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Abstract
Real social network datasets with community structures are critical for evaluating
various algorithms in Online Social Networks (OSNs). However, obtaining such com-
munity data from OSNs has recently become increasingly challenging due to privacy
issues and government regulations. In this paper, we thus make our first attempt to
address two important factors, i.e., user willingness and existence of community struc-
ture, to obtainmore completeOSNdata.We formulate a new research problem, namely
Community-aware Data Acquisition with MaximumWillingness in Online Social Net-
works (CrawlSN), to identify a group of users from an OSN, such that the group is a
socially tight community and the users’ willingness to contribute data is maximized.
We prove that CrawlSN is NP-hard and inapproximable within any factor unless, and
propose an effective algorithm, named Community-aware Group Identification with
MaximumWillingness (CIW ) with various processing strategies.We conduct an evalu-
ation study with 1093 volunteers to validate our problem formulation and demonstrate
that CrawlSN outperforms the other alternatives. We also perform extensive exper-
iments on 7 real datasets and show that the proposed CIW outperforms the other
baselines in both solution quality and efficiency.
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1 Introduction

Real social network datasets with community structures that include complete node
and edge information are essential for evaluating various algorithms in Online Social
Networks (OSNs) for different applications. For example, such real social network
datasets can be used to evaluate the algorithms for link prediction, node classification,
community detection, dense subgraph extraction, graph convolution networks, and
graph embedding.

However, obtaining such real datasets with community structures from OSNs (rep-
resented as a graph) is not a simple task for two reasons: the node and edge information
of the community should be completely acquired, and the community structure should
be ensured at the same time. Themain challenge of such a task is that in order to obtain
detailed node (user) and edge (user–user interaction) information, such as posts, likes,
check-ins, interactions/relationswith other users inOSNs, one needs the users’ explicit
approval. However, if those users who agree to provide their detailed data collectively
induce little or no community structure, the dataset cannot be used to evaluate the
algorithms for OSNs that assume the existence of community structures in OSNs.

Although different algorithms have been proposed to address various issues for
crawling community data from OSNs, such as detecting communities while crawl-
ing (Blenn et al. 2012), crawling multi-layer networks (Laishram et al. 2019), and
crawling uniform samples (Ye et al. 2010; Gjoka et al. 2011), they usually assume
that the crawler has been fully authorized by the users, i.e., that the users are willing
to contribute their data for crawling. However, this assumption may be too strong in
practical scenarios because of the serious concerns for individual privacy. Therefore,
we argue that users’ willingness to contribute data should be considered jointly with
their community structures, in order to obtain more complete community data from
OSNs for further analysis.

Currently, when taking users’ willingness into consideration, researchers usually
recruit OSN users to ask them to contribute their data manually, typically by recruiting
them from online forum and crowdsourcing platforms, or sending messages to poten-
tial users in dense communities, such as in a class or office. This manual approach
usually fails to assemble good community structures, because in most cases the users
who are willing to contribute their data (from online forum and crowdsourcing plat-
form) usually do not together form a community. In contrast, In contrast, when we
focus only on the community structure and recruit the users in a dense community
(in a class or an office), in most cases only a small portion of users may be willing
to contribute their data. Our preliminary study on 1093 individuals (detailed in Sect.
6.1) shows that directly recruiting users in dense communities without considering
their willingness may result in an acceptance rate (i.e., the ratio of the users who agree
to contribute their data to the total number of users) below 10%. In contrast, recruit-
ing users from online forums, although showing a very high acceptance rate, often
results in an independent set with no community structure existing for these users.
To address the above dilemma, we jointly consider two important yet fundamental
factors for obtaining good community data from OSNs: user willingness and com-
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Fig. 1 Motivating example

munity structure (social tightness).1 These two factors are detailed in the following
paragraphs.

User willingness of data contribution. Due to privacy policies, if user data are
crawled with APIs provided by OSN service providers such as Facebook and Insta-
gram, users’ explicit approval is required. The user willingness, therefore, is closely
related to the successful obtaining of the node (user information) and edge (rela-
tionships among users) information. More specifically, two terms of user willingness
should be considered, namely individual willingness and influenced willingness. The
individual willingness is the willingness of the user to allow her data to be crawled,
regardless of her friends’ decisions. Influenced willingness, on the other hand, is an
assessment of the user’s friends influence on her decision, because research shows that
a user’s decision is heavily affected by the social reinforcement from her neighbors
in the social network (Centola 2010; Bond et al. 2012; Deutsch and Gerard 1955). As
users in a community are tightly connected and have a high influence on each other,
influenced willingness should also be carefully examined.

Social tightness of the community. This factor is critical to the community structure
emerging from the OSN users. If the users form a very sparse subgraph in the OSN,
community structure may not exist, leaving researchers unable to benefit from data
analysis. Nevertheless, as mentioned above, an intuitive approach such as recruiting
users with monetary rewards in crowdsourcing platforms or forums usually fails to
obtain good community structures. Therefore, an approach that jointly considers the
factors of user willingness and social tightness is desired.

Figure 1 illustrates the two factors for obtaining community data. Given a social
network in Fig. 1, where a greater value beside a node indicates the user has a stronger
individual willingness to contribute her data, and the weight of the edge connecting
nodes u and v indicates how strong u and v influence each other,2 suppose that we’d

1 Many other factors, such as relationship types of users are also important. Here, we discuss the two
fundamental factors to crawl the community data for further analysis and discuss the other important
factors in the future work.
2 We showundirected edges here for the clarity of presentation.Directed relations can be easily incorporated
in our problem formulation.
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like to crawl a community with 4 users. One approach is to select the 4 users with
maximum individual willingness, i.e., G1 = {A,C, I , J }. However, G1 induces an
independent set with no community structure, which would therefore not be a good
choice for analyzing the social network structures of the users. Another approach
is to extract the densest subgraph G2 = {E, F,G, H}, but the willingness of the
users in G2 is very low, indicating they are not likely to contribute their data. Finally,
G3 = {A, B,C, D} strikes a good balance between the user willingness and structure
completeness, i.e., users have a high willingness to contribute their data and G3 is
socially tight. Moreover, the users in G3 can exert influence on each other, meaning
that they are very likely to contribute their data as a whole community.

Till now, there has been scant research attention paid to jointly considering
the willingness and social tightness factors to effectively obtain community data
from OSNs. For this reason, we here a new research problem, namely Community-
awar e Data Acquisition with Maximum Willingness in Online Social Networks
(CrawlSN), to select a socially tight group (community) of users from the OSN
for the crawling task, such that the willingness of users’ data contribution is max-
imized. By employing CrawlSN, the two important factors of user willingness and
social tightness are addressed, and researchers will as a result have a high chance
to successfully crawl community information from OSNs. Moreover, CrawlSN also
incorporates a size constraint to include s users in the selected group so as to take
into account the limited budget in data collection tasks. Later in our evaluation
study in Sect. 6.1, we show that by considering both individual and influenced will-
ingness, CrawlSN outperforms other alternatives for collecting user data from the
OSN.

To our best knowledge, the proposed CrawlSN problem is the first research prob-
lem that jointly considers the individual and influenced willingness, social constraint,
and the community size to obtain community data from OSNs. The entangled nature
of the relevant factors make the CrawlSN problem very challenging, and existing
approaches such as influence maximization (does not consider the community struc-
ture) and community detection approaches (no user willingness is considered) cannot
be directly applied. In fact, we prove that the CrawlSN problem is NP-hard and inap-
proximable within any factor unless P=NP. That is, no approximation algorithm
exists for CrawlSN. To tackle CrawlSN, we propose an efficient algorithm, named
Community-aware Group Identification with Maximum Willingness (CIW), with vari-
ous ordering and pruning strategies (MaxInner Ordering, Community-based Indexing
for MaxInner Ordering, Core Pruning, andWillingness Pruning) in order to boost the
performance to obtain the optimal solutions.

The contributions of this paper are summarized as follows.

– We identify the crucial need to systematically obtain community data from OSNs,
and propose a new research problem, called Community-aware Data Acquisition
with Maximum Willingness in Online Social Networks (CrawlSN) to support the
need.

– We also prove that CrawlSN is NP-hard and inapproximable within any factor, and
we further propose an efficient algorithm, named Community-aware Group Iden-
tification with Maximum Willingness (CIW ), with effective processing strategies.
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Fig. 2 Light crawling, deep crawling, and algorithm CIW

– We invite 1093 volunteers and conduct an evaluation study to validate the effec-
tiveness of CrawlSN. The results indicate that more than 95% of users in the
community selected by CrawlSN and CIW agreed to contribute their OSN data,
significantly outperforming other baselines. We also show that CIW outperforms
other baselines in terms of efficiency and solution quality in 7 real datasets.

The paper is organized as follows. Section 2 introduces the preliminaries, and then
Sect. 3 formulates the research problem. Section 4 discusses the related works relevant
to this paper, and Sect. 5 proposes the algorithm. Section 6 presents the results of the
experiments. Finally, Sect. 7 concludes this paper.

