
Data Mining and Knowledge Discovery (2020) 34:1201–1234
https://doi.org/10.1007/s10618-020-00687-8

Efficient mining of the most significant patterns with
permutation testing

Leonardo Pellegrina1 · Fabio Vandin1

Received: 24 July 2019 / Accepted: 8 May 2020 / Published online: 9 June 2020
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2020

Abstract
The extraction of patterns displaying significant association with a class label is a key
data mining task with wide application in many domains. We introduce and study a
variant of the problem that requires to mine the top-k statistically significant patterns,
thus providing tight control on the number of patterns reported in output. We develop
TopKWY, the first algorithm to mine the top-k significant patterns while rigorously
controlling the family-wise error rate of the output, and provide theoretical evidence of
its effectiveness. TopKWY crucially relies on a novel strategy to explore statistically
significant patterns and on several key implementation choices, which may be of
independent interest. Our extensive experimental evaluation shows that TopKWY
enables the extraction of the most significant patterns from large datasets which could
not be analyzed by the state-of-the-art. In addition, TopKWY improves over the state-
of-the-art even for the extraction of all significant patterns.

Keywords Statistical pattern mining · Hypothesis testing · Top-k patterns

1 Introduction

Frequent patterns mining is one of the fundamental primitives in data mining, with
applications in a large number of domains, ranging from market basket analysis to

Responsible editor: M. J. Zaki.

A preliminary version of this work appeared in the proceedings of ACM KDD’18 as (Pellegrina and
Vandin 2018).

B Fabio Vandin
fabio.vandin@unipd.it

Leonardo Pellegrina
pellegri@dei.unipd.it

1 Department of Information Engineering, Università di Padova, Via G. Gradenigo 6/B, 35131 Padua,
IT, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10618-020-00687-8&domain=pdf
http://orcid.org/0000-0003-2244-2320

1202 L. Pellegrina, F. Vandin

biology and medicine (Han et al. 2007). In its original definition (Agrawal et al. 1993)
it requires to identify patterns that appear in a fraction at leastσ of all the transactions of
a transactional dataset. Significant patternmining (Dong andBailey 2012;Hämäläinen
and Webb 2019; Pellegrina et al. 2019a) is an extension of the problem in which each
transaction is assigned a binary class label and the goal is to identify patterns having
significant associationwith one of the class labels. Significance is commonly assessed
using a statistical test [e.g., Fisher exact test (Fisher 1922)], that provides a p value
quantifying the probability that the association observed in real data arises due to
chance alone.

Significant pattern mining is crucial in many applications, providing additional
information w.r.t. mining patterns that are frequent in the entire dataset: in market
basket analysis it serves to identify itemsets that are purchased more frequently by
one group of customers than by another one (e.g., married people vs. singles); in
social networks, it finds features characterizing users interested in one specific topic;
in biology, it identifies sets of genetic variants appearing more frequently in cancer
versus normal tissues or in one cancer type versus another one. In all applications,
identifying highly reliable associations is of the utmost importance.

One of the critical issues in significant pattern mining is the multiple hypothesis
problem, due to the huge number of patterns appearing in large datasets. When testing
only one pattern, if its p value is below a fixed threshold α, one can flag the pattern as
significant with the guarantee that the probability of false discovery (e.g., flagging the
pattern as significant when it is not) is bounded by α. However, for a fixed significance
threshold α, when d patterns are tested we expect αd of them to have p value below α

even when they are not associated with the class labels. A standard method to correct
for multiple hypothesis testing, called Bonferroni method (Bonferroni 1936), is to
adjust the significance threshold by dividing α by the number d of tested patterns.
This guarantees that the probability of making one or more false discoveries, called
family-wise error rate (FWER), is bounded by α. However, since the number d of
patterns can be huge, this approach results in limited statistical power, with very few
patterns having p value passing such small threshold (Webb 2006, 2007, 2008). A
naïve solution for the problem is to limit the number of elements in the patterns to be
tested, hindering the ability to identify large significant patterns.

A breakthrough in significant pattern mining is the work by Terada et al. (2013a),
that proposes LAMP, the first method to identify significant patterns without limiting
their size. LAMP is based on the work by Tarone (1990), which shows that patterns
that cannot reach statistical significance, called untestable, do not need to be taken into
account while correcting for multiple hypothesis testing. Subsequent work by Minato
et al. (2014) has improved the search strategy employed by LAMP to identify testable
patterns. Even so, suchmethods suffer from limited power, due to the use of Bonferroni
correction over the large number of testable patterns.

Recently, methods based on the more powerful Westfall–Young permutation pro-
cedure (Westfall and Young 1993) have been proposed, first by Terada et al. (2013b)
with FastWY and then by Llinares-López et al. (2015) with Westfall–Young light
(WYlight for short). These methods mine several permuted datasets to identify a
threshold such that all patterns with p value below the threshold can be flagged as
statistically significant while controlling the FWER. Such methods achieve a higher

123

Efficient pattern mining with permutation testing 1203

power than methods based on Bonferroni correction, including LAMP, and the state-
of-the-art, WYlight, has proved to be more efficient than FastWY also in terms of
runtime and memory.

However, the extraction of significant patterns from large datasets is still challeng-
ing, with three crucial issues that are not addressed by currently available methods.
First, in several cases the dependency among patterns leads to a huge number of sta-
tistically significant patterns even after multiple hypothesis correction. A common
approach [used, e.g., by Terada et al. (2013b) and Llinares-López et al. (2015)] to
partially alleviate this problem is to consider only closed patterns (Han et al. 2007),
discarding patterns with redundant information content in terms of appearance in the
dataset and of association with the class label. Even with this restriction the number
of significant patterns can be extremely large and when this happens one would like
to focus on the most significant ones, without resorting to filtering strategies after
the expensive extraction of all significant patterns has been performed. A second and
related issue is that current methods work by first identifying the exact corrected
threshold for statistical significance, and only subsequently mining the real dataset:
when the number of significant patterns is huge, one would like to focus on the most
significant ones without the burden of computing the exact significance threshold.
Third, all methods may need to process several untestable patterns to identify the cor-
rect threshold for significance, resulting in a extremely large running time in particular
for datasets with many low frequency patterns. These issues make current methods
impractical in many cases, as shown by our experimental evaluation.

1.1 Our contribution

In this work we focus on the problem of mining the most statistically significant
patterns while rigorously controlling the FWER of the returned set of patterns. In
particular, in analogy with frequent pattern mining approaches, we focus on extract-
ing the top-k statistically significant patterns. This problem is more challenging than
the extraction of top-k frequent patterns, given that statistical significance does not
enjoy the anti-monotonicity property w.r.t. to pattern frequency. In this regards, our
contributions are:

– we formally define the problem of mining Top-k Statistically Significant Patterns.
Our definition allows to properly control the size of the output set while providing
guarantees on the FWER of the output.

– we design a novel algorithm, called TopKWY, for the problem above, which
provides guarantees on the FWER by using the Westfall–Young permutation test
procedure. TopKWY adapts to the distribution of significant patterns: it reports
all significant patterns when their number is small, while it outputs only the most
significant patterns when the number of significant patterns is huge. TopKWY is
based on a exploration strategy similar to the one used by TopKMiner (Pietra-
caprina and Vandin 2007), an efficient algorithm to identify the top-k frequent
patterns. We prove that the use of such strategy guarantees that, in contrast to
previous approaches, TopKWY will never explore untestable patterns.

123

1204 L. Pellegrina, F. Vandin

– we introduce several bounds to prune untestable patterns that improve over the
bound introduced by LAMP and used in WYlight as well. We show that such
bounds can be effectively used within the exploration strategy employed by Top-
KWY and that it provides a significant speed-up for real datasets.

– we present variants of TopKWY to mine the top-k significant patterns with control
of the Generalized Family-Wise Error Rate (g-FWER) or the False Discovery Pro-
portion (FDP), which trade an increase in the size of the output with a (potentially)
higher, but still controlled, number of false discoveries. These variants lead to an
increase in the statistical power in situations where the number of results reported
controlling the FWER is low.

– we conduct an extensive experimental evaluation of the use of TopKWY to extract
significant itemsets and subgraphs, showing that TopKWY allows the extraction of
statistically significant patterns for large datasets while having reasonable memory
requirements. Surprisingly, for many datasets TopKWY improves over the state-
of-the-art even when it is used to find all statistically significant patterns.

1.2 Additional related work

Since the introduction of the frequent pattern mining problem (Agrawal et al. 1993),
a number of methods have been developed to efficiently extract all frequent patterns
[see (Han et al. (2007)) for several references]. Given that the number of such patterns
can be extremely large and that identifying an appropriate frequency threshold to limit
the number of frequent patterns is challenging, methods to identify restricted classes
of patterns, e.g., closed patterns (Pasquier et al. 1999) or maximal patterns (Bayardo
1998), have been designed. Methods that directly limit the number of patterns by
reporting the k most frequent closed patterns have been designed (Han et al. 2002;
Pietracaprina and Vandin 2007) as well.

Many methods have been developed for subgroups discovery [see, e.g., the reviews
by Herrera et al. (2011) and by Atzmueller (2015)], that is the task of mining patterns
associated with class labels using a quality score to quantify the association between
a pattern and class labels. Most of the available methods focus on such scores, with-
out assessing the statistical significance of the association or correcting for multiple
hypothesis testing. Contrarily to this general trend, a recent work (Li et al. 2014) uses
odds ratio as a measure to quantify statistical significance and to reduce redundancies
of subgroups, but still does not correct for multiple hypothesis testing. In (Duivesteijn
and Knobbe 2011) multiple hypothesis testing is accounted for using a swap random-
ization technique (Gionis et al. 2007). The methods we describe in this work can be
applied directly to the task of discovering the top-k statistically significant subgroups
with proper control of the FWER when the language defining the subgroups is com-
posed by conjunctive formulas, and could possibly be adapted and extended to more
general languages.

