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Abstract
We propose a robust and sparse classification method based on the optimal scoring
approach. It is also applicable if the number of variables exceeds the number of obser-
vations. The data are first projected into a low dimensional subspace according to an
optimal scoring criterion. The projection only includes a subset of the original vari-
ables (sparse modeling) and is not distorted by outliers (robust modeling). In this low
dimensional subspace classification is performed byminimizing a robustMahalanobis
distance to the group centers. The low dimensional representation of the data is also
useful for visualization purposes.We discuss the algorithm for the proposedmethod in
detail. A simulation study illustrates the properties of robust and sparse classification
by optimal scoring compared to the non-robust and/or non-sparse alternative methods.
Three real data applications are given.

Keywords High dimensional data · Linear discriminant analysis · Penalization ·
Robustness · Supervised classification · Variable selection

1 Introduction

In linear discriminant analysis (LDA) the data originate from K different populations.
The aim is to find linear decision boundaries to separate the observations from the K
groups as good as possible and to predict the classmembership of new, unlabeled obser-
vations. Several formulations for LDA exist. Fisher’s approach to LDA searches for
directions that maximize the between group variance given the within group variance.
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724 I. Ortner et al.

Equivalently, one can take the conditional class densities as multivariate normal with
the same covariance matrix, and apply the Bayes classification rule. The formulation
for LDA considered in this paper is optimal scoring (Hastie et al. 1994). It recasts the
classification problem into a regression framework and models the class-membership
with a quantitative parameter for each class.

While these different approaches to LDAyield the same classification results (John-
son et al. 2002; Witten and Tibshirani 2011) they are all limited to settings with
more observations n than variables p. Optimal scoring enables us to transfer new
developments in high dimensional regression analysis to the classification context. In
regression analysis the problem of high dimensional data, in particular data with more
variables than observations, attracts a lot of attention. A variety of so-called sparse
methods have been developed. The best known is the Lasso regression estimate (Tib-
shirani 2011). For a response y ∈ R

n and a column-wise centered and scaled predictor
matrix X ∈ R

n×p, it is defined as

min
β

1

n
‖ y − Xβ‖2 + λ‖β‖1

for regression coefficients β, where ‖a‖2 = ∑p
i=1 a

2
i is the squred Euclidean norm

and ‖a‖1 = ∑p
i=1 |ai | the L1 norm, for a vector a = (a1, . . . , ap)T . Fast algo-

rithms have been developed for Lasso regression (Efron et al. 2004; Wu and Lange
2008). The Lasso shrinks several of the estimated regression coefficients to zero,
and is therefore said to be sparse. The zero coefficients correspond to the variables
that are not selected into the model. Hence, the Lasso performs simultaneous model
estimation and variable selection. The sparsity tuning parameter is λ, and increas-
ing values of λ will favor more coefficients equal to zero and sparser models. This
is especially useful for data sets including uninformative variables which do not
contribute information to predicting the response. When uninformative variables are
excluded, the precision of the estimation increases and the models are easier to inter-
pret. Recently, Clemmensen et al. (2012) proposed a sparse version of multigroup
LDA, by adding an L1 penalty to the objective function of the optimal scoring prob-
lem. This leads to a sparse discriminant analysis method applicable for n < p as
well.

In this paper we propose a robust version of sparse optimal scoring. It is robust
because it is resistant to outliers. In linear discriminant analysis an observation is
considered an outlier if it belongs to group k but differs from the majority of obser-
vations in group k, for k = 1, . . . , K . It is well known, that outliers may render a
statistical method completely unreliable. The sample covariance matrix and the group
average can be heavily distorted by single extreme observations and classification
rules based on them will be unreliable. This will not happen if a robust method is
used.

A variety of robust classification methods have been proposed (Hubert and Van
Driessen 2004; Todorov and Pires 2007) but generally they are not applicable for data
with n < p. Vanden Branden and Hubert (2005) proposed a robust classifier for high
dimensions based on SIMCA, but it does not use sparse modeling, so all variables
are included in the model. A sparse and robust classification method based on partial
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Robust and sparse multigroup classification 725

least squares was proposed by Hoffmann et al. (2016) but only for binary classification
problems. Robust optimal scoring, even the non-sparse case,was not considered before
in the literature.

