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Abstract
Large real-world graphs claim lots of resources in terms ofmemory and computational
power to study them and this makes their full analysis extremely challenging. In order
to understand the structure and properties of these graphs, we intend to extract a
small representative subgraph from a big graph while preserving its topology and
characteristics. In this work, we aim at producing good samples with sample size
as low as 0.1% while maintaining the structure and some of the key properties of a
network.We exploit the fact that average values of degree and clustering coefficient of a
graph can be estimated accurately and efficiently.We use the estimated values to guide
the sampling process and extract tiny samples that preserve the properties of the graph
and closely approximate their distributions in the original graph. The distinguishing
feature of our work is that we apply traversal based sampling that utilizes only the
local information of nodes as opposed to the global information of the network and
this makes our approach a practical choice for crawling online networks. We evaluate
the effectiveness of our sampling technique using real-world datasets and show that it
surpasses the existing methods.

Keywords Big graphs · Graph sampling · Social networks

1 Introduction

Large networks, formally represented as graphs, offer a tremendous amount of data to
study but practical limitations of storage and computational power make it infeasible
to fully analyze such massive graphs. In recent years, extracting a small representative
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subgraph from a large original graph, known as graph sampling, has emerged as a
solution to examine some important properties of the original graph with limited
resources. Graph sampling helps us in saving time and resources needed to study
massive graphs. In order to maintain the structure and properties of the original graph,
the existing sampling algorithms could shrink a graph to 10% of its size but further
reduction in sample size deteriorates the structure of the sample graph.

Given the fact that a real-world graph could have billions of nodes, the 10% sample
with millions of nodes in it fades away the purpose of sampling. In this work, we
are motivated to reduce the sample size below 1% while retaining its key properties,
its degree, clustering coefficient, path length, diameter and a structural property, its
assortativity. By extracting very small samples, wewill be able to studymassive graphs
without needing any special resources. We exploit the fact that some properties of a
graph, e.g. the average degree and average clustering coefficient, can be estimated
efficiently without requiring lots of resources. The estimated values can guide us in
extracting a very small but accurate sample that faithfully represents the actual graph.

In this paper, we propose a new sampling method that relies on the estimated
values of degree and clustering coefficient of a graph. We let estimated values guide
the sampling process, so that the extracted tiny samples maintain the structure and
properties of the original graph. The main characteristics of our work are as follows:

1. We reduce the sample size below 1% while maintaining the key properties, that
is degree, clustering coefficient, path length and diameter, of the original graph.
We also retain the overall structure of the graph by preserving its degree mixing
pattern (assortativity) and modularity.

2. We introduce a two step approach to graph sampling. In the first phase, we extract
a sample graph that has the required number of nodes but extra edges in it. In the
second phase, we remove some extra edges to closely match the original graph.

3. We present the idea of approximating the impact of removing an edge on the
clustering coefficient of a graph and apply this idea to the selection of extra edges
to remove.

4. Lastly, we visit a localized portion of a graph, as opposed to exposing the whole
graph for uniform sampling, and still we sustain the overall structure of the graph
being sampled. In other words, we utilize the local information of nodes and do
not need any global information. For example, TIES (Ahmed et al. 2011) needs
to know the whole graph in advance for uniform sampling. We, on the other side,
traverse a small portion of a graph by exploring the neighborhood of sampled nodes
and this makes our approach a practical choice for crawling online networks.

The rest of the paper is organized as follows. InSect. 2,weprovide somebackground
knowledge and our intuition of guided sampling approach. In Sect. 3, we formally
present our sampling technique. In Sect. 4, we present the evaluation criteria and
datasets used in the experiments. In Sect. 5, we evaluate our approach and compare
it with existing approaches. We present the related work in Sect. 6 and conclude the
paper in Sect. 7.
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Guided sampling for large graphs 907

2 Background and intuition

In this section, we describe the sampling problem, present research related to esti-
mating the average degree and clustering coefficient of a graph, and give our basic
intuition to exploit this information in sampling.

2.1 Sampling problem

Given a large graph G = (V,E), where V = {v1, v2, v3, . . . , vn} is the set of vertices (or
nodes) and E = {e1, e2, e3, . . . , em} is the set of edges (or links), we extract a sample
graph Gs = (Vs, Es) from G such that Vs ⊂ V and Es ⊂ E . The resulting sample
graph Gs has ns number of vertices Vs = {v1s , v2s , v3s , . . . , vns } and ms number of
edges Es = {e1s , e2s , e3s , . . . , ems } in it. We consider undirected graphs in this work
and represent an edge between nodes vi and v j as a tuple e(vi , v j ). Given a sampling
fraction φ such that |Vs |/|V | = φ, the aim of sampling is to obtain a sample with a
small value of φ.

2.2 Estimating degree and clustering coefficient

There has been a significant amount of research to estimate the different properties of
a graph (Ahn et al. 2007; Ribeeiro and Towsley 2010; Gjoka et al. 2010). The goal of
such a research work is to quickly explore and estimate some of the characteristics of
a graph. The research community has proposed some good techniques to estimate the
average degree and average clustering coefficient of a graph by mining a small portion
of it.

The work in (Sethu and Chu 2012; Gjoka et al. 2010) shows that metropolis–
hastings random walk (MHRW) is very efficient in capturing the degree distribution
of a graph even if we visit a small portion of the graph. The work in (Hardiman and
Katzir 2013) deploys RandomWalk andmines a small percentage of nodes to estimate
the average clustering coefficient of a graph with good accuracy. Once we have the
estimated values of average degree and average clustering coefficient of the original
graph, our idea is to feed them to the sampling algorithm and guide the sampling
process to achieve a particular goal instead of blindly sampling the nodes and edges.

2.3 Our intuition

A good sample graph Gs of G closely approximates different properties and distri-
butions of those properties of G. The well-studied properties of a sample graph are
its degree and clustering coefficient along with their distributions while some other
properties have also been explored by the research community (Hu and Lau 2014).
The previous work on sampling could obtain good samples with a value of φ = 0.1
and could preserve one or two properties of the original graph but if φ < 0.1, we get
a compromised sample. In this work, we aim at producing good samples with such
small sampling fractions while preserving some key properties of the original graph.
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908 M. I. Yousuf, S. Kim

We note that when φ is low, the size ns of Gs is too small to capture the structure
of G because the sampling is performed blindly without any prior knowledge of the
underlying original graph. Intuitively, we believe that if we feed in some information
to the sampling technique and guide our sampling towards a known goal, we can yield
good samples with low values of φ. In order to lower the value of φ and still extracting
a true sample graph Gs fromG, we intuit to use the estimated values of average degree
and average clustering coefficient and then guide the sampling process based on the
estimated values.