In addition to the contributions for significant patternminingmentioned above (Ter-
ada et al. 2013a; Minato et al. 2014; Terada et al. 2013b, 2015; Llinares-López et al.
2015) (described more in depth in Sect. 2), recent work has extended the extraction of
statistically soundpatterns (Hämäläinen andWebb2019) in directions that are orthogo-

123

Efficient pattern mining with permutation testing 1205

Table 1 2 × 2 contingency table Variables G(S, t) = 1 G(S, t) = 0 Row totals

c = 1 aS n1 − aS n1
c = 0 xS − aS n − n1 + aS − xS n − n1
Col totals xS n − xS n

nal to our contributions, for example searching for statistical dependency rules between
itemsets and items (Hämäläinen 2012), or using layered critical values (Webb 2008)
for correcting for multiple hypothesis testing. Komiyama et al. (2017) have developed
efficient techniques formultiple testing correction in themining of statistical emerging
patterns. Terada et al. (2016) and Papaxanthos et al. (2016) have introduced methods
to find significant patterns in the presence of covariates.

2 Background and problem definition

2.1 Significant patternmining

Let the datasetD = {t1, t2, t3, . . . , tn} be a set of n transactions,where each transaction
is an element from a domain F . Each transaction ti is associated to a binary label
ci ∈ {0, 1}. We denote by n1 the number of transactions with label 1, and, without loss
of generality, we assume that n1 is theminority class, i.e. n1 ≤ n/2.Wedefine a pattern
S as an element of F , potentially with some constraints, and for each transaction t
we define the binary variable G(S, t) such that G(S, t) = 1 if S is contained in
transaction t and G(S, t) = 0 otherwise. For example: in the case of itemsets, F is
the set of (non-empty) subsets of a universe of binary features I, and S is an element
of F ; for subgraphs, F is the set of vertex-labelled graphs, while S is an element of
F with the constraint that S is connected. Given a pattern S, we define its support xS
as the number of transactions containing S, that is xS = ∑n

i=1 G(S, ti). We denote
by aS the number of class 1 transactions containing S. In this work we assume that
patterns enjoy the anti-monotonicity property, such that for any super pattern S′ of S
(i.e., S ⊂ S′) the support xS′ of S′ is xS′ ≤ xS . This holds for itemsets, subgraphs, and
many other kind of patterns.

The objective of significant patternmining is to findpatternswith significant statisti-
cal association to one of the two classes. In order to quantify the statistical association,
a rigorous statistical test is performed. Such test assesses the association between the
observations G(S, t1), . . . ,G(S, tn) of variable G(S, t) (describing the presence of S
in the transactions of dataset D) and the observed class labels ci of the transactions,
representing observations of the variable c ∈ {0, 1} defining the label of a transac-
tion. Since the variables are binary, for a given pattern S the 2 × 2 contingency table
represented in Table 1 is considered and the popular Fisher exact test (Fisher 1922)
is often employed. Such test considers the marginals (xS, n1, n) of the contingency
table for pattern S to be fixed; under the null hypothesis of independence between
variables G(S, t) and c, the number aS of class 1 transactions containing S follows a

123

1206 L. Pellegrina, F. Vandin

hypergeometric distribution:

Pr(aS = a|xS, n1, n) = Pr(a|xS, n1, n) =
(
n1
a

)(
n − n1
xS − a

)/(
n

xS

)

. (1)

Using such distribution, the probability, called p value, of observing an association that
is equally or more extreme than the one observed in the data under the null hypothesis
can be computed. Smaller p values indicate more probable associations. The p value
pS for the pattern S is computed by summing all the probabilities to obtain, under the
null hypothesis, contingency tables which are at least as extreme as the one observed
in D:

pS = pS(aS) =
∑

k:Pr(k|xS ,n1,n)≤Pr(aS |xS ,n1,n)

Pr(k|xS, n1, n) . (2)

2.2 Multiple hypothesis testing

When only one pattern S is tested, it can be flagged as significant when its p value
is smaller than a significance threshold α fixed a priori. This guarantees that the
probability of a false discovery (i.e., reporting S as significant when it is not) is
bounded by α. However, if such approach is used when testing d hypotheses, the
expected number of false positives is αd; when d is high, which is typically the
case of significant pattern mining, this results in a large number of false positives.
Therefore, an appropriate multiple hypothesis testing correction of the significance
threshold needs to be performed in order to obtain rigorous guarantees in terms of the
number of false associations reported in output.

One common approach is to perform a correction in order to bound theFamily-Wise
Error Rate (FWER), which is defined as the probability of reporting at least one false
positive. Let FP be the number of false positives, then: FWER = Pr(FP > 0). For
a given value δ, define FWER(δ) as the FWER obtained using δ as corrected signif-
icance threshold, that is by rejecting (i.e., flagging as significant) all null hypotheses
(i.e., patterns) with p value≤ δ. Commonly, it is not possible to evaluate FWER(δ) in
closed form. One approach to set δ is to use the Bonferroni correction, setting δ to α/d.
Using the union bound, one can easily show that the resulting FWER(δ) ≤ dδ = α.
The problem with this approach is that when d is high, δ is very close to 0, resulting
in low statistical power with many false negatives.

To increase the statistical power, more sophisticated techniques have been devised.
In particular, one can look for an optimal corrected significance threshold δ∗, which
maximizes the statistical power while keeping the FWER bounded by α:

δ∗ = max{δ : FWER(δ) ≤ α} .

In this regard, a key result fromTarone (1990) is the introductionofminimumattainable
p value: if we use a corrected significance threshold δ, patterns whose p value cannot
be ≤ δ, called untestable, do not need to be considered in the multiple-hypothesis
correction. Therefore, if we define k(δ) as the number of patterns having minimum

123

Efficient pattern mining with permutation testing 1207

attainable p value ≤ δ, then the adjusted Bonferroni correction when threshold δ is
used can be written as δ = α/k(δ).

LAMP (Terada et al. 2013a) introduced such concepts into the mining of significant
patterns. In particular, it exploits the following observation. For a given pattern S, its
p value pS can be expressed as a function of aS only. Since the set of allowable values
of aS is finite, i.e. aS ∈ [aS,min, aS,max], there exists a minimum attainable p value
ψ(xS), which depends on xS , n1, and n, and which corresponds to the most biased
case for Eq.2:

ψ(xS) = min{pS(u) | aS,min ≤ u ≤ aS,max } .

Given apattern S, its support xS , and a corrected significance threshold δ, ifψ(xS) >

δ the pattern S cannot be significant; S is therefore called untestable. To use such
observation for significant pattern mining, Terada et al. (2013a) introduced in LAMP
a monotonically decreasing lower bound ψ̂(xS) on ψ(xS):

ψ̂(xS) =
{

ψ(xS) 0 ≤ xS ≤ n1
1/

(n
n1

)
n1 < xS ≤ n .

Terada et al. (2013a) showed that identifying a suitable significance threshold δ∗
translates into finding the maximum support threshold σmax satisfying:

ψ̂(σmax − 1) >
α

k(σmax)

and

ψ̂(σmax) ≤ α

k(σmax + 1)
.

2.3 Westfall–Young permutation testing

LAMP significantly increases the statistical power of the over-conservative standard
Bonferroni correction.However, it implicitly assumes that hypotheses are independent,
that can result in a loss of power when there is dependence between the hypotheses, as
in pattern mining. The Westfall–Young (WY) permutation testing method (Westfall
and Young 1993) is a multiple hypothesis testing procedure capable of addressing this
issue. This method performs random permutations of the class labels, creating new
datasets for which no pattern S is truly associated with the permuted class labels. Since
every pattern flagged as significant in the permuted datasets is a false positive, the joint
distribution of the null hypotheses can be directly estimated, resulting in improved
statistical power with respect to LAMP.

In detail, the WY method starts by creating jp permuted datasets, with jp suffi-
ciently large (typically in the order of 103 or 104). Then for every permuted dataset j
it computes the minimum p value p(j)

min over all patterns (hypotheses). Then one can
estimate FWER(δ) as:

123

1208 L. Pellegrina, F. Vandin

FWER(δ) = 1

jp

jp∑

j=1

1[p(j)
min ≤ δ]

where 1(·) is the indicator function (equal to 1 if its argument is true and 0 otherwise).
Given a user provided threshold α for the FWER, the best corrected significance
threshold δ∗ can then be obtained as δ∗ = maxδ{FWER(δ) ≤ α} with FWER(δ)

estimated as above.
The WY method does not provide an efficient way of computing the set {p(j)

min} jpj=1
of minimum p values. Therefore, a naïve implementation requires to exhaustively
test all the hypothesis on all the jp permuted datasets. For significant pattern mining,
this means exploring all the patterns appearing in a dataset; since this operation can
require exponential time, it is even more challenging to repeat the entire process jp
times, once for every permuted dataset. Terada et al. (2013b) proposed the first efficient
implementation, FastWY, of the WY procedure for significant pattern mining. The
identification of δ∗ is based on a decremental search scheme, which starts with support
σ = n and iteratively decrements σ until an appropriate condition, guaranteeing that

all values {p(j)
min} jpj=1 have been computed, is achieved.Amore recentmethod byTerada

et al. (2015), HWY, exploits a more efficient mining strategy and parallel computing
to accelerate FastWY.

Llinares-López et al. (2015) proposed WYlight to efficiently compute the optimal
value δ∗ of the corrected significance threshold. The main improvement of WYlight

is to avoid the exact computation of all the elements of the set {p(j)
min} jpj=1 and to only

produce its exact lower α-quantile. This result is obtained by maintaining an estimate
of the α-quantile that is only lowered through the mining process. WYlight performs
a depth first exploration of the patterns’ search tree (Han et al. 2000) in which each
pattern has support less or equal than its parent, and performs only one pattern mining
instance, testing one pattern at a time and computing its p value on all the jp permuted
datasets at the same time. WYlight maintains a threshold σ , initialized at 1, that is
raised during the execution of the algorithm pruning patterns whose p values cannot

be in the lower α-quantile of {p(j)
min} jpj=1. This is achieved by using the lower bound

ψ̂(σ) on the minimum obtainable p value for patterns of support ≤ σ , which allows
to effectively prune the search tree. However, during the computation of δ∗, some
patterns with support < ψ−1(δ∗) may be processed, due to the depth first procedure
considered by WYlight. After computing δ∗, an additional mining of D is performed
(with minimum support threshold ψ−1(δ∗)) to extract the significant patterns with p
value≤ δ∗. As shown in Llinares-López et al. (2015), WYlight significantly improves
over FastWY in particular in terms of memory requirements, allowing the extraction
of significant patterns from datasets larger than the ones that can be analyzed by
FastWY.