2 Preliminaries

Community data acquisition with light and deep crawling. The proposed research
problem aims to identify a group of socially tight users who have a high willingness
to contribute their data, where the social network graph, users’ individual willingness,
and the influence strengths among users are assumed given. However, how do we
obtain such information before the crawling is actually performed? To answer this
question, we differentiate the notions of light crawling and deep crawling and then
describe the two-step crawling process below. Figure 2 depicts the crawling process.

At the beginning of the crawling process (step 1 of Fig. 2), a light crawling is
performed to obtain the publicly accessible user data (with user’s consent), e.g., pub-
lic profiles, public friend lists, public photos. As this step gathers only the publicly
accessible user data, users are more likely to provide such data compared to more
detailed personal data such as posts, likes, check-ins,3 (as shown in step 2 of Fig. 2).

3 We have implemented a light crawler using python 3.6, which is able to obtain the publicly accessible
user data in OSNs.
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Fig. 3 Peer influence for willingness

However, the data retrieved by light crawling is very limited due to user’s privacy
settings. Therefore, as shown in step 3 of Fig. 2, the information obtained in light
crawling is only used to construct the underlying social network structure, infer the
influence strengths,4 and predict the users’ individual willingness to contribute data,
i.e., their willingness to authorize the deep crawling.5

After this, as illustrated in step 4 of Fig. 2, the proposed algorithm CIW selects the
group of socially-tight users who have a high willingness to contribute their data based
on the input information generated in the previous step. In step 5, we request each
selected user’s authorization for deep crawling, as sending the request by Facebook
Events, as shown in Fig. 3. Here, deep crawling, once authorized by the user with the
API provided by OSNs, is able to obtain more detailed and private information of the
user, such as the posts, replies, likes, photos, joined events, visited locations, and check-
ins. Since the users are selected to maximize the willingness of data contribution, it is
very likely that the set of users selected by CIW would authorize our deep crawling
request. Therefore, in steps 6 and 7 of Fig. 2, deep crawling can obtain the detailed
and private information of the users.

Willingness with peer influence in OSNs. An important feature captured by the
proposed CrawlSN problem is the consideration of both individual willingness and
influenced willingness. In our implementation, we leverage the Events function from
Facebook to send our data-collection requests to allow peers to influence one another,
as shown in Fig. 3. Here, the candidates selected by our algorithm can see their friends
who are willing to contribute their data. In this way, they are more likely to contribute
their data as a socially tight group. As the peer influence is shown to be a very effective
(Bond et al. 2012; Centola 2010) factor in various activities, we incorporate this factor
in our problem formulation, as detailed in Sect. 3.

3 Problem formulation and analysis

Given a social networkG = (V , E), where each node v ∈ V represents a user and each
undirected edge eu,v ∈ E represents the friendship between nodes u, v ∈ V . Each user
v ∈ V is associated with an individual willingness of data contribution (individual

4 Influence strengths can be inferred by employing existing approaches (Kempe et al. 2003; Gomez-
Rodriguez et al. 2012).
5 We have built a simple machine learning model with SVM that predicts users’ willingness with their
publicly accessible information on Facebook.
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willingness for short) δv,∅ ∈ [0, 1], where a larger δv,∅ indicates a stronger individual
willingness. Moreover, each edge eu,v is assigned an edge weight wu,v ∈ [0, 1] to
quantify how u and v influence each other.6 In addition, given a set of nodes S ⊆ V ,
we denote NS(v) the set of v’s neighbors in the subgraph induced by S.

Thewillingness of data contribution (willingness for short) of a user v in an induced
subgraph S, i.e., δv,S , considers the individual willingness of v and the influenced
willingness, i.e., thewillingness influenced by v’s friends’willingness in NS(v), which
is defined as follows.

δv,S = δv,∅ + (1 − δv,∅)
∑

u∈NS(v) δu,∅ · wu,v

τv

, (1)

where τv = ∑
u∈NG (v) wu,v is the total incident edge weight of v.7 The term δv,∅ is

the individual willingness of v, and the second term (1 − δv,∅)
∑

u∈NS (v) δu,∅·wu,v

τv
is the

influenced willingness.8

The first term in Eq. 1, i.e., individual willingness δv,∅, represents the initial willing-
ness of user v to contribute her data without being influenced by her friends’ decisions.
The second term, influenced willingness in Eq. 1, represents the influence from v’s
friends, where the concept here is similar to that of Partial Credits Model in social
influence (Goyal et al. 2010). Here, the edge weight wu,v quantifies how u and v

influence each other. Therefore,
∑

u∈NS (v) δu,∅·wu,v

τv
can be viewed as the willingness

influenced by v’s neighbors in the selected group and is normalized by τv . Please note

that
∑

u∈NS (v) δu,∅·wu,v

τv
considers v’s influenced willingness based on v’s friends who

are also in S. This is because as shown in Fig. 3 in Sect. 2, each user v would be aware
if her friends selected in S decide to contribute their data. Therefore, the selected users
can discuss and make up their minds together. Moreover, (1− δv,∅) in this term scales
the influenced willingness such that δv,S is in the range [0, 1].

Now, we define the average willingness (of data contribution) for a group of users
S ⊆ V , i.e., Δ(S), as follows.

Δ(S) =
∑

v∈S δv,S

|S|
= 1

|S|
∑

v∈S

(

δv,∅ + (1 − δv,∅)
∑

u∈NS(v) δu,∅ · wu,v

τv

)

. (2)

6 We can also consider directed influences in our problem formulation with a slight modification of the
algorithm.

7 If τv = 0, we define the value of the second term of Eq. 1 as 0. That is, if τv = 0,

∑
u∈NS (v) δu,∅·wu,v

τv
= 0.

8 In some extreme cases, for a user who is very unwilling to provide her data (i.e., with a small individual
willingness), the influenced willingness may raise the value of Eq. 1 up to 1. To tackle this issue, an
additional parameter β ∈ [0, 1] can be added to the second term (i.e., influenced willingness) of Eq. 1 as
follows. By setting a smaller β, i.e., close to 0, the user’s individual willingness becomes more important
in the computation of the average willingness.
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Please note thatΔ(S) ∈ [0, 1], where a largerΔ(S) indicates a stronger willingness
of the group. Take Fig. 1 as an example with S = {A, B,C, D}, Δ(S) = 0.966.

In addition to the average willingness of the group, we also employ a social con-
straint that requires the selected group to form a k-core, i.e., each member is required
to have friendship with at least other k users in the group (Seidman 1983). Here, k-
core is chosen as the social constraint because k-core is widely adopted as a density
measurement in related research works (Shin et al. 2016; Giatsidis et al. 2011; Aksu
et al. 2014; Alvarez-Hamelin et al. 2005; Zhang et al. 2017a; Wang et al. 2018; Can-
dogan 2019; Aridhi et al. 2016). In this paper, k-core is used to quantify the social
tightness of the selected group. The parameter k can be viewed as a trade-off between
the two important factors: social tightness and the willingness. A larger k indicates
that a more tightly connected group is desired. In contrast, if k is set smaller, we pay
more attention on the users’ willingness.

Furthermore, a group size constraint s is also incorporated to consider the lim-
ited budget for data crawling, which requires the selected group to contain exactly s
nodes. The willingness value is a probability that is predicted by a machine learning
method, such as SVM (Kubat 2015), Random Forest (Kubat 2015), or Deep Neural
Networks (Goodfellow et al. 2016). The sum of the willingness values of the users of a
group can be viewed as the expected number of people whowill provide their data. Our
objective value, i.e., the average willingness, is the expected number normalized by
the group size. Specifically, the proposed research problem is formulated as follows.

Problem 1 Community-aware Data Acquisition with Maximum Willingness in
Online Social Networks (CrawlSN).

Given: A social network G = (V , E), where each node v ∈ V is associated with
an individual willingness δv,∅ ∈ [0, 1], and each edge eu,v ∈ E is associated with
an edge weight wu,v ∈ [0, 1]. A social constraint k, and a size constraint s are
also given.
Objective: To find a group S ⊆ V , such that i) the induced graph of S is a k-core,
ii) |S| = s, and iii) the average willingness of S, i.e., Δ(S), is maximized.

Another advantage of choosing k-core as the social constraint is that it can be
extended to consider other social tightness measures easily. For example, a clique of
size s is a (s − 1)-core; a k-plex of size s is a (s − k − 1)-core. A k-core of size s is
also a k

s−1 -quasiclique. Moreover, our proposed algorithm can be easily extended to
consider other measures, such as path-based measures: n-clubs, n-clans or n-cliques
(Mokken 1979).

Effective and efficient processing of the CrawlSN problem is very challenging
because we need to jointly consider the factors of willingness, social tightness, and
the group size. As illustrated in Fig. 1, trivially maximizing the individual willingness
or the social tightness cannot solve CrawlSN, and thus a carefully designed algorithm
is required. In fact, CrawlSN is NP-hard and inapproximable within any factor, which
means that no approximation algorithm exists, as stated in Theorem 1.