The paper is structured as follows. In Sect. 2, we review the optimal scoring
approach to linear discriminant analysis. In Sect. 3, we introduce the proposed method
and present the algorithm in detail. In Sect. 4, a strategy is outlined to select the sparsity
tuning parameter. A simulation study competing with existing alternative methods is
presented in Sect. 5. Illustrations on real world examples are given in Sect. 6.

2 Optimal scoring for multigroup classification

We follow the notation of Clemmensen et al. (2012) to outline the optimal scoring
method. Let X be the n × p data matrix with the observations x1, . . . , xn in its rows
and Y an n × K matrix of dummy variables coding the class membership of the
observations, i.e. yik = 1 if and only if observation xi belongs to group k, and zero
otherwise. The rows of Y are denoted by y1, . . . , yn . The columns of X are centered
to have mean zero and scaled to have unit variance. The aim of optimal scoring is
to find projection vectors β̂1, . . . , β̂H , such that each Xβ̂h is a good prediction of
the corresponding vector Y θ̂h , for h = 1, . . . , H , where the vector Y θ̂h contains the
scores of the group each observation belongs to. The K components of the score vector
θ̂h are the numeric scores assigned to each of the groups. One takes H smaller than
the number of groups K , commonly H = K − 1.

The projection vectors β̂h and the score vectors θ̂h are obtained sequentially. Let
D = 1

nY
TY be a K × K diagonal matrix of class proportions. Set θ̂0 = 1K , the

K -vector of ones. Then solve for h = 1, . . . , H

min
βh ,θh

1

n
‖Yθh − Xβh‖2 s.t. θTh Dθh = 1, QT

h Dθh = 0,

where Qh = [Qh−1, θ̂h−1] is a K × h matrix.
The sparse optimal scoring method of Clemmensen et al. (2012) simply adds an

L1 penalty to the objective function.

min
βh ,θh

1

n
‖Yθh − Xβh‖2 + λ‖βh‖1 s.t. θTh Dθh = 1, QT

h Dθh = 0. (1)

Estimators β̂h and θ̂h that solve (1) can be obtained iteratively. Starting with a ran-
dom vector for θh one computes the Lasso for βh . For a given βh there exists an
explicit solution of (1) for θh . One iterates further until convergence. For details, see
Clemmensen et al. (2012).

Once the projection vectors are obtained, a standard LDA is performed in a low
dimensional space of dimension H . Let denote by z1, . . . , zn the projected observa-
tions in the rows of Z = XB, B = [β̂1, . . . , β̂H ]. Denote the group averages of
the projected observations by mk = 1

nk

∑
i∈Ck

zi , where Ck denotes the index set
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726 I. Ortner et al.

for observations from class k, and nk is the number of observations in class k, for
k = 1, . . . , K . The within group covariance matrix is

S = 1

n − K

K∑

k=1

∑

i∈Ck

(zi − mk)(zi − mk)
T .

The Mahalanobis distance of an observation z to the center mk is given by

MD(z;mk, S) =
(
(z − mk)

T S−1(z − mk)
)1/2

.

An observation x, transformed to z = xT B, is then assigned to the class k with
smallest value of

MD(z;mk, S)2 − 2 log(πk).

Here, πk is the prior probability belonging to group k, with π1 + · · · + πK = 1. In the
following, πk is set to the class proportion of group k, so πk = nk/n.

3 Robust and sparse optimal scoring

Wenowpropose an optimal scoring algorithm for data containing outliers and possibly
more variables than observations. Furthermore, not all variables contribute informa-
tion about the class membership of the observations, in the following referred to as
uninformative variables, and therefore we aim at sparse estimation. To the best of our
knowledge, sparse and robust classificationmethods for multiple groups have not been
considered in literature so far. Even the non-sparse case, robust optimal scoring is a
new approach to robust classification problems.

The aim of the algorithm is to reduce the influence of outlying observations on the
model estimation. A common and powerful approach to achieve this in a regression
model is the iteratively re-weighted least squares algorithm (Wolke and Schwetlick
1988). Given a robust initial estimator, the influence of observations with large residu-
als is down-weighted by case weights. The coefficient estimates and the case weights
are iteratively re-estimated. Here we will take a related approach.