2.4 Problem definition

For a datasetD, let δ(α) = maxδ{FWER(δ) ≤ α} the threshold obtained through the
WY permutation procedure when the bound on the FWER is set to α. Let p(k) be the p

123

Efficient pattern mining with permutation testing 1209

value of the k-th pattern with patterns sorted by (increasing) p value. Given a dataset
D and user-provided values k and α, our goal is to extract the set T SP(D, k, α) of
top-k statistically significant patterns with FWER ≤ α, defined as:

T SP(D, k, α) =
{
S : pS ≤ min{δ(α), p(k)}

}
.

Note that when less than k patterns have p value below δ(α), T SP(D, k, α) contains
all such patterns. In addition, according to our definition more than k patterns may be
in T SP(D, k, α), in case many have the same p value p(k). In particular, for any two
patterns S, S′ with S′ ⊂ S and xS′ = xS, aS′ = aS we have that pS = pS′ . For this
reason we restrict our interest only to closed patterns, i.e. patterns whose supersets
have support strictly lower than the pattern itself. Since the definition of closed pattern
does not depend on the class labels, restricting to closed patterns does not bias any
analysis.

The following result establishes the required guarantees on false positives in
T SP(D, k, α) and it is a direct consequence of the fact that T SP(D, k, α) is a subset
of all the patterns that would be reported using the WY method.

Lemma 1 The set T SP(D, k, α) has FWER ≤ α.

3 TOPKWY Algorithm

In this section we present our algorithm TopKWY for mining the set T SP(D, k, α).
We first present its main strategy (Sect. 3.1) that can be applied to any pattern mining
problem. We then analyze TopKWY showing theoretical evidence of the efficiency
of its strategy (Sect. 3.2) and introduce improved bounds on the minimum attainable p
value used by TopKWY (Sect. 4). We also present extensions of TopKWY (Sect. 5) to
control the generalized FWER, to control the False Discovery Proportion (FDP), and
to employ different exploration strategies on the tree of candidate patterns. Finally,
we introduce some crucial implementation details (Sect. 6), focusing on the problem
of mining significant itemsets and subgraphs.

3.1 Main strategy

TopKWY combines two key ideas. First, it maintains an estimate of δm =
min{δ(α), p(k)} that is updated during the exploration of the patterns and main-
tains a corresponding minimum support threshold σ = ψ−1(δm) that is raised
during the exploration of the patterns. Analogously to the strategy employed by
WYlight (Llinares-López et al. 2015) the updates of δm and σ depend on α, but
in addition TopKWY updates them also depending on the p values of members of
T SP(D, k, α). Second, the search tree of all possible patterns is explored in order of
decreasing support, analogously to the strategy used by TopKMiner (Pietracaprina

123

1210 L. Pellegrina, F. Vandin

and Vandin 2007) for mining top-k frequent patterns, which guarantees that only pat-
terns of support greater or equal to the final value of σ (i.e., ψ−1(δm)) are explored.1

TopKWY is described in Algorithm 1. In line 1, the threshold δm is initialized
to α (the threshold with no correction for multiple hypothesis) and σ is initialized

accordingly to ψ̂−1(δm). All the elements of the set of minimum p values {p(j)
min} jpj=1

observed on the permuted datasets are initialized to 1 (their maximum achievable
value) in line 2. The labels of the permuted datasets are generated in line 3. The
pattern exploration is organized using a priority queue Q where each entry represents
a pattern S, with key equal to the support xS and value representing all the information
needed by the algorithm regarding S (e.g., aS) and also with relevant information
regarding the parent fS of pattern S in the search tree (see Sect. 4). Q is initialized in
line 4 and stores the frontier of unexplored patterns, keeping them accessible by non-
increasing support. TopKWY stores patterns having p value ≤ δm in a priority queue
P , keeping them accessible by non-decreasing p value. This is the set of candidates for
T SP(D, k, α), which are collected and produced in output as soon as possible during
the exploration. This allows to reduce the memory requirements and to start analyzing
the results during the exploration, without the need of waiting for the algorithm’s
termination. The first patterns in Q are obtained by the expand(S,Q) operation on
line 5 called on the empty pattern S = ∅: this procedure generates all patterns children
of the pattern S in the search tree (and their corresponding projected datasets), and
inserts the ones of support≥ σ in the queue Q. The details of efficient implementations
of expand are described in Sect. 6. The while loop (lines 6- 21) implements the
main step of the exploration strategy: the most frequent pattern S, its support xS , its
support aS in the minority class of D, and the relevant information for its parent fS
are extracted from Q in line 7. If the p value pS of S is≤ δm , then S is inserted in P in
line 10. In line 8, σ ′ is set to xS , which is an upper bound to the support of all elements
stored in Q. This quantity is used to identify patterns surely in the set T SP(D, k, α)

without waiting for the final corrected significance threshold δm to be found, done in
lines 11 and 12. k is updated accordingly, reducing it to the number of patterns which
still need to be found. In order to compute the corrected significance threshold δm , the
algorithm computes the p values of pattern S in the jp permuted datasets, updating

the values of {p(j)
min} jpj=1 if needed. This operation is done with the test procedure.

Similarly toWYlight, our algorithm processes all the jp permutations for every pattern
S at once, computing only the needed exact lower quantile of the set of minimum p
values of the WY permutations, and not the minimum p values of every permuted
dataset. Differently from WYlight, we use an improved lower bound ψ ′(xS, fS) to
the minimum attainable p value of S to decide (in line 13) whether to test S on the
permuted datasets or not (see Sect. 4). This allows to skip the expensive computation

of the jp supports {a(j)
S } jpj=1 of S on the minority class of the permuted datasets for

several patterns S.
The significance threshold δm is decreased during the exploration in two cases:when

the estimated FWER(δm) for the current threshold δm increases above α (line 15), or

1 This assumes that the search tree for patterns has the property that the children of a node have support
not greater than the node itself, which is a usual property of pattern mining algorithms (Han et al. 2007;
Uno et al. 2005; Nijssen and Kok 2004) and is required by WYlight as well.

123

Efficient pattern mining with permutation testing 1211

whenmore than k patternswith p value≤ δm are observed (line 17). The corresponding
minimum support threshold σ is then updated accordingly in line 18. The correctness
of these steps are proved in Sect. 3.2. After the update of δm and σ , elements which
have become untestable are removed from Q in line 19, and elements which are not
significant are removed from P in line 20. The current pattern S is expanded in line 21,
and all its children having support≥ σ are inserted into Q. The exploration ends when
Q gets empty. When this happens, all elements still contained in P with p value at
most δm are reported as significant in line 22.

The strategy employed by TopKWY can be adapted to incrementally update k for
the sameα, providing an interactivemining process. This can be achieved by providing
a maximum value k∗ in input to in Algorithm 1 to definitely prune untestable patterns,
but freezing the computation after k patterns with p value below the current value of
ψ̂(σ) have been found. If the user wants to increase k, the exploration can continue
without restarting the entire mining instance.

Algorithm 1: TopKWY
Input: Transaction dataset D with class labels c, number of permutations jp , target FWER α,

number of results k
Output: Set of top-k significant patterns with FWER ≤ α

1 δm ← α; σ ← ψ̂−1(δm);

2 p(j)
min ← 1, ∀ j ∈ [1, jp];

3 generate jp permuted class labels;
4 Q, P ← empty priority queues;
5 expand(∅ , Q);
6 while Q
= ∅ do
7 (S, xS , aS , fS) ← Q.removeMax();
8 σ ′ ← xS ;
9 if pS ≤ δm then

10 P .insert(S, pS);

/* O = patterns surely in T SP(D, k, α) */

11 O ← {S′ ∈ P : pS′ < ψ̂(σ ′)}; produceO in output;
12 remove patterns in O from P; k ← k − |O|;
13 if ψ ′(xS , fS) ≤ δm then

14 test(S , {p(j)
min}

jp
j=1) ;

/* update δm based on estimate of δ∗ */
15 δm ← min{δm ,max{δ : FWER(δ) ≤ α}} ;

/* update δm based on top-k patterns in P */

16 p(k) ← k-th largest p value in P;

17 δm ← min{δm , p(k)};
/* update σ */

18 σ ← ψ−1(δm);
/* remove untestable patterns from Q */

19 remove from Q all patterns S′ with xS′ < σ ;
/* remove non-significant patterns from P */

20 remove from P all patterns S′ with pS′ > δm ;
21 expand(S , Q);

22 produce in output {S′ ∈ P : pS′ ≤ δm };

123

1212 L. Pellegrina, F. Vandin

3.2 Analysis

Some important properties of TopKWY algorithm can be formally stated. The first
regards the correctness of the algorithm.

Theorem 1 (Correctness of TopKWY) TopKWY outputs the set T SP(D, k, α) of
top-k significant patterns with FW ER ≤ α.

Proof The correctness of TopKWY follows from two observations: first, the final
threshold δm obtained by the algorithm is correct; second, only patterns with p value
less or equal than the final value of δm are produced in output. We start by proving
the first statement. δm is initialized to the value α, that is the uncorrected threshold
for significance and is always ≥ δ∗. δm is decreased (and the corresponding minimum
support threshold σ is increased) during the exploration in two cases. The first case
(line 15) is when the estimated FWER(δm) for the current threshold δm increases
above α. This means that more than α jp p values of {p(j)

min} jpj=1 are below the current

significance threshold δm = ψ̂(σ), which allows for too many false positives, and
the FWER is not correctly controlled to the level α. δm is then updated to the highest
value of δ for which FWER(δ) ≤ α. The second case is when more than k patterns
with p value ≤ δm are observed (line 17). In this case, let p̃ be the highest p value of
the k most significant patterns observed up to this point. Then all patterns of support
< ψ̂−1(p̃) cannot result in a p value < p̃ and therefore we need to consider (both in
D and in the permuted datasets) only patterns of support at least ψ̂−1(p̃). That is, the
minimum support threshold σ can be safely increased to ψ̂−1(p̃)with a corresponding
significance threshold p̃. When δm is last updated, its value will then be equal to the
minimum between δ(α) and p(k).

We now prove the second statement. This is trivially correct for patterns produced
in output by line 22. We then consider patterns produced in output in line 11. Note that
the current pattern S has support σ ′ and the search strategy employed by TopKWY
guarantees that all patterns with support > σ ′ have already been explored. Therefore,
from this point on the algorithm will never encounter p values < ψ̂(σ ′) and therefore
the corrected significance threshold δm will be ≥ ψ̂(σ ′). Thus all patterns in P with
p value < ψ̂(σ ′) can be safely produced in output (and removed from P). ��

The following result provides theoretical guarantees on which patterns will be
explored by TopKWY, providing analytical evidence of the efficiency of our strategy.