3 Guided sampling

Our guided sampling (GS) algorithm has two phases. In the first phase, we deploy
modified depth first sampling (ModDFS). In ModDFS, we modify the Depth First
Sampling such that we always sample the highest degree neighbor of a node from its
unsampled neighbors to favor high degree nodes in the sample graph. By applying
ModDFS in the first phase, we collect a sample graph Gs = (Vs, Es) such that Vs

has the required number of nodes in it but the edge set Es has more than enough
number of edges because of the biased nature of ModDFS, In the second phase, we
remove the extra edges from the sample graph to achieve the required values of degree
and clustering coefficient. Instead of removing the edges cluelessly in this phase,
we calculate the weight of an edge to estimate its impact on the average clustering
coefficient of a graph when it is removed. This weight guides the trimming of the
graph to realize a good sample graph.

3.1 Edge weight

The neighborhood of a node is made up of all the nodes connected to it by an edge,
not including the node itself and local clustering coefficient of a node measures the
connectedness of its neighborhood. We measure it as the ratio of the existing edges
between the neighbors of a node to the number of all possible edges between the
neighbors. Consider a node v that has degree dv and lv number of edges exist between
its neighbors, its clustering coefficient ccv would be given by

ccv = 2 ∗ lv
dv ∗ (dv − 1)

(1)

Now suppose that we remove an edge between its neighbors such that its degree
remains dv , this means the clustering coefficient of node v will decrease by an amount

2
dv∗(dv−1) . This provides the foundations of our idea of giving weight to all the edges
in the sample graph and removing edges according to their weights to match the
clustering coefficient of the sample graph to that of the original graph.

A node gives weight to an edge between a pair of its neighbors with a simple
intuition of keeping its own degree constant. In a closed triplet of nodes v, u, and
w, node v gives weight to edge e(u, w) because removing this edge will decrease its
clustering coefficient without affecting its degree. The weight it gives is calculated as
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We(u,w) = 2

dv ∗ (dv − 1)
(2)

where dv is the degree of node v. Similarly, node u gives weight to edge e(v,w)

and node w gives weight to edge e(u, v) in the triplet. Intuitively, when we remove
an edge between the neighbors of a node such that the degree of the node does not
change, we can precisely measure the decrement in the local clustering coefficient
of that node. However, it is very challenging to calculate the impact on the average
clustering coefficient of the graph because removing a single edge could disturb many
triplets in the graph.

A node repeats this process for all the closed triplets it is part of. Finally, the weight
of an edge is the sum of weights given by all the nodes that make close triplets with
nodes at the ends of this edge. Therefore, the weight of an edge e(u, w), such that
nodes u and w make closed triplets with nodes {v1, v2, v3, . . . , vk}, is calculated as

We(u,w) =
k∑

i=1

2

di ∗ (di − 1)
(3)

Intuitively, we assume that edges with high weight have high impact on the average
clustering coefficient of a graph because (i) removing a high weight edge means that
the local clustering coefficient of (probably) many nodes will decrease and therefore,
the average clustering coefficient of the graph will decrease significantly compared to
removing a low weight edge and (ii) low degree nodes contribute more to the weight
of an edge and when we remove a high weight edge, the local clustering coefficient of
low degree nodes decrease significantly contributing to sharp decrement in the average
clustering coefficient of the graph.

Consider the small graph in Fig. 1 with |V | = 9, |E | = 16 and average clustering
coefficient CC = 0.66. In the graph, node 1 has degree d1 = 3 and the weight given by
this node to edges e(2,3) and e(3,4) is 0.33 (using eq. 2). Similarly, node 6 has degree
d6 = 5 and it gives weight equal to 0.1 to edges e(2,3), e(2,5), e(3,7), and e(7,9) as
removing these edges will not change its degree. Now the total weight of edge e(2,3) is
We(2,3) = 0.33+0.1 = 0.43, the sum of the weights given by node 1 and node 6. This
way, we calculate the weight of all the edges in the graph as shown in the figure. Now,
if we remove the edge e(2,5) with We(2,5) = 0.1, the average CC of the graph drops
to 0.63, a small decrement, and if we remove the edge e(4,7) with We(4,7) = 1.1, the
average CC of the graph drops to 0.51, a significant drop. This supports our intuition
that removing a high weight edge has a higher impact on the CC of a graph and the
CC of a graph decreases sharply when we remove a high weight edge as compared to
removing a low weight edge.

Supposedly, it is very strenuous to calculate the precise impact of removing an edge
on the clustering coefficient of a graph, however, we apply heuristic and assume that
removing a high weight edge reduces the clustering coefficient of a graph sharply as
compared to removing a low weight edge. In the experimantal evaluation section, we
perform an experiment to show that our heuristic is legitimate (see Fig. 3).
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910 M. I. Yousuf, S. Kim

Fig. 1 A small network with |V | = 9 and |E | = 16. The labels on edges show their weight

3.2 Guided sampling algorithm

In thefirst phase of guided sampling (GS) algorithm,weperformModDFSas explained
above and populate the node set Vs . We then induce the sample graph Gs by adding all
the existing edges between the nodes in Vs . We have an overestimated sample graph
Gs = (Vs, Es) where the node set Vs contains the required number of nodes and we
do not need to remove any node but the edge set Es has extra edges in it and needs
to be trimmed. Next, we calculate the weight of each edge in Es as explained above,
sort Es in descending order of weights, count the number of extra edges in Es and
calculate the average clustering coefficient of Gs . At this stage, the sample graph Gs

is an overestimated sample of G in terms of average degree and average clustering
coefficient.

In the second phase, we remove extra edges from Es , one by one, calculate the
clustering coefficient of Gs after removing an edge and decide whether we should
remove a high weight edge or a low weight edge in the next iteration. The algorithm
runs till we have removed all the extra edges from Es .

