ing. Here we review the intuition behind the most frequent regularization methods that
are currently found in DNNs.

2.6.1 Parameter norm penalty

A conventional method for avoiding overfitting is to penalize large weights by adding
a p-norm penalty function to the optimization function of the form f (x)+ p-norm(x),

where the p-norm p for weights w is denoted as ||w||p = (
∑

i |wi |p)
1
p . Popular p-

norms are the L1 and L2 norms which have been used by other classifiers such as
logistic regression and SVMs prior to the introduction of DNNs. L1 adds a regular-
ization term Ω(θ) = ||w||1 to the objective function for weights w, while L2 adds
a regularization term Ω(θ) = ||w||2. The difference between the L1 and L2 norm
penalty functions is that L1 penalizes features more heavily by setting the correspond-
ing edge weights to zero compared to L2. Therefore, a classifier with the L1 norm
penalty tends to prefer a sparse model. The L2 norm penalty is more common than
the L1 norm penalty. However, it is often advised to use the L1 norm penalty when
the amount of training data is small and the number of features is large to avoid noisy
and less-important features. Because of its sparsity property, the L1 penalty function
is a key component of LASSO feature selection (Tibshirani 1996).

2.6.2 Dropout

A powerful method to reduce generalization error is to create an ensemble of clas-
sifiers. Multiple models are trained separately, then as an ensemble they output a
combination of the models’ predictions on test points. Some examples of ensemble
methods included bagging (Breiman 1996), which trains k models on k different folds
of random samples with replacement and boosting (Freund 1995), which applies a
similar process to weighted data. A variety of DNNs use boosting to achieve lower
generalization error (Hinton et al. 2006; Moghimi et al. 2016; Eickholt and Cheng
2013).

Dropout (Srivastava et al. 2014) is a popular regularization method for DNNs,
which can be viewed as a computationally-inexpensive application of bagging to deep
networks. A common way to apply dropout to a DNN is to deactivate a randomly-
selected 50% of the hidden nodes and a randomly-selected 20% of the input nodes
for each mini-batch of data. The difference between bagging and dropout is that in
bagging, the models are independent of each other, while in dropout, each model
inherits a subset of parameters from the parent deep network.

2.6.3 Data augmentation

DNNs can generalize better when they have more training data; however, the amount
of available data is often limited. One way to circumvent this limitation is to generate
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artificial data from the same distribution as the training set. Data augmentation has
been particularly effective when used in the context of classification. The goal of data
augmentation is to generate new training samples from the original training set (X , y)
by transforming the X inputs. Data augmentation may include generating noisy data
to improve robustness (denoising) or creating additional training data for the purpose
of regularization (synthetic data generation). Dataset augmentation has been adopted
for a variety of tasks such as image recognition (Perez and Wang 2017; Cubuk et al.
2018), speech recognition (Jaitly and Hinton 2013), and activity recognition (Ohashi
et al. 2017). Additionally, GANs (Bowles et al. 2018; Antoniou et al. 2017) and AEs
(Jorge et al. 2018; Liu et al. 2018), described in Sects. 2.4.1 and 2.4.2, can be employed
to generate such new examples.

Injecting noise into a copy of the input is another data augmentation method.
Although DNNs are not consistently robust to noise (Tang and Eliasmith 2010), Poole
et al. (2014) show that DNNs can benefit from carefully-tuned noise.

3 Deep learning architectures outside of deep neural networks

Recent research has introduced numerous enhancements to the basic neural network
architecture that enhance network classification power, particularly for deep networks.
In this section, we survey non-neural network classifiers that also make use of these
advances.

3.1 Supervised learning

3.1.1 Feedforward learning

A DNN involves multiple layers of operations that are performed sequentially. The
idea of creating a sequence of operations, each of which manipulates the data before
passing them to the next operator, may be used to improve many types of classifiers.
One way to construct a model with a deep feedforward architecture is to use stacked
generalization (Wolpert 1992; Ting and Witten 1999). Stacked generalization clas-
sifiers are comprised of multiple layers of classifiers stacked on top of each other,
as found in DNNs. In stacked generalization classifiers, one layer generates the next
layer’s input by concatenating its own input to its output. Stacked generalization clas-
sifiers typically only implement forward propagation, in contrast to DNNs, which
propagate information both forward and backward through the model.

In general, learning methods that employ stacked generalization can be categorized
into two strategies. In the first stacked generalization strategy, the new feature space for
the current layer comes from the concatenation of the predicted output of the previous
layer with the original feature vector. Here, layers refer not to layers of neural network
operations but instead refer to sequences of other types of operations. Examples of
this strategy include Deep Forest (DF) (Zhou and Feng 2017) and the Deep Transfer
Additive Kernel Least Square SVM (DTA-LS-SVM) (Wang et al. 2019a). At any
given layer, for each instance x , DF extends x’s previous feature vector to include
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the previous layer’s predicted class value for the instance. The prediction represents a
distribution over class values, averaged over all trees in the forest. Furthermore, Zhou
and Feng (2017) introduce a method calledMulti-Grained Scanning for improving the
accuracy of DFs. Inspired by CNNs and RNNs where spatial relationships between
features are critical, Multi-Grained Scanning splits a D-dimensional feature vector
into smaller segments by moving a window over the features. For example, given 400
features and awindow size of 100, the original features convert to 301 features of length
100, {< 1−100 >,< 2−101 >, . . . , < 301−400 >}, where the new instances have
the same labels as the original instances. The new samples, described by a subset of
the original features, might have incorrectly-associated labels. At first glance, it seems
these noisy data could hurt the generalization. But as Breiman (2000) illustrates,
perturbing a percentage of the training labels can actually help generalization.

Furthermore, Ho (1995) demonstrates that feature sub-sampling can enhance the
generalization capability for RFs. Zhou and Feng (2017) tested three different window
sizes (D/4, D/8, and D/16),where data fromeachdifferentwindowsizefits a different
level of a DF model. Then the newly-learned representation from these three layers is
fed to a multilayer DF. If the transformed features are too long, Zhou and Feng (2017)
apply feature sub-sampling.Multi-GrainedScanning can improve the performance of a
DFmodel for continuous data, as Zhou and Feng (2017) report that accuracy increased
by 1.24% on the MNIST (LeCun 1998) dataset. An alternative method, DTA-LS-
SVM, applies an Additive Kernel Least Squares SVM (AK-LS-SVM) (Cawley 2006;
Yang and Wu 2012) at each layer and concatenates the original feature vector x with
the prediction of the previous level to feed to the next layer. In addition, DTA-LS-
SVM incorporates a parameter-transfer approach between the source (previous-layer
learner) and target (next-layer learner) to enhance the classification capability of the
higher level.

In the second stacked generalization strategy, the current layer’s new feature space
comes from the concatenation of predictions from all previous layers with the origi-
nal input feature vector. Examples of this strategy include the Deep SVM (D-SVM)
(Abdullah et al. 2009) and the Random Recursive SVM (R2-SVM) (Vinyals et al.
2012). The D-SVM contains multiple layers of SVMs, where the first layer is trained
in the normal fashion. Following this step, each successive layer employs the kernel
activation from the previous layer with the desired labels. The R2-SVM is a multi-
layer SVM model which at each layer transforms the data based on the sigmoid of
a projection of all previous layers’ outputs. For the data (X ,Y ) where X ∈ RD and
Y ∈ RC , the random projection matrix isW ∈ RD×C , where each element is sampled
from N (0, 1). The input data for the next layer is:

Xl+1 = σ(d + βWl+1[oT1 , oT2 , . . . , oTl ]T ), (1)

where β is a weight parameter that controls the degree with which a data sample
in Xl+1 moves from the previous layer, σ(.) is the sigmoid function, Wl+1 is the
concatenation of l random projection matrices [Wl+1,1,Wl+1,2, . . . ,Wl+1,l ], one for
each previous layer, and o is the output of each layer. Addition of a sigmoid function to
the recursive model prevents deterioration to a trivial linear model in a similar fashion
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as MLPs. The purpose of the random projection is to push data from different classes
in different directions.

