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Abstract
The first question a data analyst asks when confronting a new dataset is often, 
“Show me some representative/typical data.” Answering this question is simple in 
many domains, with random samples or aggregate statistics of some kind. Surpris-
ingly, it is difficult for large time series datasets. The major difficulty is not time or 
space complexity, but defining what it means to be representative data for this data 
type. In this work, we show that the obvious candidate definitions: motifs, shapelets, 
cluster centers, random samples etc., are all poor choices. We introduce time series 
snippets, a novel representation of typical time series subsequences. Informally, time 
series snippets can be seen as the answer to the following question. If a user, which 
could be a human or a higher-level algorithm, only has resources (including human 
time) to inspect k subsequences of a long time series, which k subsequences should 
be chosen? Beyond their utility for visualizing and summarizing massive time series 
collections, we show that time series snippets have utility for high-level comparison 
of large time series collections.
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1  Introduction

In many domains, a common analytical query is, “Show me some representative/
typical data.” This query might be issued by a human, attempting to explore a mas-
sive archive, or it might be issued by an algorithm as a subroutine in some higher-
level analytics. There are definitions and algorithms to answer this question for a 
plethora of datatypes, including images (Wang et al. 2012), sets (Pan et al. 2005), 
words (Salmenkivi 2006), graphs (Langohr and Toivonen 2012), videos (Elhamifar 
et al. 2012), tweets (Rosa et al. 2011), etc.

Surprisingly, to the best of our knowledge, the problems of finding representative 
time series subsequences have not been solved despite the ubiquity of time series in 
almost all human endeavors. Moreover, as we will show, the obvious candidates for 
this task: motifs, shapelets, cluster centers, and random samples, will not generally 
produce meaningful results. We propose an algorithm to discover such representa-
tive patterns, which we will call time series snippets, or just snippets, where there is 
no ambiguity.

We would like snippets to have the following properties:

•	 Scalable computability We wish to find snippets in datasets that defy rapid 
human inspection. Such datasets will be large. While we can often offload snip-
pet discovery to offline batch preprocessing, we clearly cannot afford an algo-
rithm that requires a large time or space overhead.

•	 Diversity The top-1 snippet should be the single most representative pattern. 
Clearly, the 2nd and subsequent snippets should not be redundant with previous 
snippets, and so on for the kth snippet.

•	 Diminishing returns As an implication of diversity, the earlier k-snippets have 
the greatest coverage, just as the dimensions in Multidimensional scaling are 
sorted by their rapidly diminishing ability to “explain” the variability of the orig-
inal data.

•	 Quantifiability Suppose the top-1 snippet for a sleep study shows some typical 
healthy heartbeats. It may be that all the data looks like that, and if a clinician 
sees that snippet, they have effectively seen all the data. However, it may be that 
there were also regions of arrhythmias. Thus, we need some metadata to tell us 
how much of the data each snippet can explain/represent. A human or algorithm 
can use this metadata to decide how many snippets they need to see for the task 
at hand.

•	 Domain agnosticism For specialized domains it may be possible to leverage 
domain knowledge and/or training data to achieve all of the above; however, we 
wish to have a general-purpose algorithm to support data exploration.

•	 Coverage (allowing longer lengths) While the length of snippets is a user-
defined parameter, we would like snippets to work well for longer lengths. For 
example, for many human aggregate activities (automobile traffic, web query 
volumes, transportation, electrical demand etc.), it is easy to find snippets that 
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reflect a 24-h circadian cycle. However, there may be conserved structure at 
much longer lengths, of weeks, months or even years. We would like to be 
able to be able to represent such structure, if it exists.

In this work we introduce an algorithm, Snippet-Finder, which can discover 
snippets with all such properties. Figure 1 shows one potential use of snippets: 
integrating summarizations of files directly into an operating system.

Another potential use of snippets is in the production of automatically gener-
ated reports. For example, one could compactly summarize a sleep study (Alva-
rez-Estevez and Moret-Bonillo 2015) with a report like this:

Beyond the algorithm’s utility for visualization and summarization (Yu et al. 
2007), snippets can be used to support a host of higher-level tasks, including the 
comparison of massive data collections.

The rest of this paper is organized as follows. In Sect.  2, we briefly review 
related work and background material, and then formally define time series snip-
pets. We introduce an algorithm to compute time series snippets in Sect. 3. Sec-
tion 4 shows the utility of time series snippet discovery. In Sect. 5, we show how 
we can find snippets in the face of continuously arriving data streams. Finally, in 
Sect. 6 we offer conclusions and directions for future work.

Fig. 1   One use of time series snippets is to replace standard file icons with icons that show snippets 
reflecting the file’s content. This can allow an analyst to spot patterns and anomalies at a glance (Kolhoff 
et al.2008). This is real data; see Sect. 4.4 for more context for this example
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2 � Background and related work

2.1 � Dismissing apparent solutions

As noted above, the task at hand appears to invite many apparent solutions. Here 
we take the time to dismiss them.

Motif discovery At first glance, motif discovery seems like an obvious solution to 
our problem (Zhu et al. 2016; Yeh et al. 2016; Imani and Keogh 2019, 2020; Alaee 
et al. 2020; Imani et al. 2019; Abdoli et al. 2018). Consider Fig. 2, and imagine that 
we are tasked with finding the time series snippet of length 300, which we denote as 
snippet300.

Surprisingly, even in the face of such an apparently simple dataset, motif dis-
covery will not produce a satisfactory answer. Consider the clustering shown in 
Fig. 3.

The three periodic elements are no more similar to each other under Euclid-
ean distance than they are to random walks. One might imagine that the solu-
tion to this issue is to use a different distance measure, say Dynamic Time Warp-
ing (DTW). However, while DTW can be invariant to warping, and thus find A 
and C similar, it cannot warp eight periods to ten periods. Two periods must be 

0 500 1000 1500 2000

Fig. 2   A synthetic dataset. There are three repeated patterns embedded in a random walk; the best 
snippet300 appears obvious to the naked eye

0 500 1000 1500 2000

C) Ten periods 

B) Eight periods 

A) Ten periods
(with warping)

Fig. 3   (Bottom) The dataset shown in Fig.  2 annotated by the subjectively correct answer. (Top) The 
dataset divided into seven equal length regions, and clustered using complete linkage hierarchical clus-
tering
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“unexplained” and accumulate a large error. Thus, B is still no closer to A or C 
than it is to random walks under DTW.

There are additional reasons why motif discovery is not suitable to the task at 
hand. Consider the dataset shown in Fig. 4.top. At this scale, it is difficult to even 
guess its content. It is exactly the type of data that could benefit from snippet-based 
summarization. This dataset represents 55  min of Arterial Blood Pressure (ABP) 
collected during an experiment in which a volunteer strapped to a gimbal was sub-
jected to sudden changes in orientation (Heldt et  al. 2003). However, as Fig.  4.
bottom shows, this dataset has an occasional sensor fault. When the sensor is not 
receiving true medical data, it instead sends a square wave calibration signal.