In order to decide whether to remove a low weight edge or a high weight edge, we
deploy a simple idea of following the slope (line 11) of the hypothetical line drawn from
the initial value (line 6) of clustering coefficient of sample graph to the target value
inputted to the algorithm. We intend to guide the sampling process by following this
hypothetical line heuristically. Moreover, assuming that the edges in Es are available
as a list, we sort the list in descending order of weights (line 4), mark the middle of the
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list (line 14) and consider the edges on the left side (or upper portion) of this mid point
as high weight edges and those on the right side (or lower portion) are taken as low
weight edges. We delete (line 20) either a high weight edge (line 16) or a low weight
edge (line 18) by comparing (line 15) the current value of clustering coefficient with
the actual inputted value and the expected value (line 25) of clustering coefficient at
that point on the hypothetical line. With this simple idea, we remove a high weight
edge when we need a sharp decrement in clustering coefficient and a low weight if we
need a minor adjustment to follow the hypothetical line and finally reach the target
value when we have removed all the extra edges. It would be worth to mention that
we delete an edge (line 20) only if the degree of both the nodes at its ends is greater
than one; this makes sure that there is no isolated node and the sample graph is fully
connected.

3.3 Time complexity

The run time complexity of the guided sampling technique is straight forward and
could be calculated as follows. We first calculate the time to estimate the values of the
degree and clustering coefficient of the original graph. Both the techniques discussed
in Sect. 2.2 deploys RandomWalk or its variation and the upper bound on the estimated
time for a RandomWalk to visit ns vertices is 4

27ns
3 + O(ns

3) (Feige 1995) where ns

is the number of nodes in the sample graph. For simplicity, we take it as O(ns
3) and

hence the time complexity to estimate the average degree and clustering coefficient of
the original graph is 2 ∗ O(ns

3), of the order of O(ns
3). In the first phase of GS, we

deployModDFS (line 1) with complexity O(ns) (we ignore the small overhead to find
the highest degree neighbor of a node), calculate the weight of edges in Es (line 3) with
complexity O(ns

3), sort Es (line 4) with complexity O(mslog(ms)) and calculating
the clustering coefficient (line 6) has complexity O(ns

3). We represent the overall
complexity of the first phase with a constant C. In the second phase, we recalculate the
average clustering coefficient (line 22) of the sample graph after deleting an extra edge
and we do it eextra number of times. When we delete an extra edge, the end nodes of
the edge and the common friends of these nodes are affected. Basically, these common
friends are the nodes that gave the weight to the edge being deleted. Assumingwe have
a complete graph for worst case analysis, the complexity to calculate the clustering
coefficient (line 22) is O(ns

2) and since eextra is of the order of ms where ms is the
number of edges in the sample graph, therefore, the complexity of the second phase
is O(ns

2) ∗ ms or simply O(ns
2ms). To summarize, the expected time to realize a

sample with GS is of the order of O(ns
3) + O(ns

2ms) + C where ns and ms are the
number of nodes and edges in the sample graph respectively and C is a constant.
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Guided Sampling (GS)
Input:
Original Graph G = (V,E) where V is the set of nodes and E is the set of edges. Target values of degree
(dorg) and clustering coefficient (ccorg) of original graph and the sampling fraction φ.

Output:
Sample Graph Gs = (Vs ,Es ) where Vs is the set of sampled nodes (|Vs | = |V | ∗ φ) and Es is the set of
sampled edges.

Initialization:
Vs = 0, Es = 0

Sampling, Induction and Edge Weight:

1: Vs ← ModDFS(G, φ)
2: Populate Es by inducing node set Vs
3: Calculate the weight of edges in Es
4: Sort Es in descending order of weights

5: eextra = |Es | − dorg ∗ |Vs |
2

6: ccini t ← CalculateCC(Gs )

Removing Extra Edges:

7: edel = 0
8: eratio = 1
9: cccurr = ccini t

10: ccratio = ccorg
cccurr

11: slope =
cccurr
ccorg

−1

eextra

12: ccexp = ccini t − (slope ∗ edel ∗ ccorg)

13: while edel < eextra do

14: mid = |Es |
2

15: if cccurr > ccexp AND cccurr > ccorg then
16: index = mid ∗ ccratio ∗ eratio
17: else
18: index = mid + mid ∗ eratio
19: end if

20: DeleteEdge(Es , index)

21: edel = edel + 1

22: cccurr ← CalculateCC(Gs )

23: ccratio = ccorg
cccurr

24: eratio = eextra−edel
eextra

25: ccexp = ccini t − (slope ∗ edel ∗ ccorg)

26: end while
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4 Evaluation criteria and datasets

4.1 Evaluation criteria

There is no agreed-upon criteria to measure the goodness of a sample, however, the
research community (Leskovec and Faloutsos 2006; Ahmed et al. 2011) has evaluated
the sample quality by comparing some properties of sample graphs with the origi-
nal graph. We compare the degree, clustering coefficient, path length, 90% effective
diameter, assortativity andmodularity of sample andoriginal graphs andperformquan-
titative tests such as Jensen–Shannon Distance (JSD) and Root Mean Square Error
(RMSE) for quantitative evaluation of sampling algorithms. All the results presented
in this paper are averaged over five readings.
Point Statistics A point statistic is a single value statistic that shows the value of a
property at a single point. We vary the sampling fraction φ from 0.001 to 0.01 and
plot the scaling ratio of a property Θ as the ratio of the value of that property in the
sampled graph ΘS to the value of that property in the actual graph ΘA:

Scaling Ratio = ΘS

ΘA
(4)

For example, we measure the average degree of the sample graph and the original
graph and find the scaling ratio of degree by diving the average degree of the sample
graph Gs at a sampling fraction φ with the average degree of the original graph G.
Distributions A distribution is a multivalued statistic and shows the distribution of a
property in a graph. For example, the degree distribution shows the fraction of nodes
that have degree greater than or less than a particular value. We find and plot the
empirical cumulative distribution function (ECDF) of degree, clustering coefficient
and path lengths of sample graphs at φ = 0.001.
Root Mean Square Error Given the original graph G and sampled graph Gs , we want
to measure how far is Gs from G. For scalar quantities such as the average degree,
we use the common measure for the quality of estimation by root mean square error
(RMSE), given as

RM SE =
√√√√1

n

n∑

1

(ΘS − ΘA)2 (5)

where ΘS and ΘA are sampled and original values respectively.
Jensen–Shannon Distance For distributions of the properties, we measure Jensen–
Shannon Distance. In probability theory, the Jensen–Shannon Divergence measures
the similarity between two probability distributions, calculated as

DJ S(P||Q) = 1

2
DK L(P||M) + 1

2
DK L(Q||M) (6)

where DJ S and DK L are Jensen–Shannon and Kullback-Leibler Divergences respec-
tively while P and Q are two Probability Distribution Functions (PDFs) and M =
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1
2 (P+Q). Its square root is a true metric often referred to as Jensen–Shannon Distance
(JSD).