It is important to note here that stacked generalization can be found in DNNs as
well as non-neural network classifiers. Examples of DNNswith stacked generalization
include Deep Stacking Networks (Deng et al. 2012; Hutchinson et al. 2013) and
Convex Stacking Architectures (Yu and Deng 2011; Deng et al. 2012). This is clearly
one enhancement that benefits all types of classifier strategies. However, there is no
evidence that stack generalization could add nonlinearity to the model.

DNN classifiers learn a new representation of data at each layer with a goal that the
newly-learned representation maximally separates the classes. Unsupervised DNNs
often share this goal. As an example, Deep PCA’s model (Liong et al. 2013) is made of
two layers that each learn a new data representation by applying a Zero Components
Analysis (ZCA) whitening filter (Krizhevsky and Hinton 2009) followed by a princi-
pal components analysis (PCA) (Shlens 2014). The final data representation is derived
from concatenating the output of the two layers. The motivation behind applying a
ZCA whitening filter is to force the model to focus on higher-order correlations. One
motivation for combining output from the first and second layers could be to preserve
the learned representation from the first layer and to prevent feature loss after apply-
ing PCA at each layer. Experiments demonstrate that Deep PCA exhibits superior
performance for face recognition tasks compared to standard PCA and a two-layer
PCA without a whitening filter. However, as empirically confirmed by Damianou and
Lawrence (2013), stacking PCAs does not necessarily result in an improved represen-
tation of the data because Deep PCA is unable to learn a nonlinear representation of
data at each layer. Damianou and Lawrence (2013) fed a Gaussian to a Deep PCA and
observed that the model learned just a lower rank of the input Gaussian at each layer.

As pointed out earlier in this survey, the invention of the deep belief net (DBN)
(Hinton et al. 2006) drew the attention of researchers to developing deep models.
A DBN can be viewed as a stacked restricted Boltzmann machine (RBM), where
each layer is trained separately and alternates functionality between hidden and input
units. In this model, features learned at hidden layers then represent inputs to the next
layer. An RBM is a generative model that contains a single hidden layer. Unlike the
Boltzmann machine, hidden units in the restricted model are not connected to each
other and contain undirected, symmetrical connections from a layer of visible units
(inputs). All of the units in each layer of an RBM are updated in parallel by inputting
the current state of the unit to the other layer. This updating process repeats until the
system is sampling from an equilibrium distribution. The RBM learning rule is shown
in Eq. 2.

∂ log P(v)

∂Wi j
≈< vi h j >data − < vi h j >reconstruction (2)

In this equation,Wi j represents theweight vector between a visible unit vi and a hidden
unit h j , and< . > is the average value over all training samples. Since the introduction
of DBNs, many other different variations of Deep RBMs have been proposed, such as
temporal RBMs (Sutskever and Hinton 2007), gated RBMs (Memisevic and Hinton
2007), and cardinality RBMs (Swersky et al. 2012).
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Fig. 9 A deep Gaussian process with two hidden layers

Another novel form of a deep belief net is a deep Gaussian process (DGP) model
(Damianou and Lawrence 2013). DGP is a deep directed graph where multiple layers
of Gaussian processes map the original features to a series of latent spaces. DGPs
offer a more general form of Gaussian Processes (GPs) (Rasmussen 2003) where a
one-layer DGP consists of a single GP, f . In a multilayer DGP, each GP, fl , maps data
from one latent space to the next. As shown in Eq. 3, each data point Y is generated
from the corresponding function fl with ε Gaussian noise applied to data Xl that is
obtained from a previous layer.

Y = fl(Xl) + εl , εl ∼ N (0, σ 2
l I ) (3)

Figure 9 illustrates a DGP expressed as a series of Gaussian processes mapping data
from one latent space to the next. Functions fl are drawn from a Gaussian process,
i.e. f (x) ∼ GP(0, k(x, x ′)). In this setting, the covariance function k defines the
properties of the mapping function. DGP can be utilized for both supervised and
unsupervised learning. In the supervised setting, the top hidden layer is observed,
whereas in the unsupervised setting, the top hidden layer is set to a unit Gaussian as
a fairly uninformative prior. DGP is a powerful non-parametric model, but it has only
been tested on small datasets. Also, we note that researchers have developed deep
Gaussian process models with alternative architectures such as recurrent Gaussian
processes (Mattos et al. 2016), convolutional Gaussian processes (van der Wilk et al.
2017) and variational auto-encoded deep Gaussian processes (Dai et al. 2016). There
exists a vast amount of literature on this topic that provides additional insights on deep
Gaussian processes (Duvenaud et al. 2014; Damianou 2015; Dunlop et al. 2018).

As we discussed, non-neural network classifiers have been designed that contain
multiple layers of operations, similar to a DNN. We observe that a common strategy
for creating a deep non-neural network model is to add the prediction of the previous
layer or layers to the original input feature. Likewise, novel methods can be applied
to learn a new representation of data at each layer. We discuss these methods next.

3.1.2 Siamese model

As discussed in Sect. 2.3.4, an SNN represents a powerful method for similarity learn-
ing. However, one problem with SNNs is overfitting when there is a small number of
training examples. The Siamese Deep Forest (SDF) (Utkin and Ryabinin 2018) is a
method based on DF which offers an alternative to a standard SNN. The SDF, unlike
the SNN, uses only one DF. The first step in training an SDF is to modify the training
examples. The training set consists of the concatenation of each pair of samples in the
original set. If the sample points xi and x j are semantically similar, the correspond-
ing class label is set to zero; otherwise, the class label is set to one. The difference
between the SDF and the DF in training is that the Siamese Deep Forest concatenates
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the original feature vector with a weighted sum of the tree class probabilities. Training
of SDF is similar to DF; the primary difference is that SDF learns the class probability
weightsw for each forest separately at each layer. Learning the weights for each forest
can be accomplished by minimizing the function in Eq. 4.

min
w

Jq(w) = min
w

∑

i, j

l(xi , x j , yi j , w) + λR(w) (4)

here w represents a concatenation of vectors wk , k = 1, . . . , M , q is the SDF layer,
R(w) is a regularization term, and λ is a hyper-parameter to control regulariza-
tion. Detailed instructions on minimizing Eq.4 are found in the literature (Utkin and
Ryabinin 2018). The results of SDF experiments indicate that the SDF can achieve
better classification accuracy than DF for small datasets. In general, all non-neural
network models that learn data representations can take advantage of the Siamese
architecture like SDF.

3.2 Unsupervised learning

3.2.1 Generative adversarial model

A common element found in GANs is the inclusion of an FC layer in the discriminator.
One issue with the FC layer is that it cannot deal with the ill-condition in which local
minima are not surrounded by spherical wells, as shown in Fig. 8. The Generative
Adversarial Forest (GAF) (Zuo et al. 2018) replaces the FC layer of the discriminator
with a deep neural decision forest (DNDF), which is discussed in Sect. 4. GAF and
DNDF are distinguished based on how leaf node values are learned. Instead of learn-
ing leaf node values iteratively, as DNDF does, GAF learns them in parallel across
the ensemble members. The strong discriminatory power of the decision forest is the
reason the authors recommend this method in lieu of the fully-connected discriminator
layer.