Theorem 2 (Optimality of TopKWY) TopKWY expands only patterns of support
≥ ψ̂−1(δm).

Proof Similarly to the proof of Theorem 1, when pattern S of support σ ′ is extracted
from Q, we are guaranteed that the algorithm will never encounter p values < ψ̂(σ ′)
again. Therefore the corrected significance threshold δm will be ≥ ψ̂(σ ′), that is
σ ′ ≥ ψ̂−1(δm) (i.e., S is testable). ��

We now show that in a simplified model for how p values are obtained, there exists
a family of datasets for which the expected difference between the number of patterns

123

Efficient pattern mining with permutation testing 1213

explored by a DFS strategy and the number of patterns explored by TopKWY is
exponential in the size of the dataset. In the simplified model, the p values obtained by
random permutations are uniformly distributed in (0, 1]. (Note that we do not assume
independence among p values from different itemsets.) Consider now the family of
datasets Dn = {t1, . . . , tn} defined on the set of (binary) features I = {i1, . . . , in}
where t j = I \ {i j }. Moreover, half of transactions in Dn have label 0 while the other
half have label 1.

Theorem 3 Consider a datasetDn from the family described above. Let ε be a constant
such that 0 < ε ≤ 1

2 and εn ∈ N. Assume that the choice of α and k is such δ∗ =
ψ̂(εn) = (n

2
εn

)
/
(n
εn

)
, and that jp random permutations are used. Let X be the difference

between the number of patterns explored by aDFS strategy and the number of patterns
explored by TopKWY in the simplified model above. Then E[X] = Ω

(
2εn/ jp

)
.

Proof Note that in such dataset all patterns are closed. Let W be the set of patterns
explored by TopKWY. The DFS strategy has to explore all the patterns in W (since
they are testable). We now show that it will also explore, in expectation, Ω

(
2εn/ jp

)

additional patterns, that proves the statement.
It is easy to show that since εn ∈ N and δ∗ = (n

2
εn

)
/
(n
εn

)
, the set of testable patterns

W is given by all patterns of size≤ εn. For each pattern Si and each j with 1 ≤ j ≤ jp,
let Xi j be the random variable that is 1 if Si has p value ≤ δ∗ in the j-th permuted
dataset, and 0 otherwise. Note that Si j is a Bernoulli random variable of parameter δ∗,
for all i and j . Let Y be the number of p values lower than δ∗, assuming that the DFS
has explored εn + m patterns. The expectation of Y is

E [Y] = E

⎡

⎣
εn+m∑

i=1

jp∑

j=1

Xi j

⎤

⎦ =
εn+m∑

i=1

jp∑

j=1

E
[
Xi j

] = (εn + m) jpδ
∗. (3)

Note that requiring E [Y] ≥ 1 provides a lower bound to the number of p values
needed for the DFS to establish that δ∗ = (n

2
εn

)
/
(n
εn

)
, since α jp p values below such

threshold must be observed.
Let v = εn. The condition E [Y] = (εn + m) jpδ∗ ≥ 1 implies

(εn + m) ≥ 1

jpδ∗ = 1

jp

(n
v

)

(n
2
v

) = 1

jp

n!(n2 − v)!
(n2)!(n − v)!

= 1

jp

(n − v)!∏v−1
j=0(n − j)

(n − v)!
(n2 − v)!

(n2 − v)!∏v−1
j=0(

n
2 − j)

= 1

jp

v−1∏

j=0

(n − j)

(n2 − j)
≥ 1

jp

v−1∏

j=0

2 = 2v

jp
= 2εn

jp

123

1214 L. Pellegrina, F. Vandin

or, equivalently

m ≥ 2εn

jp
− εn ∈ Ω

(
2εn/ jp

)
.

Note that since the set of testable patterns includes all patterns of size ≤ εn, all
the Ω

(
2εn/ jp

)
patterns explored by the DFS after exploring the first εn patterns and

before observing the first p value below δ∗ have size > εn and, thus, are not in W ,
which proves the statement. ��

Compared to a depth first search (DFS) exploration strategy (i.e., the one employed
by WYlight), the best first exploration strategy followed by TopKWY has the addi-
tional costs required by operations involving data structures P and Q. P can be
implemented as a heap of entries (p, �p), where the key p is a p value and the value
�p is a list of patterns which contains all the patterns with the same p value p. With
such implementation, operations involving P (lines 10, 11, 16, and 20) can be per-
fomed with O (log k) operations, since P will contain at most k entries. Analogously,
Q can be implemented as a heap of entries (x, �x), where the key x is a support and
the value �x is a list of patterns with the same value of ψ̂(x) (that is, having the same
support x). With such implementation, operations involving Q (lines 7, 19, and 21)
can be performed with O (log n) operations (n is the number of transactions in D).
Alternatively, P and Q can be implemented so that all operations require time O (1)
by storing references to lists �p and �x in arrays of size O

(
n2

)
(since the p value of S

is a function of the support xS of S and the number aS of transactions with label 1 and
containing S) and O (n), respectively. (Note that this additional space requirement
is not impractical, since O

(
njp

)
space is needed to store the random permutations.)

We also note that computing the improved lower bound ψ ′(xS, fS) (line 13), has the
same cost as computing the lower bound ψ̂(xS) to the p value used in WYlight (see
Sect. 4). Even with the additional costs required by P and Q, the best first strategy of
TopKWY leads to significant improvements in running time, as demonstrate by our
experimental evaluation (Sect. 7).

4 Improved bounds onminimum attainable p value

In this section we prove novel and efficiently computable lower bounds on the min-
imum p value achievable by a pattern S that are tighter than the ones introduced by
LAMP (Terada et al. 2013a) and are of particular interest in the context of WY per-
mutation testing. These bounds are based on information computed when processing
a parent pattern Y of S; in the case of itemsets, Y is a parent of S (or, alternatively,
S is a child or a super pattern of Y) when Y ⊂ S. Such bounds can be used to skip
the expensive processing of the permutations for S when they ensure that it is not
possible to improve the current estimate of the corrected significance threshold. While
we present these bounds as a critical component of TopKWY, they may be of inde-
pendent interest since can be employed in WYlight or similar algorithms to speed-up
WY permutation testing.

123

Efficient pattern mining with permutation testing 1215

Let the pattern S be a super pattern of Y , that is S ⊃ Y . Then xY ≥ aY ≥ 0 and
xY ≥ xS . Since the set of transactions (i.e., the conditional dataset) containing S is a
subset of the set of transactions containing Y , we can bound the support aS of S in the
class c1 with the following relations:

max(aY − (xY − xS), 0) ≤ aS ≤ min(xS, aY).

Considering the jp permuted class labels, let a(j)
Y be the number of transactions

containing Y and in the minority class (i.e., a(j)
Y is the value of aY when the class

labels are given by the j-th permutation).An analogous relation holds between a(j)
S

and a(j)
Y , for all j :

max(a(j)
Y − (xY − xS), 0) ≤ a(j)

S ≤ min(xS, a
(j)
Y).

An immediate consequence of these bounds on a(j)
S are lower bounds to pS(a

(j)
S).

Lemma 2 Let ǎ(j)
S = max(a(j)

Y − (xY − xS), 0) and â(j)
S = min(xS, a

(j)
Y). Then, for

all j ∈ [1, jp],

pS
(
a(j)
S

)
≥ min

{
pS

(
ǎ(j)
S

)
, pS

(
â(j)
S

)}
.

This result suggests that if we have already computed a(j)
Y ,∀ j ∈ [1, jp] while pro-

cessing the permutations of Y , we could skip the expensive computation of a(j)
S , and,

therefore, pS(a
(j)
S),∀ j ∈ [1, jp], in situations when the lower bounds to pS(a

(j)
S) are

greater than the current value of the corrected significance threshold. In the following,
we present a bound valid for all pS(a

(j)
S) simultaneously, that is a function of only the

minimum and maximum elements of a(j)
Y , instead of all of them. Let

aYmin = min
{
a(j)
Y : j ∈ [1, jp]

}

and

aYmax = max
{
a(j)
Y : j ∈ [1, jp]

}
.

Then, ∀ j ∈ [1, jp] we bound a(j)
S as:

aSmin = max(aYmin − (xY − xS), 0) ≤ a(j)
S ≤ min(xS, aYmax) = aSmax .

This allows to compute a bound ψ ′(xS, xY , aYmin , aYmax) to the minimum attainable p
value of S that is tighter than ψ(xS):

ψ ′(xS, xY , aYmin , aYmax) = min(pS(aSmin), pS(aSmax)) . (4)

123

1216 L. Pellegrina, F. Vandin

The bound in Eq. 4 is evaluated in constant time, assuming pS(a) is pre-computed
for all valid values of a, as done in WYlight and in TopKWY to efficiently implement
the test function. The following are simple consequences of Lemma 2 and the fact
that aSmin and aSmax are always equally or more tight than the naive bounds on aS
assumed by ψ(xS).

Lemma 3 min
{
pS

(
a(j)
S

)
: j ∈ [1, jp]

}
≥ ψ ′(xS, xY , aYmin , aYmax) ≥ ψ(xS).

If for the current value of the significance threshold δm it holds that ψ ′
S > δm , then

we can infer, without computing {a(j)
S } jpj=1, that none of the jp p values of S in the

permuted datasets will improve the estimate of the current lower-quantile of the set

{p(j)
min} jpj=1 and therefore cannot contribute to the computation of δ(α) or δm . That is,

all the computation on the permuted datasets can be skipped for the current pattern S.
For all children of S, if S is not tested the bounds aSmin and aSmax can be propagated to
compute bounds also on their class distribution; if S is tested, then we propagate the

actual minimum and maximum values of {a(j)
S } jpj=1. In Algorithm 1 we use the bound

above with the values propagated by the parent fS of S and useψ ′(xS, fS) to highlight
this fact. This optimization is particularly effective when patterns have a high degree
of correlation, i.e., when patterns share many transactions.

