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Abstract
In the last 15 years, data seriesmotif and discord discovery have emerged as two useful
and well-used primitives for data series mining, with applications to many domains,
including robotics, entomology, seismology, medicine, and climatology. Nevertheless,
the state-of-the-art motif and discord discovery tools still require the user to provide
the relative length. Yet, in several cases, the choice of length is critical and unforgiving.
Unfortunately, the obvious brute-force solution, which tests all lengths within a given
range, is computationally untenable. In this work, we introduce a new framework,
which provides an exact and scalable motif and discord discovery algorithm that
efficiently finds all motifs and discords in a given range of lengths. We evaluate our
approach with five diverse real datasets, and demonstrate that it is up to 20 times
faster than the state-of-the-art. Our results also show that removing the unrealistic
assumption that the user knows the correct length, can often produce more intuitive
and actionable results, which could have otherwise been missed.
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1 Introduction

Data series1 have gathered the attention of the data management community for more
than 2 decades (Agrawal et al. 1993; Jagadish et al. 1995; Rafiei andMendelzon 1998;
Chakrabarti et al. 2002; Papadimitriou andYu 2006; Camerra et al. 2010; Kashyap and
Karras 2011;Wang et al. 2013b; Camerra et al. 2014; Dallachiesa et al. 2014; Zoumpa-
tianos et al. 2016; Yagoubi et al. 2017; Jensen et al. 2017; Palpanas 2017; Kondylakis
et al. 2018; Peng et al. 2018; Zoumpatianos and Palpanas 2018; Zoumpatianos et al.
2018;Gogolou et al. 2019; Echihabi et al. 2018, 2019;Yagoubi et al. 2020;Kondylakis
et al. 2019; Boniol et al. 2020; Peng et al. 2020a; Boniol and Palpanas 2020; Peng et al.
2020b; Palpanas 2020; Gogolou et al. 2020). They are now one of the most common
types of data, present in virtually every scientific and social domain (Palpanas 2015;
Raza et al. 2015; Mirylenka et al. 2016; Keogh 2011; Palpanas and Beckmann 2019;
Bagnall et al. 2019).

Over the last decade, data series motif discovery has emerged as perhaps the most
used primitive for data series data mining, and it has many applications to a wide
variety of domains (Whitney et al. 1998; Yankov et al. 2007a), including classification,
clustering, and rule discovery. More recently, there has been substantial progress on
the scalability of motif discovery, and now massive datasets can be routinely searched
on conventional hardware (Whitney et al. 1998).

Another critical improvement in motif discovery, is the reduction in the number
of parameters that require specification. The first motif discovery algorithm, PRO-
JECTION (Chiu et al. 2003), requires that the users set seven parameters, and it still
only produces answers that are approximately correct. Researchers have “chipped”
away at this over the years (Mueen et al. 2009; Saria et al. 2011), and the current
state-of-the-art algorithms only require the user to set a single parameter, which is the
desired length of the motifs. Paradoxically, the ease with which we can now perform
motif discovery has revealed that even this single burden on the user’s experience or
intuition may be too great.

For example, AspenTech, a company that makes software for optimizing the
manufacturing process for the oil and gas industry, has begun to use motif discov-
ery in their products both as a stand-alone service and also as part of a precursor
search tool. They recently noted that, “our lighthouse (early adopter) customers
love motif discovery, and they feel it adds great value [...] but they are frustrated
by the finicky setting of the motif length.”(Noskov Michael—Director, Data Science
at Aspen Technology—Personal communication, February 3rd 2015). The issue, of
being restricted to specifying length as an input parameter, has also been noted in
other domains that use motif discovery, such as cardiology (Syed et al. 2010) and
speech therapy (Wang et al. 2013a), as well as in related problems, such as data series
indexing (Linardi and Palpanas 2018a, b).

The obvious solution to this issue is to make the algorithms search over all lengths
in a given range and rank the various length motifs discovered. Nevertheless, this

1 If the dimension that imposes the ordering of the series is time, then we talk about time series. However, a
series can also be defined through other measures (e.g., angle in radial profiles in astronomy, mass in mass
spectroscopy, position in genome sequences, etc.). We use the terms time series, data series, and sequence
interchangeably.
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Fig. 1 An existence proof of semantically different motifs, of slightly different lengths, extracted from a
single dataset

strategy poses two challenges. First, how we can rank motifs of different lengths?
Second, and most important, how we can search over this much larger solution space
in an efficient way, in order to identify the motifs?

In this work, we describe the first algorithms in the literature that address both
problems. The proposed solution requires new techniques that significantly extend
the state-of-the-art algorithms, including the introduction of a novel lower bound-
ing method, which makes efficiently searching a large number of potential solutions
possible.

Note that even if the user has good knowledge of the data domain, in many cir-
cumstances, searching with one single motif length is not enough, because the data
can contain motifs of various lengths. We show an example in Fig. 1, where we report
the 10-s and 12-s motifs discovered in the Electrical Penetration Graph (EPG) of an
insect called Asian citrus psyllid. The first motif denotes the insect’s highly technical
probing skill as it searches for a rich leaf vein (stylet passage), whereas the second
motif is just a simple repetitive “sucking” behavior (xylem ingestion). This example
shows the utility of variable length motif discovery. An entomologist using classic
motif search, say at the length of 12 s, might have plausibly believed that this insect
only engaged in xylem ingestion during this time period, and not realized the insect
had found it necessary to reposition itself at least twice.

The two motif pairs are radically different, reflecting two different types of insect
activities. In order to capture all useful activity information within the data, a fast
search of motifs over all lengths is necessary.

Another popular and well-studied data series primitive, the discord (Yankov et al.
2008; Keogh et al. 2005; Yeh et al. 2016; Senin et al. 2015; Luo et al. 2013), is pro-
posed to discover subsequences that represent outliers. Surprisingly, the solutions to
this problem that have been proposed in the literature are not as effective and scalable
as practice requires. The reasons are twofold. First, they only support fixed-length dis-
cord discovery, and as we explained earlier, this rigidity with the subsequence length
restricts the search space, and consequently, also the produced solutions and the effec-
tiveness of the algorithm. Second, the existing techniques provide poor support for
enumerating multiple discords, namely, for the identification of multiple anomalous
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subsequences. These works have considered only cases with up to 3 anomalous sub-
sequences.

Therefore,we extend ourmotif discovery framework, and propose the first approach
in the literature that deals with the variable-length discord discovery problem. Our
approach leads to a scalable solution, enabling the identification of a large number of
anomalous patterns, which can be of different lengths.

In this work,2 we make the following contributions:

– We define the problems of variable-length motif and discord discovery, which
significantly extend the usability of their operations, respectively.

– We propose a new data series motif and discord framework. The Variable Length
Motif Discovery algorithm (VALMOD) takes as input a data series T , and finds
the subsequence pairs with the smallest Euclidean distance of each length in the
(user-defined) range [�min , �max ]. VALMOD is based on a novel lower bounding
technique, which is specifically designed for the motif discovery problem.

– Furthermore,we extendVALMOD to the discord discovery problem.Wepropose a
newexact variable-length discord discovery,which aims at finding the subsequence
pairs with the largest Euclidean distances of each length in the (user-defined) range
[�min , �max ].

– We evaluate our techniques using five diverse real datasets, and demonstrate the
scalability of our approach. The results show that VALMOD is up to 20× faster
than the state-of-the-art techniques. Furthermore, we present real case studies with
datasets fromentomology, seismology, and trafficdata analysis,whichdemonstrate
the usefulness of our approach.

2 Problem definition

We begin by defining the data type of interest, data series:

Definition 1 (Data series) A data series T ∈ R
n is a sequence of real-valued numbers

ti ∈ R [t1, t2, . . . , tn], where n is the length of T .

We are typically not interested in the global properties of a data series, but in the
local regions known as subsequences:

Definition 2 (Subsequence) A subsequence Ti,� ∈ R
� of a data series T is a continuous

subset of the values from T of length � starting from position i . Formally, Ti,� =
[ti , ti+1, . . . , ti+�−1].

2.1 Motif discovery

In this work, a particular local property we are interested in is data series motifs. A
data series motif pair is the pair of the most similar subsequences of a given length, �,
of a data series:

2 A preliminary version of this work has appeared elsewhere (Linardi et al. 2018a, b).
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Definition 3 (Data series motif pair) Ta,� and Tb,� is a motif pair iff dist(Ta,�, Tb,�) ≤
dist(Ti,�, Tj,�) ∀i, j ∈ [1, 2, . . . , n − � + 1], where a �= b and i �= j , and dist
is a function that computes the z-normalized Euclidean distance between the input
subsequences (Chiu et al. 2003; Mueen et al. 2009; Wang et al. 2013a; Whitney et al.
1998; Yankov et al. 2007a).

Note, that we can consider more motifs, beyond the top motif pair. To that extent,
we can simply build a rank of subsequence pairs in T (of length �), according to their
distances in ascending order.We call the subsequences pairs of this rankingmotif pairs
of length �.

We store the distance between a subsequence of a data series with all the other
subsequences from the same data series in an ordered array called a distance profile.

Definition 4 (Distance profile) A distance profile D ∈ R
(n−�+1) of a data series T

regarding subsequence Ti,� is a vector that stores dist(Ti,�, Tj,�), ∀ j ∈ [1, 2, . . . , n −
� + 1], where i �= j .

One of the most efficient ways to locate the exact data series motif is to compute the
matrix profile (Yeh et al. 2016; Zhu et al. 2016), which can be obtained by evaluating
the minimum value of every distance profile in the time series.

Definition 5 (Matrix profile) A matrix profile M P ∈ R
(n−�+1) of a data series T

is a meta data series that stores the z-normalized Euclidean distance between each
subsequence and its nearest neighbor, where n is the length of T and � is the given
subsequence length. The data series motif can be found by locating the two lowest
values in M P .

To avoid trivial matches, in which a pattern is matched to itself or a pattern that
largely overlaps with itself, the matrix profile incorporates an “exclusion-zone” con-
cept, which is a region before and after the location of a given query that should
be ignored. The exclusion zone is heuristically set to �/2. The recently introduced
STOMP algorithm (Zhu et al. 2016) offers a solution to compute the matrix profile
M P in O(n2) time. This may seem untenable for data series mining, but several fac-
tors mitigate this concern. First, note that the time complexity is independent of �,
the length of the subsequences. Secondly, the matrix profile can be computed with an
anytime algorithm, and in most domains, in justO(nc) steps the algorithm converges
to what would be the final solution (Yeh et al. 2016) (c is a small constant). Finally,
the matrix profile can be computed with GPUs, cloud computing, and other HPC envi-
ronments that make scaling to at least tens of millions of data points trivial (Zhu et al.
2016).

We can now formally define the problems we solve.

Problem 1 (Variable-Length Motif Pair Discovery) Given a data series T and a sub-
sequence length-range [�min, . . . , �max ], we want to find the data series motif pairs of
all lengths in [�min, . . . , �max ], occurring in T .

One naive solution to this problem is to repeatedly run the state-of-the art motif
discovery algorithms for every length in the range. However, note that the size of this
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range can be as large as O(n), which makes the naive solution infeasible for even
middle-size data series. We aim at reducing this O(n) factor to a small value.

Note that the motif pair discovery problem has been extensively studied in the last
decade (Yeh et al. 2016; Zhu et al. 2016; Mueen and Chavoshi 2015; Li et al. 2015;
Mueen et al. 2009; Mohammad and Nishida 2014, 2012). The reason is that if we
want to find a collection of recurrent subsequences in T , the most computationally
expensive operation consists of identifying the motif pairs (Zhu et al. 2016), namely,
solving Problem 1. Extending motif pairs to sets incurs a negligible additional cost
(as we also show in our study).

Given a motif pair {Tα,�, Tβ,�}, the data series motif set S�
r , with radius r ∈ R, is

the set of subsequences of length �, which are in distance at most r from either Tα,�,
or Tβ,�. More formally:

Definition 6 (Data series motif set) Let {Tα,�, Tβ,�} be a motif pair of length � of
data series T . The motif set S�

r is defined as: S�
r = {Ti,�|dist(Ti,�, Tα,�) < r ∨

dist(Ti,�, Tβ,�) < r}.
The cardinality of S�

r , |S�
r |, is called the frequency of the motif set.

Intuitively, we can build a motif set starting from a motif pair. Then, we iteratively
add into the motif set all subsequences within radius r . We use the above definition
to solve the following problem (optionally including a constraint on the minimum
frequency for motif sets in the final answer).