In this previous work, the discriminator is replaced by an unconventional model.
We hypothesize that replacing the discriminator with other classifiers such as Random
Forest, SVM, of K-nearest neighbor based on the data could result in a diverse GAN
strategy, each of which may offer benefits for alternative learning problems.

3.2.2 Autoencoder

As we discussed in Sect. 2.4.2, AEs offer strategies for dimensionality reduction and
data reconstruction from compressed information. The autoencoding methodology
can be found in neural networks, non-neural networks, and hybrid methods. As an
example, the multilayer SVM (ML-SVM) autoencoder is a variation of ML-SVM
with the same number of output nodes as input features and a single hidden layer that
consists of fewer nodes than the input features. ML-SVM is a model with the same
structure as an MLP. The distinction here is that the network contains SVMmodels as
its nodes. A review of ML-SVM is discussed in Sect. 4. The outputs of hidden nodes
are fed as input to each SVM output node c as follows:
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gc( f (X |θ)) =
l∑

i=1

(αc∗
i − αc

i )Ko( f (xi |θ), f (x |θ)) + bc, (5)

where αc∗
i and αc

i are the support vector coefficients, Ko is the kernel function, and bc
is their bias. The error backpropagates through the network to update the parameters.

Another exciting emerging research area is the combination of Kalman filters with
deep networks. A Kalman filter is a well-known algorithm that estimates the opti-
mal state of a system from a series of noisy observations. The classical Kalman filter
(Kalman 1960) is a linear dynamical system and therefore is unable to model com-
plex phenomena. For this reason, researchers developed nonlinear versions of Kalman
filters. In a seminal contribution, Krishnan et al. (2015) introduced a model that com-
bines a variational autoencoder with Kalman filters for counterfactual inference of
patient information. In a standard autoencoder, the model learns a latent space that
represents the original data minus extraneous information or “signal noise”. In con-
trast, a variational autoencoder (VAE) (Kingma and Welling 2014) adds a constraint
to the encoder that learns a Gaussian distribution of the original input data. Therefore,
a VAE is able to generate a latent vector by sampling from the learned Gaussian distri-
bution. Deep Kalman filters (DKF) learn a generative model from observed sequences
x = (x1, . . . , xT ) and actions u = (u1, . . . uT−1), with a corresponding latent space
z = (z1, . . . , zT ), as follows:

z1 ∼ N (μ0,Σ0)

zt ∼ N (Gα(zt−1, ut−1,Δt ), Sβ(zt−1, yt−1,Δt ))

xt ∼ Π(Fk(zt )),

(6)

whereμ0 = 0 andΣ0 = Id ,Δt represents the difference between times t and t−1, and
Π represents a distribution (e.g., Bernoulli for binary data) over observation xt . The
functionsGα , Sβ , Fk are parameterized by a neural net.As a result, the autoencoderwill
learn θ = {α, β, k} parameters. Additionally, Shashua and Mannor (2017) introduced
deep Q-learning with Kalman filters and Lu et al. (2018) presented a deep Kalman
filter model for video compression.

As we highlighted in this section, non-neural network methods have been designed
that are inspired by AEs. Although ML-SVM mimics the architecture of AEs, its
computational cost prevents the algorithm from being a practical choice. DKF takes
advantage of theVAE idea by learning aKalmanFilter in itsmiddle layer. Additionally,
Feng and Zhou (2018) introduced an encoder forest, a model inspired by the DNN
autoencoder. Because the encoder forest is not a deep model, we do not include the
details of this algorithm in our survey.

4 Deep learning optimization outside of deep neural networks

As discussed in Sect. 2.5, gradient descent has been a prominent optimization algo-
rithm for DNNs; however, it has been underutilized by non-neural network classifiers.
Some notable exceptions are found in the literature. We discuss these here.
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A resourceful method for constructing a deep model is to start with a DNN archi-
tecture and then replace nodes with non-neural network classifiers. As an example,
the multilayer SVM (ML-SVM) (Wiering and Schomaker 2014) replaces nodes in an
MLP with standard SVMs. ML-SVM is a multiclass classifier which contains SVMs
within the network. At the output layer, the ML-SVM contains the same number of
SVMs as the number of classes learned at the perceptron output layer. Each SVM at
the ML-SVM output layer is trained in a one-versus-all fashion for one of the classes.
When observing a new data point, ML-SVM outputs the class label corresponding
to the SVM that generates the highest confidence. At each hidden layer, SVMs are
associated with each node that learns latent variables. These variables are then fed to
the output layer. At hidden layer f (X |θ) where X is the training set and θ denotes
the trainable parameters of the SVM, ML-SVM maps the hidden layer features to an
output value as follows:

g( f (X |θ)) =
l∑

i=1

yci α
c
i Ko( f (xi |θ), f (X |θ)) + bc, (7)

where g is the output layer function, yci ∈ {−1, 1} for each class c, Ko is the kernel
function for the output layer, αc

i are the support vector coefficients for SVM nodes of
the output layer, and bc is their bias. The goal of ML-SVM is to learn the maximum
support vector coefficient of each SVM at the output layer with respect to the objective
function Jc(.), as shown in Eq. 8.

min
wc,b,ξ,θ

Jc = 1

2
||wc||2 + C

l∑

i

ξi (8)

here wc represents the set of weights for class c, C represents a trade-off between
margin width and misclassification risk and ξi are slack variables. ML-SVM applies
gradient ascent to adapt its support vector coefficient towards a local maximum of
Jc(.). The support vector coefficient is defined as zero for values less than zero and
is assigned to C for values larger than C . The data is backpropagated through the
network in a way that is similar to traditional MLPs, by calculating the gradient of the
objective function.

The SVMs in the hidden layer are identical. Given the same inputs, they would
thus generate the same outputs. The hidden layers train on a perturbed version of the
training set to eliminate producing similar outputs before training the combined ML-
SVMmodel to diversify the SVMs. The outputs of hidden layer nodes are constrained
to generate values in the range [−1, 1]. Despite the effort ofML-SVMs to learn amulti-
layer data representation, this approach is currently not practical because adding a new
node incurs a dramatic computational expense for large datasets.

Kontschieder et al. (2015) further incorporate gradient descent into aRandomForest
(RF), which is a popular classification method. One of the drawbacks of an RF is
that it does not traditionally learn new internal representations like DNNs. The Deep
Network Decision Forest (DNDF) (Kontschieder et al. 2015) integrates a DNN into
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each decision tree within the forest to reduce the uncertainty at each decision node.
In DNDF, the result of a decision node dn(x,Θ) corresponds to the output of a DNN
fn(x,Θ), where x is an input and Θ is the parameter of a decision node. DNDF must
have differentiable decision trees to apply gradient descent to the process of updating
decision nodes. In a standard decision tree, the result of a decision node dn(x,Θ) is
deterministic. DNDF replaces the traditional decision node with a sigmoid function
dn(x,Θ) = σ( fn(x;Θ)) to create a stochastic decision node. The probability of
reaching a leaf node l is calculated as the product of all decision node outputs from the
root to the leaf l, which is expressed asμl in this context. The set of leaf nodesL learns
the class distribution π , and the class with the highest probability is the prediction of
the tree. The aim of DNDF is to minimize its empirical risk with respect to the decision
node parameter Θ and the class distribution π of L under the log-loss function for a
given data set.