Note that even if S does not need to be tested, descendants of S may need to be
tested. However, using the bound ψ ′(·) we can quickly identify cases in which none
of the descendants of S need to be explored and therefore the entire subtree can be
pruned. In particular, since all the descendants of S will have support ≤ xS − 1,
considering aS (i.e., the number of transactions containing S and in the minority class
in the datasetD), the algorithm can find min{ψ ′(i, xS, aSmin , aSmax) : i ∈ [σ, xs − 1]},
and if such value is > δm we can prune all the search subtrees rooted in the children
of S. This optimization is part of the expand operation in TopKWY. These novel
bounds consider the information of one common ancestor pattern to avoid useless
computations formany of its children: in practice, the number of tests to perform across
the permuted datasets can be significantly smaller than the number of testable patterns,
leading to a significant computational speed-up. The approach above can extended to

bound min
{
pS

(
a(j)
S

)
: j ∈ [1, jp]

}
by considering the information computed on the

intersection of the conditional datasets of any pair of patterns S and Y , even if S
⊃ Y .
Another possible extension of the techniques we derive in this section is to consider

not only one pair (aYmin , aYmax), but v pairs (aiYmin
, aiYmax

), for all i ∈ [1, v]: for each
i , we define the set Ji as a subset of {1, . . . , jp}, with ⋃v

i=1 Ji = {1, . . . , jp}. For all
i , we bound all values a(j)

Y for all j ∈ Ji with aiYmin
and aiYmax

. If we define

aiYmin
= min

{
a(j)
Y : j ∈ Ji

}
, aiYmax

= max
{
a(j)
Y : j ∈ Ji

}
,

aiSmin
= max(aiYmin

− (xY − xS), 0) , aiSmax
= min(xS, a

i
Ymax

),

then we simply obtain

min
{
pS

(
a(j)
S

)
: j ∈ Ji

}
≤ min

{
pS

(
aiSmin

)
, pS

(
aiSmax

)}
.

123

Efficient pattern mining with permutation testing 1217

This provides a trade-off between the memory (required to store the 2v bounds on
the expanded nodes of the search space) and the time to evaluate the bound (that is
linear in the number v of sets instead of constant), and the time the algorithm saves by
skipping computations of the permutations, that is a direct consequence of how tight
the bounds on the p values are; in fact, the permutations that have to be processed are

only the ones belonging to the sets Ji such that min
{
pS

(
aiSmin

)
, pS

(
aiSmax

)}
is not

higher than the current value of the significance threshold.

5 Extensions of TOPKWY

5.1 Controlling the generalized FWER

While themain focus of TopKWY is to control the FWERof the output, a simplemod-
ification provides an algorithm to control the generalized FWER (g-FWER Lehmann
and Romano 2012). The g-FWER is defined as the probability that at least g false
positives are reported in output. In several applications one may be willing to tolerate
a small amount of false discoveries in order to increase the power of detecting signifi-
cant patterns, provided the number of false discoveries can be controlled. In such cases
methods to discover significant patterns while controlling the g-FWER are preferred
to methods controlling FWER.

Let FP be the number of false positives, then: g-FWER= Pr(FP ≥ g). Let g-
FWER(δ) be the g-FWER obtained using δ as corrected significance threshold, that
is by flagging as significant patterns with p value ≤ δ. Note that the Westfall–Young
procedure can be used to estimate g-FWER(δ) as

g-FWER(δ) = 1

jp

jp∑

j=1

1[p(j)
g ≤ δ]

where p(j)
g is the g-th smallest p value (over all patterns) in the permuted dataset j .

Algorithm 1 can be simply modified to obtain the set of top-k significant patterns
with g-FWER ≤ α. To achieve this, it is sufficient to perform the following changes:

replace test(S , {p(j)
min} jpj=1) (line 14) with test(S , {p(j)

g } jpj=1), where test(S ,

{p(j)
g } jpj=1) computes the p value of pattern S in the jp permuted datasets and updates

the values of {p(j)
g } jpj=1 if needed; replace max{δ : FWER(δ) ≤ α} (line 15) with

max{δ : g-FWER(δ) ≤ α}. Let TopKWY-g be such modified algorithm. We have
the following.

Lemma 4 TopKWY-g outputs the set T SP(D, k, α) of top-k significant patterns with
g-FW ER ≤ α.

The proof is analogous to the proof of Theorem 1.
In addition to finding the top-k most significant pattern with bounded g-FWER,

with g provided in input, TopKWY-g can be adapted to a different scenario. In this

123

1218 L. Pellegrina, F. Vandin

case, one may want to retrieve the k most significant patterns, using the random
permutations to obtain a rigorous estimate of howmany of such results are likely to be
false positives. More formally, for k and α provided by the user, one may be interested
in computing the quantity g	 defined as

g	 = min
{
g : g-FWER(pk) ≤ α

}
,

that is the mininum value of g such that the g-FWER is controlled when the signifi-
cance threshold is p(k), that is the highest p value of the set of top-k resultswe extracted.
g	 provides useful knowledge on the quality of the set of top-k results provided to the
user. In this situation the user is not required to fix a-priori g before examining the data.
Further simple modifications to TopKWY-g are sufficient to obtain such variant, that
are: remove line 15 and replace line 22 with “produce in output {S′ ∈ P : pS′ ≤ δm}
and g	 = min

{
g : g-FWER(pk) ≤ α

}
”. Let TopKWY	 be suchmodified algorithm;

we obtain the following guarantees.

Lemma 5 TopKWY	 outputs the set of patterns
{
S : pS ≤ pk

}
of top-k significant

patterns and g	 = min
{
g : g-FW ER(pk) ≤ α

}
.

5.2 Bounding the proportion of false discoveries

The False Discovery Proportion (FDP) (van der Laan et al. 2004; Lehmann and
Romano 2012) of a set of hypotheses P is defined as the ratio FD/|P|, where FD is
the (unknown) number of false discoveries ∈ P; note that when |P| = 0, the FDP is
assumed to be 0. Let ζ, α ∈ (0, 1) and k, g ∈ [1,+∞). Define the set P such that all
the following hold:

max {pS : (S, pS) ∈ P} ≤ δ∗,
δ∗ = max {δ : g-FWER(δ) ≤ α} ,

g ≤ ζ |P|, |P| ≤ k.

It is possible to prove that a set P satisfying the above guarantees has size at most
k and FDP ≤ ζ with probability ≥ 1 − α. Simple modifications to TopKWY-
g lead to an algorithm that outputs P with the aforementioned guarantees: remove
lines 11 and 12, replace line 15 with “δm ← max{δ : (�kζ�)-FWER(δ) ≤ α}”
and line 22 with “produce in output P(δ∗) = {S′ ∈ P : pS′ ≤ δ∗} where
δ∗ = max {δ : (�ζ |P(δ)|�)-FWER(δ) ≤ α}”. Let such algorithm be TopKWY-ζ .
We obtain the following result.

Lemma 6 TopKWY-ζ outputs the set of patterns P of size at most k with False
Discovery Proportion ≤ ζ with probability ≥ 1 − α.

123

Efficient pattern mining with permutation testing 1219

5.3 Alternative exploration strategies

While TopKWY builds on examining the search tree of all possible patterns in order
of decreasing support, i.e. with a best first strategy analogous to the one used by
TopKMiner (Pietracaprina andVandin 2007) formining top-k frequent patterns, it can
also be modified to efficiently obtain the set T SP(D, k, α) using different exploration
strategies, e.g. a level-wise exploration of the search tree [performed, e.g., by the
Apriori algorithm (Agrawal and Srikant 1994) for itemsets] or a depth first search on
the tree of all possible patterns (Uno et al. 2005; Nijssen and Kok 2004). This can be
achieved by setting σ ′ to max

{
xS′ : S′ ∈ Q

}
(instead that to xS) in line 8 of Alg. 1 and

by an appropriate choice of the priority for patterns in the priority queue Q, that stores
the frontier of unexplored patterns: to obtain a level-wise exploration for itemsets, the
priority of pattern S is set to the total number |I| of items minus |S|; to obtain a depth
first search, the priority of patterns S is set to its level in the search tree.

While for strategies other then the best first one the optimality (Theorem 2) is not
guaranteed, the possibility to employ other strategies allows to obtain the top-k sig-
nificant patterns starting from efficient implementations of frequent pattern mining
algorithms that build on such strategies for various types of patterns [e.g., sub-
graphs (Nijssen and Kok 2004)].

6 Implementation details

An efficient implementation of expand and test procedures is critical for the efficiency
of TopKWY. This crucially depends on the representation ofD and the permuted class
labels, and both depend on the type of patterns of interest. In Sects. 6.1 and 6.2 we
now describe in more details the implementations for significant itemsets mining and
for significant subgraphs mining; in particular, for significant itemsets we discuss the
implementation of TopKWY as described in Sect. 3.1 as well as the variant, described
in Sect. 5.3 of TopKWY based on theDFS strategy,whichwedenote byTopKWY-dfs;
for significant subgraphs we only consider the implementation of TopKWY-dfs.

6.1 Significant itemset mining

Our implementation of TopKWY is based upon TopKMiner (Pietracaprina and
Vandin 2007), which mines top-k frequent closed itemsets. As for TopKMiner,
TopKWY uses a PatriciaTrie (Zandolin and Pietracaprina 2003) to store a compact
representation of the dataset D in which transactions sharing the same prefix are
represented by the same node in the tree. The conditional dataset of (i.e., the set of
transactions containing) an itemset Y is stored as a listmY of nodes of the PatriciaTrie.
An additional counter is added to every node, representing howmany transactionswith
prefix represented by the node belong to the class 1. The same is done for the jp per-
mutations adding jp counters to each node in the trie. Since the PatriciaTrie is built
adding one transaction at a time, a technique similar to reservoir sampling is used to
generate the jp permuted labels of every transaction. Let r be a vector of length jp,

123

1220 L. Pellegrina, F. Vandin

with all components r (j), j = 1, . . . , jp of r initialized to n1, the number of transac-
tions to assign to the class c1 for every permutation of index j . For every transaction
ti , with i ∈ [1, n], the j-th label of ti is assigned to c1 with probability r (j)/(n− i+1),
c0 otherwise. If c1 is chosen, then r (j) is decreased of one. This method guarantees
that the total number of transactions with label c1 will be n1 for every j ∈ [1, jp] and
that the labels of the j-th permuted dataset are obtained by a random permutation of
the class lables.