Problem 2 (Variable-Length Motif Sets Discovery) Given a data series T and a length
range [�min, . . . , �max ], we want to find the set S∗ = {S�

r |S�
r is a motif set, �min ≤

� ≤ �max }. In addition, we require that if S�
r , S′�′

r ′ ∈ S∗ ⇒ S�
r ∩ S′�′

r ′ = ∅.
By abuse of notation, we consider an intersection non-empty in the case where

subsequences have different lengths, but the same starting position offset (e.g., S200
r =

{T4,200}, S500
r ′ = {T4,500} ⇒ S200

r ∩ S500
r ′ �= ∅).

Thus, the variable-length motif sets discovery problem results in a set, S∗, of motif
sets. The constraint at the end of the problem definition restricts each subsequence to
be included in at most one motif set. Note that in practice we may not be interested in
all the motif sets, but only in those with the k smallest distances, leading to a top-k
version of the problem. In our work, we provide a solution for the top-k problem
(though, setting k to a very large value will produce all results).

2.2 Discord discovery

In order to introduce the problem of discord discovery, we first define the notion of
best match, or nearest neighbor.

Definition 7 (mth best match) Given a subsequence Ti,�, we say that its mth best
match, or Nearest Neighbor (mth NN) is Tj,�, if Tj,� has the mth shortest distance to
Ti,�, among all the subsequences of length � in T , excluding trivial matches.

In the distance profile of Ti,�, the mth smallest distance, is the distance of the mth
best match of Ti,�.We are now in the position to formally define the discord primitives,
we use in our work.
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Fig. 2 A dataset with 12
subsequences (of the same
length �) depicted as points in
2-dimensional space. We report
the Top-k mthdiscords. They
belong to groups of
subsequences, whose cardinality
depends on m. The index k ranks
the subsequences according their
mth best match distances, in
descending order

Definition 8 (mth discord (Keogh et al. 2005)) The subsequence Ti,� is called the mth
discord of length �, if its mth best match is the largest among the best match distances
of all subsequences of length � in T .

Intuitively, discovering the mthdiscord enables us to find an isolated group of
m subsequences, which are far from the rest of the data. Furthermore, we can rank
the mthdiscords, according to their mth best matches. This allows us to define the
Top-k mthdiscords.

Definition 9 (Top-k mth discord) A subsequence Ti,� is a T op-k mth-discord if it has
the kth largest distance to its mth NN, among all subsequences of length � of T .

In Fig. 2,we plot a group of12 subsequences (represented in a 2-dimensional space),
and we depict three Top-k mthdiscords (groups of red/dark circles). Remember that
m represents the number of anomalous subsequences in a discord group. On the other
hand, k ranks the discords and implicitly the groups, according to their mth best match
distances, in descending order (e.g., T op-1 1st discord and T op-1 2nd).

Given these definitions, we can formally introduce the following problem:

Problem 3 (Variable-Length Top-k mth Discord Discovery) Given a data series T , a
subsequence length-range [�min, . . . , �max ] and the parameters a, b ∈ N

+ we want to
enumerate the Top-k mthdiscords for each k ∈ {1, .., a} and each m ∈ {1, .., b}, and
for all lengths in [�min, . . . , �max ], occurring in T .

Observe that solving the Variable-Length Top-k mthDiscord Discovery problem is
relevant to solving the Variable-Length Motif Set Discovery problem: in the former
case we are interested in the subsequences with the most distant neighbors, while in
the latter case we seek the subsequences with the most close neighbors. Therefore,
the Matrix Profile, which contains all this information, can serve as the basis to solve
both problems.

3 Comparingmotifs of different lengths

Before introducing our solutions to the problems outlined above, we first discuss the
issue of comparing motifs of different lengths. This becomes relevant when we want
to rank motifs of different lengths (within the given range), which is useful in order
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to identify the most prominent motifs, irrespective of their length. In this section, we
propose a length-normalized distance measure that the VALMOD algorithm uses in
order to produce such rankings.

The increased expressiveness of VALMOD offers a challenge. Since we can dis-
cover motifs of different lengths, we also need to be able to rank motifs of different
lengths. A similar problem occurs in string processing, and a common solution is to
replace the edit-distance by the length-normalized edit-distance, which is the classic
distance measure divided by the length of the strings in question (Marzal and Vidal
1993). This correctionwould find the pair {concatenation, concameration}more simi-
lar than {cat, cot},matching our intuition, since only 15%of the characters are different
in the former pair, as opposed to 33% in the latter.

Researchers have suggested this length-normalized correction for time series, but
as we will show, the correction factor is incorrect. To illustrate this, consider the
following thought experiment. Imagine that some process in the system we are mon-
itoring occasionally “injects” a pattern into the time series. As a concrete example,
washing machines typically have a prototypic signature (as exhibited in the TRACE
dataset (Roverso 2000)), but the signatures express themselves more slowly on a cold
day, when it takes longer to heat the cooler water supplied from the city (Gisler et al.
2013). We would like all equal length instances of the signature to have approximately
the same distance. As a consequence, we factorize the Euclidean distance by the fol-
lowing quantity: sqrt(1/�), where � is the length of the sequences. This aims to favor
longer and similar sequences in the ranking process of matches that have different
lengths.

In Fig. 3(left) we show two examples from the TRACE dataset (Roverso 2000),
which will act as proxies for a variable length signature. We produced the variable
lengths by down sampling. In Fig. 3(center), we show the distances between the
patterns as their length changes.With no correction, theEuclideandistance is obviously
biased to the shortest length. The length-normalized Euclidean distance looks “flatter”
and suggests itself as the proper correction. However, its variation over the sequence
length change is not visible due to the small scale. In Fig. 3(right), we show all of
the measures after dividing them by their largest value. Now we can see that the
length-normalized Euclidean distance has a strong bias toward the longest pattern. In
contrast to the other two approaches, the sqrt(1/length) correction factor provides a
near perfect invariant distance over the entire range of values.

4 Proposed approach for motif discovery

Our algorithm, Variable Length Motif Discovery (VALMOD), starts by computing
the matrix profile on the smallest subsequence length, namely �min , within a specified
range [�min, �max ]. The key idea of our approach is to minimize the work that needs to
be done for subsequent subsequence lengths (�min + 1, �min + 2, . . ., �max ). In Fig. 4,
it can be observed that the motif of length 8 (T33,8 − T97,8) has the same offsets as
the motif of length 9 (T33,9 − T97,9). Can we exploit this property to accelerate our
computation?
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Fig. 3 (left) Two series from the TRACE dataset, as proxies for time series signatures at various speeds.
(center) The classic Euclidean distance is clearly not length invariant. (right) After divide-by-max normal-
izing, it is clear that the length-normalized Euclidean distance has a strong bias toward the longest pattern

Fig. 4 (top) The top motifs of length 9 in an example data series have the same offsets as the top motifs of
length 8. (bottom) The sorted distance profiles of T33,8 and T33,9

It seems that if the nearest neighbor of Ti,�min is Tj,�min , then probably the nearest
neighbor of Ti,�min+1 is Tj,�min+1. For example, as shown in Fig. 4(bottom), if we sort
the distance profiles of T33,8 and T33,9 in ascending order, we can find that the nearest
neighbor of T33,8 is T97,8, and the nearest neighbor of T33,9 is T97,9.

One can imagine that if the location of the nearest neighbor of Ti,� (i = 1, 2, . . . , n−
m + 1) remains the same as we increase �, then we could obtain the matrix profile of
length �+k inO(n) time (k = 1, 2, . . .). However, this is not always true. The location
of the nearest neighbor of Ti,� may not change as we slightly increase �, if there is
a substantial margin between the first and second entries of Dranked(Ti,�). But, as �

gets larger, the nearest neighbor of Ti,� is likely to change. For example, as shown in
Fig. 5, when the subsequence length grows to 19, the nearest neighbor of T33,19 is no
longer T97,19, but T1,19. We observe that the ranking of the distance profile values may
change, even when the data is relatively smooth. When the data is noisy and skewed,
this ranking can change even more often. Is there any other rank-preserving measure
that we can exploit to accelerate the computation?

The answer is yes. Instead of sorting the entries of the distance profile, we create and
sort a new vector, called the lower bound distance profile. Figure 5(bottom) previews
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Fig. 5 (Top distance profiles) Ranking by true distances leads to changes in the order of the pairs. (Bottom
distance profiles) Ranking by lower bound distances maintains the same order of pairs over increasing
lengths

the rank-preserving property of the lower bound distance profile. As we will describe
later, once we know the distance between Ti,� and Tj,�, we can evaluate a lower bound
distance between Ti,�+k and Tj,�+k , ∀k ∈ [1,2,3,…]. The rank-preserving property
of the lower bound distance profile can help us prune a large number of unnecessary
computations as we increase the subsequence length.

4.1 The lower bound distance profile

Before introducing the lower bound distance profile, let us first investigate its basic
element: the lower bound Euclidean distance.

Assume that we already know the z-normalized Euclidean distance d�
i, j between

two subsequences of length �: Ti,� and Tj,�, and we are now estimating the distance
between two longer subsequences of length �+k: Ti,�+k and Tj,�+k . Our problem can
be stated as follows: given Ti,�, Tj,� and Tj,�+k (but not the last k values of Ti,�+k), is
it possible to provide a lower bound function L B(d�+k

i, j ), such that L B(d�+k
i, j ) ≤ d�+k

i, j ?
This problem is visualized in Fig. 6 .

One may assume that we can simply set L B(d�+k
i, j ) = d�

i, j by assuming that the
last k values of Ti,�+k are the same as the last k values of Tj,�+k . However, this is not
an answer to our problem, as we need to evaluate z-normalized Euclidean distances,
which are not simple Euclidean distances. The mean and standard deviation of a
subsequence can change as we increase its length, so we need to re-normalize both
Ti,�+k and Tj,�+k . Assume that the mean and standard deviation of Tx,y are μx,y and
σx,y , respectively (i.e. Tj,�+k corresponds to μ j,�+k and σ j,�+k). Since we do not
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Fig. 6 Increasing the subsequence length from � to � + k

know the last k values of Ti,�+k , both μi,�+k and σi,�+k are unknown and can thus be
regarded as variables. We recall that ti denotes the i th point of a generic sequence T
(or a subsequence Ta,b), we thus we have the following:

d�+k
i, j ≥ min

μi,�+k ,σi,�+k

√
√
√
√

�
∑

p=1

(
ti+p−1 − μi,�+k

σi,�+k
− t j+p−1 − μ j,�+k

σ j,�+k

)2

= min
μi,�+k ,σi,�+k

σ j,�

σ j,�+k

√
√
√
√
√

�
∑

p=1

(

ti+p−1 − μi,�+k
σi,�+kσ j,�

σ j,�+k

− t j+p−1 − μ j,�+k

σ j,�

)2

Here, we substitute the variables μi,�+k and σi,�+k , respectively with μ′ and σ ′.
Hence, we obtain:

= min
μ′,σ ′

σ j,�

σ j,�+k

√
√
√
√

�
∑

p=1

(
ti+p−1 − μ′

σ ′ − t j+p−1 − μ j,�

σ j,�

)2

(1)

Clearly, theminimumvalue shown in Eq. (1) can be set as L B(d�+k
i, j ).We can obtain

L B(d�+k
i, j ) by solving

∂L B(d�+k
i, j )

∂μ′ = 0 and
∂L B(d�+k

i, j )

∂σ ′ = 0:

L B(d�+k
i, j ) =

⎧

⎨

⎩

√
�

σ j,�
σ j,�+k

if qi, j ≤ 0
√

�(1 − q2
i, j )

σ j,�
σ j,�+k

otherwise
(2)

where qi, j =
∑�

p=1
(t j+p−1ti+p−1)

�
−μi,�μ j,�

σi,�σ j,�
.
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L B(d�+k
i, j ) yields the minimum possible z-normalized Euclidean distance between

Ti,�+k and Tj,�+k , given Ti,�, Tj,� and Tj,�+k (but not the last k values of Ti,�+k). Now
that we have obtained the lower bound Euclidean distance between two subsequences,
we are able to introduce the lower bound distance profile.