4.2 Datasets for analysis

In our experiments we use a total of 16 networks; 14 real graphs and 2 synthetic
graphs. The 14 real networks include one autonomous network Skitter (Konect 2015),
two ground truth community networks YouTube (Leskovec and Krevl 2014) and Live-
Journal (Leskovec and Krevl 2014), four collaboration networks CiteSeer (Rossi and
Ahmed 2015), GoogleScholar (Chen et al. 2017b), Actors (Konect 2015) and DBLP
(Konect 2015) and seven social networks FourSquare (Rossi and Ahmed 2015), Twit-
ter (Rossi and Ahmed 2015), Lastfm (Rossi and Ahmed 2015), Hyves (Zafarani and
Liu 2009), Flicker (Konect 2015), Flixster (Rossi and Ahmed 2015) and Facebook
(Rossi and Ahmed 2015).

In addition, we also use two synthetic networks as these networks have strong
mathematical foundations. The first systhetic network, called FF, is generated using
Forest Fire method presented in (Leskovec et al. 2007). We use those parameter val-
ues for generating the graph that generate the most realistic graphs as mentioned in
(Leskovec et al. 2007). We use small-world model (Watts and Strogatz 1998) to gener-
ate our second synthetic network and call it SW. The parameter values are tuned such
that the generated network has nearly the same average degree and clustering coeffi-
cient as that of FF synthetic graph. The reason to select Forest Fire generative model
is that it generates graphs that follow many properties of real-world graphs (Leskovec
et al. 2007) whereas small-world model generates random graphs with small-world
properties that have been observed in real-world networks. We use sampling frac-
tions φ = {0.001, 0.0025, 0.005, 0.0075, 0.01} to extract samples from these graphs.
Table 1 summarizes the characteristics of these datasets.

5 Experimental evaluation

5.1 Accuracy in estimating degree and clustering coefficient

In this section, we estimate the degree and clustering coefficient (CC) of all datasets
using the techniques discussed above.We deployMHRW (Sethu and Chu 2012; Gjoka
et al. 2010) to estimate the averagedegree andRandomWalkbased techniquepresented
in (Hardiman andKatzir 2013) to estimate the average clustering coefficient of a graph.
We estimate the values at different sampling fractions and plot the scaling ratio, i.e.,
estimated value over the true value, with 95%confidence intervals in Fig. 2. The graphs
show that we can estimate the average degree and CC of a graph with good accuracy
at different sampling fractions.
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Fig. 2 Accuracy in estimating the degree and clustering coefficient of a graph

5.2 Impact of edge weight on clustering coefficient

In this section, we demonstrate the impact of removing a highweight edge versus a low
weight edge on the average clustering coefficient of a graph.We perform an experiment
in which we retrieve a sample from the original graph, induce it and calculate the edge
weight (line 1 through 3 of GS) and then remove the extra edges using three different
schemes. In the first scheme, we remove high weight edges (HWE), that means if
the edges are sorted in descending order of their weights, we remove the top eextra
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number of edges where eextra is calculated as per line 5 of GS. In the second scheme,
we remove low weight edges (LWE), the same as HWE but the edges are sorted in
ascending order of their weights. In the third scheme, we apply GS and remove a high
weight or a low weight edge as discussed in the GS algorithm. We then plot the ratio
of the current clustering coefficient to the original clustering coefficient against the
percentage of extra edges removed. The results are shown in Fig. 3 for all datasets at
φ = 0.001.
First, we see that we collect overestimated samples in all datasets because we perform
ModDFS in the first phase and these overestimated samples make sure that we have
extra edges to remove in the second phase of our guided sampling approach. Second,
in the case of HWE, the average clustering coefficient of the sample graph decreases
sharply and this justifies our heuristic that high weight edges have higher impact on
the clustering coefficient of a graph. In the case of LWE, even after removing all
extra edges, the clustering coefficient is still very high in all datasets. We observe that
removing a low weight edge induces a small decrement (or occasionally a negligibly
small increment) in the value of the clustering coefficient of Gs . In the case of GS,
we remove both high and low weight edges and hence reach the desired value after
removing all the extra edges.

5.3 Impact of preserving degree and clustering coefficient

In this section, we perform two experiments to find the impact of preserving average
degree and average clustering coefficient of a graph. Let dest and ccest be the estimated
values of average degree and clustering coefficient of the graph being sampled.

In the first experiment, we perform undersampling and oversampling in terms of
clustering coefficient. We input dest as the target value of degree and cctarget =
{0.5, 0.75, 1.0, 1.25, 1.5} × ccest as the target values of clustering coefficients. In
other words, we get five samples that have the same average degree, i.e., we preserve
degree, but different clustering coefficients. We then find and plot the scaling ratios
of average path length, 90% effective diameter and modularity and RMSE values
of assortativity of four datasets (results are similar for the remaining datasets.) in
Fig. 4. We see that clustering coefficient has a marginal effect on these properties. For
example, we can see an improvement in Twitter and Lastfm datasets in path length but
cannot observe such changes in other metrics. It seems that whether we oversample
or undersample a graph in terms of clustering coefficient, the properties such as path
length of the sampled graph does not change significantly. Regarding assortativity, we
have mixed results. For two datasets, we get a smaller error when we oversample and
a larger error when we undersample the graph.

In the second experiment, we perform undersampling and oversampling in terms
of degree. We input ccest as the target value of clustering coefficient and dtarget =
{0.5, 0.75, 1.0, 1.25, 1.5} × dest as the target values of degree. In other words, we
get five samples that have the same average clustering coefficient, i.e., we preserve
clustering coefficient, but different average degrees. The results are shown in Fig. 5. In
general, when a graph is undersampled in terms of degree it overestimates the average
path length and 90% effective diameter, and when it is oversampled it underestimates
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Fig. 3 Impact of edge weight on clustering coefficient

these values. In the case of modularity, an undersampled graph clearly overestimates
it whereas an oversampled graph does not affect this metric significantly. Regarding
assortativity, we cannot conclude clearly but it seems this property is less sensitive to
undersampling or oversampling.