Theorem 1 CrawlSN is NP-hard and inapproximable within any ratio unless P=NP.
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Proof We prove this theorem with the reduction from the p-clique problem. Given
a graph Gc = (Vc, Ec), and an integer p, the decision problem of p-clique decides
whether their exists a complete subgraph with p nodes in Gc.

We transform each instance of p-clique to an instance of CrawlSN as follows. We
construct the input graph G = (V , E) by setting V = Vc, E = Ec, individuals
willingness of each vertex as 1, the weight of each edge as 0. The parameters of
CrawlSN are set as s = p and k = s − 1. In the following, we prove that the decision
problem of p-clique returns TRUE if and only if CrawlSN has a feasible solution. We
first prove the sufficient condition. If p-clique returns TRUE with a solution H , i.e.,
H ⊆ Gc is a complete graph with p nodes, then H must be a feasible solution of
CrawlSN because p = s and k = s − 1, i.e., H is a s − 1-core of size s. We then
prove the necessary condition. If S is a feasible solution to CrawlSN, |S| = s and S
is a s − 1-core, i.e., each node in S must have edges linking to other s − 1 nodes in
S, which implies that S is a clique of size s. That is, S is also a solution to p-clique.
Therefore, CrawlSN is NP-hard. Moreover, if there is a ρ-approximation algorithm
to CrawlSN with a finite ρ, it means that the p-clique can be decided in polynomial
time, indicating that P=NP. The theorem follows. ��

Since the proposed CrawlSN is a new research problem, there is no existing
approaches that can directly solve it. To evaluate the performance of CIW with dif-
ferent α values, in this paper, we formulate an Integer Linear Programming (ILP) for
the CrawlSN problem. The ILP formulation, which can be solved with any commer-
cial solver (e.g., CPLEX9 or Gurobi10), obtains the optimal solution and serves as
a baseline for evaluation of the proposed algorithm. Please refer to “Appendix D of
Supplementary information” for the detailed description of the ILP forumulation.

4 Related work

Influence maximization. The Influence Maximization (IM) problem and its exten-
sions have been actively studied for years (Li et al. 2014; Chen et al. 2015; Li et al.
2015; Yang et al. 2016; Song et al. 2017; Lu et al. 2013) with the aim of finding a
small number of users as seeds to maximize the number of activated users in a social
network. Although at first glance the IM problems look similar to our CrawlSN, they
are totally different. The IM problems aim to select a set of seeds to activate the max-
imum number of users; however, in our CrawlSN problem, we aim to find a set of
users who have the maximumwillingness to contribute their data while the set of users
form a dense community. Since the willingness and social tightness factors are not
jointly considered by IM, the IM algorithms cannot be directly applied to solve the
CrawlSN problem. Moreover, extensions of the IM problem, such as competitive viral
marketing (Lu et al. 2013), recommendation system (Yang et al. 2013), and rumor
blocking (Song et al. 2017), have been proposed and discussed to consider different
scenarios of influence maximization.

9 https://www.ibm.com/analytics/cplex-optimizer.
10 http://www.gurobi.com.
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Dense subgraph extraction. Extracting dense subgraphs has been an active research
field for decades. Cliques (and their relaxations) model the cohesive subgroups in
social networks and are closely related to a number of fundamental graph problems
(Cheng et al. 2010; Balasundaram et al. 2011; Zhang and Parthasarathy 2012). Another
research topic to recently receive attention is how to efficiently extract k-plex (Bala-
sundaram et al. 2011) or k-truss structures (Zhang and Parthasarathy 2012). Moreover,
some research aims at extracting dense subgraphs and strengthening the social rela-
tions through network intervention (Hung et al. 2020; Hsu et al. 2019a).

However, although these studies propose effective approaches to extract dense sub-
graphs, they do not consider the user willingness of data contribution, which is the
core concept of our proposed CrawlSN problem.

Community search. The community search problem aims at extracting densely con-
nected community in social networks (Fang et al. 2016; Huang et al. 2015, 2014; Cui
et al. 2014; Zhang et al. 2017b). For example, Fang et al. consider the keywords while
the selected nodes form a k-core (Fang et al. 2016); Huang et al. discuss the closest
community search problem (Huang et al. 2015) with k-truss based community model;
and Zhang et al. study the (k, r)-core to find the group by considering pairwise simi-
larity among users (Zhang et al. 2017b). On the other hand, some community search
works focus on finding communities for different scenarios, such as querying geo-
social groups (Yang et al. 2012; Shen et al. 2016; Zhu et al. 2017), extracting socially
tenuous groups (Shen et al. 2017), identifying a group of socially tight viewers for
multi-streaming (Shen et al. 2018), and finding a group for willingness maximization
(Shuai et al. 2013). Finally, (Li et al. 2017) consider the social influence factor that
aims at finding a group such that most people are activated by the targeted group How-
ever, although these works deal with a wide variety of community search problems,
they cannot be applied to CrawlSN directly because they do not consider the individual
and influenced willingness for crawling community data in OSNs.

Crawling online social networks. Due to the scale of OSNs and their privacy control
policies, a crawled partial data set is often used for analysis. But as Ye et al. (2010) and
Gjoka et al. (2011) point out, there is potential bias and skew introducedwhen crawling
the online social network data. Blenn et al. (2012) propose to crawl the network and
detect community structures at the same time, and the idea of crawling while identify-
ing communities has also been extended to consider multi-layer networks (Laishram
et al. 2019; Mucha et al. 2010). Although these works deal with different issues of
crawling OSNs, the important factor of the willingness of the users to be crawled
was not considered. Therefore, our proposed CrawlSN problem can complement the
approaches mentioned above.

Finally, Hsu et al. (2019b) discuss the initial idea of crawling community-aware
OSN data. In constrast to the high-level ideas, this paper designs and details the whole
data acquisition process and the algorithm.Most importantly, the new evaluation study
with 1093 users and the extensive experiments on multiple real datasets in this paper
illustrate the effectiveness of the proposed approach.
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5 Algorithm design

As stated in Theorem 1, the CrawlSN problem is NP-hard and inapproximable within
any factor, i.e., no approximation algorithm exists. So, instead of proposing heuristic
algorithms without any performance guarantee, we propose an efficient algorithm that
is able to generate the optimal solution. The proposed algorithm, named Community-
aware Group Identification with Maximum Willingness (CIW), follows a branch-and-
bound framework to efficiently obtain the optimal solution to CrawlSN.

ToguideCIWtoaccurately explore various promising candidate groups,wepropose
the effective ordering and pruning strategies ofMaxInnerOrdering,Community-based
Indexing for MaxInner Ordering (CIMO), Core Pruning, and Willingness Pruning in
order to address the willingness of users while taking into account the social and size
constraints. Later we formally prove that the proposed CIW is able to generate the
optimal solution. The pseudo code of CIW is listed in Algorithm 1.

Algorithm 1 CIW
Require: Graph G, size constraint s, social constraint k
Ensure: Selected group S
1: function FindGroup(SR , SC , s, k)
2: while |SC | �= 0 do
3: if |SR | + |SC | < s then
4: return
5: end if
6: if |SR | = 0 then
7: SR ← v, where v is the node with the maximum δv,SC

in SC
8: end if
9: Let v be the node selected by the ordering strategy (MaxInner Ordering or CIMO)
10: SR ← SR ∪ {v}; SC ← SC \{v}
11: if SR is pruned by Core Pruning then
12: return
13: end if
14: if SR is not pruned by Willingness Pruning then
15: FindGroup(SR ,SC ,s,k)
16: else if SR is a feasible solution and Δ(SR ) > Δ(S∗) then
17: S∗ ← SR
18: end if
19: SR ← SR\{v}
20: end while
21: end function
22: FindGroup(∅, V , s, k)
23: Output S∗

The basic operations of the branch-and-bound framework for CIW are as follows.
Let SR be the group constructed by CIW so far, and SC denotes the set of candidate
users that could be moved into SR . CIW also maintains currently best solution S∗ to
keep track of the best solution obtained so far while CIW progresses. Initially, SR and
S∗ are set to empty, and SC is set to V . At each iteration, CIW iteratively selects one
node in SC (based on an ordering strategy which will be detailed later) and moves it
into SR . When SR contains exactly s nodes and is a feasible solution (i.e., SR is a k-
core of size s), CIW updates S∗ as SR if Δ(SR) > Δ(S∗). CIW then backtracks to the
previous SR and selects another node in SC based on the ordering strategy and moves
it to SR to explore another new group. If all the nodes in SC are considered by the
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Fig. 4 Illustrative example for CIW (s = 4, k = 2)

Fig. 5 Ordering strategies

(a) (b)

current SR , CIW backtracks to the previous state of SR and the iterations repeat until
all the candidate solutions are examined. Note that by following the above strategy,
CIW examines all the combinations of different groups.