Using Eq. (2), we can evaluate the lower bound Euclidean distance between Tj,�+k

and every subsequence of length �+k in T . By putting the results in a vector, we obtain
the lower bound distance profile L B(D�+k

j ) corresponding to subsequence Tj,�+k :

L B(D�+k
j ) = L B(d�+k

1, j ), L B(d�+k
2, j ), …,L B(d�+k

n−�−k+1, j ). If we sort the components

of L B(D�+k
j ) in an ascending order, we can obtain the ranked lower bound dis-

tance profile: L Branked(D�+k
j ) = L B(d�+k

r1, j ), L B(d�+k
r2, j ), . . . , L B(d�+k

rn−�−k+1, j ), where

L B(d�+k
r1, j ) ≤ L B(d�+k

r2, j ) ≤ · · · ≤ L B(d�+k
rn−�−k+1, j ).

We would like to use this ranked lower bound distance profile to accelerate our
computation. Assume that we have a best-so-far pair ofmotifs with a distance distBSF .
If we examine the pth element in the ranked lower bound distance profile and find
that L B(d�+k

rp, j ) > distBSF , then we do not need to calculate the exact distance for

d�+k
rp, j , d�+k

rp+1, j , . . . , d�+k
rn−�−k+1, j anymore, as they cannot be smaller than distBSF . Based

on this observation, our strategy is as follows. We set a small, fixed value for p.
Then, for every j , we evaluate whether L B(d�+k

rp, j ) > distBSF is true: if it is, we

only calculate d�+k
r1, j , d�+k

r2, j , . . . , d�+k
rp−1, j . If it is not, we compute all the elements of

D�+k
j . We update distBSF whenever a smaller distance value is observed. In the

best case, we just need to calculate O(np) exact distance values to obtain the motif
of length l + k. Note that the order of the ranked lower bound distance profile is
preserved for every k. That is to say, if L B(d�+k

a, j ) ≤ L B(d�+k
b, j ), then L B(d�+k+1

a, j ) ≤
L B(d�+k+1

b, j ). This is because the only component in Eq. (2) related to k is σ j,�+k .
When we increase k by 1, we are just performing a linear transformation for the
lower bounddistance: L B(d�+k+1

i, j ) = L B(d�+k
i, j )σ j,�+k/σ j,�+k+1. Therefore,we have

L B(d�+k+1
rp, j ) = L B(d�+k

rp, j )σ j,�+k/σ j,�+k+1 , and the ranking is preserved for every k.

4.2 TheVALMOD algorithm

We are now able to formally describe the VALMOD algorithm. The pseudocode for
VALMOD is shown in Algorithm 1. With the call of ComputeMatrixProfile() in line
5, we build the matrix profile corresponding to �min , and in the meantime store the
smallest p values of each distance profile in the memory. Note that the matrix profile
is stored in the vector M P , which is coupled with the matrix profile index, I P , which
is a structure containing the offsets of the nearest neighbor subsequences. We can
easily find the motif corresponding to �min as the minimum value of M P . Then, in
lines 7–16, we iteratively look for the motif of every length within �min+1 and �max .
The ComputeSubM P function in line 9 attempts to find the motif of length i only
by evaluating a subset of the matrix profile corresponding to subsequence length i .
Note that this strategy, which is based on the lower bounding technique introduced in
Sect. 4.1, might not be able to capture the global minimum value within the matrix
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Algorithm 1: V AL M O D
Input: DataSeries T , int �min int �max , int p
Output: V AL M P

1 int nD P ← |T | − �min + 1 ;
2 V AL M P ← new V AL M P(nD P);
3 V AL M P.M P = {⊥, . . . , ⊥};
4 MaxHeap[] list D P , double [] M P , int [] I P ;
5 list D P , M P , I P ← ComputeMatri x Prof ile(T , �min , p); // listDP contains p entries of

each distance profile
6 V AL M P ← updateV AL M P(V AL M P ,M P ,I P ,nD P) ;
7 for i ← �min + 1 to �max do
8 nDP ← |T | − i + 1 ;

// compute SubMP and update listDP for the length i
9 bool bBestM, double [] SubM P , I P ← ComputeSubM P(T ,nD P ,list D P ,i ,p);

10 if bBestM then
// SubMP surely contains the motif, update VALMP with it

11 updateV AL M P(V AL M P ,SubM P ,I P ,nD P);
12 else
13 list D P ,M P ,I P ← ComputeMatri x Prof ile(T ,i ,p);

// SubMP might not contain the motif, update VALMP computing MP
14 updateV AL M P(V AL M P ,M P ,I P ,nD P);
15 end
16 end

Algorithm 2: updateV AL M P
Input: V AL M P , double [] M Pnew, int [] I P , nD P , �
Output: V AL M P

1 for i ← 1 to nD P do
// length normalize the Euclidean distance

2 double l Norm Dist ← M Pnew[i] ∗ √
1/�;

// if the distance at offset i of VALMP, surely computed with previous
lengths, is larger than the actual, update it

3 if (V AL M P.distances[i] > l Norm Dist or V AL M P.M P[i] == ⊥) then
4 V AL M P.distances[i] ← M Pnew[i];
5 V AL M P.norm Distances[i] ← l Norm Dist ;
6 V AL M P.lengths[i] ← �;
7 V AL M P.indices[i] ← I P[i];
8 end
9 end

profile. In case that happens (which is rare), theBooleanflagbBest M is set to false, and
we compute the whole matrix profile with the computeMatri x Prof ile procedure in
line 13.

The final output of V AL M O D is a vector, which is called V AL M P (variable
length matrix profile) in the pseudo-code. If we were interested in only one fixed
subsequence length, VALMP would be the matrix profile normalized by the square
root of the subsequence length. If we are processing various subsequence lengths,
then as we increase the subsequence length, we update VALMP when a smaller length-
normalized Euclidean distance is observed.

Algorithm2 shows the routine to update theV AL M P structure. ThefinalV AL M P
consists of four parts. The i th entry of the norm Distances vector stores the smallest
length-normalized Euclidean distance values between the i th subsequence and its
nearest neighbor,while the i th place of vector distances stores their straight Euclidean
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Algorithm 3: ComputeMatri x Prof ile
Input: DataSeries T , int �, int p
Output: M P , list D P

1 int nD P ← |T |-�+1;
2 double [] M P ← double [nD P];
3 int [] I P ← int [nD P];
4 MaxHeap[] list D P= new MaxHeap(p)[nD P];
// compute the dot product vector QT for the first distance profile

5 double [] QT ← SlidingDot Product(T1,� , T );
// compute sum and squared sum of the first subsequence of length �

6 s ← sum(T1,�); ss ← squaredSum(T1,�);
// compute the first distance profile with distance formula (Eq.(3)) and

store the minimum distance in MP and the offset of the nearest neighbor
in IP

7 D(Ti,�) ← CalcDist Prof ile(QT ,Ti,�, T , s, ss);
8 M P[1], I P[1] ← min(D(Ti,�));
// iterate over the subsequences of T

9 for i ← 2 to nD P do
// update the dot product vector QT for the ith subsequence

10 for j ← nD P down to 2 do
11 QT [ j]←QT [ j − 1] − T [ j − 1] × T [i − 1] + T [ j + � − 1] × T [i + � − 1] ;
12 end

// update sum and squared sum of the ith subsequence
13 s ← s − T [i − 1] + T [� + i − 2];
14 ss ← ss − T [i − 1]2 + T [� + i − 2]2;
15 D(Ti,�) ← CalcDist Prof ile(QT ,Ti,�, T , s, ss);
16 M P[i], I P[i] ← min(D(Ti,�));

// Store in listDP[i] the p entries e with smallest lower bounding
distance

17 int c ← 0;
18 for each entry e in D(Ti,�) do

// Compute the lower bound for the length � + 1
19 e.L B ← compL B(�, � + 1, QT [c], e.s1, e.s2, e.ss1, e.ss2);

// save the entry only if is smaller than the max lb so far or if
listDP[i] contains fewer than p elements

20 if e.L B < max(list D P[i]) or |list D P[i]| < p then
21 insert(list D P[i], e);
22 end
23 c← c + 1;
24 end
25 end

distance. The location of each subsequence’s nearest neighbor is stored in the vector
indices. The structure lengths contains the length of the i th subsequences pair.

In thenext two subsections,wedetail the two sub-routines, computeMatri x Pro f ile
and the ComputeSubM P .

4.3 Computing thematrix profile

The routine ComputeMatri x Prof ile (Algorithm 3) computes a matrix profile for a
given subsequence length, �. It essentially follows the STOMP algorithm (Zhu et al.
2016), except that we also calculate the lower bound distance profiles in line 18. In
line 5, the dot product between the sequence T1,� and the others in T is computed in
frequency domain in O(nlogn) time, where n = |T |. The dot product is computed in
constant time in line 11 by using the result of the previous overlapping subsequences.
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In line 7 we measure each z-normalized Euclidean distance, between Ti,� and the
other subsequence of length � in T , avoiding trivial matches. The distance measure
formula used is the following (Mueen et al. 2014; Yeh et al. 2016; Zhu et al. 2016):

dist(Ti,�, Tj,�) =
√

2�(1 − QTi, j − �μiμ j

�σiσ j
) (3)

In Eq. (3) QTi, j represents the dot product of the two sub-series with offset i and
j respectively. It is important to note that, we may compute μ and σ in constant time
by using the running plain and squared sum, namely s and ss (initialized in line 6). It
follows that μ = s/� and σ = √

(ss/�) − μ2.
In lines 8 and 16, we update both the matrix profile and the matrix profile index,

which holds the offset of the closest match for each Ti,l .
Algorithm 3 ends with the loop in line 18, which evaluates the lower bound distance

profile and stores the p smallest lower bound distance values in list D P . In line 19, the
procedure compL B evaluates the lower bound distance profile introduced in Sect. 4.1
using Eq. (2). The structure list D P is a Max Heap with a maximum capacity of p.
Each entry e of the distance profile in line 18 is a tuple containing the Euclidean
distance between a subsequence Tj,� and its nearest neighbor, the location of that
nearest neighbor, the lower bound Euclidean distance of the pair, the dot product of
them, and the plain and squared sum of Tj,�. In Fig. 7b, we show an example of the
distance profile in line 18. The distance profile is sorted according to the lower bound
Euclidean distance values (shown as LB in the figure). The entries corresponding to
the p smallest LB values are stored in memory to be reused for longer motif lengths.

We note that this routine is called at least once, for the first subsequence length of
the range, namely � = �min . In the worst case, it is executed for each length in the
range.
Complexity analysis In line 15 of Algorithm 3, the time cost to compute a single
distance profile isO(n), where n is the number of subsequences of length �. Therefore
computing the n distance profiles takes O(n2) time. In line 18, computing the lower
bounds of the smallest p entries of each distance profile takesO(n log(p)) additional
time. The overall time complexity of the ComputeMatri x Prof ile routine is thus
O(n2 log(p)).

4.4 Matrix profile for subsequent lengths

We are now ready to describe our ComputeSubMP algorithm, which allows us to find
the motifs for subsequence lengths greater than � in linear time.