Even though degree and clustering coefficient are two of the key properties of a
graph, we do not intend to claim that preserving degree and clustering coefficient
will always result in better performance in other metrics. However, the experimental
results in this section show that there is some correlation between the two properties
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Fig. 4 Impact of preserving degree but undersampling or oversampling in terms of clustering coefficient

and other metrics, and preserving the average degree seem to have a bigger impact
on other metrics than preserving the average clusteirng coefficient. In the coming
sections, we will present the results of all datasets across many different metrics, and
how GS compares to previous techniques in those metrics .

5.4 Before and after guidance

In order to understand the working of the GS, we perform an experiment and draw
the distributions of the sampled graphs before and after the guidance. We find the
distributions of degree, clustering coefficient and path lengths at φ = 0.001 right after
the first phase (before the guidance) when the sampled graph still has extra edges in
it. We then remove extra edges as per GS algorithm and draw the distributions when
the extra edges have been removed (after the guidance). The results of four datasets
are shown in Fig. 6.

The first row shows the degree distribution plots and we see that we collect many
high degree nodes in the first phase as expected. During guidance, we remove edges
and hence the degree of many nodes decreases but still we have high degree nodes
in the sampled graph. Although the average degrees of the sampled graphs are the
same as that of their original counterparts, we have more high degree nodes than low
degree nodes and hence the degree distributions do not follow closely. Similarly, the
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Fig. 5 Impact of preserving clustering coefficient but undersampling or oversampling in terms of degree

clustering coefficient distributions have higher values before the guidance and after
removing the extra edges, we follow the clustering coefficient distributions better than
the degree distributions. In the case of path length, we initially have shorter path
lengths but when we remove extra edges, we drop many paths between the nodes and
this results in good estimation of path lengths. In short, the second phase trims the
graph and helps to make it a representative of the original graph.

A questionmay arise that whywe did not apply simple breadth first sampling (BFS)
or some of its variation to get samples in the first phase ofGS as thewell-studied (Doerr
and Blenn 2013; Maiya and Berger-Wolf 2011) biased nature of BFS will make sure
that we have extra edges to remove. The reason to prefer DFS over BFS is that, in
BFS we explore graph in breadth dimension and this compromises the path length
and effective diameter of the sampled graph because we do not explore the graph in
depth. When we deploy DFS, we dig deep into the graph and as a result we get better
results in terms of path length and effective diameter. The modified part of DFSmakes
sure that we have extra edges at the end of the first phase. To answer the question, we
conduct a small experiment in which we extract samples in the first phase with BFS,
DFS and ModDFS for a sampling fraction of φ = 0.005. We then compute the ratio
of induced edges to the expected edges to see if we always get extra edges in the first
phase so that we could remove them in the guided phase. The results are presented in
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Fig. 6 Degree, clustering coefficient and path length distributions of four networks before and after the
guidance. Results are similar for remaining networks. (Best viewed in color)

Table 2. It is clear that the biased nature of BFS does not always guarantee to sample
extra edges whereas the ModDFS works as expected.

5.5 Overhead of recalculating the clustering coefficient

We remove extra edges one by one and recalculate the clustering coefficient of the
graph at every step. This recalculation of the clustering coefficient may slow down the
sampling process. However, we do not need to recalculate it for the whole graph but
for a few nodes. When we delete an extra edge, the end nodes and the common friends
of these nodes are affected and we recalculate the clustering coefficient of these nodes
only. We perform an experiment in which we count the number of nodes for which
the clustering coefficient is recalculated when sampling the graph at φ = 0.005. We
present the results in Table 3.We see that, on average, only a few nodes are affected and
recalculating their clustering coefficient does not over burden the sampling process.
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Table 2 The ratio of induced
edges to the expected edges in
the sample graphs extracted by
ModDFS, BFS and DFS

Dataset ModDFS BFS DFS

CiteSeer 2.41 1.14 0.76

GoogleScholar 2.53 1.27 0.87

Actors 4.66 1.38 1.15

Foursquare 8.62 3.42 1.34

Twitter 4.68 0.89 1.04

Lastfm 7.23 0.95 1.54

DBLP 4.15 0.93 0.87

Hyves 4.67 0.87 0.95

Skitter 5.79 1.66 0.97

Flicker 36.59 4.21 7.76

Flixster 9.04 2.32 0.88

Facebook 3.03 0.82 0.93

Youtube 15.35 4.49 0.83

Livejournal 7.92 0.93 0.86

FF 1.28 0.91 0.82

SW 1.36 0.87 0.73

Table 3 The average number of
nodes for which the clustering
coefficient is recalculated

Dataset Average number of nodes

Citeseer 21.52

GoogleScholar 25.17

Actors 24.38

Foursquare 15.65

Twitter 2.32

Lastfm 6.84

DBLP 12.01

Hyves 5.93

Skitter 18.55

Flicker 12.35

Flixster 5.41

Facebook 6.48

Youtube 9.44

Livejournal 5.38

FF 4.26

SW 3.14
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5.6 Evaluation against previous samplingmethods

In this section, we evaluate GS against five previous sampling methods. We compare
GS with the following methods.

– Forest fire sampling (FFS) In FFS (Leskovec and Faloutsos 2006), we start from
a randomly picked seed node and burn a fraction of its outgoing edges along with
the nodes on the other end of these edges. The fraction of nodes to be burned
depends on the forward burning ratio p f with a recommended value of p f = 0.7
(Leskovec and Faloutsos 2006).

– Totally induced edge sampling (TIES) Nasreen et al. proposed totally induced
edge sampling (TIES) (Ahmed et al. 2011) which is a variation of random edge
sampling. The basic difference in TIES and random edge sampling is the graph
induction step. In TIES, we augment all the edges among the sampled nodes by
including other edges between the sampled nodes in addition to those sampled in
the sampling step.

– Expansion sampling (XS) The XS strategy (Maiya and Berger-Wolf 2011) is based
on the concept of expansion from work on expander graphs and seeks to greedily
construct the sample with the maximal expansion. It was particularly designed to
sample communities in networks (Maiya and Berger-Wolf 2010).

– Frontier sampling (FS) In FS (Ribeeiro and Towsley 2010), we deploy m-
dimensional dependent random walks to sample a graph. FS firstly randomly
chooses a set of nodes as seeds. Then FS samples a node from the set of seeds
with the probability proportional to its degree.