As CIW iteratively examines different candidate groups and updates S∗, the order
of considering the nodes in SC is critical to the performance, because if CIW is able
generate good solutions earlier, it can avoid exploring a large number of redundant
groups that cannot become better solutions (by leveraging the pruning strategies).
Therefore, a good ordering strategy to select promising nodes from SC to generate
good solutions earlier is necessary.

Consider Fig. 4 as an example with s = 4 and k = 2. An intuitive ordering strategy,
named Greedy-based Individual Willingness (GIW) ordering, iteratively selects the
unvisited node in SC with the largest individual willingness, as illustrated in Fig. 5a.
However, the early-generatedgroupswith s users, i.e., {P, O, Q, A} and {P, O, Q, D}
are independent sets, indicating that this GIW ordering is not a good strategy because
it does not consider the social dimension. To address the weakness of GIW ordering,
we propose in Sect. 5.1 two advanced ordering strategies (MaxInner Ordering and
Community-based Indexing for MaxInner Ordering) that consider all social, willing-
ness, and size factors to efficiently derive feasible solutions.

Another major weakness of the above basic approach is that a large number of
generated groups with s nodes are examined. However, since most of these groups
are infeasible or come with poor average willingness, we propose in Sects. 5.2 and
5.3 two effective pruning strategies (Willingness Pruning and Core Pruning) to avoid
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examining most of the infeasible or poor groups which will significantly reduce the
computation time.

5.1 Ordering strategies: MaxInner and CIMO

To effectively identify promising nodes from SC , at each iteration, an ordering strategy
aims at identifying a node u in SC such that i) including u largely increases the average
willingness for SR , i.e., to help obtain groups with good average willingness, and ii) u
has a sufficient number of social edges connecting to nodes in SR , i.e., to ensure that
the result group satisfies the social constraint. In the following, we consider the above
concepts to propose two ordering strategies, which represent different trade-offs. The
first ordering strategy, called Complete MaxInner Ordering (MaxInner Ordering for
short) selects the suitable node u with more complete information, but incurs more
computation time; on the other hand, the second strategy, called Community-based
Indexing for MaxInner Ordering (CIMO for short), employs some offline process to
identify the promising node, thus significantly reducing the computation time. In our
discussion of our experimental results in Sect. 6, we compare the performance of the
two ordering strategies.

5.1.1 MaxInner Ordering

To address the first issue above, i.e., including a node that largely increases the average
willingness for SR , we first define ι(u) as the increment of the sum of willingness in
SR after including a node u ∈ SC into SR as below.

ι(u) =
∑

v∈SR∪{u}
δv,SR∪{u} −

∑

v∈SR
δv,SR .

Then, MaxInner Ordering computes ι(u) for each u ∈ SC and identifies the nodes that
largely increase the average willingness as good candidates nodes.

On the other hand, to address the second issue of the selected node having a sufficient
number of social edges connecting to nodes in SR , we observed that if we always
move a node u with at least min{|SR |, k} edges connecting to SR at each iteration,
when |SR | = s, it must be a k-core. Therefore, we define mu = |NSR (u)| as the
number of edges linking from node u ∈ SC to the vertices in SR . In this case, a larger
mu −min{|SR |, k} indicates that there are more edges between u and SR , which means
that including u in SR is more likely to generate a feasible solution.

To summarize, MaxInner Ordering prioritizes the inclusion of the node u ∈ SC into
SR if both ι(u) and mu −min{|SR |, k} are large. Therefore, among the vertices in SC ,
MaxInner Ordering selects the vertex u based on the following equation to consider
both factors simultaneously.

u = arg max
û∈SC

ι(û) × emû−min{|SR |,k}. (3)
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Fig. 6 Example of Maxinner
Ordering

It is worth noting that min{|SR |, k} is not a fixed number because |SR | changes while
the algorithm progresses, i.e., |SR | increases when new nodes are added from SC ,
and |SR | decreases when CIW backtracks to consider other potential users. Moreover,
at the beginning of CIW when SR = ∅, we assign the vertex v in SC which incurs
the maximum willingness δv,SC to avoid the cold start problem of ι(·) (lines 6–8 of
Algorithm 1), i.e., the case when SR = ∅, it simply selects u ∈ SC with the maximum
individual willingness but does not consider the social tightness factor.

MaxInner Ordering has a nice property of prioritizing the selection of nodes with
high connections over thosewith goodwillingness but poor connections; this is critical
to obtain feasible solutions early and makes it possible to allow the pruning strategies
(detailed in Sects. 5.2 and 5.3) to avoid having to examine a large number of redundant
groups.

Although MaxInner Ordering effectively identifies the vertex u which increases
the average willingness with a sufficiently large number of social edges linking to the
current SR , however, extracting u with Eq. 3 takes O(|V |2) time, which may not be
feasible for large OSNs. For this reason, we were motivated to propose the second
ordering strategy (CIMO) to enhance the efficiency of the above approach.

We illustrate the MaxInner Ordering with Fig. 6. In this example, we set s = 4
and k = 2. At beginning when SR = ∅ and SC = {A, B,C, D, E, F,G, H , I },
CIW selects the node with the maximum δv,SC , which is A, and moves A into SR .
Now SR = {A} and SC = {B,C, D, E, F,G, H , I }. MaxInner Ordering then selects
the node with the maximum ι(û) × emû−min{|SR |,k} from SC , which is D (ι(D) ×
emD−min{|SR |,k} = 0.85 × e1−min{1,2} = 0.85. Please note that although G has a
willingness higher than D, i.e., ι(G) = 0.9 > ι(D) = 0.85, however, as G has no
connection to SR = {A}, ι(G) × emG−min{|SR |,k} = 0.9 × e0−min{1,2} = 0.331. This
illustrates the nice property of MaxInner Ordering, it prioritizes the selection of nodes
with high connections (i.e., D) over those with willingness but poor connections (i.e.,
G). This ensures the feasibility of the solution returned earlier by CIW. In summary,
CIW selects {A, D, F, I } first, and the nodes {B,C, E,G, H} with poor connections
are considered later.

5.1.2 Community-based indexing for Maxinner Ordering

As mentioned above, we observed that computing Eq. 3 is time-consuming and
may not be practical for large OSNs. To address this issue, we propose the strat-
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egy named Community-based Indexing for MaxInner Ordering (CIMO), which is an
offline preprocessing strategy. CIMO first employs a community detection approach
(e.g., Blondel et al. 2008) to partition the input graph into multiple non-overlapping
subgraphs and then calculates the number of edges across each pair of partitions. Such
information can then be used to successfully and very efficiently identify promising
nodes in SC .

Given the input graph G, all the information required by CIMO can be computed
off-line and needs to be computed only once, i.e., they are independent of the param-
eters s and k. Once the communities are generated, the information can be used by
CIMO in multiple CrawlSN instances with different s and k values on the same input
graph G. That is, these communities are regarded as index structures, and can be
used multiple times for different parameters to improve the efficiency of the CIW
algorithm.

Specifically, we are given the sets of the non-overlapping subgraphs obtained by
the community detection approach {C1,C2, . . . ,Cx }, where ⋃

i∈[1,x] Ci = V . CIMO
in each iteration selects the node u in SC with high number of edges connecting
to Ci ∩ SR for all Ci based on Eq. 4. Here, I (·) is the indicator function such that
I (Ci ∩ SR �= ∅) = 1 if Ci ∩ SR �= ∅ holds, and I (Ci ∩ SR �= ∅) = 0 otherwise. If
CIMO finds that for some community Ci such that Ci ∩ SR = ∅, it can simply skip
the examination of Ci . In other words, CIMO priorities the inclusion of the nodes u in
SC with a greater extensibility, i.e., including u to SR makes it more likely to satisfy
the social constraint, while the user u also has a high willingness value. The equation
of CIMO is listed below.

u = arg max
û∈SC

δû,∅ ×
∑

∀Ci

|NCi (û)| · I (Ci ∩ SR �= ∅), (4)

where I (·) is the indicator function such that I (Ci ∩ SR �= ∅) = 1 if Ci ∩ SR �= ∅
holds, and I (Ci ∩ SR �= ∅) = 0 otherwise.

Since CIMO avoids the computation of the exact number of edges linking
u ∈ SC and SR , the time complexity of selecting u ∈ SC to move into SR is
reduced to O(|V | · s · x), where s is the size of the solution and x is a con-
stant representing the number of communities obtained by the community detection
algorithm.