The input of ComputeSubMP, whose pseudo-code is shown in Algorithm 4, is the
vector list Dp that we built in the previous step. In line 5, we start to iterate over the
p × n elements of list Dp in order to find the motif pair of length newL , using a
procedure that is faster than Algorithm 1, leading to a complexity that is now linear
in the best case. Since list D P potentially contains enough elements to compute the
whole matrix profile, it can provide more information than just the motif pair.
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Algorithm 4: ComputeSubMP
Input: DataSeries T , int nDp, MaxHeap[] list D P , int newL , int p
Output: bBestM, SubM P , I P

1 double[] SubM P ← double[nDp];
2 int[] I P ← int[nDp];
3 double minDist Abs ← inf, double minLbAbs ← inf;
4 List 〈 int,double 〉 nonV alid D P;
// iterate over the partial distance profiles in listDP

5 for i ← 1 to nDp do
6 double minDist ← inf;
7 int ind ← 0;
8 double max L B ← popMax(list D P[i]);

// update the partial distance profile for the length newL (true
Euclidean and lower bounding distance )

9 for each entry e in list D P[i] do
10 e.dist , e.L B ← updateDist And L B(e, newL);
11 minDist ← min(minDist ,e.dist);
12 if minDist == e.dist then
13 ind = e.of f set ;
14 end
15 end

// check if the min (minDist) of this partial distance profile is the min
of the complete distance profile

16 if minDist < max L B then
// minDist is the real min; valid distance profile

17 minDist ABS ← min(minDist Abs,minDist);
18 SubM P[i] = minDist ;
19 I P[i] =ind;
20 else

// minDist is not the real min; non-valid distance profile
21 minLbAbs ← min(minLbAbs, max L B));
22 SubM P[i] = ⊥;
23 nonV alid D P.add(〈i, max L B〉)
24 end
25 end
26 bool bBest M ← (minDist ABS < minLbAbs) ;

// if SubMP does not contain the motif distance (bBestM = false), compute
the whole non-valid distance profiles, if it is faster then
computeMatrixProfile (nDp / 2 = true)

27 if !bBest M and nonV alid D P.si ze() < (
n log(p)
log(n)

) then
28 for each pair < ind, lbMax > in nonV alid D P do
29 if lbMax < minDist ABS then
30 QT ← SlidingDot Product(Tind,� , T );
31 double s ← sum(Tind,�); double ss ← squaredSum(Tind,�);
32 D(Tind,�) ← CalcDist Prof (QT ,Tind,�, T , s, ss);
33 SubM P[ind], I P[ind] = min(D(Tind,�));
34 insert(list D P[ind], D(Tind,�));
35 end
36 end
37 bBest M ← 1;
38 end

In the loop of line 9, we update all the entries of list D P[i] by computing the
Euclidean and lower bound distance for the length newL . This operation is valid,
since the ranking of each list D P[i] is maintained as the lower bound gets updated.
Moreover, this latter computation is done in constant time (line 10), since the entries
contain the statistics (i.e. sum, squared sum, dot product) for the length newL − 1.
Also note that the routine updateDist And L B avoids the trivial matches, which may
result from the length increment.
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Subsequently, the algorithm checks in line 16 ifminDist is smaller than or equal to
max L B, the largest lower bound distance value in list D P[i]. If this is true, minDist
is the smallest value in the whole distance profile. In lines 17 and 18, we update the
best-so-far distance value and the matrix profile. On the other hand, we update the
smallest max lower bounding distance in line 21, recording also that we do not have
the true min for the distance profile with offset i (line 23). Here, we may also note that
even though the local true min is larger than the max lower bound (i.e., the condition
of line 16 is not true), minDist may still represent an approximation of the true matrix
profile point.

When the iteration of the partial distance profiles ends (end of for loop in line 5),
the algorithm has enough elements to know if the matrix profile computed contains the
real motif pair. In line 26, we verify if the smallest Euclidean distance we computed
(minDist ABS) is less than minLbAbs, which is the minimum lower bound of the
non-valid distance profiles.We call non-valid all the partial distance profiles, for which
the maximum lower bound distance (i.e., the p-th largest lower bound of the distance
profile) is smaller than the minimum true distance (line 20); otherwise, we call them
valid (line 16).

As a result of the ranking preservation of the lower bounding function, if the above
criterion holds, we know that each true Euclidean distance in the non-valid distance
profilesmust be greater thanminDist ABS. In line 27, the algorithm has its last oppor-
tunity to exploit the lower bound in the distance profiles, in order to avoid computing
the whole matrix profile. If bBest M is false (the motif has not been found), we start to
iterate through the non-valid distances profiles. We perform this iteration, when their
number is not larger than n log(p)

log(n)
. This condition guarantees that Algorithm 4 is faster

than Algorithm 3.
We present here two examples that explain the main procedures of V AL M O D.

Example 1 In Fig. 7, we show a snapshot of a VALMOD run. In Fig. 7a, VALMOD
receives as input a data series of length 1800. In Fig. 7b, the matrix profile for subse-
quence length � = 600 is computed (Algorithm 3). On the left, we depict the distance
profile regarding T160,600, and rank it according to the lower bound (LB) distance
values. Although we are computing the entire distance profile, we store only the first
p = 5 entries in memory.

Example 2 Figure 8 shows the execution of ComputeSubM P (Algorithm 4), taking
place after the step illustrated in Fig. 7b. In this picture, we show the distance profile
of a subsequence belonging to the motif pair, for subsequence length � = 601. This
time it is built by computing p = 5 distances (left side of the picture). We can now
make the following observations:

(a) In the distance profile of the subsequence T160,601 (left array): minDist = 2.34 <

max L B = 3.18 ⇐⇒ the value 2.34 is both a local and a global minimum
(among all the distance profiles).

(b) Considering the partial distance profile of subsequence T620,601 (right array), we
do not know if its minDist is its real global minimum, since 20.69 (max L B) <

24.07 (minDist).
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(a)

(b)

Fig. 7 a Input time series, b Compute matrix profile snapshot: (on the left) distance profile of the subse-
quence T160,600 which is part of the motif

Fig. 8 Compute SubMatrix profile: the partial distance profile of T160,601 contains themotif’s subsequences
distance

(c) We know, that 20.69 (max L B of the distance profile of subsequence T620,601) is
the minLbAbs, or in other words, the smallest max L B distance among all the
partial distance profiles in which max L B < minDist holds.

(d) We know that there are no true Euclidean distances (among those computed)
smaller than 2.34. Since minDist = 2.34 < minLbAbs = 20.69 ⇐⇒ 2.34 is
the distance of the motif {T160,601; T1136,601}.
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Complexity analysis In the best case, ComputeSubM P can find the motif pair in
O(np) time, where n is the total number of distance profiles. This means that no
distance profile computation takes place, since the condition in line 26ofAlgorithm5 is
satisfied.Otherwise, ifwe need to iterate over the non-valid distance profiles for finding
the answer, the time complexity reaches its worst case,O(nC log(n)), withC denoting
the number of non-valid distance profiles that are recomputed. When C <

n log(p)
log(n)

,
the algorithm is asymptotically faster than re-executing ComputeMatrixProfile, which
takes O(n2 log(p)) time.

Note that, each non-valid distance profile (starting in line 30) is computed by using
the primitives introduced in theComputeMatrixProfile algorithm, only if its maximum
lower bound is less than the smallest true distance minDist ABS. This indicates that
the distance profile for length newL may contain not yet computed distances smaller
than minDist ABS, which is our best-so-far. Therefore, the overall complexity of
VALMOD is O(n2 log(p) + (�max − �min)np) in the best case, whereas the worst
case time complexity is O((�max − �min)n2 log(p)). Clearly, the n2 log(p) factor
dominates, since (�max − �min) acts as a constant.

5 Findingmotif sets

We finally extend our technique in order to find the variable-length motif sets. In
that regard, we start to consider the top-k motif pairs, namely the pairs having the k
smallest length-normalized distances. The idea is to extend each motif pair to a motif
set considering the subsequence’s proximity as a quality measure, thus favoring the
motif sets, which contain the closest subsequence pairs. Moreover, for each top-K
motif pair (Ta,�,Tb,�), we use a radius r = D ∗dist(Ta,�, Tb,�), when we extend it to a
motif set. We call the real variable D radius factor. This choice permits us to tune the
radius r by the user defined radius factor, considering also the characteristics of the
data. Setting a unique and non data dependent radius for all motif sets, would penalize
the results of exploratory analysis.

First, we introduce Algorithm 5, a slightly modified version of the updateV almp
routine (Algorithm 2). The new algorithm is called updateV AL M P For Moti f Sets,
and itsmain goal is to keep track of the best k subsequence pairs (motif pairs) according
to the V AL M P ranking, and the corresponding partial distance profiles. The idea is to
later exploit the lower bounding distances for pruning computations, while computing
the motif sets.

In lines 4 to 7, we build a structure named pair , which carries the information of
the subsequences pairs that appear in the V AL M P structure. During this iteration,
we leave the fields part D P1 and part D P2 empty, since they will be later initialized
with the partial distance profiles, if their pair is in the top k of V AL M P . In order to
enumerate the best k pairs, we use the global maximum heap heapBest K Pairs in
line 8. Then, we assign (or update) the corresponding partial distance profiles (line 15)
to each pair.

We are now ready to present the variable lengthmotif sets discovery algorithm (refer
to Algorithm 6). Starting at line 1, the algorithm iterates over the best pairs. For each
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Algorithm 5: updateV AL M P For Moti f Sets
Input: V AL M P , double [] M Pnew, int [] I P , nD P , �,MaxHeap[] list D P ,
Output: V AL M P

1 for i ← 1 to nD P do
// length normalize the Euclidean distance

2 double l Norm Dist ← M Pnew[i] ∗ √
1/�;

// if the distance at offset i of VALMP, surely computed with previous
lengths, is larger than the actual, update it

3 if (V AL M P.distances[i] > l Norm Dist or V AL M P.M P[i] == ⊥) then
4 entry pair ;
5 pair .of f 1 ← i, pair .of f 2 ← I P[i] ;
6 pair .distance ← M Pnew[i], pair .� ← �;
7 pair .part D P1 ← ⊥, pair .part D P2 ← ⊥ ;
8 insert(heapBest K Pairs, pair);
9 V AL M P.distances[i] ← M Pnew[i];

10 V AL M P.norm Distances[i] ← l Norm Dist ;
11 V AL M P.lengths[i] ← �;
12 V AL M P.indices[i] ← I P[i];
13 end
14 end
15 for each pair in heapBest K Pairs do
16 if (pair .part D P1== ⊥) then
17 pair .part D P1 ← list D P[pair .of f 1];
18 pair .part D P2 ← list D P[pair .of f 2];
19 end
20 end

one of those, we need to check if the search range is smaller than the maximum lower
bound distances of both partial distance profiles. If this is true, we are guaranteed to
have already computed all the subsequences in the range. Therefore, in lines 7 and 14
we filter the subsequences in the range, sorting the partial distance profile according
to the offsets. This operation will permit us to find the trivial matches in linear time.

On the other hand, if the search range is larger than the maximum lower bound
distances of both partial distance profiles, we have to re-compute the entire distance
profile (lines 11 and 18), to find all the subsequences in the range. Once we have the
distance profile pairs, we need to merge them and remove the trivial matches (line 20).
Each time we add a subsequence in a motif set, we remove it from the search space:
this guarantees the empty intersection among the sets in S∗.

Complexity analysis The complexity of the updateV AL M P For Moti f Sets algo-
rithm isO(n log(k)), where n is the length of the V AL M P structure, which is linearly
scanned and updated.O(log(k)) time is needed to retain the k best pairs of V AL M P ,
using the heap structure in line 8. Thefinal algorithm computeV ar LengthMoti f Sets
takesO(k × p × log(p)) time, in the best case. This occurs when, after iterating the k
pairs in heapBest K Pairs, each partial distance profile of length p, contains all the
elements in the range r . In this case, we just need an extra O(p log(p)) time to sort
its elements (line 7 and 14). On the other hand, the worst case time is bounded by
O(k × n × log(n)), where n is the length of the input data series T . In this case, the
algorithm needs to recompute k times the entire distance profile (line 11 and 18), at a
unit cost of O(n log(n)) time.
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Algorithm 6: computeV ar LengthMoti f Sets
Input: DataSeries T ,MaxHeap heapBest K Pairs, double D
Output: Set S∗

1 for each pair in heapBest K Pairs do
2 double r ← pair .distance * D ;
3 double max L B1 ← popMax(pair .part D P1);
4 double max L B2 ← popMax(pair .part D P2);
5 D(Tpair .of f 1,pair .�) ← ∅, D(Tpair .of f 2,pair .�) ← ∅ ;
6 if max L B1 > r then

// sort according the offset, the partial distance profile contains
all the elements in the range

7 D(Tpair .of f 1,pair .�) ← sort And Filter Range(r ,pair .part D P1.toVector());
8 else

// re-compute the mat
9 double s ← sum(Tind,�);

10 double ss ← squaredSum(Tind,�);
11 D(Tpair .of f 1,pair .�) ← CalcDist Prof I n Range(r ,QT ,Tpair .of f 1,pair .�, T , s, ss);
12 end
13 if max L B2 > r then
14 D(Tpair .of f 2,�) ← sort And Filter Range(r ,pair .part D P2.toVector());
15 else
16 double s ← sum(Tind,�);
17 double ss ← squaredSum(Tind,�);
18 D(Tpair .of f 2,pair .�) ← CalcDist Prof I n Range(r ,QT ,Tpair .of f 1,pair .�, T , s, ss);
19 end

20 Set S pair .�
r ← mergeRemoveT M(D(Tpair .of f 1,�), D(Tpair .of f 2,�));

21 S∗.add(S pair .�
r );

22 end

6 Discord discovery

We now describe our approach to solving the Variable-Length Top-k mthDiscord Dis-
covery problem. First, we explain some useful notions, andwe then present our discord
discovery algorithm.