– Rank degree (RD) RD (Voudigari et al. 2016) is a graph exploration sampling
method based on edge selection. The core of this algorithm is the edge selection
rule that is built on the ranking of nodes based on their degree values.

5.6.1 Degree statistics

We vary the sampling fraction from φ = 0.001 to φ = 0.01 and plot the scaling ratio
of average degree as the ratio of the average degree in the sampled graph to that of
in the original graph (see eq. 4). All values are shown with 95% confidence intervals.
Figure 7 shows the scaling ratio of average degree on Y-axis against the sampling
fraction on X-axis for all newtroks. We see that FFS and FS always underestimate the
degree whereas TIES, XS and RD show a mix behavior. For some networks TIES and
XS overestimate the average degree, e.g., FourSquare, Flicker and YouTube, while
for other networks these methods underestimate the value, e.g., CiteSeer, Actors and
Facebook.RDoverestimates at higher sampling fractions in somedatasets, e.g., Twitter
and DBLP. We observe that TIES, XS and RD results vary with sampling fraction
whereas FFS and FS, though undersample the graph, perform consistently at different
sampling fractions. In the case of GS, we produce correct samples because we guide
our sampling to a known target instead of blindly sampling the nodes and/or edges.
For quantitative comparison, we give the values of RMSE averaged over all sampling
fractions along with standard deviations in Table 4. We have highlighted the lowest
value for each dataset. We see that GS induces less error than all other methods across
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Fig. 7 Point statistics of average degree of all networks with 95% confidence intervals

all datasets; be they are real or synthetic. On average, RMSE value of GS is 16.48
times less than that of FFS which stands second to GS in this metric.

5.6.2 Clustering coefficient statistics

We vary the sampling fraction from φ = 0.001 to φ = 0.01 and plot the scaling ratio
of average clustering coefficient with 95% confidence intervals in Fig. 8. We see that
FFS and FS perform poorly and underestimate the values in all datasets. TIES and
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Fig. 8 Point statistics of average clustering coefficient of all networks with 95% confidence intervals

XS also gives inaccurate values in most of the networks but performs better in some
datasets, e.g., Skitter, Youtube and FF. RD either oversamples, e.g., FourSquare and
Hyves, or undersamples, e.g., DBLP and SW. GS leads to good results because we
remove the extra edges depending on their weights that helps to reach the target value
after we have removed all the extra edges. We give RMSE values in Table 5 with
standard deviations. We see that GS wins against other methods in all the datasets. In
some datasets, the RMSE value of GS is of the order of 10−4. TIES is the second best
method for this metric and the error of GS is 7.5 times less than that of TIES.
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Fig. 9 Point statistics of average path length of all networks with 95% confidence intervals

5.6.3 Path length statistics

We show the results of scaling ratio of average path length at different sampling
fractions in Fig. 9. FFS and FS remarkably estimate high values of path lengths in all
datasets. FS values are many folds higher than the original values and fall outside the
plotting area inmany datasets. Othermethods, i.e., TIES,XS andRDgive good results
in some datasets, e.g., Twitter, Lastfm and Facebook. GS outperforms in estimating
the path lengths in most of the networks. Since TIES picks edges uniformly at random
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Fig. 10 Point statistics of 90% effective diameter of all networks with 95% confidence intervals

from the whole graph, so it has more chances of exploring the graph that helps it
estimating the path lengths but still GS is better than TIES in most of the networks
although GSmines a small portion of a graph. In the case of GS, we performModDFS
and sample many nodes away from the seed node and it helps GS to measure the path
lengths. XS also mines a small portion and it seems that the mechanism of selecting
nodes in XS and augmenting all the edges between them is better than that of other
methods and as a result XS yields good samples in terms of average path length. FFS
and FS also sample a small fraction of neighboring nodes but do not augment all the
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Guided sampling for large graphs 931

edges between the sampled nodes that leads them to deliver samples with high path
lengths as they can drop many existing paths between the nodes. Table 6 gives the
RMSE values along with standard deviations. We see that GS gives minimum error
in seven datasets whereas TIES and XS introduce less error in four datasets each. On
average, GS surpasses all the methods and generates less error than other methods
whereas XS stands seconds in this metric. The GS error is 1.31 times less than that of
XS.

5.6.4 90% effective diameter

The diameter of a graph is the length of the longest shortest path over all connected
nodes. The 90% effective diameter or 90-percentile diameter is defined as the distance
in which 90% of all node pairs are located and it is considered a more robust quantity
than the diameter of a graph. We show the scaling ratios of this metric in Fig. 10.
Similar to path length metric, FFS and FS overestimate the values of 90% effcetive
diameter in all the datasets. TIES,XS andRDperform comparable toGS and give good
results in some datasets, e.g., Twitter, Lastfm, Skitter and LiveJournal. For quantitative
purposes, we show the RMSE values in Table 7. GS excels in nine datasets whereas
TIES produces minimum error in four datasets. On average, GS performs the best
by producing less error than other methods. XS and RD stands second and third
respectively.

5.6.5 Assortativity

Assortativity quantifies the tendency of nodes in a graph to connect to others that
are similar in some way. We use the degree of a node as a similarity measure and
calculate the assortativity coefficient as the pearson correlation coefficient of degree
between pairs of connected nodes. We use the definition given in (Hu and Lau 2014).
Assortativity is also referred as degree mixing and ranges from +1 to −1, a network
being assortative or disassortative respectively. We show the measured assortative
values of Gs and the actual values of G in Fig. 11 for all networks. We see that RD
does not match well with the original values in most of the networks. FFS, XS and
FS perform good in some datasets whereas TIES work better than RD. GS gives mix
results and prevails over other methods in some networks but not in all networks.
TIES is the only method that perform uniform edge sampling by exposing the whole
graph and hence it has more chances of picking nodes of varying degree from the
graph but fails in maintaining their mixing patterns. Other methods explore a very
limited region of a graph but the assortativity results show that they can still maintain
the overall structure and mixing patterns of nodes well in some datasets. One possible
explanation ofGS results is that we performModDFS in the first phase ofGS that helps
us in preserving the degree mixing of nodes. In ModDFS, we sample the information
that node v of degree dv is connected to node u of degree du and hence GS gives
good assortativity values. We show the RMSE values in Table 8. We see that GS, FFS,
XS and FS beat one another in some of the datasets whereas RD always generates
higher error than other methods. GS, XS and FS outperform in four datasets each.
On average, GS gives the minimum error whereas XS stands second in assortativity
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Fig. 11 Assortativity values of all networks with 95% confidence intervals

metric. Although FFS also maintains assortativity mixing for some networks, it does
not perform well in retaining other properties. GS not only preserves node properties,
e.g. degree, clustering coefficient and path length, but it also maintains the overall
structure of the graph and sustains topological properties like effective diameter and
degree assortativity.
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Fig. 12 Point statistics of modularity of all networks with 95% confidence intervals