Our implementation of TopKWY-dfs is based upon LCM 3 (Uno et al. 2005),
which mines frequent closed itemsets using a depth first strategy. The third version
of LCM combines various techniques and data structures to accelerate the generation
and the computation of the frequencies of frequent closed itemsets.

6.2 Significant subgraphmining

Our implementation of TopKWY-dfs relies on Gaston (Nijssen and Kok 2004) to
mine significant subgraphs. Gaston first considers simple patterns, such as paths
and trees, since efficient techniques for isomorphism checking are available for such
acyclic structures. Only after this first phase, denoted as “quickstart”, general sub-
graphs, containing cycles, are evaluated. The search strategy of Gaston relies on a
depth first enumeration of subgraphs. We do not provide a subgraph variant of Top-
KWY because no competitive algorithms based on a best first exploration strategy are
currently available (Wörlein et al. 2005; Nijssen and Kok 2006).

7 Experimental evaluation

We implemented and tested TopKWY and TopKWY-dfs for the extraction of signifi-
cant itemsets and significant subgraphs. Our experimental evaluation has three goals.
First, to assess the number of significant patterns found in real datasets. Second, to
evaluate the performance of TopKWY: since no other tool for the extraction of top-k
significant patterns exists, we compare TopKWY and TopKWY-dfs with the state-of-
the-art tool for significant patternmining,WYlight (Llinares-López et al. 2015).While
the techniques introduced in this work can be extended to other multiple hypothesis
testing procedures, such as LAMP (Terada et al. 2013a), we do not compare with
LAMP or derived strategies (Minato et al. 2014) since (Llinares-López et al. 2015)
shows thatWY permutation testing results in higher power. Third, to assess the impact
of our improved bounds and implementation choices on performances.

In Sect. 7.1 we describe the implementation and computational environment for our
experiments. In Sect. 7.2 we describe the datasets we used. In Sect. 7.3 we describe
the experiments we have performed and our choice of parameters. Finally, in Sect. 7.4
we report and discuss the results of our experiments.

123

Efficient pattern mining with permutation testing 1221

Table 2 Itemset Datasets statistics. For each dataset the table reports: the number |D| of transactions; the
number |I | of items; the average transaction length avg; the fraction n1/n of transactions in the minority
class; the number SP(0.05) of significant patterns for FWER = 0.05

Dataset |D| |I | avg n1/n SP(0.05)

svmguide3(L) 1,243 44 21.9 0.23 36,736

chess(U) 3,196 75 37 0.05 > 107

mushroom(L) 8,124 118 22 0.48 71,945

phishing(L) 11,055 813 43 0.44 > 107

breast cancer(L) 12,773 1,129 6.7 0.09 6

a9a(L) 32,561 247 13.9 0.24 348,611

pumb-star(U) 49,046 7117 50.5 0.44 > 107

bms-web1(U) 58,136 60,978 2.51 0.03 704,685

connect(U) 67,557 129 43 0.49 > 108

bms-web2(U) 77,158 330,285 4.59 0.04 289,012

retail(U) 88,162 16,470 10.3 0.47 3,071

ijcnn1(L) 91,701 44 13 0.10 607,373

T10I4D100K(U) 100,000 870 10.1 0.08 3,819

T40I10D100K(U) 100,000 942 39.6 0.28 5,986,439

codrna(L) 271,617 16 8 0.33 4,088

accidents(U) 340,183 467 33.8 0.49 > 107

bms-pos(U) 515,597 1,656 6.5 0.40 26,366,131

covtype(L) 581,012 64 11.9 0.49 542,365

susy(U) 5,000,000 190 43 0.48 > 107

7.1 Implementation and environment

We implemented TopKWY in C++ as an extension of the TopKMiner algo-
rithm (Pietracaprina and Vandin 2007). For TopKWY-dfs we modified the C
implementation of WYlight (based on LCM (Uno et al. 2005) and Gaston (Nijssen
and Kok 2004)) made available by the authors at https://github.com/fllinares/wylight.
All implementations were compiled with gcc 4.8.4. Our experiments have been
performed on a 2.30 GHz Intel Xeon CPU machine with 512 GB of RAM, running
on Ubuntu 14.04. Our code and scripts to replicate all experiments described in the
paper are available at https://github.com/VandinLab/TopKWY.

7.2 Datasets

For itemsets mining, we performed our experiments using 19 datasets: the 10 largest
ones used in Llinares-López et al. (2015) and available at FIMI’042 and UCI3, all the

2 http://fimi.ua.ac.be.
3 https://archive.ics.uci.edu/ml/index.php.

123

https://github.com/fllinares/wylight
https://github.com/VandinLab/TopKWY
http://fimi.ua.ac.be
https://archive.ics.uci.edu/ml/index.php

1222 L. Pellegrina, F. Vandin

Table 3 Subgraph Datasets statistics

Dataset |D| Vavg Eavg n1/n SP(0.05)

MUTAG 188 17.93 19.79 19.79 70,184

BZR(30) 405 35.75 38.36 0.21 80,425

COX2 467 41.22 43.45 0.22 > 106

ENZYMES(10) 600 32.63 62.14 0.17 112,158

DHFR(30) 753 42.43 44.54 0.61 > 106

DD 1,178 284.32 715.66 0.58 80,256

AIDS(30) 2,000 15.69 16.20 0.2 566,727

NCI1 4,110 29.87 32.30 0.5 > 106

NCI109 4,127 29.68 32.13 0.5 > 106

Mutagenicity 4,337 30.32 30.77 0.44 > 106

Tox_21_AHR(30) 8,169 18.09 18.50 0.12 98,398

For each dataset the table reports: the number |D| of graphs; the average number of nodes |Vavg |; the
average number of edges |Eavg |; the fraction n1/n of graphs in the minority class; the number SP(0.05) of
significant patterns for FWER = 0.05. The number in brackets report the maximum number of vertexes
of the explored subgraphs, that has been limited to allow practical running times for the experiments

datasets used in Komiyama et al. (2017), available from the libSVM repository4, and
4 additional ones (a9a, bms-web1, accidents, susy) available from libSVM, FIMI’04,
and SPMF5. The datasets’ statistics are in Table 2. For each dataset, we also note if
it already contained class labels (L) or not (U). For unlabeled datasets we simulated
a typical analysis requiring to find itemsets correlated with a given item (feature) in
a dataset. For every unlabeled dataset we selected the single item whose frequency
is closer from below to 0.5, removed the corresponding item from every transaction,
and use its appearance to define the target class label. The reported ratio n1/n for the
minority class of unlabeled datasets refers to the output of this labeling process. For
real-valued features we obtained two bins by thresholding at the mean value and using
one item for each bin [analogously to Komiyama et al. (2017)].

For subgraphs mining, we considered 11 of the largest datasets with binary target
labels available from a repository6 of benchmark datasets; most of them are also
analysed by Llinares-López et al. (2015). The datasets’ statistics are in Table 3. In
some cases, we bounded the maximum number of vertexes of the subgraphs that are
explored by Gaston, in order to obtain practical running times for the experiments.
Such limits are reported in the parenthesis after the dataset’s name in Table 3.

7.3 Parameters and experiments

For TopKWY and TopKWY-dfs we considered k = 10i for i ∈ [1, 6]. For all the
datasets we analyzed, we ran TopKWY and TopKWY-dfs, for all such values of k, and

4 https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.
5 http://www.philippe-fournier-viger.com/spmf.
6 https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets.

123

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://www.philippe-fournier-viger.com/spmf
https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets

Efficient pattern mining with permutation testing 1223

WYlight.We fixed the number of permutations jp = 104, shown to be a good choice in
Llinares-López et al. (2015), and fixed the commonly used value α = 0.05 as FWER
threshold. For the comparison between TopKWY, TopKWY-dfs, and WYlight, we
repeated every experiment 10 times, recording the running time and peak memory
provided by the operating system; we report the averages over the 10 runs, standard
deviations are negligible and therefore not shown.Themeasures reported for TopKWY
include the time and space to retrieve statistically significant patterns and write them
on file, while for TopKWY-dfs andWYlight we only report the time and space needed
to find the optimal significance threshold, which corresponds to the first step of the
method, therefore reporting a lower bound to their runtimes.We stopped the execution
of an algorithm if it did not conclude after (at least) one month of computation; for
these cases, the indicated time and peak memory are lower bounds. For experiments
testing the impact of parameters or implementation choices on TopKWY we used
only one execution.

7.4 Results

7.4.1 Itemsets mining

Table 2 reports the number of significant patterns for α = 0.05 in the datasets we
considered, obtained by running TopKWY (with k = +∞) or WYlight. For some
datasets we stopped the computation after 1 month, so only a lower bound is available.
In most cases, the number of significant patterns is extremely large: for 11 out of 19
datasets there are > 5 × 105 significant patterns and in 7 datasets there are > 107

significant patterns. Therefore a direct way to limit the number of significant patterns
in output, as provided by the top-k significant patterns, is required.

Figure 1 compares the running time of TopKWY and WYlight. Note that for the
11 datasets in which the number of significant patterns is < 106, TopKWY with
k = 106 identifies all the significant patterns and produces the same patterns found
with WYlight. For 15 out of 19 datasets, TopKWY (with k = 106) is faster than
WYlight by a factor at least 2. For 9 datasets TopKWY is faster than WYlight by at
least one order of magnitude, and for 6 datasets WYlight requires > 11 days while
TopKWY identifies up to the 106 most significant patterns within one day and the 104

most significant ones in few hours. Even for the datasets where TopKWY identifies
all significant patterns, producing the same patterns as WYlight, TopKWY is always
faster than WYlight, with up to one order of magnitude speed-up in some cases. This
shows that TopKWY is an effective tool to identify all significant patterns whenever
possible and enables the analysis of significant patternswhen their number is extremely
high. For datasets inwhich the number of significant patterns is> 106 we ranTopKWY
with k = ∞ to compare its strategy for finding the corrected significance threshold
for all significant patterns with the one used byWYlight. The runtime of TopKWY is
always lower than the runtime ofWYlight by at least 20%, with a significant speed-up
in some case (e.g., for chess, TopKWY terminates in 2 days, while WYlight needs
more than 10 days). These results show that TopKWY outperform the state-of-the-art
even for this task.