We analyze the time complexity of employing CIMO to select the node u ∈ SC and
move it into SR as follows. Given the communities {C1,C2, . . . ,Cx }, it is worth noting
that the community detection algorithm is considered an off-line preporcessing step
because we only need to find the communities once, regardless of the parameters k and
s. Moreover, the term |NCi (û)| in Eq. 4 can also be pre-computed offline, i.e., these
values are also independent of parameters s and k. Then, to facilitate the fast lookup of
the community each node u ∈ V belongs to, we create a reverse index (an array W ).
Here, the reverse index is an array W with length |V |, where W [u] = i if and only if
u ∈ Ci . Therefore, the time complexity of computing Ci ∩ SR is O(|SR |) = O(s).
Since |SC | = O(|V |), and the number of clusters is x , the time complexity of selecting
the node u ∈ SC to SR by CIMO is thus O(|V | · s · x).
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5.2 Core pruning

Although the ordering strategies detailed above jointly consider the average willing-
ness, social tightness, and the size constraint, during the running of the algorithm,
SR might not always satisfy the social constraint, and infeasible solutions may be
generated. Please note that while the statement in Sect. 5.1.1 is true: “if we always
move a node u with at least min{|SR |, k} edges connecting to SR at each iteration,
when |SR | = s, it must be a k-core”, it may not always be possible to find a node
u ∈ VC satisfying the above condition. Consider an example in Fig. 4 with s = 4 and
k = 2. Assume that at some iteration of the CIW algorithm, we have SR = {A, I } and
SC = {N , P, Q, R}. Here, min{|SR |, k} = 2. However, for any node in SC , it has no
edge connecting to the current SR . In this case, if CIW has to move two nodes from
SC to SR , we may end up with an infeasible solution when |SR | = s.

To effectively prevent the examination of such infeasible solutions, we propose the
pruning strategy named Core Pruning, which trims off SR at an early stage if it cannot
grow into a feasible solution, i.e., a k-core of size s. In the following, we propose two
pruning conditions of Core Pruning,GroupMember Connectivity (GM) condition and
Candidate Connectivity (CC) condition. During CIW, when the current SR and SC
satisfy either one of the two pruning conditions, the current SR and SC can be safely
pruned.

5.2.1 Groupmember connectivity (GM) condition of core pruning

For the first condition of Core Pruning, i.e., Group Member Connectivity (GM) con-
dition, we first propose the notion of Non-violating Quota for SR , i.e., ω(SR), which
is an upper bound on the number of nodes in SC that SR can include without violating
the social constraint. Specifically, ω(SR) = minv∈SR {|NSC (v)| + (s − k − (|SR | −
|NSR (v)|))}, where NSC (v) is the set of neighboring nodes of v in SC . Moreover, as the
number of non-neighboring nodes of v in SR is |SR |− |NSR (v)|−1, the algorithm can
select at most (s−k− (|SR |− |NSR (v)|)) additional non-neighboring nodes of v from
SC into SR . The intuition behindwhyCIWcan select atmost (s−k−(|SR |−|NSR (v)|))
additional non-neighboring nodes of v ∈ SR from SC into SR is as follows. First, SR
can only include (s − |SR |) additional nodes from SC because the size constraint is
s. Second, we need to select at least (k − |NSR (v)|) neighboring nodes of v from SC
because the number of neighbors of v in SR is |NSR (v)|, and when |SR | = s, |NSR (v)|
needs to be at least k to satisfy the social constraint. Therefore, the difference of
(s − |SR |) and (k − |NSR (v)|), i.e., ((s − |SR |) − k − |NSR (v)|), is the maximum
number of non-neighboring nodes of v we can select from SC to SR . After rearranging
the terms, we have (s − |SR |) − (k − |NSR (v)|) = (s − k − (|SR | − |NSR (v)|)).

We prove the above statement as follows.

Proposition 1 CIW can select at most (s − k − (|SR | − |NSR (v)|)) additional non-
neighboring nodes of v ∈ SR from SC into SR.

Proof SR canonly include s−|SR | additional nodes from SC because the size constraint
is s. Moreover, we need to select at least k − |NSR (v)| neighboring nodes of v from
SC because the number of neighbors of v in SR is |NSR (v)|. When |SR | = s, |NSR (v)|
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needs to be at least k. Therefore, we can add at most (s − |SR |) − (k − |NSR (v)|) =
(s − k − (|SR | − |NSR (v)|)) non-neighboring nodes of v from SC into SR . Otherwise,
SR cannot form a k-core of size s. ��

In the following, we detail how the definition ofω(SR) (upper bound on the number
of nodes in SC that SR can include without violating the social constraint) maps to the
equationω(SR) = minv∈SR {|NSC (v)|+(s−k−(|SR |−|NSR (v)|))}. FromProposition
1, we can add at most (s − k − (|SR | − |NSR (v)|)) additional non-neighboring nodes
of v from SC into SR without violating the social constraint. Moreover, we can add
at most |NSC (v)| neighboring nodes of v from SC into SR . Therefore, for every v

in SR , we can add at most |NSC (v)| + (s − k − (|SR | − |NSR (v)|)) nodes from SC
into SR without violating the social constraint. Since ω(SR) is an upper bound on the
number of nodes in SC that SR can include without violating the social constraint, we
need to consider the minimum for all v ∈ SR that can be added from SC . Therefore,
ω(SR) = minv∈SR {|NSC (v)| + (s − k − (|SR | − |NSR (v)|))} holds.

If ω(SR) < (s − |SR |), i.e., the maximum number of nodes that can be moved
from SC to SR without violating the social constraint is smaller than the number of
additional nodes SR requires to satisfy the size constraint s, the current SR and SC
can be safely discarded, and CIW backtracks to consider other candidate solutions.
Moreover, if we replace ω(SR) < (s − |SR |) by its definition, we have ω(SR) =
minv∈SR {|NSC (v)|+(s−k−(|SR |−|NSR (v)|))} < (s−|SR |), which can be rewritten
as minv∈SR {|NSC (v)|− k +|NSR (v)|} < 0, which is the same as minv∈SR {|NSC (v)|+
|NSR (v)|} < k.

The following lemma states the Group Member Connectivity (GM) Condition of
Core Pruning.

Lemma 1 If minv∈SR {|NSC (v)| + |NSR (v)|} < k, at least one node v ∈ SR cannot
follow the social constraint (i.e., |NSR (v)| < k) for any possible selection of vertices
from SC.

Proof If ω(SR) < (s −|SR |), then at least one node v ∈ SR such that |NSC (v)|+ (s −
k − (|SR | − |NSR (v)|)) < (s − |SR |) exists. That is, (s − k − (|SR | − |NSR (v)|)) <

(s−|SR |)−|NSC (v)| holds. As |SR |−|NSR (v)|−1 is the number of non-neighboring
vertices for v, and s − k − (|SR | − |NSR (v)|) is the number of non-neighboring nodes
for v to choose from SC . For any possible selection ŜC ⊆ SC , let λ̂C be the number
of neighboring nodes of v in SC . Since λ̂C ≤ |NSC (v)|, (s − |SR |) − |NSC (v)| ≤
(s − |SR |) − λ̂C . Therefore, if ω(SR) < (s − |SR |), s − k − (|SR | − |NSR (v)|) <

(s−|SR |)−λ̂C , and |nSR (v)| < k holds after ŜC is moved into SR . The lemma follows.
��

5.2.2 Candidate connectivity (CC) condition of core pruning

Here, we introduce the second Core Pruning condition, i.e., Candidate Connectiv-
ity (CC) condition. Specifically, given SR and its corresponding SC , the proposed
Candidate Connectivity (CC) condition considers the connectivity of vertices in SC .
Here, the current SR and SC can be pruned if

∑
v∈SC |(SC ∪ SR) ∩ NG(v)| <

(s − |SR |)(k − (|SR | − 1)) holds. The left-hand-side (LHS) of the inequality is the
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sum of the numbers of neighbors in SC and SR each node in SC has. The right-
hand-size (RHS) of the inequality corresponds to the minimum required value of
the total number of neighbors within SR on any set of nodes from SC that add
to SR , in order to make SR a feasible solution. The intuition behind this claim is
that if the LHS is smaller than the RHS, it implies that SR cannot be expanded
to a feasible solution (i.e., satisfying the social constraint) from SC . Therefore, we
can stop checking the nodes in SC and backtrack to the previous state to con-
sider other candidate solutions. In addition, this strategy can be further improved
by replacing the LHS with

∑
v∈MC

|(SC ∪ SR) ∩ NG(v)|, where MC denotes the set
of s − |SR | vertices in SC with the largest numbers of neighbors also in SC . Since∑

v∈MC
|(SC ∪ SR)∩ NG(v)| ≤ ∑

v∈SC |(SC ∪ SR)∩ NG(v)|, our algorithm is able to
prune off more infeasible solutions. Specifically, the proposedCandidate Connectivity
(CC) condition is specified below and proved in Lemma 2.

∑

v∈MC

|(SC ∪ SR) ∩ NG(v)| < (s − |SR |)(k − (|SR | − 1)) (5)

Lemma 2 If
∑

v∈MC
|(SC ∪ SR) ∩ NG(v)| < (s − |SR |)(k − (|SR | − 1)), the current

SR and SC can be pruned because no feasible solution can be generated from them.