If we defined snippets based on time series motifs, then the five identical regions 
corresponding to the sensor fault as shown in Fig. 4 would be the top snippet, even 
though such data only represents 0.14% of the dataset. However, there are snippets 
that are clearly much more representative of the data. For example, as the high-
lighted regions in Fig. 4.bottom suggest, normal ABP makes up the majority of this 
dataset, while a significant minority comprises of an ABP with an increased heart-
rate, induced by a change in gravity (Linnarsson et al. 1996).

The issue can be summarized as the following: while motifs reward fidelity of 
conservation, we need a measure that also rewards coverage. Informally, coverage is 
some measure of how much of the data is explained or represented by a given snip-
pet. We will formalize this tradeoff between fidelity and coverage below.

Representative trends By title, the highly cited research effort on “Identifying Rep-
resentative Trends in Massive Time Series Data Sets…” (Indyk et al. 2000), seems 
like it may offer a solution, or at least insight on the task at hand. However, the 
authors of this work are assuming that the time series has well-defined periods; for 
example, exactly 24  h, and a well-defined starting point, say midnight. However, 
choosing another starting point, such as 1:00 am, could produce arbitrarily different 
results. Moreover, while the assumption of well-defined periods might hold for traf-
fic (both in the web and the automobile sense) and other quotidian human activities, 
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Fig. 4   (Top) Fifty-five minutes of APB data, taken from an individual experiencing occasional involun-
tary rapid changes in orientation (Papadimitriou and Yu 2006). (Bottom) A minute-long zoom-in starting 
at about the twelfth minute
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it does not hold for most of the medical and scientific domains we are interested in. 
For example, the periodicity of heartbeats can vary by at least a factor of five, in just 
a few minutes. At a higher level, cardiac events clearly do not align themselves to 
midnight, 8:00 am, or any other arbitrary time frame.1

Clustering In many cases, summarizing a dataset into the K best exemplars is as 
simple as running K-means clustering and reporting the K centers (or the K exem-
plars closest to the centers). However, it is well understood that one cannot mean-
ingfully cluster time series subsequences, with any distance measure, or with any 
algorithm (Keogh and Lin 2005). This (at the time) surprising result was controver-
sial a decade ago, but has since become universally accepted (see (Keogh and Lin 
2005) and the references therein); we will avoid repeating the arguments here. In 
Sect. 4, we make a best faith effort to fix this issue, and compare to a K-means based 
algorithm.

Time series shapelets Time series shapelets are defined as subsequences that are 
maximally representative of a class (Yeh et al. 2016). This sounds superficially like 
time series snippets, however shapelets are supervised, and we require an unsuper-
vised technique. Moreover, shapelets are generally biased to be as short as possible. 
In contrast, we want snippets to be longer, to intuitively capture the “flavor” of the 
time series. By analogy with text, to distinguish between English and Lithuanian 
chapters of J. K. Rowling’s famous septology, it is sufficient to see the letter “Č”, the 
equivalent of a shapelet. However, to summarize the latter with representative text, it 
would be much more informative to see something like “Haris Poteris”, the equiva-
lent of a snippet.

Random sampling Simple random sampling (SRS) has many desirable properties 
that makes it useful and competitive in many domains. There are clearly cases in 
which it would be sufficient. For example, if a time series dataset consists solely of 
normal regular heartbeats, then any random two-beat region we extract would sum-
marize the data (two beats because cardiologists are used to visualizing beats from 
a fixed starting point, and two beats will clearly include that point). However, as 
we shall see, even cardiological datasets can have surprising variability, and random 
sampling would have to be very lucky to hit one each of, say, three diverse regions. 
Nevertheless, we will include random sampling as a baseline in our experimental 
section.

2.2 � Related work

Our review of related work is brief. To the best of our knowledge, there are simply 
no ideas closely related to domain agnostic representative pattern discovery in the 

1  In a sense, midnight is not arbitrary, as it marks the midpoint between sunset and sunrise. However, 
due to time zones and daylight-savings time, it rarely coincides with 12 midnight on the clock. Midnight 
is really an arbitrary cultural artifact.
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time series domain, beyond our short paper on the topic (Imani et al. 2018), which is 
expanded here.

Recent work has demonstrated how to exploit representative electrocardiogram 
heartbeat morphologies based on the CUR matrix decomposition technique (Hen-
dryx et  al. 2018). Given a matrix A, CUR technique selects a subset of rows and 
columns of A to construct matrices C and R. Matrix U is computed in a way that 
makes the multiplication of C, U, and R the best approximation of A. However, this 
study is specific to a particular type of data and requires substantial human effort to 
align data.

There is a significant work on the automated extraction of music snippets (also 
called music  thumbnails) (Lu and Zhang 2003). However, that literature addresses 
a specialized and limited form of time series data. Most songs are richly structured 
into some variant of  intro, verse, chorus, bridge, and outro. Moreover, most songs 
are only a few minutes in length, or a few thousand time series data points in an 
MFCC representation. In contrast, we wish to consider unstructured datasets with 
tens of millions of data points.

2.3 � Time series notation

Before we formally define time series snippets, we need to review some related defi-
nitions (Definitions 1 to 3) and create some new ones (Definitions 4 to 6).

The data type of interest is time series:

Definition 1  A time series T is a sequence of real-valued numbers ti: T = t1, t2,…, tn 
where n is the length of T.

A local region of time series is called a subsequence:

Definition 2  A subsequence Ti,m of a time series T is a continuous subset of the 
values from T of length m starting from position i. Formally, Ti,m= ti, ti+1,…, ti+m−1, 
where 1 ≤ i ≤ n − m + 1.

If we “slide” a window of length m across T we produce n − m + 1 subsequences. 
However, we can also produce a set of non-overlapping subsequences:

Definition 3  Anon-overlapping subsequence Si of a time series T is a continuous 
subset of the values from T of length m, starting from the position (i − 1) × m + 1 
and ending at the position i × m , in which the value of i is an integer number chosen 
from i = 1 ∶ n∕m . When n∕m is not an integer number, zeros are padded to the end 
of the time series until n∕m becomes an integer number.

Note that the number of non-overlapping subsequences is much smaller than the 
sliding windows, just ⌈n∕m⌉ . For virtually any task, if working with Euclidean dis-
tance, you must use sliding windows. Otherwise, the higher-level algorithm would 
be brutally sensitive to the starting point (Keogh and Lin 2005). In contrast, as we 
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will show in Sect. 3, using the much smaller set of non-overlapping subsequences is 
inconsequential if we use the MPdist, which we review in the next section.

We can now define time series snippets:

Definition 4  A time series snippet is a subsequence of T. Snippets are arranged in 
an ordered list C, with the ith snippet denoted as Ci.

We can access some useful metadata from the snippet, such as its location within 
T, and the fraction of T that it is said to represent, by Ci.index and Ci.frac respectively.

Note that our definition means that the snippets are actual subsequences of T. 
This need not have been the case. For example, consider the related problem of find-
ing representative strings. The most common solution, variants of consensus strings 
(Schneider 2002), can produce a string that is optimal under some definition, but 
never actually appears in the data. This issue is somewhat like the question of how 
one reports a single exemplar from one of the clusters produced by K-means. We 
can report the cluster center, which is optimal in the sense that it minimizes the 
objective function, but in some cases that can lead to unintuitive results. For exam-
ple, the cluster center of all Starbucks in South Africa might well be in a different 
country (Lesotho). For that reason, it makes more sense to report the item closest to 
the cluster center instead. Similarly, by insisting that the snippet is a real sequence 
that comes from the data, we can make claims such as, “The second week of July 
is the most typical summer month, in terms of electrical consumption, in Northern 
Italy.”