123

1224 L. Pellegrina, F. Vandin

Fig. 1 Running time for TopKWY (with various values of k) and WYlight. The blue horizontal line
corresponds to 1 month of computation

Fig. 2 Peak memory for TopKWY (with various values of k) and WYlight

123

Efficient pattern mining with permutation testing 1225

Figure 2 compares the peak memory required by TopKWY and WYlight. Given
the best first strategy employed by TopKWY, we expected its memory requirement
could be higher than WYlight, that follows a depth first strategy. Interestingly, only in
three cases TopKWY required 1 order of magnitude more memory than WYlight and
in both such cases the requirements are reasonable (≤ 20 GBs) for current machines.
However, in such cases WYlight required > 11 days to complete, while TopKWY
terminated in < 1 day, showing that, by using a reasonably larger amount of memory
than WYlight, TopKWY renders the identification of significant patterns feasible. In
all other cases the memory requirement of TopKWY is either the same or within few
GBs ofWYlight. For some datasets TopKWY requires significantly less memory than
WYlight: surprisingly this happens for datasets (cod-rna, covtypes) on which Top-
KWY reports the same significant patterns asWYlight (i.e., all significant patterns). In
some cases, memory usage decreases slightly when k increases, due to our dynamical
allocation of the p values lookup table that may require less space when the minimum
support decreases.

We investigated the impact of our implementation choices on the memory require-
ment of TopKWY (Fig. 3). We compared the space required to store the permuted
labels on all the nodes of the PatriciaTrie used by TopKWY (see Sect. 6.1) with the
space required by storing the permuted labels for each transaction (as done for exam-
ple by WYlight). Since TopKWY stores, for each node of the Patricia Trie, a list of
jp values (i.e., the number of transactions with minority label among the ones shar-
ing the prefix corresponding to the node), one transaction may have more than jp
values associated to its nodes. In most cases the space required by the two methods
is essentially the same, but in three cases the use of the Patricia Trie corresponds to
a significant reduction in the memory used. In particular, these three cases are for
datasets in which TopKWY identifies all the significant patterns using less memory
than WYlight, providing strong evidence of the importance of our encoding of the
permuted class labels.

We compared the exploration strategies used by TopKWY and by WYlight by
recording the number of patterns they test (Fig. 4), restricting to datasets in which
WYlight terminates. In all cases, TopKWY tests a lower number of patterns than
WYlight, with differences of almost two orders of magnitude for some datasets. This
shows the effectiveness of our exploration strategy and of our novel bounds ψ ′(·) (see
Sect. 4) on reducing the number of tests to perform.

We then directly investigated the impact of our novel bounds on the runtime of
TopKWY. We compared the running time of WYlight with the running time of two
variants of TopKWY: one using our improved bound ψ ′(·) and one using the LAMP
bound ψ̂(·) (i.e., the same bound used byWYlight). The results for some representative
datasets are in Fig. 5a. The results for the other datasets are similar. We observed that,
for all datasets other than chess, the exploration strategy employed by TopKWY to
extract only the top-k significant patterns already provides a substantial (up to more
than one order of magnitude) improvement in the running time of TopKWY with
respect to WYlight, even using the same LAMP bounds. When our novel bound ψ ′(·)
is used in TopKWY we observe additional speed-ups, for a total up to more than two
orders of magnitude. Therefore, the reduction in the number of patterns that need to

123

1226 L. Pellegrina, F. Vandin

Fig. 3 Memory requirement for permuted class labels using PatriciaTrie and permutation matrix

Fig. 4 Comparison between the number of tested patterns on the permuted datasets by TopKWY and
WYlight

123

Efficient pattern mining with permutation testing 1227

(a) (b)

Fig. 5 a Comparison between the running time of WYlight and the running time of TopKWY using our
improved bound ψ ′(·) and the LAMP bound ψ̂(·). b Running time for different values of α and jp

be tested on the permuted datasets, obtained by the exploration strategy of TopKWY
and our improved bound, is a crucial component for the performance of TopKWY.

Finally, we assessed the impact of α and jp on the running time of TopKWY and
WYlight on two representative datasets, cod-rna and accidents, which are represen-
tative for the two scenarios of a small number of significant patterns (cod-rna) and
of a large number of significant patterns (accidents). In these experiments we fixed
k = 104. Figure 5b reports the results for cod-rna. Results for accidents are not reported
since the running time of accidents remained essentially the same for all values of α

and jp. This means that for accidents using the bounds introduced in Sect. 4 the com-
putational effort is dominated by the pattern space exploration (and not the evaluation
of the permuted datasets): considering only the top-k significant patterns is therefore
crucial to analyze such dataset. For cod-rna, we observe that varying α has some but
small impact on the runtime of both methods while there is a linear dependence of
the running time of WYlight on jp and a similar but less pronounced dependence of
TopKWY. In all cases, TopKWY is faster than WYlight (for accidents WYlight does
not terminate within 1 month) showing the efficiency of TopKWY for different ranges
of the α and jp parameters.
Comparison between Best First and Depth First strategies.We investigate the impact
of the best first strategy adopted by TopKWY on the computational performances of
the mining tasks. To do so, we compared TopKWY with TopKWY-dfs, the variant
of TopKWY, which explores patterns in depth first order (see Sect. 5.3). We ran
TopKWY-dfs on the same set of experiments described in Sect. 7.3. Fig. 6 shows
the running times of TopKWY, TopKWY-dfs, and WYlight. We can clearly see
that, for 9 datasets out of 19, there is a significant difference in the running times
of TopKWY and TopKWY-dfs: this means that, in particular for smaller values of
k, the exploration strategy is a critical component of TopKWY. For accidents, one
of the most challenging dataset to analyze, both TopKWY-dfs and WYlight can not

123

1228 L. Pellegrina, F. Vandin

Fig. 6 Running time for TopKWY, TopKWY-dfs (with various values of k) and WYlight. The blue hori-
zontal lines corresponds to 1 month of computation

Fig. 7 Number of results found using TopKWY when controlling the g-FWER, for various values of g,
jp = 104, k = 106, and α = 0.05

complete their execution in less than one month, even for k = 10. Therefore, for such
dataset the best first strategy adopted by TopKWY is crucial.
Results for g-FWER.We investigate the increase in statistical power of TopKWYwhen
controlling the generalized-Family-Wise Error Rate (g-FWER) by analyzing datasets
described in Sect. 7.3 having less than 106 results for α = 0.05 when controlling the
FWER. As we can see in Fig. 7, for the breast-cancer dataset the number of significant
patterns increased by more then two orders of magnitude as the value of g increases
(i.e., when more false positives are allowed). Figure 8 show the running time of Top-
KWYwhen controlling the g-FWER at different values of g. As expected, the required
time slightly increases but it stays practical for all datasets. We do not compare with

123

Efficient pattern mining with permutation testing 1229

Fig. 8 Running time for TopKWY when controlling the g-FWER, for various values of g, jp = 104,
k = 106, and α = 0.05

Table 4 a Values of g	 (second row of the Table) computed by TopKWY	 for different values of k (first
row of the Table) on breast-cancer dataset with jp = 104 and α = 0.05. b Number of results |P| (second
row of the Table) found by TopKWY-ζ on breast-cancer dataset with jp = 104, α = 0.05, and k = 104,
for different values of ζ (first row of the Table)

a)

k 10 102 103 104

g	 2 11 163 2396

b)

ζ 0.01 0.05 0.1 0.25

|P| 0 24 624 104

other methods since TopKWY is the first algorithm to discover significant patterns
with a rigorous control on the g-FWER.

In Table 4.a we show the computed values of g	 by TopKWY	 (see Sect. 5.1 for its
definition) on the breast-cancer dataset for k ∈ {10, 102, 103, 104}. We can see that
TopKWY	 is able to provide informative estimates of the quality of the reported set
of k most significant patterns, in terms of the minimum g such that the g-FWER(pk)
is ≤ α, without the need of fixing g a-priori. In Table 4.b we show the number of
results found using TopKWY-ζ for k = 104 on the breast-cancer dataset, varying
ζ ∈ {0.01, 0.05, 0.1, 0.25}. From these results we can see that TopKWY-ζ is a very
flexible tool to discover significant patterns with bounds on both the output size and the

123

1230 L. Pellegrina, F. Vandin

Fig. 9 Running time for TopKWY-dfs (with various values of k) and WYlight for significant subgraph
mining. The blue horizontal line corresponds to 1 month of computation

maximum ratio of false discoveries, providing improved statistical power in situations
where the number of significant patterns when controlling the FWER is very low.
(We do not show the running times for TopKWY	 and TopKWY-ζ since those are
very similar to the ones reported in Fig. 8.)

7.4.2 Subgraphs mining

We ran TopKWY-dfs on the datasets described in Sect. 7.2. Table 3 reports the num-
ber of significant patterns for α = 0.05 in the datasets we considered, obtained by
running TopKWY-dfs (with k = +∞) or WYlight. For some datasets we stopped
the computation after 1 month, so only a lower bound is available. In most cases, the
number of significant patterns is extremely large: for 6 out of 11 datasets there are
> 5 × 105 significant patterns and in 5 datasets there are > 106 significant patterns.
This shows that a direct way to limit the number of significant patterns in output is
required for subgraphs mining as well.

We then compared the running time and memory requirement of TopKWY-dfs and
ofWYlight. Figure 9 compares the running times of TopKWY-dfs andWYlight.As for
itemsetsmining,when the number of significant patterns is lower than k,TopKWY-dfs
finds all of them, obtaining the same output as WYlight. We can see that TopKWY-
dfs is, in all cases, faster than WYlight: for 9 datasets out of 11 and for k = 106,
TopKWY-dfs improves the running time by a factor at least 2. It is interesting to note
that for 5 datasets the number of significant results is < 106, therefore TopKWY-
dfs is faster even if its output is the same of WYlight. For 3 datasets the running
time is reduced by more than two orders of magnitude, and WYlight is not able to
terminate in less than 1 month. We can observe that these three datasets contains more

123

Efficient pattern mining with permutation testing 1231

Fig. 10 Memory usage for TopKWY-dfs (with various values of k) and WYlight for significant subgraph
mining

than 106 significant results; this clearly shows that focusing on the most significant
patterns leads to significant computational advantages and enables the analysis of such
datasets.

Figure 10 compares the memory usage of TopKWY-dfs and WYlight. Both algo-
rithms are very memory efficient and, while TopKWY-dfs usually requires more
memory than WYlight, the difference is small: for 7 of the 8 datasets where WYlight
terminates,TopKWY-dfs never requiresmore than 8%of thememory ofWYlight, and
23% in the case ofMUTAG,where the difference is of fewMBs. (For the three datasets
wereWYlight does not terminate, we only report a lower bound to its memory usage.)