Proof Since we only extract s−|SR | nodes from SC to add into SR , the upper bound of
total number of neighbors within SR of the s −|SR | extracted nodes is ∑

v∈MC
|(SC ∪

SR) ∩ NG(v)|. If these s − |SR | extracted nodes follow the social constraint, each
of them must be connected with at least k − (|SR | − 1) extracted nodes. This is
because the extracted nodes can connect to at most |SR | − 1 nodes in SR and need
at least k − (|SR | − 1) more connections to satisfy the social constraint. Since there
are s − |SR | extracted nodes, the total number of neighbors they have within the
set of s − |SR | extracted nodes is at most (s − |SR |)(k − (|SR | − 1)). Therefore, if∑

v∈MC
|(SC ∪ SR) ∩ NG(v)| < (s − |SR |)(k − (|SR | − 1)) holds, it indicates that

there is at least one node’s degree would be smaller than k after any s − |SR | nodes
from SC are moved into SR . In other words, the current SR and SC cannot generate
any feasible solution and thus can be pruned. ��

Please note that the Core Pruning strategy prunes off SR and its corresponding
SC which satisfy either the GM condition or the CC condition. Take Fig. 4 as an
example. Let s = 5, k = 4, SR = {K }, and SC = {J , O, P, Q, R, M, S}. Therefore,
s − |SR | = 5 − 1 = 4,

∑
v∈MC

|(SC ∪ SR) ∩ NG(v)| = 2 + 1 + 1 + 1 = 5,
k − (|SR | − 1) = 4 − (1 − 1) = 4. Since

∑
v∈MC

|(SC ∪ SR) ∩ NG(v)| = 5 < 4 ∗ 4,
we can stop selecting nodes from SC and CIW backtracks to consider other candidate
solutions.

5.3 Willingness pruning

We further introduce the Willingness Pruning that prunes off SR that cannot become a
solution better than the currently best solution S∗, where S∗ is maintained by CIW to
record the best solution obtained so far. The idea ofWillingness Pruning is to compute
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an upper bound on the average willingness of SR (according to the current SC ). If the
upper bound does not exceedΔ(S∗), the current SR can be pruned because its average
willingness will never be larger than that of S∗.

Before we detail the Willingness Pruning, we first derive a property on the will-
ingness of a user v in different subgraphs of the input social network G. In Lemma 3,
given two groups of users S and S′ where S ⊆ S′ and for any user v ∈ S, the will-
ingness of v in S, i.e., δv,S must be upper-bounded by the willingness of v in S′, i.e.,
δv,S′ . In other words, δv,S ≤ δv,S′ must hold.

Lemma 3 For any S ⊆ S′, δv,S ≤ δv,S′ holds, ∀v ∈ S.

Proof Given v ∈ S and two groups S and S′, where S ⊆ S′, recall that δv,S =
δv,∅ + (1− δv,∅)

∑
u∈NS (v) δu,∅·wu,v

τv
and δv,S′ = δv,∅ + (1− δv,∅)

∑
u∈NS′(v)

δu,∅·wu,v

τv
. That

is, if δv,S > δv,S′ ,
∑

u∈NS(v) δu,∅wu,v >
∑

u∈NS′(v)
δu,∅wu,v must hold. Since S ⊆ S′,

NS(v) ⊆ NS′(v) holds. In other words, there must exist some u ∈ S′ such that
wu,v < 0 or δu,∅ < 0, in order to make

∑
u∈NS(v) δu,∅wu,v >

∑
u∈NS′(v)

δu,∅wu,v

hold, which contradicts the definition of wu,v and δu,∅ (both should be in the range of
[0, 1]). Therefore, for any S ⊆ S′, δv,S ≤ δv,S′ holds, ∀v ∈ S. ��

Figure 1 presents an example. Let S = {B, D} and S′ = {B,C, D} where S ⊆ S′.
Then, δC,S = 0.9+0.1∗ (0.8∗0.8)/(0.8+0.8) = 0.94 and δC,S′ = 0.9+0.1∗ (0.8∗
0.8 + 0.8 ∗ 0.8)/(0.8 + 0.8) = 0.98. If δC,S > δC,S′ , this implies δD,∅ · wD,C < 0,
which contradicts the definition of wD,C and δD,∅.

Then, given SR and SC , we can derive an upper bound of the average willingness
that can be achieved by them, i.e., Υ (SR, SC ), as follows.

Υ (SR, SC ) = 1

s
·
⎛

⎝
∑

v∈SR
δv,SR∪SC +

s−|SR |∑

v∈SC
max δv,SR∪SC

⎞

⎠ ,

where
∑s−|SR |

v∈SC max δv,SR∪SC denotes the sum of the top (s − |SR |) maximum values
in

∑
v∈SC δv,SR∪SC .

In the following, we show an important property of Υ (SR, SC ).

Proposition 2 If SR ⊆ S′ and |S′| = s, then Υ (SR, SC ) ≥ maxS′⊆SR∪SC Δ(S′) holds.

Proof Since SR ⊆ S′, S′ = SR ∪ S′ \ SR holds, and we can rewrite Δ(S′)
as Δ(S′) = 1

s · (
∑

v∈SR δv,S′ + ∑
v∈S′\SR δv,S′) because |S′| = s. Recall that

Υ (SR, SC ) = 1
s · (

∑
v∈SR δv,SR∪SC + ∑s−|SR |

v∈SC max δv,SR∪SC ). By Lemma 3, we
know that

∑
v∈SR δv,S′ ≤ ∑

v∈SR δv,SR∪SC because S′ ⊆ SR ∪ SC . Moreover,
∑

v∈S′\SR δv,S′ ≤ ∑s−|SR |
v∈SC max δv,S′ ≤ ∑s−|SR |

v∈SC max δv,SR∪SC because i) S′ \ SR ⊆
SC , and |S′ \ SR | = s|SR | (for the first inequality), and ii) from Lemma 3 δv,S′ ≤
δv,SR∪SC holds, ∀v ∈ S′. Therefore, Υ (SR, SC ) ≥ maxS′⊆SR∪SC Δ(S′) if SR ⊆ S′ and
|S′| = s. ��
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By Proposition 2, if SR ⊆ S′ and |S′| = s, then Υ (SR, SC ) ≥ maxS′⊆SR∪SC Δ(S′)
holds. This upper bound is very effective for pruning redundant search space explo-
ration of CIW. That is, if Υ (SR, SC ) ≤ Δ(S∗), we can safely truncate the current SR
(and its corresponding SC ) because the current SR will never become a solution better
than S∗. That is, by adding any s − |SR | users in SC into SR will never make it a
solution better than S∗. Therefore, the current SR does not need to be expanded and
can be safely pruned. We prove this in the following lemma.

Lemma 4 If Υ (SR, SC ) ≤ Δ(S∗), the current SR will never become a solution better
than S∗.

Proof We prove this lemma with contradiction. Suppose that the current SR can grow
into a better solution when Υ (SR, SC ) ≤ Δ(S∗). That is, there exists a better solution
S′ expanded from the current SR (by including nodes in the current SC ), i.e., SR ⊆ S′
and |S′| = s. This indicates that Δ(S′) > Δ(S∗) ≥ Υ (SR, SC ). However, by Propo-
sition 2, Υ (SR, SC ) ≥ maxS′⊆SR∪SC Δ(S′), if SR ⊆ S′ and |S′| = s. This implies that
Υ (SR, SC ) ≥ Δ(S′) and causes a contradiction. Therefore, if Υ (SR, SC ) ≤ Δ(S∗),
the current SR will never become a solution better than S∗. ��

It is worth noting that if SR = ∅ and Υ (SR, SC ) < Δ(S∗), the Willingness Pruning
here can be viewed as an early termination strategy, i.e., CIW can stop. For instance in
Fig. 4, after we expand every branchwhich contains K , we pop K from SR and SR = ∅
here. The current SC becomes {J , L, M, N , R} with SR = ∅ and Υ (∅, SC ) < Δ(S∗),
and CIW can stop since SC does not include any solution better than S∗.

Theorem 2 CIW finds the optimal solution to CrawlSN.