6.1 Comparing discords of different lengths

Before introducing the algorithm that identifies discords (from the T op-1 1st to the
Top-k mthone), we define the data structure that allows us to accommodate them. We
can represent this structure as a k × m matrix, which contains the best match distance
and the offset of each discord.

More formally, given a data series T , and a subsequence length �wedefine: dkm� =
⎡

⎣

〈d, o〉1,1 . . . 〈d, o〉1,m
. . . . . . . . .

〈d, o〉k,1 . . . 〈d, o〉k,m

⎤

⎦, where a generic pair 〈d, o〉i, j contains the offset o and the

corresponding distance d of the T op-i j th discord of length � (1 ≤ i ≤ k and
1 ≤ j ≤ m). In dkm�, rows rank the discords according to their positions (mth
discords), and the columns according to their best match distance (T op-k). For each
pair 〈d, o〉a,b, 〈d ′, o′〉a′,b′ ∈ dkm�, we require that To,� and To′,� are not trivialmatches.

Since we want to compute dkm� for each length in the range [�min, �max ], we also
need to rank discords of different lengths. In that regard, we want to obtain a unique
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matrix that we denote by dkm�min ,�max . Therefore, we can represent a discord by the
triple 〈d∗, o∗, �∗〉i, j ∈ dkm�min ,�max , where d∗ is the i th greatest length normalized
j th best match distance. More formally:

d∗ = max

{
d√

�min
: d ∈ dkm�min [i][ j]), . . . , d√

�max
: d ∈ dkm�max [i][ j]

}

Each triple is also composed by the offset o∗ and the length �∗ of the discord, where
�min ≤ �∗ ≤ �max .

As in the case of motifs discovery, we length-normalize the discord distances, while
constructing the dkm�min ,�max ranking. Thus, we multiply each distance by the 1/

√
�

factor. In this case, the length normalization aims to favor the selection of shorter
discords. Therefore, if we compare two Top-k mthdiscord subsequences of different
lengths, but equal best match distances, the shorter subsequence is the one with the
highest point-to-point dissimilarity to its best match. This is guaranteed by dividing
eachdistance by the discord length.Consequently,wepromote the shorter subsequence
as the more anomalous one.

6.2 Discord discovery algorithm

We now describe our algorithm for the Top-k mthdiscords discovery problem. We
note that we can still use the lower bound distance measure, as in the motif discovery
case. This allows us to efficiently build dkm�, for each � in the [�min, �max ] range,
incrementally reusing the distances computation performed. The final outcome of
this procedure is the dkm�min ,�max matrix, which contains the variable length discord
ranking. In this part, we introduce and explain the algorithms, which permit us to
efficiently obtain dkm� for each length.We report the whole procedure in Algorithm 7.

Smallest length discordsWe start to find discords of length �min , namely the smallest
subsequence length in the range.Wecan thus runAlgorithm3 in line 1,which computes
the list of partial distance profiles of each subsequence of length �min (list D P), in
the input data series T . Each partial distance profile contains the p smallest nearest
neighbor distances of each subsequence. To that extent, we set p ≥ m in Algorithm 3
(ComputeMatri x Prof ile).

We then iterate the subsequences of T in line 6, using the index i . For each
subsequence Ti,�min that has no trivial matches in dkm�min , we invoke the rou-
tine U pdateFixed Length Discords (line 8), which checks if Ti,�min can be
placed in dkm�min as a discord. When dkm�min is built, we update the vari-
able length discords ranking (dkm�min ,�max matrix in line 11), using the procedure
U pdateV ariableLength Discords.

In the loop of line 12, we iterate the discord lengths greater than �min . Sincewewant
to prune the search space, we consider the list of distance profiles in list D P , which
also contains the lower bound distances of the p (p > m) nearest neighbors of each
subsequence. In that regard, we invoke the routine T opkm_next Length (line 15).
Before we introduce the details, we describe the two routines we introduced, which
allow to rank the discords.
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Algorithm 7: T opkm_Discord Discovery (Compute Top-k mthDiscords of
variable lengths)
Input: DataSeries T , int �min , int �max , int k, int m , int p
Output: Matrix dkm�min ,�max

1 MaxHeap[] list D P=ComputeMatri x Prof ile(T , �min , p);
2 int nDp = (|T | − �min) + 1;
3 Matrix dkm�min ,�max = {{〈−∞,−∞, −∞〉, . . . , 〈−∞,−∞, −∞〉}, . . . , {. . .}};
4 Matrix dkm�min = {{〈−∞,−∞〉, . . . , 〈−∞,−∞〉}, . . . , {. . .}};
5 if p >= m then

// iterate the partial distance profiles in listDP
// and compute dkm�min

6 for i ← 1 to nDp do
7 if Ti,�min has no Trivial matches in dkm�min then
8 U pdateFixed Length Discords(dkm�min , list D P[i],i ,k,m );
9

10 end
11 U pdateV ariableLength Discords(dkm�min , dkm�min ,�max ,k,m );

// compute dkm�next L for each length, pruning distance

computations
12 for next L ← �min + 1 to �max do
13 Matrix dkmnext L = {{〈−∞,−∞〉, . . . , 〈−∞,−∞〉}, . . . , {. . .}};
14 nDp = (|T | − next L) + 1;
15 dkm�next L =T opkm_next Length( T ,nDp,list D P ,next L ,k,m);
16 U pdateV ariableLength Discords(dkm�next L , dkm�min ,�max ,k,m);
17 end
18 end

Ranking fixed length discords In algorithm 8, we report the pseudo-code of the
routine U pdateFixed Length Discords. This algorithm accepts as input the matrix
dkm� to update, and a partial distance profile of the subsequence with offset of f .
It starts iterating the rows of dkm�min in reverse order (line 1). This is equivalent to
considering the discords from the mth one to the 1st. Hence, at each iteration we
get the j th nearest neighbor of Tof f ,�min from its partial distance profile in line 2.
Subsequently, the loop in line 3 checks if the j thdist is among the k largest ones in
the j th column of dkm�min . If it is true, the smallest elements in the column are shifted
(line 6) and Tof f ,�min is inserted as the T op-i j th discord (line 7).

Ranking variable length discords Once we dispose of the matrix dkm�, we
can invoke the procedure U pdateV ariableLength Discords for each length � ∈
{�min, . . . , �max } (Algorithm 9), in order to incrementally produce the final variable
length discord ranking we store in dkm�min ,�max . This algorithm accepts as input and
iterates over the matrix dkm�min ,�max . A position (discord) is updated if the length
normalized best match distance of the discord in the same position of dkm� is larger
(line 6).

Greater length discords In Algorithm 10, we show the pseudo-code of the routine
T opkm_next Length. It starts performing the same loop of line 9 in Algorithm 1,
iterating over the partial distance profiles (line 3), and updating the true Euclidean
distances for the new length (newL) and the lower bounds (line 9) for the subsequent
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Algorithm 8: U pdateFixed Length Discords (Update dkm�)
Input: Matrix dkm�,MaxHeap minM Dist , int of f , int k, int m

1 for j ← m down to 1 do
2 double j thdist ← minM Dist .get Max( j);
3 for i ← 1 to k do
4 < d, o >i, j = dkmnewL [i][ j];
5 if j thdist > d then
6 shi f t RankingT opK (dkmnewL [i][ j]);

// update the ranking with the new T op-i jth discord Tof f ,�

7 dkm�[i][ j] ← 〈 j thdist, of f 〉;
8 return;
9

10 end
11 end

Algorithm 9: U pdateV ariableLength Discords (Update dkm�min ,�max )
Input: Matrix dkm�min ,�max , Matrix dkm�, int k, int m

1 for i ← 1 to k do
2 for j ← 1 to m do
3 < d, o >i, j = dkmnewL [i][ j];
4 < d∗, o∗, l∗ >i, j = dkm�min ,�max [i][ j];

// if length normalized distance is greater or equal for
length �, update the rank.

5 if ((d/
√

�) >= d∗ ) then
6 dkm�min ,�max [i][ j] = 〈(d/

√
�), o, �〉

7

8 end
9 end

length (newL+1). Sincewe need to know the distances from each subsequence to their
m nearest neighbors, for each subsequence Ti,newL that does not have trivial matches
in dkmnewL , we check if the mth smallest distance is smaller than the maximum lower
bound in the partial distance profile (line 14). If this is true, we have the guarantee that
the partial distance profileminM Dist contains the exactm nearest neighborEuclidean
distances. Hence, in line 15, we can update the matrix dkmnewL . On the other hand,
if the distances are not verified to be correct, we keep minM Dist in memory, which
becomes a non-valid partial distance profile, along with the offset of the corresponding
subsequence (line 17). Once we have considered all the partial distance profiles, we
need to iterate the non-valid partial distance profiles (line 21).

We therefore recompute those that contain at least one true Euclidean distance
greater than the distances in the last row of dkmnewL . The correctness of this choice
is guaranteed by the fact that the distances of a non-valid partial distance profile can
be only larger than the non-computed ones. Hence, if the condition of line 25 is not
verified, no updates in dkmnewL can take place. Otherwise, we recompute the non-
valid distance profile starting at line 26 from scratch. Note that when we re-compute a
distance profile, we globally update the corresponding position of the partial distance
profiles list D P (line 29) and dkmnewL in the vector as well (line 30).
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Algorithm 10: T opkm_next Length (Compute Top-k mthDiscords of greater
lengths)
Input: DataSeries T , int nDp, MaxHeap[] list D P , int newL , int k, int m, int p
Output:Matrix dkmnewL

1 Matrix dkmnewL = {{〈−∞,−∞〉, . . . , 〈−∞, −∞〉}, . . . , {. . .}};
2 List 〈MaxHeap,int〉 nonV alid Mindist List ;
// iterate over the partial distance profiles in listDP

3 for i ← 1 to nDp do
4 MaxHeap minM Dist ← new MaxHeap(p);
5 double minDist ← inf;
6 int ind ← 0;
7 double max L B ← popMax(list D P[i]);

/* update the partial distance profile for the length newL (true
Euclidean and lower bounding distance ) */

8 for each entry e in list D P[i] do
9 e.dist , e.L B ← updateDist And L B(e, newL);

// the m shortest neighbor distances are stored in minMDist
10 minM Dist .push(e.dist);
11 end

// check if the mth shortest distance of this partial distance profile is
the true mth shorthest.

12 m Dist = minM Dist .get Max(m);
13 if Ti,newL has no Trivial matches in dkmnewL then
14 if m Dist < max L B then

/* the discord ranking can be updated, without computing the whole
distance profile */

15 U pdateFixed Length Discords(dkmnewL , minM Dist ,i ,k,m);
16 else

/* minMDist might not be exact, store the partial distance profile
in memory. */

17 nonV alid Mindist List .add(< minM Dist ,i >);
18 end
19

20 end
21 for each < minM Dist, i > in nonV alid Mindist List do
22 if Ti,� has no Trivial matches in dkm� then
23 for j ← m down to 1 do
24 m Dist = minM Dist .get Max( j);
25 if m Dist > dkmnewL [k][ j].d then
26 QT ← SlidingDot Product(Ti,newL , T );
27 double s ← sum(Tind,�); double ss ← squaredSum(Ti,newL );
28 D(Tind,�) ← CalcDist Prof And L B(QT ,Ti,newL , T , s, ss);
29 U pdatePartial DistancePro f ile(list D P[i], D(Tind,�)) ;
30 U pdateFixed Length Discords(dkmnewL , list D P[i],i ,k,m);
31 break;
32

33 end
34

35 end

Complexity analysisThe timecomplexity ofAlgorithm7 (T opkm_Discord Discovery)
mainly depends on the use of ComputeMatri x Prof ile algorithm, which always
takes O(n2 log(p)) to compute the partial distance profiles for the n subsequences of
length �min in T .

In order to compute the exact Top-k mthdiscord ranking in dkm�, the routine
U pdateFixed Length Discords takes O(km) time in the worst case. Recall that
this latter algorithm is called only for subsequences that do not have trivial matches in
dkm�. Checking if two subsequences are trivialmatches takes constant time, if for each
dkm� update, we store the � trivial match positions. Given a series T , and the discord
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(subsequence) length �, we can represent by S = |T |
l/2 , the number of subsequences that

are not trivial matches with one another. Therefore, updating the discord rank of each
length has a worst case time complexity ofO((�max −�min)×S×�×k×m×log(m)),
where the log(m) factor represents the time to get the mth largest distance in the par-
tial distance profile (line 2 of Algorithm 8). Similarly, the construction of the variable
length discord ranking in dkm�min ,�max takes: O((�max − �min) × k × m).