The optimization of the empirical risk is a two-step process which is executed iter-
atively. The first step is to optimize the class distribution of leaf nodes πL while fixing
the decision node parameters and the corresponding DNN. At the start of optimiza-
tion (iteration 0), class distribution π0 is set to a uniform distribution across all leaves.
DNDF then iteratively updates the class distribution across the leaf nodes as follows
for iteration t + 1:

π
(t+1)
ly

= 1

Z (t)
l

∑

(x,y′)∈T

1y=y′π
l(t)y

μl(x |Θ)

PT [y|x,Θ, π(t)] , (9)

where Z (t)
l is a normalization factor ensuring that

∑
y π t+1

ly
= 1, 1q is the indicator

function on the argument q, and PT is the prediction of the tree.
The second step is to optimize decision node parameters Θ while fixing the class

distribution πL. DNDF employs gradient descent to minimize log-loss with respect to
Θ as follows:

∂L

∂Θ
(Θ, π; x, y) =

∑

n∈N

∂L(Θ, π; x, y)
∂ fn(x;Θ)

∂ fn(x;Θ)

∂Θ
. (10)

The second term in Eq.10 is the gradient of the DNN. Because this is commonly
known, we only discuss calculating the gradient of the differentiable decision tree.
Here, the gradient of the differentiable decision tree is given by:

∂L(Θ, π; x, y)
∂ fn(x;Θ)

= dn(x;Θ)Anr − d̄n(x;Θ)Anl , (11)

where dn is the probability of transitioning to the left child, d̄n = 1 − dn is the
probability of transitioning to the right child calculated by a forward pass through the
DNN, and nl and nr indicate the left and right children of node n. To calculate the
term A in Eq.11, DNDF performs one forward pass and one backward pass through
the differentiable decision tree. Upon completing the forward pass, a value Al can be
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initially computed for each leaf node as follows:

Al = πlyμl
∑

l πlyμl
. (12)

Next, the values of Al for each leaf node are used to compute the values of Am for
each internal node m. To do this, a backward pass is made through the decision tree,
during which the values are calculated as Am = Anl + Anr , where nl and nr represent
the left and the right children of node m, respectively.

Each layer of a standard DNN produces the output oi at layer i . As mentioned
earlier, the goal of the DNN is to learn a mapping function Fi : oi−1 → oi that
minimizes the empirical loss at the last layer of DNN on a training set. Because each
Fi is differentiable, a DNN updates its parameters efficiently by applying gradient
descent to reduce the empirical loss.

Adopting a different methodology, Frosst and Hinton (2017) distill a neural net-
work into a soft decision tree. This model benefits from both neural network-based
representation learning and decision tree-based concept explainability. In the Frosst
soft decision tree (FSDT), each tree’s inner node learns a filter wi and a bias bi , and
leaf nodes l learn a distribution of classes. Like the hidden units of a neural network,
each inner node of the tree determines the probability of input x at node i as follows:

pi (x) = σ(β(xwi + bi )) (13)

where σ represents the sigmoid function and β represents an inverse temperature
whose function is to avoid soft decisions in the tree. Filter activation routes the sample
x to the left branch for values of pi less than 0.5, and to the right branch otherwise.
The probability distribution Ql for each leaf node l represents the learned parameter
φl at that leaf over the possible k output classes:

Ql
k = exp(φl

k)∑
k′ exp(φl

k′)
. (14)

The predictive distribution over classes is calculated by traversing the greatest-
probability path. To train this soft decision tree, Frosst and Hinton (2017) calculate a
loss function L that minimizes the cross entropy between each leaf, weighted by input
vector x path probability and target distribution T , as follows:

L(x) = − log
( ∑

l∈Lea f Nodes

Pl(x)
∑

k

Tk log Q
l
k

)
(15)

where Pl(x) is the probability of reaching leaf node l given input x . Frosst and Hinton
(2017) also introduce a regularization term to avoid internal nodes routing all data
points on one particular path and encourage them to equally route data along the left
and right branches. The penalty function calculates a sum over all internal nodes from
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the root to node i , as follows:

C = −λ
∑

i∈I nner Nodes

0.5 log(αi ) + 0.5 log(1 − αi ) (16)

where λ is a hyper-parameter set prior to training to determine the effect of the penalty.
The cross entropy α for a node i is the sum of the path probability Pi (x) from the root
to node i multiplied by the probability of that node pi divided by the path probability,
as follows:

αi =
∑

x P
i (x)pi (x)

∑
x P

i (x)
. (17)

Because the probability distribution is not uniform across nodes in the penultimate
level, this penalty function could actually hurt the generalization. The authors address
this problem by decaying the strength of penalty function λ exponentially with the
depth d of the node to 2d . Another challenge is that in any given batch of data, as
the data descends the tree, the number of samples decreases exponentially. Therefore,
the estimated probability loses accuracy further down the tree. Frosst and Hinton
(2017). recommend addressing this problem by decaying a running average of the
actual probabilities with a time window that is exponentially proportional to the depth
of the nodes (Frosst and Hinton 2017). Although the authors report that the accuracy
of this model was less than the deep neural network, the model offers an advantage of
concept interpretability.

BothDNDF and the soft decision tree fix the depth of the learned tree to a predefined
value. In contrast, Tanno et al. (2019) introduced the Adaptive Neural Tree (ANT),
which can grow to any arbitrary depth. The ANT architecture is similar to a decision
tree, but at each internal node and edge, ANT learns a new data representation. For
example, an ANT may contain one or more convolution layers followed by a fully-
connected layer at each inner node, one or more convolution layers followed by an
activation function such as ReLU or tanh at each edge, and a linear classifier at each
leaf node.

Training an ANT requires two phases: growth and refinement. In the growth phase,
starting from the root in breadth-first order, one of the nodes is selected. The learner
then evaluates three choices: 1) split the node and add a sub-tree, 2) deepen edge
transformation by adding another layer of convolution, or 3) keep the current model.
The model optimizes the parameters of the newly-added components by minimizing
log likelihood via gradient descent while fixing the parameters of the previous portion
of the tree. Eventually, themodel selects the choice that yields the lowest log likelihood.
This process repeats until the model converges. In the refinement phase, the model
performs gradient descent on the final architecture. The purpose of the refinement
phase is to correct suboptimal decisions that may have occurred during the growth
phase. The authors evaluate their method on several standard testbeds, and the results
indicate that ANT is competitive with many deep networks and non-neural network
learners for these tasks.

In contrast to the soft decision trees, Carreira-Perpiñán and Tavallali (2018) intro-
duce Tree Alternation Optimization (TAO), which learns a tree with linear decision
nodes. Traditional decision tree algorithms such as CART (Breiman et al. 1984) and
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C4.5 (Salzberg 1994) create a decision tree from scratch in a way that optimizes a
proxy measure such as impurity. In contrast, TAO modifies an existing tree in a way
that minimizes classification error. This modification is performed incrementally, in a
way that reflects the incremental adjustment of weights in a neural network. Specifi-
cally, given tree T , TAOminimizes a loss function representing the classification error
resulting from all leaf nodes Θ in the tree:

L(Θ) =
N∑

n=1

L(yn, T (xn;Θ)). (18)

One advantage of TAO is that it not only learns axis-aligned trees, it can also learn
oblique trees where a linear or nonlinear combination of attributes split the nodes.