8 Conclusion

In this work we introduce TopKWY, an efficient algorithm to identify the top-k
significant patterns with rigorous guarantees on the FWER and provide theoretical
evidence of its effectiveness. Our extensive experimental evaluation shows that Top-
KWY enables the identification of significant patterns on large datasets and that it
significantly improves over the state-of-the-art.

Our notion of top-k significant patterns and our algorithm TopKWY could be
relevant to other mining problems, for example statistical emerging pattern min-
ing (Komiyama et al. 2017), while providing a bound on the FWER. While we focus
on bounding the FWER, a different approach would be to bound the false discovery
rate (FDR) (Benjamini and Hochberg 1995), that is the expected ratio of false dis-
coveries among all reported patterns. Bounding the FDR is crucial in cases where the
number of significant results obtained bounding the FWER is low. In addition, fully

123

1232 L. Pellegrina, F. Vandin

processing extremely large datasets may not be feasible: the combination of the tech-
niques we develop in this work with sampling (e.g., the recently developed techniques
by Pellegrina et al. (2019b) to extend TopKWY for the analysis of random samples)
is a promising direction that we will investigate in future work.

Acknowledgements This work is supported, in part by the National Science Foundation grant IIS-1247581
(https://www.nsf.gov/awardsearch/showAward?AWD_ID=1247581), by the University of Padova grants
SID2017 and STARS: Algorithms for Inferential Data Mining, and by MIUR, the Italian Ministry of
Education, University and Research, under PRIN Project n. 20174LF3T8 AHeAD (Efficient Algorithms
for HArnessing Networked Data).

References

Agrawal R, Imieliński T, Swami A (1993)Mining association rules between sets of items in large databases.
SIGMOD Rec 22:207–216

Agrawal R, Srikant R (1994) Fast algorithms formining association rules in large databases. In: Proceedings
of the 20th international confereence on very large data bases (VLDB ’94), San Francisco, CA, USA.
Morgan Kaufmann Publishers Inc, pp 487–499

Atzmueller M (2015) Subgroup discovery. Wiley Interdiscip Rev Data Min Knowl Discov 5(1):35–49
Bayardo RJ Jr (1998) Efficiently mining long patterns from databases. ACM Sigmod Rec 27(2):85–93
Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to

multiple testing. J Ro Stat Soc Ser B (Methodol) 57:289–300
Bonferroni C (1936) Teoria statistica delle classi e calcolo delle probabilita. Pubblicazioni del R Istituto

Superiore di Scienze Economiche e Commericiali di Firenze 8:3–62
Dong G, Bailey J (2012) Contrast data mining: concepts, algorithms, and applications. CRC Press, Boca

Raton
Duivesteijn W, Knobbe A (2011) Exploiting false discoveries–statistical validation of patterns and quality

measures in subgroup discovery. In: 2011 IEEE 11th international conference on data mining. IEEE,
pp 151–160

Fisher RA (1922) On the interpretation of χ 2 from contingency tables, and the calculation of p. J R Stat
Soc 85(1):87–94

Gionis A, Mannila H, Mielikäinen T, Tsaparas P (2007) Assessing data mining results via swap random-
ization. ACM Trans Knowl Discov Data (TKDD) 1(3):14

HämäläinenW (2012) Kingfisher: an efficient algorithm for searching for both positive and negative depen-
dency rules with statistical significance measures. Knowl Inf Syst 32(2):383–414

Hämäläinen W, Webb GI (2019) A tutorial on statistically sound pattern discovery. Data Min Knowl Disc
33(2):325–377

Han J, Pei J, Yin Y (2000) Mining frequent patterns without candidate generation. In: Chen W, Naughton
JF, Bernstein PA (eds) SIGMOD conference. ACM, New YorkD, pp 1–12

Han J, Wang J, Lu Y, Tzvetkov P (2002) Mining top-k frequent closed patterns without minimum support.
In: Proceedings 2002 IEEE international conference on data mining, 2002. ICDM 2003. IEEE, pp
211–218

Han J, Cheng H, Xin D, Yan X (2007) Frequent pattern mining: current status and future directions. Data
Mining Knowl Discov 15:55–86

Herrera F, Carmona CJ, González P, Del Jesus MJ (2011) An overview on subgroup discovery: foundations
and applications. Knowl Inf Syst 29(3):495–525

Komiyama J, IshihataM, Arimura H, Nishibayashi T,Minato S-I (2017) Statistical emerging patternmining
with multiple testing correction. In: Proceedings of the 23rd ACM SIGKDD international conference
on knowledge discovery and data mining. ACM, pp 897–906

Lehmann EL, Romano JP (2012) Generalizations of the familywise error rate. In: Selected works of EL
Lehmann. Springer, pp 719–735

Li J, Liu J, Toivonen H, Satou K, Sun Y, Sun B (2014) Discovering statistically non-redundant subgroups.
Knowl-Based Syst 67:315–327

123

https://www.nsf.gov/awardsearch/showAward?AWD_ID=1247581

Efficient pattern mining with permutation testing 1233

Llinares-López F, Sugiyama M, Papaxanthos L, Borgwardt K (2015) Fast and memory-efficient significant
pattern mining via permutation testing. In: Proceedings of the 21th ACM SIGKDD international
conference on knowledge discovery and data mining. ACM, pp 725–734

MinatoS-i,UnoT,TsudaK,TeradaA,Sese J (2014)A fastmethodof statistical assessment for combinatorial
hypotheses based on frequent itemset enumeration. In: Joint European conference onmachine learning
and knowledge discovery in databases. Springer, pp 422–436

Nijssen S, Kok JN (2004) A quickstart in frequent structure mining can make a difference. In: Proceedings
of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining. ACM,
pp 647–652

Nijssen S, Kok JN (2006) Frequent subgraph miners: runtimes don’t say everything. In: MLG 2006, p 173
Papaxanthos L, Llinares-López F, Bodenham D, Borgwardt K (2016) Finding significant combinations

of features in the presence of categorical covariates. In: Advances in neural information processing
systems, pp 2279–2287

Pasquier N, Bastide Y, Taouil R, Lakhal L (1999) Discovering frequent closed itemsets for association rules.
In: International conference on database theory. Springer, pp 398–416

Pietracaprina A, Vandin F (2007) Efficient incremental mining of top-K frequent closed itemsets. In: Dis-
covery science, volume 4755 of lecture notes in computer science. Springer, Berlin Heidelberg, pp
275–280

Pellegrina L, Vandin F (2018) Efficient mining of the most significant patterns with permutation testing.
In: Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data
mining. ACM, pp 2070–2079

Pellegrina L, Riondato M, Vandin F (2019a) Hypothesis testing and statistically-sound pattern mining. In:
Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data
mining. ACM, pp 3215–3216

Pellegrina L, Riondato M, Vandin F (2019b) Spumante: Significant pattern mining with unconditional
testing. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery
& data mining-KDD, vol 19

Tarone R (1990) A modified bonferroni method for discrete data. Biometrics 515–522
Terada A, Okada-Hatakeyama M, Tsuda K, Sese J (2013a) Statistical significance of combinatorial regula-

tions. Proc Nat Acad Sci 110(32):12996–13001
Terada A, Tsuda K, Sese J (2013b) Fast westfall-young permutation procedure for combinatorial regulation

discovery. In: 2013 IEEE international conference on bioinformatics and biomedicine (BIBM). IEEE,
pp 153–158

Terada A, Kim H, Sese J (2015) High-speed westfall-young permutation procedure for genome-wide asso-
ciation studies. In: Proceedings of the 6th ACM conference on bioinformatics, computational biology
and health informatics. ACM, pp 17–26

Terada A, Tsuda K et al (2016) Significant pattern mining with confounding variables. In: Pacific-Asia
conference on knowledge discovery and data mining. Springer, pp 277–289

Uno T, Kiyomi M, Arimura H (2005) Lcm ver. 3: collaboration of array, bitmap and prefix tree for frequent
itemsetmining. In: Proceedings of the 1st international workshop on open source datamining: frequent
pattern mining implementations. ACM, pp 77–86

van der Laan MJ, Dudoit S, Pollard KS (2004) Augmentation procedures for control of the generalized
family-wise error rate and tail probabilities for the proportion of false positives. Stat Appl Genet Mol
Biol 3(1):1–25

Webb GI (2006) Discovering significant rules. In: Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, pp 434–443

Webb GI (2007) Discovering significant patterns. Mach Learn 68(1):1–33
Webb GI (2008) Layered critical values: a powerful direct-adjustment approach to discovering significant

patterns. Mach Learn 71(2–3):307–323
Westfall PH, Young SS (1993) Resampling-based multiple testing: examples and methods for p-value

adjustment. Wiley Series in Probability and Statistics, Hoboknen
Wörlein M, Meinl T, Fischer I, Philippsen M (2005) A quantitative comparison of the subgraph miners

mofa, gspan, ffsm, and gaston. In: European conference on principles of data mining and knowledge
discovery. Springer, pp 392–403

ZandolinD, PietracaprinaA (2003)Mining frequent itemsets using patricia tries. In: Proceedings of FIMI03,
vol 90

123

1234 L. Pellegrina, F. Vandin

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Efficient mining of the most significant patterns with permutation testing
	Abstract
	1 Introduction
	1.1 Our contribution
	1.2 Additional related work

	2 Background and problem definition
	2.1 Significant pattern mining
	2.2 Multiple hypothesis testing
	2.3 Westfall–Young permutation testing
	2.4 Problem definition

	3 TopKWY Algorithm
	3.1 Main strategy
	3.2 Analysis

	4 Improved bounds on minimum attainable p value
	5 Extensions of TopKWY
	5.1 Controlling the generalized FWER
	5.2 Bounding the proportion of false discoveries
	5.3 Alternative exploration strategies

	6 Implementation details
	6.1 Significant itemset mining
	6.2 Significant subgraph mining

	7 Experimental evaluation
	7.1 Implementation and environment
	7.2 Datasets
	7.3 Parameters and experiments
	7.4 Results
	7.4.1 Itemsets mining
	7.4.2 Subgraphs mining

	8 Conclusion
	Acknowledgements
	References