Observe also that the time performance of the T opkm_next Length algorithm
depends on the Euclidean distance computations pruning. If all the partial distance
profiles contain the correct nearest neighbor’s distances, computing the discords of
each length greater than �min takesO(n× p×log(m)) time, with n equal to the number
of subsequences in T . The worst case takes place when for each subsequence that can
update dkm� (i.e., S), the complete distance profile is re-computed (Algorithm 10,
line 26); in this case the algorithm takes O(n2 × log(n) × p × log(m)).

7 Experimental evaluation

7.1 Setup

We implemented our algorithms in C (compiled with gcc 4.8.4), and we ran them
in a machine with the following hardware: Intel Xeon E3-1241v3 (4 cores—8 MB
cache—3.50 GHz—32 GB of memory).3 All of the experiments in this paper are
reproducible. In that regard, the interested reader can find the analyzed datasets and
source code on the paper web page (Linardi 2017).

Datasets and benchmarking details To benchmark our algorithm, we use five
datasets:

– GAP, which contains the recording of the global active electric power in France for
the period 2006–2008. This dataset is provided by EDF (main electricity supplier
in France) (Dua and Graff 2019);

– CAP, theCyclicAlternatingPattern dataset,which contains theEEGactivity occur-
ring during NREM sleep phase (Terzano et al. 2001);

– ECG and EMG signals from stress recognition in automobile drivers (Healey and
Picard 2016);

– ASTRO, which contains a data series representing celestial objects (Soldi et al.
2014).

Table 1 summarizes the characteristics of the datasets we used in our experimental
evaluation. For each dataset, we report the minimum and maximum values, the overall
mean and standard deviation, and the total number of points.

The (CAP), (ECG) and (EMG) datasets are available in Goldberger et al. (2000).
We use several prefix snippets of these datasets, ranging from 0.1M to 1M of points.

In order to measure the scalability of our motif discovery approach, we test its
performance along four dimensions, which are depicted in Table 2. Each experiment

3 In order to validate the time performance results, we repeated our experiments on a second machine with
different characteristics (Intel Xeon E5-2650 v4, 24 cores—30MB cache—2.20 GHz, 250 GB of memory),
where we observed the same trends.
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Table 1 Characteristics of the datasets used in the experimental evaluation

MIN MAX MEAN STD-DEV Number of points

ECG −2.182 1.543 0.006 0.24 2M

GAP 0.08 10.67 1.10 1.15 2M

ASTRO −0.00867 0.00447 0.00003 0.00031 2M

EMG −0.694 0.773 − 0.005 0.041 2M

EEG −966 920 3.34 41.36 0.5M

Table 2 Parameters of VALMOD benchmarking

Motif length
(�min )

Motif range
(�max − �min )

Data series
size (points)

p (elements
of distance
profiles stored)

256 100 0.1M 5

512 150 0.2M 10

1024 200 0.5M 15

2048 400 0.8M 20

4096 600 1M 50, 100, 150

Default values shown in bold

is conducted by varying the parameter of a single column, while for the others, the
default value (in bold) is selected. In our benchmark, we have two types of algorithms
to compare to VALMOD. The first are two state-of-the-art motif discovery algorithms,
which receive a single subsequence length as input: QUICKMOTIF (Li et al. 2015)
and STOMP (Yeh et al. 2016). In our experiments, they have been run iteratively to
find all the motifs for a given subsequence length range. The other approach in the
comparative analysis is MOEN (Mueen and Chavoshi 2015), which accepts a range
of lengths as input, producing the best motif pair for each length.

For VALMOD, we report the total time, including the time to build the matrix
profile (Algorithm 3). The runtime we recorded for all the considered approaches is
the average of five runs. Prior to each run we cleared the system cache.

7.2 Motif discovery results

Scalability over motif length In Fig. 9, we depict the performance results of the
four motif discovery approaches, when varying the motif length. We note that the
performance of VALMOD remains stable over the five datasets. On the other hand,
we observe that a pruning strategy based on a summarized version of the data is
sensitive to subsequence length variation. This is the case for QUICK MOTIF, which
operates on Piecewise Aggregate Approximation (PAA) discretized data. Figure 9
shows that the performance of QUICKMOTIF varies significantly as a function of the
motif length range, growing rapidly as the range increases, and failing to finish within
a reasonable amount of time in several cases.
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Fig. 9 Scalability for various motif length ranges

Moreover, we argue that our proposed lower bounding measure enables our method
to improve upon MOEN, which clearly does not scale well in this experiment (see
Fig. 9). The main reason for this behavior is that the effectiveness of the lower bound
of MOEN decreases very quickly as we increase the subsequence length �. When we
increase the subsequence length by 1, MOEN multiplies the lower bound by a value
smaller than 1 ((Mueen and Chavoshi 2015), Sect. IV.B), thus making it less tight. In
contrast, the lower bound of VALMOD does not always decrease (refer to Eq. (2)):
σ j,l

σ j,l+k
may be larger than 1. Consequently, the lower bound of VALMOD can remain

effective (i.e., tight) even after several steps of increasing the subsequence length.
Concerning the VALMOD performance, we note a sole exception that appears for

the noisy EMG data (Fig. 9), for a relatively highmotif length range (4096–4196). The
explanation for this behavior is that the lower bounding distance used by VALMOD is
coarse, or in other words, it is not a good approximation of the true distance. Figure 10
shows the difference between the greater lower bounding distance (max L B) and
the smaller true Euclidean distance for each distance profile. We use the subsequence
lengths 356 and 4196, which are respectively the range’s smallest and largest extremes
in this experiment. In this last plot, each value greater than 0 corresponds to a valid
condition in line 16 of the ComputeSubMP algorithm. This indicates that we found
the smallest value of a distance profile, while pruning computations over the entire
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Fig. 10 The difference between the max lower bounding distance (maxLB) and the min Euclidean distance
of partial distance profiles for all the datasets. Subsequence lengths: 356/4196. (We report the results for
the EMG dataset in red, which corresponds to VALMOD’s worst case for lengths 4096–4196, as shown in
Fig. 9) (Color figure online)

subsequence length range. As the subsequence length increases, VALMOD’s pruning
becomes less effective for the EMG (observe that there are no, or very few values
above zero in the distances profiles for subsequence length 4196). On the other hand,
we observe the presence of values above zero in the other datasets. This confirms that
motifs in those cases are found, while pruning the search space.

In order to further evaluate the pruning capability of VALMOD, we report the
measurements for the Tightness of the Lower Bound (TLB) (Shieh and Keogh 2008;
Zoumpatianos et al. 2015) performed during the previous experiment (Fig. 9). The
TLB is a measure of the lower bounding quality; given two data series t1 and t2, the
TLB is computed as follows: L Bdist (t1, t2)/EuclideanDistance(t1, t2). Note that
TLB takes values between 0 and 1. A TLB value of 1 means that the lower bound
distance is the same as the Euclidean distance; this corresponds to the optimal case.

In Fig. 11, we show the average TLB for each (partial) distance profile. In the EMG
dataset, when using the larger subsequence length, we observe a sharp decrease of
the lower bounding quality (small TLB values), explaining the behavior observed for
the EMG dataset (refer to Fig. 10(bottom-left)). We also note similar results for the
ASTRO dataset. As we have noted for this last case, the performance is not negatively
affected, since we dispose of several partial distance profiles that provide the correct
minimum distances, and thus permit us to find the motifs, without recomputing all the
distance profiles. In contrast, in the other datasets, we note a smaller negative impact
on TLB for the case of subsequence length 4196.

In Fig. 12, we also show the distance distribution of the pairwise subsequences,
using the same datasets and subsequences lengths. Here, we plot the distances without
length normalization, since the algorithm uses it to rank the motifs in the trailing part.
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Fig. 11 Average of the tightness of the lower bound (TLB) for every Distance profile for all datasets.
Subsequence lengths: 356/4196. (We report the results for the EMG dataset in red, which corresponds to
VALMOD’s worst case for lengths 4096–4196, as shown in Fig. 9) (Color figure online)

Fig. 12 Distribution ofEuclideandistance of pairwise subsequences in all the datasets. Subsequence lengths:
356/4196. (We report the results for the EMG dataset in red, which corresponds to VALMOD’s worst case
for lengths 4096–4196, as shown in Fig. 9) (Color figure online)

For the EMG andASTRO datasets, in the case of length 4196, the distance distribution
includes many small and large values, which does not suggest the presence of motifs,
but affectsVALMODnegatively. Observe that in the other datasets, the values aremore
uniformly distributed over all the subsequence lengths. This denotes the presence of
subsequence pairs that are substantially closer than the rest, which typically identifies
the occurrence of motifs. In this case, VALMOD is able to prune more distance profile
computations, leading to better performance.
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Fig. 13 Scalability with increasing motif range

Scalability over motif range In Fig. 13, we depict the performance results as the
motif range increases. VALMOD gracefully scales on this dimension, whereas the
other approaches can seldom complete the task. Not only does our technique address
the intrinsic problem of STOMP and QUICK MOTIF, which independently process
each subsequence length, but it also exhibits a substantial improvement over MOEN,
the existing state-of-the-art approach for the discovery of variable length motifs.

Scalability over data series length In Fig. 14,we experimentwith different data series
sizes. For the EEG dataset we only report three measurements, since this collection
contains no more than 0.5M points. We observe that QUICK MOTIF exhibits high
sensitivity, not only to the various data sizes, but also to the different datasets (as in
the previous case, where we varied the subsequence length). It is also interesting to
note that QUICKMOTIF is slightly faster than VALMOD on the ECG dataset, which
contains regular and similar heartbeat patterns, and is a relatively easy dataset for
motif discovery. Nevertheless, QUICK MOTIF, as well STOMP and MOEN, fail to
terminate within a reasonable amount of time for the majority of our experiments. On
the other hand, VALMOD does not exhibit any abrupt changes in its performance,
scaling gracefully with the size of the dataset, across all datasets and sizes.

Large datasets and length ranges Here we report two further experiments that we
have conducted on larger snippets of the datasets—namely, 2million points—and over
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Fig. 14 Scalability with increasing data series size

(a) (b)

Fig. 15 Scalability of VALMOD and QUICKMOTIF using large datasets (2M of points) and large length
ranges

a larger range of motif lengths. To that extent, we want to test the scalability of our
approach, considering two extreme cases. We compare VALMOD to QUICKMOTIF,
since the latter is the sole approach that can scale to data series lengths beyond half a
million points, and to motif length ranges larger than 100.

In Fig. 15a,we report themotif discovery time on four datasets that contain 2million
points. We pick the default length boundaries, namely �min = 1024 and �max = 1124,
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discovering motifs of each length in between them. The results show that VALMOD
gracefully scales, and is always one order of magnitude faster than QUICKMOTIF,
which does not reach the timeout only in the case of the ECG datasets.

The same observations hold for the results of the experiments that vary the motif
length range. Figure 15b, shows the results for length ranges 2000 and 4000, on all
five datasets in our study (at their default sizes). Once again, QUICKMOTIF reaches
the timeout state in all datasets, except for ECG, where for the larger length ranges
is two times slower than VALMOD. On the other hand, VALMOD scales well and
remains the method of choice (with the exception of the largest length ranges for the
EMG and ASTRO datasets, where it reaches the timeout).

The above results demonstrate the superiority ofVALMOD, but also show its limits,
which open possibilities for future work.

Overall pruning power In order to show the global effect of VALMOD’s pruning
power, we conduct an experiment recording the number of distance profile computa-
tions performed by procedureComputeSubMP, which extracts motifs of length greater
than �min , pruning the unpromising calculations. We recall that this algorithm com-
putes for each subsequence Ti,� with � > �min a subset of distances (Euclidean and
lower bounding), called partial distance profiles. If the smallest Euclidean distance
computed is also smaller than the larger lower bounding distance, we know it is the
true distance of the nearest neighbor of Ti,�. In this case, we call the partial distance
profile valid. Otherwise, we do not know the true nearest neighbor distance, and we
call the partial distance profile non-valid. In order to identify the correct motifs, the
algorithm only needs to recompute the entire non-valid distance profiles that might
contain distances shorter than those already found in the valid distance profiles.