2.4 � A brief review of MPdist

MPdist is a recently introduced distance measure that considers two time series to be 
similar if they share many similar subsequences, regardless of the order of match-
ing subsequences (Gharghabi et al. 2018). It was demonstrated in (Gharghabi et al. 
2018) that MPdist is robust to spikes, warping, linear trends, dropouts, wandering 
baseline and missing values, issues that are common in many real word datasets. For 
example, see Fig. 15 which shows a transportation dataset which has both a spike 
and missing data. The MPdist requires a single parameter called a subsequence 
length, S . We denote the value of this parameter with a subscript, as in MPdist50. In 
the limit, when S is equal to the full length of the query, the MPdist degenerates to 
the special case of the classic Euclidean distance.

Basically, author computes a matrix profile ( PAB ) array in which the Euclidean 
distance between each pair in AB similarity join set is stored. The time complex-
ity to compute PAB is O((n − S + 1) × n) , where S the subsequence length. As S 
approaches n , the time complexity approaches linear time, which in that case the 
PAB is the Euclidean distance between two time series. Note, the time complexity of 
MPdist in the worst case is O

(
n2
)
.

Consider the small toy example of a time series shown in Fig. 5, which we will 
use as a running example.

We can use the MPdist to create an MPdist-profile:
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Definition 5  An MPdist-profile of time series T is a vector of the MPdist distances 
between a given query subsequence Ti,m, at position i, and each subsequence in time 
series T. Formally, MPDi = [di,1, di,2,…, di,n−m+1], where di,j (1 ≤ i, j ≤ n − m + 1) is 
the distance between Ti,m and Tj,m, where j corresponds to any position in the time 
series 1 ≤ j ≤ n − m + 1.

When there is no ambiguity, we will refer to MPdist-profiles simply as profiles. 
Consider the profile for the time series shown in Fig. 5, using the highlighted region 
as the query. The subsequence length of this query is L = 200. The result is shown 
in Fig. 6. Notice that the length of the profile is shorter than the length of the time 
series by the length of query. Furthermore, note that the distance is exactly zero in 
the region from which the query was extracted, since the MPdist between an object 
and itself must be zero.

As we shall show in the next section, our snippet discovery algorithm essentially 
reduces to “reasoning” about these profiles.

Our desired properties of diversity and diminishing returns suggest that we frame 
snippet discovery in a familiar “top-k” framework, much like k-itemsets or k-fre-
quent items, etc. However, there is a caveat. It may be that there are as few as one 
snippet in a dataset, such as when the time series is comprised solely of a pure sine 
wave. Therefore, we will also need to provide some metadata for each snippet to 
quantify how well it represents the data.

3 � Discovering time series snippets

We begin with a demonstration that both previews our method for discovering time 
series snippets and shows why the MPdist is critically needed for this task.

Consider again our running example time series shown in Fig. 7: this time series 
is annotated with two subsequences, which the reader will appreciate might serve as 
good snippets for this dataset.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Fig. 5   A toy time series. The highlighted section, from 201 to 400, will be used in subsequent examples

0
0 200 400 600 800 1000 1200 1400 1600 1800 2000

n – m + 1

Fig. 6   The profile of the query highlighted in Fig. 5 using MPdist70
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Let us extract the two highlighted subsequences and then compute their pro-
files. The results are shown in Fig. 8.

Note that these profiles offer strong clues to the locations of potential time 
series snippets. They are both approximately “step” functions with their respec-
tive low region corresponding to a region that contains subsequences that are 
similar to our two query patterns.

Furthermore, note that these profiles are “mutually exclusive”; that is to say, when 
the red one is low, the cyan one is high, and vice versa. This suggests that these two 
hand-chosen snippets would meet the diversity requirement listed in the introduc-
tion, as they both “explain” different and non-overlapping regions of the data.

Note that the shapes of these two profiles are very robust to both location, from 
which we extract the pattern, and to the query pattern’s length. To see this, in Fig. 9 
we recomputed the profiles for both a shifted and a longer version of our query.

This result offers hope for an algorithm that is not too sensitive to the loca-
tion or length of the candidate snippets. To see why this is a significant finding, 
Fig.  10 shows what happens if we computed these profiles with the Euclidean 
distance instead.

In contrast to the MPdist-Profile, the Euclidean distance Profiles are more sen-
sitive to the length and offset of the subsequence. More importantly, they only 

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Fig. 7   A toy time series that will be used as a running example. The two highlighted sections, from 201 
to 400 and from 1201 to 1400, will be used in subsequent examples

0
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Fig. 8   The profiles of the two queries highlighted in Fig. 7. Note their mutually exclusive nature, when 
one is high, the other is low

0 1000 1800

0

0

Shifted

Longer

Fig. 9   The profiles of after: shifting the queries 50 points to the right and making the queries longer 
(extracted from 201 to 500, and from 1201 to 1500 respectively)
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have a low value when the matching pattern is exactly in phase. Thus, in contrast 
to the MPdist-Profile, it is difficult to “reason” about them, to understand how 
large a region they could represent as a prototype.

3.1 � Snippet‑finder: time series snippet discovery

We are finally in a position to explain our Snippet-Finder algorithm. Given a time 
series, a subsequence length, and the maximum number of snippets that the user 
wishes to find, the Snippet-Finder algorithm is to identify k snippets, and the 
fraction of data that each snippet covers. Note that the fraction of data covered 
by a single snippet is not necessarily contiguous. For example, an accelerometer 
dataset may consist of bouts of “walk-run-walk-cycle-walk”; a snippet of walking 
would represent all three regions of the slower gait.

We begin with the following intuition. Recall that Fig. 7 showed a time series 
with two subsequences highlighted. Those subsequences would clearly make 
intuitive snippets for that dataset. Recall also that Fig.  8 showed two profiles 
that offer strong clues that these subsequences would be excellent top-2 snippets. 
Together, their respective low-value regions cover almost the entire length of the 
time series, swapping over at about location 950.

In contrast, suppose instead that we had made a poor choice of two snippets 
for this dataset. As shown in Fig. 11, if we selected both snippets from the first 
half of the data, they would be highly redundant with each other, and this would 
be reflected in the high correlation of their profiles.

0 1000 18000

0

Shifted

Longer

Fig. 10   The Euclidean Distance Profiles of after: shifting the queries 50 points to the right and making 
the queries longer (extracted from 201 to 500, and from 1201 to 1500 respectively). Contrast with Fig. 9

0 1000 2000
0

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Fig. 11   (contrast with Figs.  7 and 8). (Top) Revisiting our running example, we extracted two similar 
snippets (highlighted). (Bottom) The redundancy of the snippets is revealed in the high correlation of the 
profiles
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This observation immediately suggests an objective function that we can use to 
score choices of top-k snippets. Consider a non-empty set of profiles. Create a new 
curve, M, by taking the minimum value from all k profiles at each location. This new 
curve allows an objective function:

Definition 6  The area under the curve M is denoted as O, and is an objective 
function where 0 ≤ O. We will refer to the area under the curve of profile as the 
ProfileArea.