Proof AsMaxInnerOrdering (orCIMO) stops extractingnodes from SC when SC = ∅,
CIWwithMaxInner Ordering (or CIMO) examines all combinations of groups of size
s. According to Lemmas 1 and 2, Core Pruning only trims off SR that will not grow
into a k-core. Moreover, Lemmas 3 and 4 state that Willingness Pruning only trims off
SR that will not become a solution better than the best solution so far S∗. Therefore,
CIW is able to obtain the optimal solution to CrawlSN. The theorem follows. ��

Discussion of CIW in large OSNs. In real-life scenarios, the OSNs may be very
large. Although the proposed CIW is able to effectively minimize the number of
examined candidate groups by employing the ordering and pruning strategies, the
computation time of deriving the optimal solution may be quite large. Therefore,
we may sacrifice a small portion of solution quality to significantly boost the effi-
ciency. Specifically, we can incorporate a parameter α in CIW to bound the number of
generated feasible solutions. That is, after α feasible solutions have been generated,
CIW can return S∗ directly (the best solution obtained so far) and stops. As will be
shown in the experiments (in Sect. 6), setting a proper α makes it possible to obtain
near-optimal solutions with a significant improvement on the efficiency. Please note
that the CIW algorithm that obtains the optimal solution can be regarded as setting
α = ∞.
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6 Experimental results

In this section, we first discuss the validation of the problem formulation of CrawlSN
with an evaluation study on 1093 users. We then detail the experiments we conduct
on 7 real datasets to evaluate the performance of the proposed CIW algorithm.11

6.1 Evaluation study

We first provide the details of the setup of the evaluation study and then present the
results by comparing our proposed approach with 5 other baseline approaches.

6.1.1 Setup

We recruit 1093 volunteers, who form a connected social network, and perform an
evaluation study to validate the proposed CrawlSN and algorithm CIW. Please refer to
“Appendix A of Supplementary information” for the detailed recruitment procedure
and the statistics of the volunteers. Please note that these volunteers only agree to
provide us with their Facebook public page (i.e., for light crawling). Then, when our
algorithm or other baseline approaches select them, they decide on their own free will
whether or not to authorize the deep crawling request.

After the volunteers are recruited, the subsequent steps are similar to those illus-
trated in Fig. 2. At the beginning, with the volunteers’ consents, we perform a light
crawling on their Facebook page to obtain their public information, such as profile,
public photos, and publicly-available friend lists (steps 1, 2 in Fig. 2). We then infer
the individual willingness (node weight) for each of them as well as the influence
strength (edge weight) between them with a machine learning model based on their
light-crawled data. We describe how the individual willingness values and the influ-
ence strengths are inferred in “Appendix B of Supplementary information”. We also
discuss the scenario if information acquired by light crawling is limited in “Appendix
F of Supplementary information”.

We employ the proposed CIW and other 5 different baselines to let each approach
select 30 users from the above network (step 4 in Fig. 2). We then ask the selected
users to authorize the deep crawler to crawl their posts and check-in information in
Facebook (step 5 in Fig. 2). The authorization requests are sent through Facebook
Events, similar to Fig. 3, to allow the users to know the decisions of their friends
(who are also selected). Please note that in this step, the volunteers are asked to freely
decide whether or not to authorize our deep crawling request. Then, for those who
grant authorization, our deep crawler crawls their data on Facebook (steps 6, 7 in
Fig. 2). Here, a user is considered accepted the request if she authorizes our deep-
crawling request in 5 days; otherwise, the user is assumed to have rejected the request.
Please refer to “Appendix C of Supplementary information” for further details for this
evaluation study.

We set s = 30, k = 5 for CIW to select 30 users who form a 5-core, and the follow-
ing 5 additional baselines are implemented and compared: i) MaxIndWill, which

11 The source codes are available online http://www.cs.nthu.edu.tw/~chihya/CIW_download/.
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(a) (b)

Fig. 7 Results of evaluation study

chooses 30 users with themaximum summation of individual willingness, i.e., it maxi-
mize the first term in the objective function of CrawlSN in Eq. 2. ii) MaxInfluWill,
which selects the 30 users with the maximum influenced willingness, i.e., the second
term in Eq. 2. iii) Densest, which selects 30 users with the maximum density, where
the density of a group Ŝ with induced vertex set V (Ŝ) and induced edge set V (Ŝ) is

defined as |E(Ŝ)|
|V (Ŝ)| . iv) IM, which is the algorithm for influence maximization to find k

seeds to maximize the spread (Chen et al. 2009); the seed number is set to 5 and the 30
earliest activated users are selected. v) Public: we post the recruitment information
in a public forum dedicated to recruiting participants for user studies and select the 30
users who were earliest to respond to our recruitment post.

6.1.2 Results of evaluation study

In Fig. 7a, we compare the acceptance rates, defined as the ratios of the selected
users who accept the requests (each approach selects 30 users), and themaximum core
numbers for different approaches. Here, the maximum core number is the largest k̂
such that the users who accept the requests form a k̂-core. A larger maximum core
number indicates a tighter community formed by the selected users.

The proposed CIW outperforms the other baselines for the acceptance rate and the
maximum core number because it jointly considers the individual and influenced will-
ingness of the users as well as the social tightness of the returned group. Specifically,
29 out of 30 users selected by CIW accept the request, and the maximum core number
of them is 6, indicating that it is able to identify a socially tight set of users who have
a high willingness to contribute their data.

MaxIndWill and MaxInfluWill do not perform well with both having low
acceptance rates and low maximum core numbers. This is because for these two base-
lines, each of them only corresponds to one term in the objective function of CrawlSN.
This validates the effectiveness of the objective function of CrawlSN and confirms
that considering both the individual willingness and influenced willingness is cru-
cial. For MaxInfluWill and MaxIndWill, their average individual willingness
values are quite close (0.55 and 0.57, respectively). However, as MaxInfluWill
finds a more socially tight group with high influence willingness and MaxIndWill
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Table 1 Dataset descriptions

Network FB_168 FB_224 FB_347 Email Youtube LiveJournal Friendster

|V | 168 224 347 36,692 1,134,890 3,997,962 65,608,366

|E | 1656 3192 2514 367,662 2,987,624 34,681,189 1,806,067,135

selects some users with very few social connections to the others, the users selected
by MaxInfluWill achieve higher acceptance rate compared to MaxIndWill.

Densest performs very poorly because it does not consider the willingness factor.
As very few users accept the data crawling request, the number of edges induced by
the users selected by it is thus low, which results in a low maximum core number.
IM also has a very poor maximum core number because it does not consider the
social factor, and the selected users do not form a socially tight community. Finally,
the acceptance rate of Public is the maximum because users who respond to our
recruitment post must have accepted the data crawling request. However, these users
form an independent set, which means that no community structure exists for them.
From Fig. 7a, we conclude that our proposed CrawlSN problem and algorithm CIW
effectively obtain a socially tight community in which users are willing to contribute
their data.

Figure 7b further demonstrates the average willingness (objective value of
CrawlSN) calculated from the users selected by each algorithm. Please note that
Public is not included because the users who respond to the recruitment post must
have had 100% average willingness. Our CIW achieves very high average willing-
ness whereas the other baselines which have poor acceptance rates (Fig. 7a), all have
poor average willingness. This indicates that the individual willingness and the influ-
enced willingness considered by CrawlSN precisely capture user’s willingness of data
contribution.

6.2 Performance evaluations

Weevaluate the performance ofCIWand other baselineswith 7 real datasets as listed in
Table 1. Here, datasetsFB_168,FB_224, andFB_347 are the three largest components
of theOSNdataset ego-facebook (Leskovec andMcauley 2012),whereasEmail is an e-
mail social network (Leskovec et al. 2009), and Youtube is the social network extracted
from Youtube (Yang and Leskovec 2015). Moreover, dataset Friendster includes
approximately 65 million nodes and 1.8 billion edges (Yang and Leskovec 2015),
while LiveJournal has approximately 4 million nodes and 34 million edges (Yang and
Leskovec 2015). The individual willingness and edge weights are assigned randomly
in [0, 1].

In our experiments, CIW refers to the proposed CIW algorithm, equipped with
CIMO, Core Pruning, and Willingness Pruning. Later in Fig. 9c, we also present our
component analysis to illustrate the effectiveness ofCIW’s different ordering and prun-
ing strategies. To demonstrate the effectiveness and efficiency of CIW, we compare our
proposed CIW with four baseline approaches: (1) Random, which randomly selects
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s users from the social network, (2) IC (Li et al. 2015), which extracts a k-core that
maximizes the influence of the group, but does not consider the willingness and size
constraint as in CrawlSN, (3) IM (Chen et al. 2009), which is the algorithm for influ-
ence maximization (also detailed and compared in the evaluation study). For IM, we
set the seed number to 5 and regard the s earliest activated users as the selected group,
and (4) ILP, which is an Integer Linear Programming (ILP) for the CrawlSN problem
as mentioned in Sect. 3 and detailed in “Appendix D of Supplementary information”.

Unless specifically indicated, we set the parameter α of CIW to ∞, which means
that CIW obtains the optimal solution to each CrawlSN instance. For the parameter k,
we set this parameter according to IC (Li et al. 2015), which sets k ∈ [2, 256] with a
default k = 32. Please note that in our datasets, setting a large k, i.e., k ≥ 64may result
in no solution due to the strict social constraint specified by k. For parameter s, we
set its range within 30 to 3, 000 to consider different scenarios. All the algorithms are
implemented in C++ and tested on a computer with Intel Core i7-7700K and 128GB
RAM. Each result is averaged over 20 runs.