Yang et al. (2018) took a different approach. They created a decision tree using
a neural network. The Deep Neural Decision Tree (DNDT) employs a soft binning
function to learn the split rules of the tree. DNDTconstructs a one-layer neural network
with softmax as its activation function. The objective function of this network is:

softmax

(
wx + b

τ

)

. (19)

here for a continuous variable x , we want to bin it to n + 1, w = [1, 2, . . . , n + 1] is
an untrainable constant, b is a learnable bin or the cutting rule in the tree, and τ is a
temperature variable. After training this model, the decision tree is constructed via the
Kronecker product ⊗. Given an input x ∈ RD with D features, the tree rule to reach
a leaf node is:

z = f1(x1) ⊗ f2(x2) ⊗ · · · ⊗ fD(xD) (20)

here z is an almost-one-hot encoded vector that indicates the index of a leaf node.
One of the shortcomings of this method is that it cannot handle a high-dimensional
dataset because the cost of calculating the Kronecker product becomes prohibitive.
To overcome this problem, authors learn a classifier forest by training each tree on a
random subset of features.

In some cases, themapping function is not differentiable. Feng et al. (2018) propose
a new learning paradigm for training a multilayer Gradient Boosting decision tree
(mGBDT) (Feng et al. 2018) where Fi is not differentiable. Gradient boosting decision
tree (GBDT) is an iterative method which learns an ensemble of regression predictors.
In GBDT, a decision tree first learns a model on a training set, then it computes the
corresponding error residual for each training sample. A new tree learns a model
on the error residuals, and by combining these two trees, GBDT is able to learn a
more complex model. The algorithm follows this procedure iteratively until it meets
a prespecified number of trees for training.

Since gradient descent is not applicable to mGBDT, Feng et al. (2018) obtain
a “pseudo-inverse” mapping. In this mapping, Gt

i represents the pseudo-inverse of
Ft−1
i at iteration t , such that Gt

i (F
t−1
i (oi−1)) ∼ oi−1. After performing backward

propagation and calculatingGt
i , forward propagation is performed by fitting a pseudo-

label zti−1 from Gt
i to Ft−1

i . The last layer Fm computes ztm based on the true labels at
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iteration t , where i ∈ {2 . . .m}. After this step, pseudo-labels for previous layers are
computed via pseudo-inverse mapping. To initialize mGBDT at iteration t = 0, each
intermediate (hidden) layer outputsGaussiannoise and F0

i represent depth-constrained
trees that will later be refined. Feng et al. (2018) thus create a method that is inspired
by gradient descent yet is applicable in situations where true gradient descent cannot
be effectively applied.

In this section, we examine methods that apply gradient descent to non- neural
network models. As we observed, one way of utilizing gradient descent is to replace
the hidden units in a network with a differentiable algorithm like SVM. Another
common theme we recognized was to transform deterministic decision-tree nodes
into stochastic versions that offer greater representational power. Alternatively, trees
or other ruled-based models can be built using neural networks.

5 Deep learning regularization outside of deep neural networks

We have discussed some of the common regularization methods used by DNNs in
Sect. 2.6. Now we focus on how these methods have been applied to non-neural
network classifiers in the literature. It is worth mentioning that while most models
introduced in this section are not deep models, we investigate how non-neural network
models can improve their performance by applying regularization methods typically
associated with the deep operations found in DNNs.

5.1 Parameter norm penalty

Problems arise when a model is learned from data that contain a large number of
redundant features. For example, selecting relevant genes associated with different
types of cancer is challenging because of a large number of redundancies may exist in
the gene’s long string of features. There are two common ways to eliminate redundant
features: the first way is to perform feature selection and then train a classifier from
the selected features; the second way is to simultaneously perform feature selection
and classification. As we discussed in Sect. 2.6.1, DNNs apply a L1 or L2 penalty
function to penalize large weights. In this section, we investigate how the traditional
DNN idea of penalizing features can be applied to non-neural network classifiers to
simultaneously select high-ranked features and perform classification.

Standard SVMs employ the L2 norm penalty to penalize weights in a manner
similar toDNNs.However, theNewtonLinear Programming SVM(NLP-SVM) (Fung
and Mangasarian 2004) replaces the L2 norm penalty with the L1 norm penalty.
This has the effect of setting small hyperparameter coefficients to zero, thus enabling
NLP-SVM to select important features automatically. A different way to penalize
non-important features in SVMs is to employ a Smoothly Clipped Absolute Deviation
(SCAD) (Zhang et al. 2006) function. The L1 penalty function can be biased because
it imposes a larger penalty on large coefficients; in contrast, SCAD can give a nearly
unbiased estimation of large coefficients. SCAD learns a non-convex penalty function
as shown in Eq.21.
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pλ(|w|) =

⎧
⎪⎨

⎪⎩

λ|w| if |w| ≤ λ

− (|w|2−2aλ|w|+λ2)
2(a−1) if λ < |w| ≤ aλ

(a+1)λ2

2 if |w| > aλ

(21)

SCAD equates with L1 penalty function until |w| = λ, then smoothly transitions to a
quadratic function until |w| = aλ, after which it remains a constant for all |w| > aλ.
As shown by Fan and Li (2001), SCAD has better theoretical properties than the L1
function.

One limitation of decision tree classifiers is that the number of training instances that
can be selected at each branch in the tree decreases with the tree depth. This downward
sampling may cause less relevant or redundant features to be selected near the bottom
of the tree. To address this issue,Deng andRunger (2012) proposed to penalize features
that were never selected in the process of making a tree. In a Regularized Random
Forest (RRF) (Deng and Runger 2012), the information gain for a feature j is specified
as follows:

Gain( j) =
{

λ.Gain( j) j /∈ F

Gain( fi ) j ∈ F
(22)

where F is the set of features used earlier in the path, fi ∈ F , and λ ∈ [0, 1] is the
penalty coefficient. RRF avoids including a new feature j , except when the value of
Gain( j) is greater than max

i

(
Gain( fi )

)
.

To improve RRF, Guided RRF (GRRF) (Deng and Runger 2013) assigns a different
penalty coefficient λ j to each feature instead of assigning the same penalty coefficient
to all features. GRRF employs the importance score from a pre-trained RF on the
training set to refine the selection of features at a given node. The importance score of
feature j in an RFwith T trees is themean of gain for features in the RF. The important
scores evaluate the contribution of features for predicting classes. The GRRF uses the
normalized importance score to control the degree of regularization of the penalty
coefficient as follows:

λ j = (1 − γ )λ0 + γ Imp′
j , (23)

where λ0 ∈ (0, 1] is the base penalty coefficient and γ ∈ [0, 1] controls the weight of
the normalized importance score. The GRRF and RRF are computationally inexpen-
sive methods that are able to select stronger features and avoid redundant features.

5.2 Dropout

As detailed in Sect. 2.6.2, dropout is a method that prevents DNNs from overfitting by
randomly dropping nodes during the training. Dropout can be added to other machine
learning algorithms through twomethods: by dropping features or by droppingmodels
in the case of ensemble methods. Dropout has also been employed by dropping input
features during training (Wang andManning 2012, 2013). Here we look at techniques
that have been investigated for dropping input features, particularly in non-neural
network classifiers.
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Rashmi and Gilad-Bachrach (2015) applied dropout to Multiple Additive Regres-
sion Trees (MART) (Friedman 2001, 2002). MART is a regression tree ensemble
that iteratively refines its model by continually adding trees that fit the loss function
derivatives from the previous version of the ensemble. Because trees added at later
iterations may only impact a small fraction of the training set and thus over-specialize,
researchers previously used shrinkage to exclude a random subset of leaf nodes during
each tree-adding step. More recently, Rashmi and Gilad-Bachrach (2015) integrated
the deep-learning idea of dropout into MART. Here, a subset of the trees is temporar-
ily dropped. A new tree then is created based on the loss function for the on-dropped
trees. This new tree is combined with the previously-dropped trees into a new ensem-
ble. This method, Dropout Multiple Additive Regression Trees (DART) (Rashmi and
Gilad-Bachrach 2015), weights the votes for the new and re-integrated trees to have
the same effect on the final model output as the original set of trees. Other researchers
have experimented with permanently removing a strategic subset of the dropped trees
as well (Lucchese et al. 2017).