The data matrix X is robustly centered by the coordinate-wise median and each
column is scaled by the median absolute deviation (MAD) (Hampel 1974). The MAD
is defined by MAD(a1, . . . , an) = 1.48medi |ai − med j a j | where medi ai denotes
the median of a1, . . . , an and 1.48 is a factor to get consistency at normal distribution.

3.1 Initial estimation

The vectors β̂h and θ̂h are estimated sequentially for h = 1, . . . , H . As before,
θ̂0 = 1K . First we obtain initial estimates for β̂h and θ̂h . It is important that they are
robust to outliers and can be computed in high dimensions. These initial estimates
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Fig. 1 Hampel’s re-descending weighting function

start up the iterative procedure to get the final β̂h and θ̂h . “Appendix” provides full
details for their computation.

3.2 Outlier weights

Residuals are computed as

ri = yTi θ̂h − xTi β̂h for i = 1, . . . , n.

The observations will be weighted so that potential outliers receive less weight. The
weights are computed from the residuals. Weights are calculated separately for each
group. Denote r (s)

i the robustly standardized residuals where we center by the median
and scale by the MAD.

Hampel’s re-descending weighting function (Hampel et al. 1986) is applied to the
standardized residuals to obtain weights for each observation. This weighting function
(plotted in Fig. 1) is given as

ωH (r) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 |r | ≤ q1
q1
|r | q1 < |r | ≤ q2
q3−r
q3−q2

q1
|r | if q2 < |r | ≤ q3

0 q3 < |r |

where the parameters q1, q2 and q3 are set to the 0.95, 0.975 and 0.999 quantiles of the
standard normal distribution, respectively, i.e. q1 = 1.64, q2 = 1.96 and q3 = 3.09.
The case weights are then ωi = ωH (r (s)

i ) for i = 1, . . . , n. Under the assumption of
normality of the residuals, 90% of the observations will receive weight ωi = 1 and
0.2% receive weight ωi = 0.
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3.3 Solving the weighted sparse optimal scoring problem

Let Ω be a diagonal matrix with the case weights ω1, . . . , ωn on the diagonal. Then
define Ỹ = Ω1/2Y and X̃ = Ω1/2X the weighted data matrices. The diagonal matrix

D̃ = 1∑
ωi
Ỹ
T
Ỹ contains on its diagonal the share of the total weight coming from

each group’s observations. The weighted sparse optimal scoring problem is defined as

min
βh ,θh

1
∑

ωi
‖Ỹθh − X̃βh‖2 + λ‖βh‖1 s.t. θTh D̃θh = 1, QT

h D̃θ l = 0. (2)

If no outliers are detected, all weights are one,
∑

ωi = n, Ω is the identity matrix and
Eq. (2) is the standard optimal scoring problem Eq. (1).

Equation (2) is solved by an alternating iterative scheme. For given θ̂h it reduces
to the weighted Lasso regression problem

β̂h = argmin
β

1
∑

ωi

n∑

i=1

( yTi θ̂h − xTi β)2ωi + λ‖β‖1. (3)

which is equivalent to solving the Lasso for the weighted data, with sparsity parameter
given by λ

∑
wi/n. For a given β̂h , the optimization problem Eq. (2) is solved by

θ̂h = c
{
I − Qh(Q

T
h D̃ Qh)

−1QT
h D̃

}
( D̃

−1
Ỹ
T
X̃β̂h) (4)

where c is a scalar so that θ̂h fulfills the side constraint θ̂
T
h D̃θ̂h = 1. The derivation

of Eq. (4) is given in the “Appendix”. Notice that the last part in parentheses in Eq.

(4) is proportional to (Ỹ
T
Ỹ)−1Ỹ

T
X̃β̂h , the OLS estimate of θh when regressing Ỹ

on X̃β̂h without side constraints.
After computing β̂h and θ̂h , new residuals ri and case weights ωi , for i = 1, . . . , n,

are calculated as described previously. New estimates of coefficient and score vectors
are computed on the re-weighted data as in Eqs. (3) and (4).