6.2.1 Sensitive tests on small networks

Figure 8a–d compare the performance of CIW with other baselines on different small
datasets. Figure8a compares the average willingness (objective value of CrawlSN) of
the groups obtained by each approach. Please note that CIW (with α = ∞) and ILP
here both obtain the optimal solution. However, as shown in Fig. 8c later, ILP incurs
unacceptable computation time even for these small social networks, which is much
greater than that of CIW.

CIW outperforms other baselines, i.e., IC, IM, and Random significantly because
it jointly considers individual and influenced willingness, whereas IC focuses more
on social connectivity, IM pays more attention to the influenced willingness, and
Random randomly selects users without considering any factor. Therefore, these base-
lines achieve poor solution quality.

Figure 8b presents the maximum core number of each group selected by each
approach. The maximum core numbers of CIW and ILP are high, indicating that
the community structure is well preserved for the selected group. In contrast, IM and
Random are 0, i.e., no community structure exists for their selected users. IC has
a maximum core number near 5, however, the returned groups are too small, i.e.,
between 6 and 18, not satisfying the size constraint. Figure 8c indicates that as the
network size increases, the time required by CIW gradually increases, but CIW is still
able to obtain the optimal solution efficiently. In contrast, ILP and IM incur large
computation time for different datasets. Figure 8d presents the results on network
FB_347 with different k. Again, CIW constantly outperforms the other baselines in
terms of average willingness.

In the discussion of Sect. 5, we mention that a parameter α can be employed to
request the proposed algorithm to return the best solution obtained so far as soon as α

feasible solutions have been obtained. In Fig. 8e, f, we compare CIW, which obtains
the optimal solution, against its variations with α = {20, 100, 500} and ILP on the
FB_347 network. Figure8e shows that the objective values (average willingness) for
α = {20, 100, 500} are very close to CIW and ILP, i.e., the optimal solutions, while
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(a) (b)

(c)

(e) (f)

(d)

Fig. 8 Sensitivity tests on small datasets

Fig. 8f indicates that CIW with α = {20, 100, 500} are much more efficient than
the original CIW and ILP that obtain the optimal solution. This indicates that by
setting a small α, we are able to sacrifice only a tiny part of the average willingness
to significantly improve the efficiency. This makes our algorithm very suitable for
large-scale OSNs.

6.2.2 Scalability and sensitivity tests on large networks

We present the results of the proposed CIW and the other baselines on two large
datasets, i.e., Email and Youtube. Please note that IM is absent because it does not
return any solution within 4 days. Here, the α values of CIW for Email and Youtube
are set to 200 and 1000, respectively. That is, CIW stops when 200 and 1000 feasible
solutions are examined for the two respective datasets.

Figure 10a, b show the results on Youtube with more than 1M users for testing the
scalability of the algorithms. Figure 10a, b show that the proposed CIW outperforms
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(a)

(c) (d)

(b)

Fig. 9 Experiments on Youtube and Email

IC in both efficiency and solution quality because CIW takes into consideration all the
willingness, social, and size factors of CrawlSN. Random again returns independent
sets with poor objective values, i.e., no community structure is obtained while the
users’ average willingness for data contribution is low.

Figure 9c, d compare the proposed CIW for different s on the Email network. Fig-
ure9c evaluates the effectiveness of each component of CIW. We first contrast the
ordering strategies proposed in Sect. 5.1. Equipped with Community-based Indexing
for MaxInner Ordering (CIMO), CIWwith CIMO (CIMO for short) outperforms CIW
with MaxInner Ordering (MaxInner for short) because CIMO significantly reduces
the computation overhead of Eq. 3. Moreover, when equipped with all the ordering
(CIMO) and pruning strategies,CIMO+Pruning outperformsCIMO and MaxInner
because the Willingness and Core Pruning strategies effectively trim off a huge num-
ber of SR that cannot grow into feasible solutions. Please note that under the condition
of α = 200 in Fig. 9c, MaxInner on average achieves a 1.2% average willingness
improvement as compared to CIMO. This confirms that CIMO trades off small solu-
tion quality for significant improvement in the efficiency. Please note that we do not
compare CIW with IC and Random here on Email in terms of the computation time
because those algorithms show similar trends in both Email and Youtube datasets.

Figure 9d demonstrates that CIWoutperforms other baselines in averagewillingness
on the Email dataset. Since the willingness of the users is not well examined, IC
performs poorly. Although Random has a higher average willingness than IC, the
returned groups are all independent sets, which does not satisfy our requirement for
obtaining community structures.
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(a)

(c) (d)

(b)

Fig. 10 Comparisons on Email

In the following, we show the scalability of CIW on large-scale datasets, including
Friendster (approx. 65million nodes and 1.8 billion edges) (Yang andLeskovec 2015),
LiveJournal (approx. 4million nodes and 34million edges) (Yang andLeskovec 2015),
and Email (36,692 vertices and 367,662 edges).

To demonstrate that CIW with various α achieves very good solution quality while
incurring much less computation time compared to ILP, we first compare the results
of ILP and CIW with different α values on Email in Fig. 10. Then, we show the
scalability of the proposed CIW on datasets Friendster and LiveJournal in Fig. 11.

Figure 10a, b present the objective values and computation time of different α

and k on dataset Email. Figure10a shows that the objective values of CIW converge
quickly after α = 100, which, as shown in Fig. 10b, takes no more than 2 minutes for
α = 100. This indicates that by setting a small α value, CIW is able to achieve very
good objective values while significantly reducing the computation time. In addition,
we also compare CIWwith ILP on Email in Figs. 10c, d, and we set α = 200 for CIW.
Figure10c, d show that CIW is able to achieve very comparative results on solution
quality (objective value), while incurring much less computation time.

Figure 11 presents the results of CIW with various α values on LiveJournal and
Friendster datasets. As α gradually increases, the solution quality becomes much
better while the computation time increases slowly. This indicates that CIW is able to
trade off a small portion of solution quality to significantly improve the efficiently in
large-scale social networks.

6.2.3 Component analysis of the proposed approaches

Trade-off for CIMO. In our implementation,we adopt the Louvain algorithm (Blondel
et al. 2008), an efficient algorithm to identify the communities off-line for CIMO. Its
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(c) (d)

(b)(a)

Fig. 11 Experiments on LiveJournal and Friendster

running time is O(nlog2n), where n is the number of nodes in the graph. The Louvain
algorithm is a hierarchical clustering algorithmwhich iterativelymerges small clusters
into large ones, until the maximum modularity is achieved. During the clusters are
merging, we can stop the algorithm when the cluster number is x .

In the following, we compare the performance of CIW equipped with CIMO with
different x values. Figure12a presents the objective values of CIW with different
values of x for CIMO on the Email dataset. Here, the y-axis (time elapsed) is the time
after CIW starts, and we measure the objective value of the best solution obtained by
CIW at different time elapsed. For a given elapsed time, it is more preferable to have
a larger objective value because this indicates that CIW with the specific x can obtain
better solution within the same amount of time.

Figure 12a indicates that setting x too small (i.e., x = 2 and x = 4) or too large
(i.e., x = 32) may not always be beneficial because there are too few or too many
communities for CIMO. Here, setting x = 16 obtains the best solution quality because
it strikes a good balance between computation time and ordering capability.

Comparisons of ordering strategies. As mentioned earlier, GIW is a very intuitive
approach that acts as a naïve ordering baseline. On the other hand, MaxInner, which
performs much better compared to GIW, may incur much computation overhead. This
motivates us to consider a more advanced indexing strategy, CIMO, to improve the
performance.
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(a) (b)

Fig. 12 Comparisons of ordering strategies

To understand the performance of each ordering strategy, we have added additional
experiments to compare the performance of GIW, MaxInner, and CIMO in Fig. 12b.
Figure12b compares the objective values of the three ordering strategies (equipped by
CIW), i.e., GIW, MaxInner, and CIMO with time elapsed after the algorithm starts.
Here, an ordering approach is considered better if it obtains better solution for the
same elapsed time, which can facilitate the willingness pruning to avoid redundant
generation of candidate solutions. Figure 12b shows that GIW does not perform well
because it does not consider the social tightness of the selected users, resulting inmany
infeasible solutions. In contrast, CIMO achieves the best objective values because it
employs the offline processing strategy to boost the performance of the proposed CIW.

7 Conclusion

In this paper, we introduce a new research problem, Community-aware Data Acqui-
sition with Maximum Willingness in Online Social Networks (CrawlSN) to select a
community of users who are most willing to contribute their data. We analyze the
hardness of CrawlSN and propose the algorithm Community-aware Group Identifica-
tion with Maximum Willingness (CIW) along with effective processing strategies to
solve CrawlSN efficiently. We perform an evaluation study with 1093 users to validate
CrawlSN, and conduct extensive experiments on real datasets to demonstrate that CIW
outperforms other baselines in both solution quality and efficiency. In our future work,
we plan to recruit a much larger number of users with a diverse set of backgrounds to
train the willingness prediction model to better capture their willingness to contribute
their data.
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