In Fig. 16, we depict the difference between the minimum Euclidean distance and
the maximum lower bounding distance of each distance profile computed in the subse-
quence length range (1025/1124). In the plots, the values above zero refer to the valid
ones (green points), whereas values under zero are either non-valid (black points) or
recomputed (red/triangular points). We observe that in the first three datasets, namely
EEG, ECG and GAP, there are no distance profiles that are recomputed, meaning
that the motifs are always found in the valid (partial) distance profiles in the short-
est time possible (best case). Concerning the EMG and ASTRO datasets, several
re-computations take place (red/triangle points). As we can see from the table in the
bottom part of Fig. 16 though, the computed distance profiles are not more than the
0.20% of the total. Thismeans that the algorithm successfully prunes a high percentage
of the computations, thanks also to the effectiveness of the proposed lower bounding
measure.

At this point, we can further analyze the reasons behind the pruning capability
of our approach. To that extent, in Fig. 17a we plot the number of distance profiles
that VALMOD recomputes at each subsequence length for the EMG and ASTRO
datasets. These two datasets both contain noisy data, which influence re-computations.
However, they differ according to the length for which these re-computations take
place.

Figure 17b shows the position of the T op-1 motif along the subsequence length.
Note that the T op-1motif is always placed around the sameoffset region in theASTRO
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Fig. 16 Partial distance profile repartition (valid, non-valid, recomputed), in the motif discovery task on
the five considered datasets. Default parameters are used in this experiment (Color figure online)

dataset, suggesting the presence of a few similar data segments, which is also verified
by the high number of non-valid distance profiles we observe in Fig. 16 (ASTRO). On
the other hand, in the EMG dataset, the motif location changes several times, denoting
the presence of different segments, which contain motifs of different lengths. This is
also confirmed by the more prevalent presence of valid distance profile in the EMG
dataset. In this last case, the re-computation number drops to zero as soon as the motif
positions start to change, i.e., at length 1058, maintaining the same trend until the end.
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(a) (b)

Fig. 17 a Distribution of recomputed distance profiles for each subsequence length considered in the EMG
and ASTRO datasets. bOffset of the first subsequence in the discovered motif for all the length in the EMG
and ASTRO datasets

Effect of changing parameter p. In Fig. 18, we study the effect of parameter p on
VALMOD’s performance. The p value determines how many distance profile entries
we compute and keep in the memory. Increasing p leads to increased memory con-
sumption, but could also translate to an overall speed-up, since having more distances
may guarantee a larger margin between the greater lower bounding distance and the
minimum true Euclidean distance in a distance profile. As we can see on the left side
of the plot, increasing p does not provide any significant advantage in terms of time
complexity. Moreover, the plots on the right-hand side of the figure demonstrate that
the size of the Matrix profile subset (subM P), computed by the computeSubMP pro-
cedure, decreases in the same manner at each iteration (i.e., as we increase the length
of the subsequences that the algorithm considers), regardless of the value of p.

It is important to note that irrespective of its size, subM P always contains the
smallest distances of the matrix profile, namely the distances of the motif pair. Having
a larger subM P does not represent an advantage w.r.t. motif discovery, but rather an
opportunity to view and analyze the subsequence pairs, whose distances are close to
the motif.

7.3 Motif sets

We now conduct an experiment to show the time performance of identifying the
variable length motif sets. We use the default values of Table 2, varying K and the
radius factor D for each dataset. In Fig. 19 we report the results; we also show the time
to compute V AL M P (the output of VALMOD). We note that once we build the pairs
ranking of V AL M P (heapBest K Pairs in Algorithm 5), we can run the procedure
that computes the motif sets (Algorithm 6). The results show that this operation is 3–6
orders of magnitude faster than the computation of V AL M P . The advantage in time
performance is pronounced for the ECG and E EG datasets, thanks to the pruning
we perform with the partial distance profiles.

The fast performance of the proposed approach also allows for a fast exploratory
analysis over the radius factor, which would otherwise (i.e., with previous approaches)
be extremely time-consuming to set for each dataset.
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Fig. 18 Scalability with increasing parameter p
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(a)

(b)

Fig. 19 Time performance of variable length motif sets discovery. a Varying K (default D=4). b Varying
radius factor D (default K=40)

7.4 Discord discovery

In this last part, we conduct the experimental evaluation concerning discord discovery.
In the following experiments, we use the same datasets as before.

We identify two state-of-the-art competitors to compare to our approach, the
Motif And Discord (MAD) framework. The first one, Disk Aware Discord Discovery
(DAD) (Yankov et al. 2007b), implements an algorithm suitable for enumerating the
fixed-length mth discords of a data series collection stored on a disk. We adapted this
algorithm, as suggested by the authors, in order to extract discords from data series
loaded in main memory. The second approach, GrammarViz (Senin et al. 2015), is
the most recent technique, which discovers Top-k 1stdiscords. It operates by means
of grammar rules compression, which further operate on a summarized data series
representation, in order to find the rare segments of the data (discords) in a reduced
search space. To the best of our knowledge, there exist no techniques capable of find-
ing the Top-k mthranked variable-length discords as MAD, using a single execution
of an algorithm.

Mth discord discovery In Fig. 20a, b, we present the performance comparison
betweenMADandDAD for finding themth discords, whenwe varym, for all datasets.
(All other parameters are set to their default values, as listed in Table 2.)

Since DAD discovers fixed-length mth discords, we report its execution time only
for the first length in the range, namely �min .We observe thatMAD,which enumerates
the mth discords of 100 lengths (�min = 1024, �max = 1124) is still one order
of magnitude faster than these DAD performance numbers, for all datasets, when
m is larger or equal to 5. Moreover, the performance trend of MAD remains stable
over all datasets, whereas DAD has different execution times. We observe that the
computational time of DAD depends on the subsequence length, since it computes

123



Matrix profile goes MAD: variable-length motif and… 1059

(a)

(c)

(b)

Fig. 20 a,bDAD (one length) andMAD (100 lengths) Top-k mthdiscords discovery time. c Percentage (on
the total distance profiles) of non-valid partial distance profiles recomputed by Algorithm 10

Euclidean distances in their entirety (only applying early abandoning based on the
best so far distance). How effective this early abandoning mechanism is, depends
on the characteristics of the data. On the other hand, our algorithm computes all
distances for the first subsequence length in constant time, and then prunes entire
distance computations for the larger lengths.

In Fig. 20c, we report the percentage of non-valid distance profiles that are recom-
puted, over the total number of distance profiles considered during the entire task of
variable-length discord discovery. We note that the number of re-computations is lim-
ited to no more than 0.10%, in the worst case. This demonstrates the high computation
pruning rate achieved by our algorithm, justifying the considerable speed-up achieved.

Top − k 1st discord discovery In Fig. 21, we depict the performance comparison
between GrammarViz and MAD. We do not report results for DAD, since it always
reaches the imposed time-out, even for the variable length Top-k 1stdiscord discovery
task. Therefore, we consider Top-k 1stdiscords discovery, as previously introduced.
(We maintain the same parameter settings in this experiment.)

First, we note that GrammarViz outperforms MAD in the first three datasets, for
k smaller or equal to 5, as depicted in Fig. 21a. Nevertheless, the experiment shows
that MAD scales better over the number of discovered Top-k 1stdiscords, as its exe-
cution time increases only by a small constant factor. A different trend is observed for
GrammarViz, whose performance significantly deteriorates as k increases from 1 to
6.

Moreover, this technique is highly sensitive to the dataset characteristics, as we
observe in Fig. 21b, where the two noisy datasets, i.e., EMG and ASTRO, are con-
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(a)
(c)

(b) (d)

Fig. 21 a, b GrammarViz and MAD (100 lengths) Top-k 1stdiscords discovery time. c Percentage (on the
total distance profiles) of non-valid partial distance profiles recomputed by Algorithm 10

sidered. This is a direct consequence of the data summarization sensitivity to the data
characteristics, which then influences the ability to prune distance computations.

In Fig. 21c, we report the percentage of non-valid distance profiles that MAD
needed to recompute. In this case, too, this percentage is very low.

To conclude, since GrammarViz is a variable length approach that selects the most
promising discord lengths according to the distribution of the data summarization (by
picking the lengths of the series, whose discrete versions represent a rare occurrence),
we report in Fig. 21d the number of lengths, for which discords are found. We observe
that our framework always enumerates and ranks discords of all lengths in the specified
input range, based on the exact Euclidean distances of the subsequences. On the other
hand, GrammarViz selects the most promising length based on the discrete version of
the data, and only identifies the exact Top-k 1stdiscords for 3 (out of 100) different
lengths in the best case.

Top-kmth Discord Discovery. Figure 22 depicts the execution time for the
Top-k mthdiscord discovery task, and the percentage of recomputed distance pro-
files for MAD, when varying k and m. We observe that the pruning power remains
high: the percentage of distance profile re-computations averages around 0.05%.

Utility of variable-length discord discovery We applied MAD on a real use case,
a data series containing the average number of taxi passengers for each half hour
over 75 days at the end of 2014 in New York City (Rong and Bailis 2017), depicted
in Fig. 23a. We know that this dataset contains an anomaly that occurred during the
daylight savings time end, which took place the 2nd of November 2014 at 2 a.m. At
that time, the clock was set back at 1 a.m. Since the recording was not adjusted, two
samples (corresponding to a 1 h recording) are summed up with the two subsequent
ones.
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(a) (b)

Fig. 22 a MAD (100 lengths)Top-k mthdiscords discovery time on the five datasets. b Percentage (on the
total distance profiles) of non-valid partial distance profiles recomputed by Algorithm 10

(a) (b)

(c)

Fig. 23 a Data series reporting the number of taxi passengers over 75 days at the end of 2014 in New York
City. b T op-1 1st discord of length 32, which contains the abnormal peak generated by the double recording
problem of daylight savings time. c T op-1 1st discord of length 33, which represents an anomalous trend
for the number of taxi passengers due to the daylight savings time

We ran the variable-length discord discovery task using the length range �min = 20
and �max = 48, in order to cover subsequences that correspond to recordings between
10- and 24-h. Our algorithm correctly identifies the anomaly for subsequence length
32, shown in Fig. 23b. Changing the window size does not allow the detection of the
anomaly. For example, enlarging the window by just 1 point, the Top-k 1stdiscord
corresponds to a pattern before the abnormality (refer to Fig. 23c).

These results showcase the importance of efficient variable-length discord discov-
ery. It permits us to discover rare, or abnormal events with different durations, which
can be easily missed in the fixed length discord discovery setting, where the analyst
is constrained to examine a single length (or time permitting, a few fixed lengths).

7.5 Exploratory analysis: motif and discord length selection

In this part, we present the results of an experiment we conducted to test the capability
of MAD to suggest the most promising length/s for motifs and discords.

Given a data series, the user may have no clear idea about the motif/discord length.
Therefore, we present use cases that examine the ability of MAD to perform a wide
length-range search, providing the most promising results at the correct length.

We used MAD for finding motifs and discords in the length range: �min = 256 and
�max = 4096. We conducted this experiment in the first 500K points of the datasets
listed in Table 1. The considered motif/discord length range covers the user studies
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Fig. 24 Top-1 motif (of length 256) in the EEG data set. The subsequences pairs composing this motif have
the smallest distance in both the Euclidean distance and length normalized ranking

that have been presented so far in the literature (where knowledge of the exact length
was always assumed).

Scalability The MAD framework completed the motif/discord discovery task within
2 days (on average), enumerating the motifs and the T op-1 discords of each length
in the given range. Concerning the competitors, we estimated that STOMP, which is
the state-of-the-art solution for fixed length motif/discord discovery would take 320
days for the same experiment (a little bit more than 2 h for each of the lengths we
tested). QUICKMOTIF, which has data dependent time performance, takes up tomore
than 6 days (projection) for all datasets but ECG (which completes in 38 h). We note
that the variable-length motif discovery competitor (MOEN) never terminates before
24 h when searching motifs of 600 different lengths, while in this experiment, the
length range is composed of 3841 different lengths. Considering discord discovery,
we observed that GrammarViz does not enumerate all the discords in the given length-
range, since it selects the length according to the data summarizations. Thus, we are
obliged to run this technique independently for each length, which would take at least
320 h in the best case (projection based on results of Fig. 21).