This function rewards a snippet’s fidelity and coverage exactly as required. Fidel-
ity is rewarded by the snippet having a small distance to at least some of the T, low-
ering the profile and reducing the area under the curve in the corresponding region. 
Coverage is rewarded by the snippet representing large regions of T. Note that O 
has the intuitive property wherein if we used every non-overlapping subsequence 
as a snippet, its value would be exactly zero. Of course, we hope that in most cases, 
using just a few snippets will get us close to zero, achieving significant “compres-
sion” or more correctly, numerosity reduction.

In the simple example shown in Fig. 7, we found a low scoring value for O sim-
ply by using common sense to pick one snippet from each of the repeated patterns. 
More generally, if we had computed all of the non-overlapping profiles, we would 
have the “tangle” of profiles shown in Fig. 12.

For a more realistic dataset, finding the k profiles that minimize O from the 

P-choose-k possibilities 
(
P

k

)
 would be untenable. Here k is the user defined param-

eter for the number of snippets and P is the total number of snippets. This problem is 
related to the maximum coverage problem (Khuller et al. 1999). The classic maxi-
mum p-coverage problem is a well-known NP-hard problem in which, given a uni-
versal set of finite elements, the goal is to select p subsets such that their union cov-
ers the maximum set. In the snippet problem, we have N profiles and we want to 
select k of these profiles so that the total area under the cover of k profile has the 
minimum area. Thus, we frame the snippet discovery problem as a classic search 
problem. An exhaustive combinatorial search is infeasible, so below we outline a 
greedy search strategy.

The main algorithm for Snippet-Finder is outlined in Table 1, and its subroutine 
that computes profiles of each non-overlapping window is outlined in Table 2.

The main algorithm begins in line 1 by initializing the list of snippets C. In line 
2, we calculate the profile of each non-overlapping window with the time series 
(see Table 2). At each iteration we calculate the minimum of each profile with the 

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Fig. 12   All the non-overlapping profiles for the time series shown in Fig. 7
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profiles within the snippet list C, and for each one, we find the area under the curve 
ProfileArea. For k = 1 , the ProfileArea is simply equal to the area under the curve of 
each profile. The profile that has the minimum ProfileArea will be added to the snip-
pet list C. We also add the location of each snippet within T. This is done in lines 4 
to 15. We evaluate the terminal condition when we reach the number of snippets the 
user requested in line 16 to 18. After finding the top-k snippets, in line 20 we com-
pute the minimum value from all k profiles totalmin. In line 21 to 24, we compare 
the top-k snippet profiles with totalmin. The number of points in which these two 
curves have the same value, f, gives us the fraction of data each snippet represents 
Ci.frac. Finally, when the algorithm terminates, the list of snippets C, the fraction of 
data that the ith snippet represents, the data Ci.frac and the location of the snippet 
within the time series Ci,index is returned.

Table 1   Snippet-Finder: Snippets Selection Algorithm

Table 2   Calculating distance profiles
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To calculate the profile of each non-overlapping window, we use the subroutine 
outlined in Table 2.

The algorithm begins in line 1 by determining the length of the time series T, 
and initializes D to the empty list. From lines 2 to 4, we calculate all the profiles D, 
using each non-overlapping subsequence T [(i − 1) × m + 1:i × m] and the time series 
T. Finally, we return the result D in line 5.

3.2 � Snippet MetaData

In addition to computing the snippets themselves, it is useful to compute some meta-
data that reflects how well the current snippet set is representing the dataset in ques-
tion. More generally, metadata here is useful in the same way that metadata is useful 
in say factor analysis/principle component analysis. In that case, a user might say 
“keep enough factors to explain 90% of the variance”. For snippets, a user might 
say “keep enough snippets to explain 90% of the data”. In this sense we have a close 
analog to how K-means clustering is used. In some cases, say quantizing a color 
space, the number of clusters requested of K-means may be fixed in advance, regard-
less of the data itself. This is similar to our use of snippets for creating icon “thumb-
nails,” as shown in Fig.  1. Because the operating system limits us to 256 by 256 
pixels, we hardcoded the number of snippets displayed to k = 2.

However, in other cases, we want the K-means clustering to reflect the “natural” 
clusters in the data. While the task of deciding what value of k best does that is out-
sourced to an external algorithm, K-means provides helpful information by report-
ing the objective function (sum of squares), a relative measure of how well the clus-
tering reflects the data. We would like an analogous objective function for snippets.

We propose using the area under the curve ProfileArea as such a measure. As 
Fig. 13.left shows, for increasing values of k, this measure shows a classic diminish-
ing returns behavior.

This “scree-plot”-like curve suggests a heuristic that can be used to recommend a 
value for k. Similar to many suggested knee-finding algorithms in the literature, for 
each value of k we can compute changek = (ProfileAreak−1/ProfileArea k) − 1. For a 
given value of k > 1, a small value for changek suggests that adding the kth did not 
add much explanatory power; thus, we should use a value of k corresponding to a 
peak. As shown in Fig. 13.right, this heuristic suggests a value of k = 2 for our toy 
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Fig. 13   (Left) The area under the curve ProfileArea for k = 1 to 9, for the running example shown in 
Fig. 7. (Right) For the same example we can also compute changek for k = 1 to 9
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example, which is objectively correct. Unless otherwise stated, we use this simple 
heuristic in the rest of this work.

3.3 � Complexity analysis

For the time series that has a length of n and the subsequence length of m , the 
time complexity of our proposed Snippet-Finder is O

(
n2 × (n − m)∕m

)
 . We need 

O
(
n2
)
 for computing each profile, and the number of non-overlapping windows is 

O((n − m)∕m) . The pseudocode is optimized for simplicity, with an O
(
(n − m)2∕m

)
 

space complexity. However, the space complexity in a slightly more sophisticated 
implementation is merely O((n − m) × k). In addition, the ProfileArea curves only 
need to be represented with one-byte precision.

To concretely ground this analysis, consider the following. For typical datasets 
recorded at ~ 100  Hz (gait, ECG, insect telemetry, etc.), we can discover snippets 
many orders of magnitude faster than the data is actually collected. Moreover, even 
very large data collections can be processed using a small fraction of the main mem-
ory of a modern machine. Thus, computational resource limitations are not barriers 
to adoption.

3.4 � Algorithms that exploit snippets

Up to this point we have presented snippets as tools to optimize the scarce resource 
of human time and attention. However, here we argue that snippets can be a use-
ful primitive to provide information to be consumed by higher level algorithms. In 
a sense, this is almost tautological, given our argument that snippets are the best 
representatives of a data source. Below, we provide one such usage of snippets in 
clustering algorithm.

The city of Melbourne, Australia has developed an automated pedestrian count-
ing system to better understand pedestrian activity within the municipality. The 
information can be used to examine how people use different city locations at dif-
ferent times of day to better inform decision-making and plan for future changes to 
transportation infrastructure.