5.6.6 Modularity

Modularity is one of the measures of the structure of networks or graphs. It measures
the strength of division of a network into modules or communities. We calculate the
modularity of the sampled and original graphs using Louvain method (Blondel et al.
2008). The purpose of this experiment is to see how well a sampling method can
sample community structure in a graph. We calculate the scaling ratio of modularity
and show the results in Fig. 12. We see that GS and TIES perform good in many
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datasets whereas FFS and RD also sample the community structure better than FS
and XS. Interestingly, one of the main focus of XS sampling is to seize community
structures (Maiya and Berger-Wolf 2010), however, it seems that XS does not perform
well at very small sampling fractions and it needs to explore a larger portion of the
graph in order to capture communities in it. Table 9 shows that GS and TIES gives
smaller error in five and four datasets respectively. On average, GS begets the least
amount of error in this metric.

5.6.7 Degree distribution

We present the Empirical Cumulative Distribution Function (ECDF) of degree in
Fig. 13 for all datasets at φ = 0.001. FFS, FS and RD tend to pick low degree nodes
at this sampling fraction whereas GS, TIES and XS select higher degree nodes that
results in sub-optimal distributions. XS seems to perform good in Actors, DBLP and
Skitter datasets whereas GS seems to capture distributions better in FF and SW. We
show the JS distance in Table 10. We see that XS and FFS generate less error in six
and five datasets respectively. On average, FFS performs the best in this metric. One
possible reason of failure of GS is that when removing extra edges we are inclined
to follow the clustering coefficient of a graph and hence we compromise the degree
distribution.

5.6.8 Clustering coefficient distribution

Weshow theECDFof clustering coefficient of all the datasets in Fig. 14.GS follows the
original distributions in many networks whereas XS and RD also bring good results in
a few datasets, e.g., Skitter and Facebooks. FFS and FS fail in all datasets and perform
inadequately. The reason that GS fails sometimes is that the distribution is a complex
metric and we need more knowledge of the original graph to extract the nodes in order
to follow the distribution. We give the JS distances of this metric in Table 11. The
table shows that GS samples achieve minimum distance in nine datasets whereas XS
and RD generate less distance in three datasets each. On average, GS dominates by
producing better distributions than other methods.

5.6.9 Path length distribution

We analyze the performance of sampling methods based on the match of the path
length distributions between the original and sampled networks and plot the ECDF
of path lengths of all datasets in Fig. 15. FFS and FS always give samples with
higher path lengths. TIES, XS and RD seem to follow the distributions in some of the
networks, e.g., CiteSeer, DBLP and LiveJournal. GS seems to approximate the path
length distributions of original networksmore accurately. For quantitative comparison,
we give the JS distances in Table 12. We see that GS bears minimum error in eight
datasets whereas TIES and XS have smaller errors in three datasets each. On average,
GS achieves the best results in this metric.
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Fig. 13 Degree distributions of all networks at φ = 0.001. (Best viewed in color)

5.6.10 Summary of results

For the purpose of discussion, the samplingmethods can be combined into two groups.
GS, TIES and XS are included in the first group, whereas FFS, FS and RD fall in the
second group. The key difference between the two groups is the graph induction, or the
inclusion of additional links existing in the original network between sampled nodes,
performed by the first group methods.
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Fig. 14 Clustering coefficient distributions of all networks at φ = 0.001. (Best viewed in color)

The methods in the first group dominate the point statistics like clustering coeffi-
cient, path length, 90% effective diameter and modularity. It seems that by selecting
the nodes and then inducing the graph over these nodes the methods of the first group
capture the structure of the original graph better. On the other side, the methods of
group two prevail in degree and assortativity statistics. However, FFS and FS under-
sample the graph in terms of degree and create longer paths in the samples as seen
in Figs. 9 and 15. This is in line with our observation in Fig. 5 when we preserve
only the clustering coefficient and undersample in terms of degree in GS. In the case
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Fig. 15 Path length distributions of all networks at φ = 0.001. (Best viewed in color)

of distributions, the first group captures clustering coefficient and path length dis-
tributions better than the second group whereas FFS of the second group give good
results in extracting degree distributions of original networks. Upon close look, the
results reveal that FFS picks low degree nodes more often and underestimate high
degree nodes. FFS matches the degree distribution in those datasets that have many
low degree nodes, e.g., FourSquare, Flicker and Flixster datasets. With the exception
of degree distribution, GS surpasses all the methods in all the metrics on average and
the samples obtained by GS exhibit the least deviation from the original graphs.
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6 Related work

A variety of sampling techniques have been used to obtain a representative subgraph
from a large graph. A very basic approach is to select nodes uniformly at random
from the original graph and then induce the sample graph over this node set. By
selecting nodes uniformly at random, we ensure that the selected nodes have a degree
distribution similar to the original graph but this degree distribution is based on the
degree of selected nodes in the original graph not in the sample graph. In addition, the
induced subgraph is a disconnected graph with high probability even if the original
graph is connected. A similar approach is to sample the edges uniformly at random and
then add the nodes at the ends of those edges to the node set. However, in real networks
that have to be crawled, it is very hard or nearly infeasible to generate a statistically
valid node set or edge set where the nodes and/or edges are selected uniformly at
random.