5.3 Early stopping

The core concept of early stopping is to terminate DNN training once performance on
the validation set is not improving. One potential advantage of Deep Forest (Zhou and
Feng 2017) over DNNs is that DF can determine the depth of a model automatically.
In DF, if the model performance does not increase on the validation set after adding a
new layer, the learning terminates. UnlikeDNNs, DFmay avoid the tendency to overfit
as more layers are added. Thus, while early stopping does not necessarily enjoy the
primary outcome of preventing such overfitting, it can provide additional benefits such
as shortening the validation cycle when searching for the optimal tree depth.

5.4 Data augmentation

As discussed in Sect. 2.6.3, data augmentation is a powerful method for improving
DNN generalization. However, little research has investigated the effects of data aug-
mentation methods on non-neural network classifiers. As demonstrated byWong et al.
(2016), the SVM classifier does not always benefit from data augmentation, in con-
trast to DNNs. However, Xu (2013) ran several data augmentation experiments on
synthetic datasets and observed that data augmentation did enhance the performance
of random forest classifiers. Offering explanations for the circumstances in which such
augmentation is beneficial is a needed area for future research.

6 Hybridmodels

Hybrid models can be defined as a combination of two or more classes of models.
There are many ways to construct hybrid models, such as DNDF (Kontschieder et al.
2015), which integrates a deep network into a decision forest, as explained in Sect. 4.
In this section, we discuss other examples of hybrid models.
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6.1 Neural network and decision trees

Neural decision trees can be categorized into two groups: (1) decision trees with linear
decision nodes (Carreira-Perpiñán and Tavallali 2018), and (2) soft decision trees with
differentiable decision nodes (Kontschieder et al. 2015; Ioannou et al. 2016; Frosst and
Hinton 2017; Tanno et al. 2019). One motivation for combining aspects of multiple
models is to find a balance between classification accuracy and computational cost.
Energy consumption by mobile devices and cloud servers is an increasing concern for
responsive applications and green computing. Decision forests are computationally
inexpensive models because of the conditional property of decision trees. Conversely,
while CNNs are less efficient, they can achieve higher accuracy because of their
representation-learning capabilities. Ioannou et al. (2016) introduced the Conditional
Neural Network (CondNN) to reduce computation in a CNN model by introducing a
routing method similar to that found in decision trees. In CondNN, each node in layer
l is connected to a subset of nodes from the previous layer, l − 1. Given a fully trained
network, for every two consecutive layers, amatrixΛ(l−1,l) stores the activation values
of these two layers.By rearranging elements ofΛ(l−1,l) based onhighly-active pairs for
each class in the diagonal and zeroing out off-diagonal elements, theCondNNdevelops
explicit routesΛroute

(l,l−1) throughnodes in the network.CondNN incurs profoundly lower
computation cost compared to other DNNs at test time; whereas, CondNN’s accuracy
remains similar to larger models. We note that DNN size can also be reduced by
employing Bayesian optimization, as investigated by Blundell et al. (2015) and by
Fortunato et al. (2017). These earlier efforts provide evidence that Bayesian neural
networks can decrease network size even more than CondNNs while maintaining a
similar level of accuracy.

Another motivation is to make the DNNs more interpretable. Zhao et al. (2018)
replace the last layer of a deep network with a visual hierarchical tree to learn a better
solution for image classification problems. A visual hierarchical tree with L levels
organizes N object classes based on their visual similarities in its nodes. Deeper in the
tree, groups become more separated wherein each leaf node should contain instances
of one class. The class similarity between the class ci and c j is defined as follows:

Si, j = S(ci , c j ) = exp
(

− d(xi , x j )

σ

)
. (24)

here d(xi , x j ) represents the distance between the deep representation of instances of
classes ci and c j , and σ is automatically determined by a self-tuning technique. After
calculating matrix S, hierarchical clustering is employed to learn a visual hierarchical
tree.

In a traditional visual hierarchical tree, some objects might be assigned to incorrect
groups. A level-wise mixture model (LMM) (Zhao et al. 2018) aims to improve this
visual hierarchical tree by learning a new representation of data via a DNN, then
updating the tree during training. For a given tree, matrixΨyi ,ti denotes the probability
of objects with label y belonging to group t in the tree. First, LMM updates the DNN
parameters and the visual hierarchical tree as is done with a traditional DNN. The only
difference is a calculation of two gradients, one based on the parameters of the DNN
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and the other based on the parameters of the tree. Second, LMM updates the matrix
Ψyi ,ti for each training sample separately and then updates the parameters of the DNN
and the tree. To update theΨ , the posterior probability of the assigning group ti for the
object xi is calculated based on the number of samples having the same label y as the
label of xi in a group t . For a given test image, LMM learns a new representation of
the image based on the DNN and then obtains a prediction by traversing the tree. One
of the advantages of an LMM is that, over time, by learning a better representation of
data via DNN, the algorithm can update the visual hierarchical tree.

6.2 Neural networks and K-nearest neighbors

Another direction for blending a deep network with a non-neural network classifier
is to improve the non-neural network model by learning a better representation of
data via a deep network. Zoran et al. (2017) introduce a differentiable boundary tree
(DBT) to integrate a DNN into the boundary tree (Mathy et al. 2015) to learn a
better representation of data. The newly-learned data representation leads to a simpler
boundary tree because the classes are well separated. The boundary tree is an online
algorithm in which each node in the tree corresponds to a sample in the training set.
The first sample together with its label are established as the tree root. Given a new
query sample z, the sample traverses through the tree from the root to find the closest
node n based on some distance function like the Euclidean distance function. If the
label of the nearest node in the tree is different from the query sample, a new node
containing the query z is added as a child of the closest node n in the tree; otherwise,
the query node z is discarded. Therefore, each edge in the tree marks the boundary
between two classes and each node tends to be close to these boundaries.

Transitions between nodes in a standard boundary tree are deterministic. DBT com-
bines a SoftMax cost function with a boundary tree, resulting in stochastic transitions.
Let x be a training sample and c be the one-hot encoding label of that sample. Given
the current node xi in the tree and a query node z, the transition probability from node
xi to node x j , where x j ∈ {child(xi ), xi } is the SoftMax of the negative distance
between x j and z. This is shown in Eq.25.

p(xi → x j |z) = SoftMax
i, j∈child(i)

(−d(x j , z))

= exp(−d(x j , z))
∑

j ′∈{i, j∈child(i)}
exp(−d(x j , z))

(25)

The probability of traversing a particular path in the boundary tree, given a query node
z, is the product of the probability of each transition along the path from the root to
the final node x f inal∗ in the tree. The final class log probability of DBT is computed
by summing the probabilities of all transitions to the parent of x f inal∗ together with
the probabilities of the final node and its siblings. The set sibling(xi ) consists of all
nodes sharing the same parent with node xi and the node xi itself. As discussed earlier,
a DNN fθ (x) transforms the inputs to learn a better representation. The final class log
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probabilities for the query node z are calculated as follows:

log p(c| fθ (z)) =
∑

xi→x j∈path†| fθ (z)

log p( fθ (xi ) → fθ (x j )| fθ (z))

+ log
∑

xk∈sibling(x f inal∗ )

p(parent( fθ (xk)) → fθ (xk)| fθ (z))c(xk).
(26)