From this archive we extracted data from eight different locations. In each case 
we extracted the pedestrian count for the entire year of 2017. To allow for some 
ground truth, we chose the data in two groupings that we felt might reflect similar 
behavior. The first four locations are geographically clustered in the Greek Precinct 
in Melbourne, Australia. The second set are locations that are relatively spread out 
but are all close to transportation hubs, and thus may be expected to have data that 
reflects some alignment to travel schedules. Figure  15.top shows one of the time 
series in its entirety and Fig. 15.bottom shows some examples of a zoomed in week 
of data.

It is clear that clustering using all the data might be problematic. The time 
series shown in Fig. 15.top has about 18 days of missing data around late August 
and a spike in July 29, which may confuse Euclidean distance, which attempts to 
“explain” all the data. We propose to address this by using a distance measure 
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that considers only snippets, which we expect to ignore such spikes and missing 
data, since by definition they are not typical. There is one consideration we need 
to address in any snippet-based distance measurement: we should not naively 
compare snippet-1WebbBridge to snippet-1StateLibrary and compare snippet-2WebbBridge 
to snippet-2StateLibrary etc. To see this, consider the following analogy in the text 
space. Suppose we have the following two strings:

A = sumsumsumsumsumsumwinwinwinwinwin
B = sumsumsumsumsumwinwinwinwinwinwin

If we extracted “snippets” of length three from these strings, we would have 
snippet-1A = ‘sum, snippet-2A = ‘win, and we would have snippet-1B = ‘win, 
snippet-2B = ‘sum. Given that, if we naively defined the distance as the sum 
of distances between corresponding “snippets”, for 1 to k, then we would have 
OverallDist = dist(‘sum, ‘win) + dist(‘win, ‘sum). This means we would fail to 
find any similarity between the two strings, even though they are clearly highly 
related.

We should expect this issue in real time series data. For example, Fig. 26 shows 
the top-2 snippets taken from an electrical power demand dataset, which nicely cor-
respond to winter/summer regimes. Suppose that we wish to compare two nearby 
cities based on such snippets. The top-1 snippet in one city might happen to cor-
respond to winter months, which just beat out the slightly shorter summer months. 
However, in the adjacent city, the top-1 snippet in one city happens to correspond 
to summer months, which just beat out the slightly shorter winter month regime. 
It would be clearly wrong to compare snippets from different seasons. Fortunately, 
there is an easy fix. In essence, we compare each snippet to all other snippets from 
the other time series, and record only the minimum value, as in min[dist(‘sum, 
‘win), dist(‘sum, ‘sum)].

Concretely, from each time series Ti we extract two snippets, which we refer to as 
si
1
, si

2
 where i specifies the time series geographic location. (e.g. Ti when i = 1 is the 

time series for “State Library” location).
We define Snippet distance between two time series Ti and Tj as:

where d is the Euclidean distance between two snippets. Since each snippet can start 
from any position, we use circular shift to align snippets.

Figure 14 shows the clustering of Euclidean distance and Snippet distance. Why 
does Euclidean distance fail here?

Figure 15.top offers a hint. Notice that the time series has a spike, and a region 
of zero data counts. Note that these “artifacts” might reflect reality. For example, 
the spike’s high count might reflect the route of a marathon race, or a protest march. 
Likewise, the missing data might reflect a temporary bridge closure for repairs. 
However, whether a true reflection of the behavior of Melbournians or a digital 
glitch, these atypical events (almost all the time series have them to some extent), 
offer difficulties for the Euclidean Distance.

Distance
(
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)
= min
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In contrast, the Snippet distance, which only considers the most typical weeks (by 
definition) has no problem correctly clustering the data. An additional advantage 
of Snippet distance is that it is defined for time series of different lengths. We can 
compare 1 year from one location, with just 6 months of a location that came online 
later.

4 � Emprical evaluation

We begin by stating our experimental philosophy. We have designed all experiments 
such that they are easily reproducible. To this end, we have built a web page (Imani 
2020) that contains all of the datasets and code used in this work, as well as the 
spreadsheets containing the raw numbers.

Euclidean Distance Snippet Distance

Greek Precinct

Transportation Hubs 

Fig. 14   The Euclidean distance and Snippet distance complete-linkage clustering for eight time series 
coming from two different locations: Greek precinct and transportation hubs

0 60 120 180 0 60 120 180

Weekends are quiet 

Days are defined by sharp peaks at 
morning, lunch and evening rush hoursWeekends are only 

slightly less busy
The daily patterns are relatively smoothed bumps, 
blurred by leisurely dinning and shopping 
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0

1000
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Webb Bridge
Missing data for 18 days .

Spike

Fig. 15   (Top) Pedestrian count time series where the sensor is located in Webb Bridge, Melbourne. (Bot-
tom) examples of snippets extracted from time series. The red snippets belong to the Greek Precinct 
location, and the blue snippets belong to the transportation hubs
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As we noted above, to the best of our knowledge there is no explicit strawman 
other than random sampling. However, we can create a simple strawman based on 
time series clustering, which is the most obvious, sensible “first thing to try.” For 
this algorithm, we randomly sample f% of the data subsequences. We then cluster 
the subsequences with K-means. For each cluster we find the subsequence that has 
the minimum distance to all other subsequences in the cluster (i.e. the medoid) and 
report these as the k-snippets. This leaves open the issue of finding a good value for 
f; for simplicity we allow this algorithm to “cheat” by testing all values in the range 
1 to 20%, and reporting only the best result.

We also report the results of random sampling, which plays a role similar to the 
“default rate” for classification, setting a lower bound for performance.

4.1 � Objective experiments

Our task at hand, to produce “typical” time series subsequences, seems hopelessly 
subjective and difficult to evaluate in an objective way. However, we can convert 
the problem to one for which objective truth is available. Suppose we have a dataset 
which is comprised of a minute of walking, followed by a minute of running. 
If we queried such a dataset for the top-2 snippets, we would surely hope to find one 
snippet from each gait type. This we count as a success, while any other result we 
count as a failure.

Of course, here there is a 50% chance of success with random sampling. More 
generally, if the two behaviors are different fractions of the length of the full-time 
series L and R, with L + R = 1, the probability of random sampling returning a satis-
factory pair of snippets is 2 × L × R.

Thus the task is made more difficult by having an asymmetric length of behav-
iors. Nevertheless, a single successful experiment would not be very convincing. 
Thus, to stress test our algorithm, we created a diverse collection of one hundred 
time series that we call MixedBag. Figure 16 shows some representative examples.

ECG

USC-HAD/Walking Right

Walking/Jogging

PAMAP

Arterial Blood Pressure

Fig. 16   Five examples from the MixedBag archive, aligned such that the behavior change takes place at 
the center. Note that the examples are much longer, as data was truncated from both ends for visual clar-
ity
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Some of our examples are completely natural, and we are confident from 
some external knowledge that there are only two behaviors, and that we have 
correctly identified the transition point. For some datasets, we slightly con-
trived the data to give us an unambiguous ground truth. For example, we took 
two 1-min ECG traces of two different individuals and concatenated them. Our 
examples draw from robotics, human locomotion, ornithology (vocalizations), 
ornithology (flight), entomology, speech processing, pig physiology, etc.