Due to the known limitations of randomly selecting nodes and/or edges for sam-
pling real networks, the researchers have also considered topology based sampling
methods including breadth first sampling (BFS) (Becchetti et al. 2006), random first
sampling (RFS) (Doerr and Blenn 2013), snowball sampling (SS) (Lee et al. 2006) and
different variations of random walk (RW) (Ribeeiro and Towsley 2010; Bar-Yossef
andGurevich 2008; Gkantsidis et al. 2006; Stutzbach et al. 2009; Rasti et al. 2009). All
these approaches have their own pros and cons. For example, BFS produces overesti-
mated samples in terms of degree and underestimates the path lengths in a graph but
collects a well-connected graph like other topology based methods. It has been empir-
ically observed that BFS samples are biased towards high-degree nodes (Lee et al.
2006; Najork and Wiener 2001; Becchetti et al. 2006; Ye et al. 2010). The authors in
(Chiericetti et al. 2016) discuss three algorithms for sampling a node from the graph
uniformly at random. In particular, they discussed Rejection Sampling, Maximum
Degree Sampling and metropolis–hastings random walk (MHRW). The authors in
(Lee et al. 2012) introduces two variations of random walk namely non-backtracking
randomwalk with re-weighting and metropolis hasting algorithm with delayed accep-
tance for unbiased sampling of big graphs. These variations seem to improve over
simple random walk and MHRW in sampling efficiency at higher sampling fractions.
Similarly, the authors in (Wang et al. 2010) propose an unbiased sampling method
for directed social graphs. Their method is based on MHRW and achieves a smaller
error than classic uniform sampling of directed graphs. The authors in (Li et al. 2015)
systematically analyze the drawbacks of the existing random walk based graph sam-
pling algorithms and propose two algorithms to balance the tradeoff between the large
deviation problem of random walk and sample rejection problem of MHRW.

The work in (Maiya and Berger-Wolf 2011) provides a detailed study on the nature
of biases in network sampling. In particular, they studied the nature of biases in several
sampling algorithms includingBreadthFirst Sampling,DepthFirst Sampling,Random
Walk, Forest Fire Sampling, Degree Sampling, Sample Edge Count and Expansion
Sampling. The authors also described how these sampling biases can be exploited
in several real-world applications including disease outbreak detection and market
research. The work in (Wang et al. 2011) provides a good understanding of how sam-
pling works in big graphs. The authors analyze several graph sampling algorithms and
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Guided sampling for large graphs 945

evaluate their performance on some widely recognized graph properties on directed
graphs using large-scale social network datasets. The sampling approach presented in
(Kim et al. 2014) is a computational approach to predict RNA 3D topologies based on
hierarchical sampling. This graph-based sampling approach for characterizing global
helical arrangements in large RNAs is developed for biological networks and have
applications in medicine and related technologies. The authors in (Chepuri and Leus
2017) focus on subsampling aswell as reconstructing the second-order statistics of sig-
nals residing on nodes of arbitrary undirected graphs. The work in (Al Hasan and Zaki
2009) propose a generic sampling framework that is based on Metropolis–Hastings
algorithm to sample the output space of frequent subgraphs. More recently, some
researchers have deployed variations of Random Walk and Delay Sampling (Xu and
Zhu 2016; Xu and Lee 2014; Xu et al. 2017; Chen et al. 2017a; Liu et al. 2019) to
sample big graphs with good results. However, the sampling rates are as big as 0.3
and given the fact that a real network could have millions or even billions of nodes,
this sampling fraction seems too big.

There has also been some attempts that rely on first estimating the different prop-
erties of the original graph and then extracting a representative subgraph based on the
estimated values. In (Hubler et al. 2008), the authors propose Metropolis algorithms
that refine the subgraph by replacing the sampled nodes with other potentially good
nodes guided by simulated annealing to better match the properties of the original
graph. The fundamental problem is that this method also relies on uniformly selecting
samples from the entire network and it makes it infeasible for crawling real networks.
The authors of report (Sethu and Chu 2012) applyMetropolized RandomWalk guided
by the degree exponent of the original graph. The fundamental problem is that the
Biased Random Walk with Fly Back (BRW-FB), proposed in the report, converges
slowly and makes it prohibitively time consuming when applied on big graphs. In
addition, the work is presented as a technical report and is not evaluated over a real
dataset but an instance of a Barabasi-Albert scale free network model that makes it
less competitive for comparison. The interested readers can refer to (Rasti et al. 2009;
Gjoka et al. 2010) for comparison between RandomWalk and Metropolized Random
Walk.

In comparison to the previous sampling approaches discussed in this section, a
very clear difference between GS and previous approaches is that GS can work at
very small sampling fractions. GS can capture really tiny samples while preserving
the structure of the original graph. To the best of our knowledge, we are the first one to
extract samples at sampling fractions as small as 0.1%. The previous approaches have
reported a minimum of 1% samples and in most of the studies the methods are tested
at higher sampling fractions. As mentioned in the introduction, samples obtained at
higher sampling fractions fade away the purpose of sampling. By analyzing very small
representative samples of big graphs, we can save time and resources needed to study
massive graphs. Another significant difference between GS and previous approaches
is its two-step recipe to obtain samples. We first generate a sample that has higher
density and clustering coefficient, and then trim it by removing edges based on their
contribution to clustering coefficient. This two-step approach is the key to extract tiny
samples and it can lead to multi-stage sampling in future where at every stage we can
apply a different technique to guide the sampling process to known targets.

123



946 M. I. Yousuf, S. Kim

7 Conclusion

Graph sampling makes it possible to study and analyze big networks with limited
resources provided that the sample graph accurately represents the original graph. In
order to realize tiny samples from a large graph, we propose a new two-step sampling
technique that exploits the fact that the average degree and clustering coefficient of a
graph could be estimated efficiently and these estimated values could guide us to yield
good samples. In the first step of the proposed method, we collect samples with extra
edges and then in the second step we remove extra edges to match with the estimated
values of degree and clustering coefficient of the graph being sampled. Our guided
sampling technique extracts good samples at very small sampling fractions and pre-
serves key properties of a graph, its degree, clustering coefficient, path length, effective
diameter and structural properties, its degree assortativity and modularity. Through
experiments on real and synthetic networks and statistical tests, we show that our new
approach surpasses the existing sampling methods in all the key metrics discussed in
the paper. At very small sampling fractions, i.e., less than 1%, conventional sampling
methods do not get enough chance to explore the graph, and either underestimate or
overestimate its properties. Our two-step approach first ovesamples the graph and then
trims it to extract a reasonable sample at a very small sampling fraction.

We believe that this two-step sampling approach can motivate the design of better
multi-phase sampling techniques in the future. The idea of guiding the sampling pro-
cess to the already estimated values can have far reaching implications. The idea can
be generalized to use prior information in the sampling process. A guided sampler can
extract representative samples by mining a very small portion of the graph and this
can make the analysis of big graphs feasible even with limited resources.
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