The notation in Eq. (3) highlights the role of the weights ωi : for ωi = 0 the term
( yTi θ̂h−xTi β)2 does not contribute to the parameter estimation, forωi = 1 the squared
residual is fully considered in the objective function of Eq. (3). Intermediate values
of the weights correspond to a reduced, but non-zero, influence of the observation on
the estimators.

3.4 Convergence criterion

Letω j
1 , . . . , ω

j
n denote the case weights and β̂

j
h and θ̂

j
h the estimates in the j th iteration

step. Then the weighted mean residual sum of squares with Lasso penalty in the j th
iteration step is
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L j
h =

n∑

i=1

( yTi θ̂
j
h − xTi β̂

j
h)

2ω
j
i +

n∑

i=1

ω
j
i λ‖β̂ j

h‖1.

The convergence criterion for stopping the iterative procedure is chosen as |L j
h −

L j−1
h |/L j

h < 10−4.

3.5 Classification rule

The iterative procedure outlined in Sects. 3.1–3.4 provides a projection matrix B =
[β̂1, . . . , β̂H ]. We project the data into an H dimensional subspace, i.e. Z = XB,
with the rows z1, . . . , zn . We observed that for a large sparsity parameter λ, the last
column(s) of B may consist of only zeros. Then the dimension of the classification
problem on the projected data is reduced automatically.

Instead of computing sample averages and covariance matrices of the projected
data, we compute a robust location and covariance matrix estimator. For this, we
take the minimum covariance determinant (MCD) described in Rousseeuw and Van
Driessen (1999). The robust group centersmk , for k = 1, . . . , K , are theMCD location
estimates of the projected observations from the kth group, i.e. of zi , i ∈ Ck . Then
the projected observations are group-wise centered, z̃i = zi − mk for i ∈ Ck and
k = 1, . . . , K . A robust covariance estimate S from these pooled centered observations
is obtained by the MCD covariance matrix estimate (Rousseeuw and Van Driessen
1999). The decision rule for a newobservation x is as follows. Project x to the subspace,
z = xT B and compute theMahalanobis distances to the group centersmk with respect
to S. Assign x to group

argmin
k=1,...,K

(z − mk)
T S−1(z − mk) − 2 log(πk).

4 Model selection and evaluation

Two steps are necessary for the proper evaluation of the proposed method. First, a
strategy to select an optimal sparsity parameter is needed, second, the prediction per-
formance for new observations is evaluated.We split the data randomly into calibration
data and test data.

To select the optimal sparsity parameter λ∗, five-fold cross validation is performed
on the calibration set. We split the calibration data randomly into J = 5 blocks of
approximately equal size such that the observations from each class are evenly spread
across the blocks. Each of the five blocks is used in turn as validation set and the
rest as training set. For a sequence of values for the sparsity parameter λ1, . . . , λL

(covering the range between the full and the empty model) classification models are
estimated on the training data and evaluated on the validation data. Since the decision
for the optimal sparsity parameter λ∗ should not be influenced by outliers, we propose
to use a weighted misclassification rate (wmcr) for evaluation. For the j th validation
set, which consists of n j observations x

j
1, . . . , x

j
n j define
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wmcr(x j
1, . . . , x

j
n j , λ) = 1

K

∑

k=1,...,K

∑
i∈M j

k (λ)
w

j
i (λ)

∑
i∈C j

k
w

j
i (λ)

, (5)

whereC j
k is the index set of all observations from the validation set belonging to group

k, and M j
k (λ) is the subset of C j

k containing the indices of misclassified observations

(for the model estimated with sparsity parameter λ). The weight w j
i (λ) of an observa-

tion x j
i is derived from the Mahalanobis distance to its closest center in the projected

subspace, i.e.

MD j
i (λ) = min

k=1,...,K
MD

(
x jT
i B;mk, S

)
,

where B, mk and S are estimated on the j th training set with sparsity parameter λ.
Then the weight is defined as

w
j
i (λ) =

{
1 MD j

i (λ)2 ≤ χ2
H (0.975)

1/MD j
i (λ) else

,

where χ2
H (0.975) denotes the 97.5% quantile of the χ2 distribution with H degrees of

freedom. When all weights are equal to one, the wmcr is equivalent to the misclassifi-
cation rate (mcr), the mean of the proportion of misclassified observations from each
group.