The scoring function is simply the sum of all successes in our one-hundred 
experiments. Table 3 shows the result for the scoring function for three different 
algorithms.

While the results are impressive, we should point out that even the 16% of 
cases where we failed may not represent true failures. For example, consider a 
dataset that is labeled {walk|jog}, as in Fig. 16. If we reported two snippets that 
came from the walking section, our scoring function reports failure. However, it 
is possible that the walking section actually includes two distinct behaviors, say, 
walking upstairs and then walking downstairs, and those labels are not available 
to us. In such a case, a snippet from each of the two latent walking behaviors 
may actually represent a success.

4.2 � Sensitivity tests

In the previous sections we have shown the Snippet-Finder algorithm’s accuracy 
for the MixedBag dataset, in which we chose the subsequence length of MPdist 
to be 50 percent of the total subsequence length. It is natural to ask how criti-
cally the good results depended on this user-defined parameter.

In this section, we evaluate empirically the sensitivity of subsequence length 
of MPdist. We repeat the same experiment using a different percentage of sub-
sequence lengths of MPdist, and again computed the accuracy of the MixedBag 
data set. The results are shown in Table 4.

As shown in Table  4, choosing the percentage of subsequence length any 
value between 30 and 80 still gives us excellent results.

When the percentage of subsequence length get close to 100 we get poor 
results. This is not surprising because in this case MPdist degenerates to its spe-
cial case which is Euclidean distance. As we explained in Fig. 10, using Euclid-
ean distance is not suitable for summarization tasks. In summary, the Snippet-
Finder algorithm is very robust to its only parameter choice.

Table 3   The performance of three algorithms in snippet discovery

* Calculated exactly, not computed experimentally

Dataset K-means (%) Random sampling (%) Snippet-finder (%)

MixedBag 57 47.3* 84
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4.3 � Robustness tests

The experiments in the previous section could justifiably be criticized for being 
too contrived. All of the data belongs to exactly one of two behaviors, with no 
“distracting” subsequences. However, most real data has such sections. For exam-
ple, the PAMAP dataset is comprised mostly of walk, run, cycle, etc. However, 
there are short regions of ill-defined and less structured data, such as when the 
user pauses at a stop light, or transitions from walking to cycling and spends a 
few ill-defined moments unlocking the bicycle and carrying it to the side of the 
road. It is natural to ask how our method fares when presented with such distract-
ing regions.

To test this, we repeated the experiment above, this time after concatenating 
regions of distracting data to the original time series. To ensure that the distracting 
data itself does not have patterns worthy of being summarized by a snippet, we used 
both random data, and random walk data. We considered the cases where distracting 
data of 10% and 20% of the original time series length was appended to the original 
time series. Table 5 shows the result for the scoring function for three different algo-
rithms in these more challenging scenarios.

We observed that our proposed algorithm is largely invariant to the reasonable 
amount of spurious distractor data. The performance does begin to suffer as we 
see large amounts (> 10%) of random walk data, as this data has the property that 
any two randomly selected subsequences tend to be closer than any random subse-
quences of structured data (i.e. gait, heartbeats etc.). In Batista et al. (2014) there is 
an explanation for this phenomenon, and a possible solution (a correction factor for 
the Euclidean distance). However, given the high performance of our simple algo-
rithm, we leave such considerations for future work.

Table 4   The performance of the 
snippet-Finder over different 
subsequence length of MPdist

Dataset Percentage of subsequence 
length

Snippet-finder 
accuracy (%)

MixedBag 30 81
35 81
40 82
45 88
50 89
55 85
60 89
65 85
70 86
75 87
80 84
85 78
90 56
95 41
100 (i.e. Euclidean) 22
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We have established that our snippet discovery algorithm can robustly find typi-
cal time series in diverse settings. In the following sections we show some case stud-
ies that demonstrate the utility of snippet discovery in real world applications.

4.4 � Case study: human behavior

We consider a dataset collected as part of a large-scale five-year NIH-funded project 
at The University of Tennessee.

More than two hundred youths are being monitored in the free-living valida-
tion group. Also, the free-living is over 2 h periods in each location while another 
one hundred youths are being monitored during true free-living activities during an 
after-school program and at home (validation group). Figure 17 shows an example 
of the former data type. Note that for some data we have video, thus ground truth.

Collecting and analyzing this massive dataset is a difficult task. For this experi-
ment, we consider sensor data from a hip-mounted accelerometer, which is collected 
at 90 Hz. In Fig. 18 we show the snippets discovered.

With a quick glance at the output of Fig. 18, the study organizer can immediately 
tell that this data represents about 4 min of running followed about a minute of very 
slow “cool-down” walking. Note that this example was used in Fig. 1 as an example 
of the thumbnail icon summarization tool.

Table 5   The performance of 
three algorithms in snippet 
discovery

* Calculated exactly, not computed experimentally

Dataset K-means (%) Random sam-
pling (%)

Snippet-
finder (%)

MixedBagRandWalk10 51 39.1* 84
MixedBagRandWalk20 50 32.8* 76
MixedBagRand10 52 39.1* 82
MixedBagRand20 50 32.8* 82

0 160,000

A 29-minute time series of Y-axis
acceleration from a hip-mounted accelerometer

Fig. 17   (Left) A participant in The Tennessee study. He is wearing a portable indirect calorimeter, and 
sensors on each limb. (Right) A small sample of the data collected as the participant runs around a bas-
ketball court (The procedures were reviewed and approved by The University of Tennessee Institutional 
Review Board before the start of the study. A parent/legal guardian of each participant signed a written 
informed consent and filled out a health history questionnaire, and each child signed a written assent 
prior to participation in the study.)
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In Fig. 19 we show the profiles that were used to compute the top two snippets. 
Note that this is not a view that would be shown to an end-user; it is just an internal 
representation used by the snippet discovery algorithm. Here we show it to give con-
text to the figures shown in Sect. 3 as we describe in our algorithm, and to explain 
how we compute the “regime bar”.

In this example, it happens that only one example of each regime is in the regime 
bar. However, that does not have to be the case. To see this, as shown in Fig. 20, we 
repeated the experiment with similar data from the PAMAP dataset, a widely used 
benchmark (Reiss and Stricker 2012).

As shown in Fig. 21, we extracted the top-4 snippets from this dataset. Note that 
one of the snippets, snippet-3, reflect two non-contiguous regions.

Note that the skipping (rope-jumping) section has several discontinuities, pre-
sumably because the participant caught her foot in the rope and had to restart. In 
spite of these unstructured regions, the top-4 snippets perfectly summarize this data 
set.