Select the most promising length in motif discovery Once the search is completed,
the MAD framework enumerates the motifs and discords ranking them in a second
step, according to the proposed distance normalization strategy. In Fig. 24, we show
the results of motif discovery for the EEG dataset.
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(a)

(b)

Fig. 25 a Top-1000 motifs according the length normalized distance (top), and the Euclidean Distance
(bottom). b Motif pair of the largest length (656) in the length normalized ranking (top) and motif pair of
the largest length (536) in the Euclidean distance ranking (red/bottom) (Color figure online)

The objective of this experiment is to evaluate the proposed length-normalized
correction strategy. In this regard, we compare the motifs sorted by using length-
normalization, and by Euclidean distances.

On the top part of Fig. 24, we report the distance/length values of the T op-1000
motifs ranked by the length-normalized measure (left), which comprise a subset of the
results we store in the VALMP structure (Algorithm 1). In the right part of the figure,
we report the T op-1000 motifs ordered by their Euclidean distances.

Weobserve that theTop-1motif, i.e., the subsequence pairwith the smallest distance
(marked by the letter A) is the same in both rankings.We report thismotif in the bottom
part of Fig. 24, which is composed of two quasi-identical patterns in the EEG data
series.

We now evaluate motifs of larger lengths in the same dataset, which may reveal
other interesting and similar patterns at different resolutions (lengths). In Fig. 25a,
we report again the distance/length values of the T op-1000 motifs ranked by their
Euclidean distance, which reveal that the longest motif, marked as B, has length 536.
We observe that this subsequence pair substantially differs from the T op-1 motif of
Fig. 24.

Subsequently, in Fig. 25b, we report the longest motif (marked as C) of length 655
that we found in the T op-1000 motif ranking, based on length-normalized distances.
We note that 6%of the length-normalizedmotifs are longer than those in the T op-1000
of the Euclidean ranking. The example of motif C, which is a longer version of B,
shows that this pattern appears much earlier in the sequence than B. If we considered
just the T op-1000 motifs ranked by their Euclidean distance, we would have missed
this insight (motif C appears in the Euclidean distance ranking only in the T op-4000
motifs).
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(a) (b)

(c) (d)

Fig. 26 Euclidean and length-normalized T op-k motifs properties. a Average distance. b Number of motif
lengths. c Number of non- trivial match motifs. d Jaccard similarity of the ranking using the Euclidean and
length-normalized Euclidean distances

Unfolding Top-k motifs When considering the T op-k motif ranking, we could
manually inspect all the subsequence pairs. However, this is a cumbersome (and unnec-
essary) task for a user that would like to focus directly on the most interesting motifs.
In the previous experiment on EEG data, we examined the number of motifs we need
to consider. We now examine the value of k that allows us to find interesting patterns
within the T op-k motif ranking.

In Fig. 26awe report the average distance for the T op-k motif rankings that we built
considering Euclidean and length-normalized distances, varying k. We note that the
average distance exhibits a steep increase in the Euclidean distance rankings, starting
from k = 500. This is due to the presence of motifs of larger lengths, as depicted
in Fig. 26b, since these pairs of longer subsequences have also a larger distance.
In this specific case, the user may choose to discard motifs beyond the T op-500,
thus, disregarding several motifs of different lengths. In contrast, we note that length-
normalized distance is not heavily affected by longer motifs (Fig. 26a). This will urge
users to continue the exploration beyond the T op-500, and consider motifs of several
different lengths that (as discussed earlier) represent different kinds of insights.

Another important factor to account in T op-k motif analysis is the redundancy
in the reported motifs. In that respect, we can eliminate the motifs composed by
subsequences that are trivial matches of motif subsequences that appear earlier in the
ranking. In Fig. 26c, we plot themotifs that we retain (i.e., the motifs that are not trivial
matches) from the Euclidean and length-normalized T op-k rankings. We notice that
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(a) (b)

(c) (d)

Fig. 27 Four discords of different length in the GAP dataset. Each discord (red subsequence) is coupled
with its nearest neighbor (green subsequence). a The discord, with the highest length-normalized distance
to its nearest neighbor has length 274. b Discord with the second highest length-normalized distance. c, d
discords with a smaller length-normalized distance to their nearest neighbor (Color figure online)

as k increases these retained motifs represent only a small subset of the motifs in the
original rankings (up to 4%), which renders their examination easier. Furthermore, we
observe that the Length-normalized T op-k rankings contain up to 130more non-trivial
match motifs than the Euclidean rankings, which translates to more useful results.

To conclude, we depict in Fig. 26d the Jaccard similarity between the two ranking
types (i.e., length-normalized and Euclidean) as we vary k. While computing the
intersection and the union of the two rankings, we discard the motifs that are trivial
matches. As k increases, and consequently the motif length increases as well (refer to
Fig. 26b), we observe that set similarity decreases. This means that the new motifs of
different lengths are not trivial matches of motifs found in higher ranking positions,
but they represent new, useful results.

Select the most promising length in discord discovery In this part, we show the
results of discord discovery performed in the GAP dataset. We recall that in this case,
the discord ranking performed according to their length normalized distances aims to
favor smaller discords, which have a high point to point distance.

In Fig. 27, we report some of the discords we found in the length range �min = 256
and �max = 4096. The discord with the highest length-normalized distance, best T op-
1 1st discord, is the one depicted in the top-left part of the figure, and has length 274.
We plot it in red (dark), whereas its nearest neighbor appears in green (light). We note
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that this discord drastically differs from its nearest neighbor: it represents a fluctuating
cycle of global power activity,while its nearest neighbor exhibits the expected behavior
of two major peaks, in the morning and around noon. In Fig. 27b we report the T op-2
1st discord in the length range 256–4096 identified byMAD, which corresponds to the
subsequence in that length range with the second highest length-normalized distance
to its nearest neighbor. Once again, we observe a high degree of dissimilarity between
the pattern of this discord and its nearest neighbor. On the contrary, Fig. 27c, d report
the T op-1 1st discords for two specific lengths (i.e., 280 and 305, respectively). These
discords correspond to patterns that are not significantly different from their nearest
neighbors. Therefore, they represent discords that are less interesting than the ones
reported by MAD in Fig. 27a, b, which examines a large range of lengths.

This experiment demonstrates that MAD and the proposed discord ranking allows
us to prioritize and select the correct discord length.

8 Related work

While research on data series similarity measures and data series query-by-content
date back to the early 1990s (Palpanas 2016), data series motifs and data series dis-
cords were both introduced just 15 and 12 years ago, respectively (Chiu et al. 2003; Fu
et al. 2006). Following their definition, there was an explosion of interest in their use
for diverse applications. Analogies between data series motifs and sequence motifs
exist (in DNA), and have been exploited. For example, discriminative motifs in bioin-
formatics (Sinha 2002) inspired discriminative data series motifs (i.e., data series
shapelets) (Neupane et al. 2016). Likewise, the work of Grabocka et al. (2016) on
generating idealized motifs is similar to the idea of consensus sequence (or canonical
sequence) in molecular biology. The literature on the general data series motif search
is vast; we refer the reader to recent studies (Zhu et al. 2016; Yeh et al. 2016) and their
references.

TheQUICKMOTIF (Li et al. 2015) and STOMP (Zhu et al. 2016) algorithms repre-
sent the state of the art for fixed-lengthmotif pair discovery.QUICKMOTIFfirst builds
a summarized representation of the data using Piecewise Aggregate Approximation
(PAA), and arranges these summaries in Minimum Bounding Rectangles (MBRs) in a
Hilbert R-Tree index. The algorithm then prunes the search space based on theMBRs.
On the other hand, STOMP is based on the computation of the matrix profile, in order
to discover the best matches for each subsequence. The smallest of these matches is
the motif pair. We observe that both of the above approaches solve a restricted version
of our problem: they discover motif sets of cardinality two (i.e., motif pairs) of a fixed,
predefined length. On the contrary, VALMOD removes these limitations and proposes
a general and efficient solution. Its main contributions are the novel algorithm for
examining candidates of various lengths and corresponding lower bounding distance:
these techniques help to reuse the computations performed so far, and lead to effective
pruning of the vast search space.

We note that there are only three studies that deal with issues of variable length
motifs, and attempt to address them (Minnen et al. 2007; Gao et al. 2016; Yingchare-
onthawornchai et al. 2013; Gao and Lin 2018). While these studies are pioneers in
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demonstrating the utility of variable length motifs, they cannot serve as practical solu-
tions to the task at hand for two reasons: (i) they are all approximate, while we need
to produce exact results; and (ii) they require setting many parameters (most of which
are unintuitive). Approximate algorithms can be very useful in many contexts, if the
amount of error can be bounded, or at least known. However, this is not the case for
the algorithms in question. Certain cases, such as when analyzing seismological data,
the threat of litigation, or even criminal proceedings (Cartlidge 2016), would make
any analyst reluctant to use an approximate algorithm.

The other work that explicitly considers variable length motifs is MOEN (Mueen
and Chavoshi 2015). Its operation is based on the distance computation of subse-
quences of increasing length, and a corresponding pruning strategy based on upper and
lower bounds of the distance computed for the smaller length subsequences. Unlike the
algorithms discussed above, MOEN is exact and requires few parameters. However, it
has been tuned for producing only a single motif pair for each length in the range, and
as our evaluation showed, it is not competitive in terms of time-performance with our
approach. This is due to its relatively loose lower bound and sub-optimal search space
pruning strategy, which force the algorithm to perform more work than necessary.

Exact discord discovery is a problem that has attracted lots of attention. The
approaches that have been proposed in the literature can be divided in the follow-
ing two different categories. First, the index-based solutions, i.e., Haar wavelets (Fu
et al. 2006; Bu et al. 2007) and SAX (Keogh et al. 2005, 2007; Senin et al. 2015),
where series are first discretized and then inserted in an index structure that supports
fast similarity search. Second, the sequential scan solutions (Yeh et al. 2016; Liu
et al. 2009; Fu et al. 2006; Luo and Gallagher 2011; Yankov et al. 2007b; Zhu et al.
2016), which consider the direct subsequence pairwise distance computations, and the
corresponding search space optimization.

Indexing techniques are based on the discretization of the real valued data series,
with several user defined parameters required for this operation. In general, select-
ing and tuning these parameters is not trivial, and the choices made may influence the
behavior of the discord discovery algorithm, since it is strictly dependent on the quality
of the data representation. In this regard, the most recent work in this category, Gram-
marViz (Senin et al. 2015), proposes a method of Top-k 1stdiscord search based on
grammar compression of data series represented by discrete SAX coefficients. These
representations are then inserted in a hierarchical structure, which permits us to prune
unpromising candidate subsequences. The intuition is that rare patterns are assigned
to representations that have high Kolmogorov complexity. This means that a rare SAX
string is not compressible, due to the lack of repeated terms.

The state of the art for the sequential scan methods is represented by STOMP, since
computing the matrix profile permits to discover, in the same fashion as motifs, the
Top-k 1stdiscords. Surprisingly, just onework exists that addresses the problem ofmth
discord discovery (Yankov et al. 2007b). The authors of this work, proposed the Disk
Aware discords Discovery algorithm (DAD), which is based on a smart sequential scan
performed on disk resident data. This algorithm is divided into two parts. The first is
discord candidate selection, where it identifies the sequences, whose nearest neighbor
distance is less than a predefined range. The second part, which is called refinement,
is applied in order to find the exact discords among the candidates. Despite the good
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performance that this algorithm exhibits in finding the first discord, when m is greater
than one, it becomes hard to estimate an effective range. In turn, this leads to scalability
problems, due to the explosion of the number of distances to compute.

In summary, while there exists a large and growing body of work on the motif and
discord discovery problems, this work offers the first scalable, parameter-light, exact
variable-length algorithm in the literature for solving both these problems.

9 Conclusions

Motif and discord discovery are important problems in data series processing across
several domains, and key operations necessary for several analysis tasks. Even though
much effort has been dedicated to these problems, no solution had been proposed for
discovering motifs and discords of different lengths.

In this work, we propose the first framework for variable-length motif and dis-
cord discovery. We describe a new distance normalization method, as well as a novel
distance lower bounding technique, both of which are necessary for the solution to
our problem. We experimentally evaluated our algorithm by using five real datasets
from diverse domains. The results demonstrate the efficiency and scalability of our
approach (up to 20× faster than the state of the art), as well as its usefulness.

In terms of future work, we would like to further improve the scalability of
VALMOD. We also plan to extend VALMOD in order to efficiently compute a com-
plete matrix profile for each length in the input range. This would enable us to support
more diverse applications, such as discovery of shapelets (Ye and Keogh 2009).
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