In Eq.26, path† denotes path∗ (the path to the final node x f inal∗) without the last
transition, and sibling(x) represents node x and all other nodes sharing the sameparent
with node x . The gradient descent algorithm can be applied to Eq.26 by plugging in a
loss function to learn parameter θ of the DNN. However, gradient descent cannot be
applied easily to DBT because of the node and edge manipulations in the graph. To
address this issue, DBT transforms a small subset of training examples via a DNN and
builds a boundary tree based on the transformed examples. Next, DBT transforms a
query node z via the same DNN and calculates the log probability of a class according
to Eq.26. The DNN employs gradient descent to update its parameters by propagating
the gradient of log loss probability. DBT discards this boundary tree and iteratively
builds a new boundary tree as described until a convergence criteria is met. In the
describedmethod, the authors set a specific threshold for the loss value to terminate the
training. DBT is able to achieve greater accuracy with a simpler tree than the original
boundary tree, as shown by the authors on the MNIST dataset (LeCun 1998). One of
the biggest advantages ofDBT is its interpretability. However, DBT is computationally
an expensive method because a new computation graph needs to be built, whichmakes
batching inefficient. Another limitation is that the algorithm needs to switch between
building the tree and updating the tree. Therefore, scaling to large datasets is fairly
prohibitive.

Often, k nearest neighbor (kNN) models are disregarded because of their compu-
tational cost and need for a large training set. In the traditional k-nearest neighbor
algorithm (kNN), the posterior probability is estimated by the class distributions pro-
vided by points that are the closest neighbors to the point in question. In a special case
of kNN, the 1-nearest neighbor (1NN) classifies the new point based on the nearest
training (labeled prototype). To improve the kNN model, a variation uses a prototype
learning model to generate prototypes that replace the original training set (Liu and
Nakagawa 2001). In recent years, many neural prototype learning (NPL) models have
been developed. The NPL models can be categorized in two ways: (1) learned proto-
types are points in the feature space that represent each class (Snell et al. 2017; Mettes
et al. 2019), (2) learned prototypes are very close to the training set examples and a
set of prototypes represents the training set (Li et al. 2018; Chen et al. 2019).

The first type of NPL learns a vector representing the mean of all of the points
in a given class through an encoder network. The second type of NPL employs an
encoder to learn a fixed-length feature vector z of size m. Next, a predefined number
of prototypes n of size m utilizes z to learn meaningful prototypes. In general, the
goal of these models is to minimize the sum of the misclassification loss plus two
regularizers. The first regularizer pushes the prototype vectors to be meaningful by
minimizing the average squared distance between the prototypes and the encoded
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vector. The second regularizer helps with clustering the training examples around
prototypes by minimizing the average squared distance between the encoded vector
and prototypes.

6.3 Neural networks and SVMs

Yet another way of building a hybrid model is to learn a new representation of data
with a DNN, then hand the resulting feature vectors off to other classifiers to learn a
model. Tang (2013) explored replacing the last layer of DNNs with a linear SVM for
classification tasks. The activation values of the penultimate layer are fed as input to an
SVMwith a L2 regularizer. Theweights of the lower layer are learned throughmomen-
tum gradient descent by differentiating the SVM objective function with respect to
activation of the penultimate layer. The author’s experiments on the MNIST (LeCun
1998) and CIFAR-10 (Krizhevsky et al. 2010) datasets demonstrate that replacing a
CNN’s SoftMax output layer with SVMyields a lower test error. Tang (2013) postulate
that the performance gain is due to the superior regularization effect of the SVM loss
function.

It is worth mentioning that in their experiment on MNIST (LeCun 1998), Tang
(2013) first used PCA to reduce the features and then fed the reduced feature vectors
as input to their model. Also, Niu and Suen (2012) replaced the last layer of a CNN
with an SVM, which similarly resulted in lowering test error of the model compared to
a CNN on the MNIST dataset. Similar to these methods, Bellili et al. (2001), Azevedo
and Zanchettin (2011), Nagi et al. (2012), and Zareapoor et al. (2018) replace the
last layer of a DNN with an SVM. In these cases, their results from multiple datasets
reveal that employing a SVM as the last layer of a neural network can improve the
generalization of the network.

6.4 Neural networks and statistical models

In some cases, two different data views are available. As an example, one view might
contain video and another sound. Canonical correlation analysis (CCA) (Hotelling
1992) and kernel canonical correlation analysis (KCCA) (Hardoon et al. 2004) find
basis vectors that maximize the correlations between the projections of the two views
onto the basis vectors. Nonlinear representations learned by KCCA can achieve a
higher correlation than linear representations learned by CCA. Despite the advantages
of KCCA, the kernel function faces some drawbacks. Specifically, the representation
is bound to the fixed kernel. Furthermore, the training time, as well as the time to
compute the new data representation, scales poorly with the size of the training set
because of the non-parametric nature of kernel models.

Andrew et al. (2013) proposed to apply deep networks to learn a nonlinear data
representation instead of employing a kernel function. Their resulting deep canonical
correlation analysis (DCCA) consists of two separate deep networks for learning a
new representation for each view. The new representation learned by the final layer of
networks H1 and H2 is fed to CCA. To compute the objective gradient of DCCA, the
gradient of the output of the correlation objectivewith respect to the new representation
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can be calculated as follows:
∂corr (H1, H2)

∂H1
(27)

After this computation, backpropagation is applied to find the gradient with respect
to all parameters. The details of calculating the gradient in Eq.27 are provided by the
authors (Andrew et al. 2013).

While researchers have also created LSTMmethods that employ tree structures (Tai
et al. 2015; Alvarez-Melis and Jaakkola 2017), these methods utilize the data structure
to improve a network model rather than employing tree-based learning algorithms.
Similarly, other approaches integrate non-neural network classifiers into a network
structure. Cimino andDell’Orletta (2016) andAgarap (2018) introduce hybridmodels.
These two methods apply LSTM and GRU, respectively, to learn a network represen-
tation. Unlike traditional DNNs, the last layer employs an SVM for classification.

The work surveyed in this section provides evidence that deep neural nets are capa-
ble methods for learning high-level features. These features, in turn, can be used to
improve the modeling capability for many types of supervised classifiers. In this sur-
vey, we aim to provide a thorough review of non-neural network models that utilize
the unique features of deep network models. Table 2 provides a summary of such
non-neural network models, organized based on four aspects of deep networks: model
architecture, optimization, regularization, and hybrid model fusing. A known advan-
tage of traditional deep networks compared with non-neural network models has been
the ability to learn a better representation of input features. Inspired by various deep
network architectures, deep learning of non-neural network classifiers has resulted
in methods to also learn new feature representations. Another area where non-neural
network classifiers have benefited from recent deep network research is applying back-
propagation optimization to improve generalization. This table summarizes published
efforts to apply regularization techniques that improve neural network generalization.
The last category ofmodels combines deep network classifiers and non-neural network
classifiers to increase overall performance.

7 Experiments

In this paper, we survey a wide variety of models and methods. Our goal is to demon-
strate that diverse types of models can benefit from deep learning techniques. To
highlight this point, we empirically compare the performance of many techniques
described in this survey, as shown in Table 3. This comparison includes deep and
shallow networks as well as non-neural network learning algorithms. Because of the
variety of classifiers that are surveyed, we organize the comparison based on the
learned model structure.