4.5 � Case study: medicine

Working with clinicians of the David Geffen School of Medicine at UCLA, we are 
creating a tool to summarize ICU (Intensive Care Unit) telemetry. In an ICU setting, 

snippet-1 snippet-2

0 25,000snippet-1

0 200

snippet-2

0 200

Fig. 18   (Top) A five-minute region of behavior for the study participant. (Bottom) The top-2 snippets 
discovered in this dataset

MPdist profile for snippet-1… 

0 25,000

…and snippet-2

snippet-1 snippet-2

Fig. 19   (Top) The profiles that were used to compute the top two snippets. (Bottom) It is from these 
curves that we obtain the “regime bar,” which tells us which snippet explains which region of data

NormalWalking----NordicWalking-----Running-----Skipping-----NordicWalking 10 minutes

Fig. 20   A 10-min region of behavior from the PAMAP dataset (Reiss and Stricker 2012). The data is the 
Y-axis acceleration from a chest-worn sensor. In this dataset the ground truth is available from careful 
annotations made at the time
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for a Level-3 patient, a typical protocol requires a nurse or doctor to go physically 
bedside once an hour and examine both the patient and their vital signs, which are 
displayed on the bedside monitor (Drews 2008; Forde-Johnston 2014). The latter 
typically contains the most recent data in the sliding window for the last twelve sec-
onds. However, it may be that this most recent data is atypical of the last hour. For 
example:

•	 If the patient recently sneezed, this will change her intrathoracic pressure, 
decreasing the flow of blood to the heart, which then is forced to compensate. 
This can change the ECG, arterial blood pressure (ABP), and respiration.

•	 The mere presence of medical staff may induce stress in a conscious patient and 
change their physiological readings.

Thus, we argue instead of (or in addition to), presenting the last 12 s, we should 
present the top-k snippets over the last hour.

We asked ICU clinicians to create datasets for which they know (or at least, 
strongly suspect) what a correct answer should look like, and to examine these data-
sets with Snippet-Finder. Figure 22 shows one such example.

Note that the two snippets reflect different heart rates, at about 70 and 84 BPM 
respectively. However, this is not the reason why they were reported as the top-2 

4000 snippet-1 

4000 snippet-3

0 400snippet-2

0 400snippet-4

0 60,000

Fig. 21   (Top) The top-4 snippets from the PAMAP dataset. To someone with familiarly with this dataset/
domain, it is easy to label the four behaviors. (Bottom) As an alternative to creating a regime bar, we can 
simply brush the colors of each snippet onto the original time series

5 minutes
Arterial Blood Pressure

Snippet-1

3 seconds 3 seconds

Snippet-2

Fig. 22   (Top) The ABP of a 54-year old female. (Bottom) The top-2 four-second snippets discovered in 
the APB data
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snippets. If we rescale the data to make each beat the same length, we would get 
similar snippets. To make the difference between the two snippets clearer, in Fig. 23.
left we show zoom-in sections of the individual beats.

Note that beyond differences in periodicity, these beats have very different 
shapes. We can now reveal the ground truth. This dataset was created by researchers 
interested in hyperemia, and the difference in the two regions was actually induced 
by clinicians who manipulated the patients by changing their orientation on a special 
bed. Thus, in this case, the researchers can confirm that the results of Snippet-Finder 
are objectively correct and medically meaningful.

Before moving on, there are two interesting observations for this case study. As 
shown in Fig. 23.right, the original data contains a small region in which the sensor 
failed to record physiological data, and instead reported a square-wave calibration 
signal (Samaniego et al. 2003). As noted in Sect. 2.1, any motif-based definition of 
a typical pattern would surely report this section. However, our definition rewards 
both coverage and fidelity, and while this section has perfect fidelity, it has very low 
coverage.

The second interesting observation is that most of the original dataset has the 
significant wandering baseline, while our top-2 snippets do not. This is a very desir-
able and sensible property. A snippet on a rising trend is a better fit with other rising 
trends, but a poorer fit with falling trends (and vice versa). However, if we only have 
one snippet per “behavior,” a neutral trend is clearly the best compromise and most 
representative.

4.6 � Case study: electrical power demand

To demonstrate the versatility of snippets, we consider a dataset that is four orders of 
magnitude longer than the datasets considered in the previous examples. As shown 
in Fig. 24, the Italian power demand dataset represents the hourly electrical power 
demand of a small Italian city for 1220 days, beginning on Jan 1st1995.

To avoid “over polishing” our query with exact values query length, we search 
for the top-2 snippets of length 200. This was our quick “eyeballing” guess 
as to the length of a week, but it is actually about 8.3 days. As Fig. 25 shows, 
the returned snippets are not constrained by calendar conventions to start on a 
particular day. An HVAC engineer we consulted suggests that these profiles 

dicro�c 
notch

Snippet 1 (subset)
Snippet 2 (subset) 
uniformly rescaled

APB extract 
star�ng at the 
17th minute

Fig. 23   (Left) A zoom-into individual beats discovered in the top-2 snippets. (Right) A sensor failure in 
the original ABP dataset (see also Fig. 22)
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demonstrate that the respective households have high ownership rates and use of 
HVAC systems for cooling, but a low use of electrical equipment for heating in 
the winter.

However, in this case, the real power of these snippets comes from examining 
the regions they explain, as shown in Fig.  26. In this figure, it is clear that the 
snippets represent summer and winter regimes respectively.

Before finishing this section, we will take this opportunity to reiterate our dis-
cussion of what snippet discovery is not. As explained in Sect. 2.1, snippet dis-
covery is a completely distinct task from clustering. Nevertheless, as a side effect, 
here we have produced an implicit clustering into seasons. Moreover, a brief sur-
vey of the research efforts to explicitly cluster the electrical profile into seasons 
(see Rhodes et al. 2014 and the references therein) suggests that the algorithms 
specialized for this task are more complex, and require more domain knowledge; 
for example, the subsequences must be exactly 1-week long.

Likewise, snippet discovery is a completely distinct task from segmentation 
(Gharghabi et al. 2019; Lin et al. 2016). Once again, it happens that in this case, 
snippet discovery incidentally provides an answer to the segmentation problem 
if we consider the boundaries between the snippets. However, recall that the seg-
mentation problem, as it is typically defined, is tasked only with finding boundary 
locations, not in explaining them, or producing representative patterns (Lin et al. 
2016).

Jan/1/1995 May/31/1998

Fig. 24   The Italian power demand dataset contains a little over 3 years of electrical demand for a small 
Italian city

Sunday

0 200

snippet-1

0 200

snippet-2
Sunday

Fig. 25   The top-2 snippets from the Italian power demand dataset. (Left) Snippet-1 runs from Monday to 
Monday (inclusive). (Right) Snippet-2 runs from Sunday to Sunday (inclusive)

Jan/1/1995 May/31/1998
snippet-1 snippet-2

Fig. 26   The Italian power demand dataset. The horizontal bar shows the colors of each snippet onto the 
original time series
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4.7 � Case study: biology

As a final example of the utility of snippets, we consider a problem for which our 
help was solicited by the team of biologists at UCR who recorded the feeding 
behaviors of sap-sucking insects with an electrical penetration graph (EPG). In 
Fig. 27 we show three examples of the data in question.

If they define the time series shown in the top of Fig. 27 as being ideal, and 
collect the two other examples under different environmental conditions, then 
they can ask: “How do T1 and T2 differ from the ideal specimen, if at all?” The 
answer does not appear to lay in any single number such as mean, max, variance, 
entropy, etc. We hypothesize that changes in behavior may show up in differences 
in local regions as changes in shape. However, given that the approximately 5 h 
of data shown in Fig. 27 represents less than one-thousandth of their archive, vis-
ual inspection of the full data archive is clearly intractable.

The reader will readily appreciate that snippets are a potential way to answer 
this question. As shown in Fig. 28, we can discover the top-2 snippets for each 
time series, and visually compare them.

0 12,000

D. citri Ideal

D. citri Treatment 2

D. citri Treatment 1

(two hours)

Fig. 27   Three examples of telemetry collected from the three individual Asian citrus psyllids (Diapho-
rina citri). Assume that the top example is an ideal specimen, and that the bottom two are alternative 
treatments. How could we quantify the differences (if any) caused by the treatments?

snippet-2

0 2000 200

snippet-1Square 
wave

Square 
wave

Triangular 
wave

I

T1

T2

Fig. 28   The top-2 snippets extracted from the datasets presented in Fig. 27. Note that the snippet-2 s are 
effectively identical, but while the snippet-1 for I and T1 are very similar, T2’s snippet-1 appears unique
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For all three examples, the 2nd snippets are nearly identical and represent (to 
biologists) very familiar examples of “derailed stylet mechanics.” The 1st snippet 
from T1 and I appear to be “Xylem ingestion,” but the 1st snippet from T2 is a mys-
tery. Its period is similar to that of Xylem ingestion, but the shape of the peaks are 
unfamiliarly sharp. Is this a biologically significant finding, or is there a more pedes-
trian explanation, such as a malfunctioning apparatus? This is currently under inves-
tigation. However, this experiment shows the utility of snippets in helping to explore 
and compare large datasets that would otherwise defy human inspection.

5 � Online discovery of snippets

Thus far we have seen only a batch algorithm for snippet discovery. We have to wait 
to gather all the data and then start the discovery process. However, it is natural to 
ask if we can discover snippets in the face of streaming data.

In this section, we will introduce the online snippet discovery algorithm, which 
is computationally efficient, and can produce very similar results to the batch algo-
rithm. The latter qualification is worth expanding on. Given infinite memory and 
CPU resources, we could simply rerun our batch algorithm from scratch for each 
datapoint’s arrival. This would guarantee that our batch and streaming algorithms 
would produce identical results. However, this is not tenable for arbitrarily long 
streams. With some care, we can cache previous computations, greatly reducing the 
CPU requirements, but clearly, we must eventually run out of memory.

The intuition of our streaming algorithm is as follows. We compare each subse-
quence of the incoming data with the current top-k snippets. If the fidelity and cov-
erage of a new subsequence was better than the top-k snippets, then we update the 
top-k, otherwise the top-k remains the same.

We will illustrate the streaming version of snippet discovery by revisiting the 
example in Sect.  4.4, in which we have a time series of four behaviors: normal 
walking, Nordic walking, running and skipping as shown in Fig. 29.

Assume that instead of the full 10 min of the time series, we have just the first 
3 min of the time series. We can calculate the snippets for this time series as shown 
in Fig. 30, using the algorithm outlined in Table 1.

Now assume we receive the remainder of the time series in a small batch of one 
subsequence per second. In this version, we update the profile of each snippet and 
calculate the arriving data’s profile with the time series. Then we choose the best k 
snippets based on these k profiles, in which k is the user-defined parameters for the 
number of snippets. The result after receiving the entire data is shown in Fig. 31.

NormalWalking----NordicWalking-----Running-----Skipping-----NordicWalking 10 minutes

Fig. 29   A 10-min region of behavior from the PAMAP dataset (Reiss and Stricker 2012). The data is the 
Y-axis acceleration from a chest-worn sensor. In this dataset, the ground truth is available from careful 
annotations made at the time
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Table 6 shows online snippets algorithm.
Considering the ground truth, the online snippets are the summary of all four 

activities, which suggests that this result is as comprehensive as the batch version. 
The benefit of online snippets is that we do not need to calculate the profile of the 
whole time series for each subsequence. Instead, we update the snippet’s profile 
and new incoming data’s profile as the data arrives. The time complexity of the 
online snippets algorithm is O(n + m) where n is the length of  the current time 
series and m is the subsequence length. To concretely ground this, we answer the 
following question: “Given this arrival rate, how long can we maintain the profile 
before we can no longer update fast enough?”, for a typical scenario.

3 minutes

snippet-1 snippet-2

NormalWalking-----NordicWalking

Fig. 30   Three minutes of PAMAP data including Normal walking and Nordic walking behavior. Each 
snippet explains one type of behavior

NormalWalking----NordicWalking-----Running-----Skipping-----NordicWalking 10 minutes

Snippet-1 Snippet-2

Snippet-3 Snippet-4

Fig. 31   Online snippets after streaming the whole data

Table 6   Online Snippets Algorithm
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Consumer domestic electric power demand is often sampled at 1 Hz. On a stand-
ard desktop machine, with 1 GB of storage available for our problem (230 Bytes), if 
the frequency of data is 1 Hz (4 Bytes to store each data points), then we can update 
snippets for approximately 8 years until we run out of memory (we would not run 
out of CPU time for decades). This is fast enough for many practical deployments, 
however further optimizations would be needed to allow deployment on wearable 
devices or other resource constrained systems.

5.1 � Objective evaluation of the online snippet algorithm

In this section, to evaluate the performance of online snippets algorithm, we create 
an experiment on our diverse collection of one-hundred time series, MixedBag. For 
each time series in the MixedBag collection, we give each time series as an input to 
our online snippets algorithm and compute the success rate. Recall the success rate 
as sum of all successes in our one-hundred experiments. Table 7 shows the result for 
the scoring function for two different algorithms.

As shown in Table 7, the online snippets algorithm performs slightly better that 
Snippet-Finder for the MixedBag dataset. This may be surprising, as we might have 
expected its streaming nature would have condemned it to do worse than the batch 
algorithm that can see all the data at once. However, recall that both Snippet-Finder 
and online snippets algorithm are greedy algorithms and they are not necessarily the 
optimal solution as we explained in Sect. 3.1. We can see this by running the online 
version again, after flipping the data backwards. That does not affect the results for 
the batch algorithm, but now the online version does do slightly worse than batch. 
In summary, these results are consistent with the idea that the online algorithm’s 
performance can approach that of the batch algorithm. However, it is clear that if we 
took an adversarial approach, we could create a synthetic dataset that would make 
the online version perform much worse than the batch case.

6 � Conclusions and future work

We have introduced a novel primitive called top-k time series snippets. We have fur-
ther shown an algorithm that can robustly find snippets in large datasets, even when 
corrupted by noise, dropouts, wandering baseline, etc. To handle the streaming set-
ting, we have created an online version of our algorithm.

We have made all our data and code publicly available for the community to 
confirm and extend our work (Imani 2020), including a large archive of benchmark 
datasets that will allow the community to compare new approaches and gauge pro-
gress on this task. In ongoing work, we are optimizing our algorithms to allow them 

Table 7   The performance of the 
Online Snippets Algorithm

Dataset Snippet-Finder (%) Online Snippets Algorithm (%)

MixedBag 84 88
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to work on severely resource-constrained devices. This will allow us to run our algo-
rithms in the background on wearable devices.
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