We compare the performance of the models utilizing three datasets: (1) MNIST, (2)
CIFAR-10, and (3) UCI Human Activity Recognition (HAR) (Anguita et al. 2013).
MNIST instances contain 28 × 28 pixel grayscale images of handwritten digits and
their labels. The MNIST labels are drawn from 10 object classes, with a total of
6000 training samples and 1000 testing samples. CIFAR-10 is also a well-known
dataset containing 10 object classes with approximately 5000 examples per class,
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where each sample is a 32 × 32 pixel RGB image. The HAR data were collected
from 30 participants performing six scripted activities (walking, walking upstairs,
walking downstairs, sitting, standing, and laying) while wearing smartphones. The
dataset contains 561 features extracted from sensors, including an accelerometer and
a gyroscope. The training set contains 7352 samples from 70% of the volunteers and
the testing set contains 2947 samples from the remaining 30% of volunteers.

We report the test error and model parameters provided by the authors for the
mentioned datasets. If the performance of a model was not available for any of these
datasets, we ran that experiment with the authors’ code when available. We employ
default values for parameters that are not specified in the original papers. In the event
that the authors did not provide their code, we did not report any results. These omis-
sions prevent the report of erroneous performances that result from implementation
differences.

For a fair comparison, we divide Table 3 into different sections based on the type of
models. First, we investigate the performance of the models that have a tree structure.
The popularity of both neural networks and decision trees (DT) gives rise to a type
of model that combines positive aspects of both models. We observe that models that
integrated neural networks into their architecture, such asDNDF andANT, outperform
RF. Whereas stacking RF on DF displayed performance improvement for the MNIST
and CIFAR-10 datasets, the multi-layer XGBoost model, mGBDT, did not perform
well, even on a small dataset such as HAR. Additionally, we could not run mGBDT
on MNIST data because of the computational cost, as mentioned in the original paper
(Feng et al. 2018). In the case of models such as ANT, TAO, and SFDT, their per-
formance does not necessarily exceed the other approaches, because these authors try
to balance classification accuracy with model interpretability. Both DART and RRF
make use of regularizers frequently used by neural networks. The results in Table 3
indicate that DART achieves consistently-strong performance. Although RRF did not
perform well on MNIST, it did outperform other methods on HAR. We can conclude
that there is no specific model that performs consistently well on all types of data.

Second, we observe that models DBT and NPL, which combine nearest neighbor
strategies with neural networks, do yield strong classification performance onMNIST
data while retaining the interpretability of kNN methods. Lastly, we study the models
that utilize SVM as part of their structure. This type of model focuses on improv-
ing accuracy. We observe that a strategy like stacking SVMs (R2SVM) can improve
performance over standard SVMs. Table 3 shows that the average error for R2SVM
is 20.3 on the HAR dataset, while the average error for R2SVM is 21. The strategy
of swapping the traditional Softmax deep network final layer with an SVM further
improves accuracy to 11.9.

The results fromour experiments reveal that both network classifiers and non-neural
network classifiers benefit from deep learning. The methods surveyed in this paper
and evaluated in these experiments demonstrate that non-neural network machine
learning models do improve performance by incorporating DNN components into
their algorithms. Whereas models without feature learning such as RF usually do
not perform well on unstructured data such as images, we observe that adding deep
learning to these models drastically improves their performance, as shown in Table
3. Additionally, non-deep models may achieve improved performance on structured
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data by adding regularizers, as shown in Table 3. The methods surveyed in this paper
demonstrate that deep learning components can be added to any type of machine
learning model and are not specific to DNNs. The incorporation of deep learning
strategies is a promising direction for all types of classifiers, both network and non-
neural network methods.

8 Conclusions and directions for ongoing research

DNNs have emerged as a powerful force in the machine learning field for the past
few years. This survey paper reviews the latest attempts to incorporate methods that
are traditionally found in DNNs into other learning algorithms. DNNs work well
when there is a large body of training data and available computational power. DNNs
have consistently yielded strong results for a variety of datasets and competitions,
such as winning the Large Scale Visual Recognition Challenge (Russakovsky et al.
2015) and achieving strong results for energy demand prediction (Paterakis et al.
2017), identifying gender of a text author (Sboev et al. 2018), stroke prediction (Hung
et al. 2017), network intrusion detection (Yin et al. 2017), speech emotion recognition
(Fayek et al. 2017), and taxi destination prediction (de Brébisson et al. 2015). Since
there are many applications which lack large amounts of training data or for which
the interpretability of a learned model is important, there is a need to integrate the
benefits of DNNs with other classifier algorithms. Other classifiers have demonstrated
improved performance on some types of data; therefore, the field can benefit from
examining ways of combining deep learning elements between the network and non-
neural network methods.

Although some work to date provides evidence that DNN techniques can be used
effectively by other classifiers, there are still many challenges that researchers need to
address, both to improveDNNs and to extend deep learning to other types of classifiers.
Based on our survey of existing work, some related areas where supervised learners
can benefit from unique DNN methods are outlined below.

The most characteristic feature of DNNs is a deep architecture and its ability to
learn a new representation of data. A variety of stacked generalization methods have
been developed to allow other machine learning methods to utilize deep architectures
as well. These methods incorporate multiple classification steps in which the input
of the next layer represents the concatenation of the output of the previous layer and
the original feature vector, as discussed in Sect. 3.1.1. Future work can explore the
many other possibilities that exist for refining the input features to each layer to better
separate instances of each class at each layer.

Previous studies provide evidence that DNNs are effective data generators (Radford
et al. 2016; Hoffman et al. 2018), while in some cases, non-neural network classifiers
may actually be the better discriminators. Future research can consider using a DNN
as a generator and an alternative classifier as a discriminator in generative adversarial
models. Incorporating this type of model diversity could improve the robustness of
the models.

Gradient descent can be applied to any differentiable algorithm. We observed that
Kontschieder et al. (2015), Frosst and Hinton (2017), Tanno et al. (2019), and Zoran
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et al. (2017) all applied gradient descent to two different tree-based algorithms by
making them differentiable. In the future, additional classifiers can be altered to be
differentiable. Applying gradient descent to other algorithms could be an effective
way to adjust the probability distribution of parameters.

Another areawhich is vital to investigate is the application of regularizationmethods
that are customized for non-neural network classifiers. As discussed in Sect. 5, the non-
neural network classifiers can benefit from the regularization methods that are unique
to DNNs. However, there exist many different ways that these regularization methods
can be adapted by non-neural network classifiers to improve model generalization.

An important area of research is interpretable models. There exist applications such
as credit score, insurance risk, health status because of their sensitivity, models need
to be interpretable. Further research needs to exploit the use of DNNs in interpretable
models such as DNDT (Yang et al. 2018).

As we discussed in this survey, an emerging area of research is to combine the
complementary benefits of statistical models with neural networks. Statistical models
offer mathematical formalisms as well as possible explanatory power. This combina-
tion may provide a more effective model than either approach used in isolation.

There are cases in which the amount of ground truth-labeled data is limited, but
a large body of labeled data from the same or similar distribution is available. One
possible area of ongoing exploration is to couple the use of DNNs for learning from
unlabeled data with the use of other classifier strategies for learning from labeled
data. The simple model learned from labeled data can be exploited to further tune and
improve learned representation patterns in the DNN.

We observe that currently, there is a general interest among the machine learning
community to transfer new deep network developments to other classifiers. While a
substantial effort has been made to incorporate deep learning ideas into the general
machine learning field, continuing this work may spark the creation of new learn-
ing paradigms. However, the benefit between network-based learners and non-neural
network learners can be bi-directional. Because a tremendous variety of classifiers
has shown superior performance for a wide range of applications, future research can
focus not only on how DNN techniques can improve non-neural network classifiers
but on howDNNs can incorporate and benefit from non-neural network learning ideas
as well.
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