The tuning parameter can now be selected such that the average wmcr over the
J = 5 validation sets is minimized, i.e.

λ̃ = argmin
λ∈{λ1,...,λL }

1

J

∑

j

l j (λ),

where, for easier notation, l j (λ) = wmcr(x j
1, . . . , x

j
n j , λ), for j = 1, . . . , J .

We then use the one-standard-error rule (Hastie et al. 2015): choose the model
with largest sparsity parameter such that its average wmcr is still within one standard
error of the minimum average wmcr. Thus, the optimal sparsity parameter with the
one-standard-error rule is

λ∗ = max

⎧
⎨

⎩
λ ∈ {λ, . . . , λL} | 1

J

J∑

j=1

l j (λ) <
1

J

J∑

j=1

l j (λ̃) + se(l1(λ̃), . . . , l J (λ̃))

⎫
⎬

⎭
,

where se(a1, . . . , aJ ) = √
var(a1, . . . , aJ )/J denotes the standard error. This strategy

favors more parsimonious models and is a safeguard against over-fitting. With the
optimal sparsity parameter λ∗ the final model is estimated on the whole calibration
data and we obtain B, mk and S.

For the evaluation of the model, the class memberships of test data are predicted.
Since the evaluation should not be distorted by outliers in the test data, we use the
weighted misclassification rate Eq. (5). In the simulation study, since the test data
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are generated without outliers, we set the weights equal to one. In Sects. 5 and 6 we
compare robust sparse optimal scoring (rSOS) with classical sparse optimal scoring
(cSOS). The sparsity parameter for both methods is selected in the same way, but for
cSOS the standard unweighted mcr is minimized.

5 Simulation study

Simulation schemes: The data are generated from K = 3 different p-dimensional
normal distributions representing three groups.Thedistributions have equal covariance
structure, but different mean vectors. For group k (k = 1, 2, 3) let the mean be a vector
of length p with value 2 for the kth variable and zeros elsewhere. So the number of
informative variables is q = 3. The diagonal of the covariance matrix is a vector of
ones. The covariance between the informative variables is 0.1 and zero between all
others. The number of observations is n = 120, where each group consists of nk = 40
observations.

In the first scenario of this simulation study the effect of increasing p ∈
{3, 13, 23, 53, 103, 203} is illustrated, i.e. of increasing the number of uninforma-
tive variables while the number of informative variables q = 3 is fixed. The
second scenario shows the effect of outliers on the methods, also for increasing
p ∈ {3, 13, 23, 53, 103, 203}. Outliers are included in the calibration data by tak-
ing 10% of the observations of the first group and replacing their values for the first
variable by random values from N (−10, 1). Hence there are still two uncontaminated
informative variables. In a third scenario the number of uninformative variables is
fixed at 50 and the third informative variable is removed, i.e. p = 52. Outliers are
again only generated in the first group by replacing the values of the first variable
by random values from N (−20, 1). This setting is more challenging because only
one uncontaminated informative variable remains, and because the outliers take more
extreme values. The percentage of outliers in the first group ranges from 0 to 45% by
steps of 5%, allowing to observe the influence of increasing levels of contamination.
Finally, simulation scenario four is used to study the effect of the sample size n on
the performance of the algorithms. For this purpose, the second scenario is modified
as follows. The number of variables is fixed with p = 53 for an increasing number of
observations n ∈ {120, 600, 1200, 120,000}.

Methods and evaluation: The results from robust sparse optimal scoring (rSOS) and
classical sparse optimal scoring (cSOS) are compared. For settings where non-sparse
classification methods can be applied (i.e. n > p), models are estimated with LDA
and robust LDA (rLDA). The latter method uses the MCD of the pooled centered data
as robust covariance matrix estimator, where the centers of each group are estimated
by the location MCD estimator, see Hubert and Van Driessen (2004). Recall that
LDA is equivalent to classical optimal scoring. As a benchmark, we first remove all
uninformative variables and outliers from the calibration data and then apply LDA.
This benchmark method cannot be applied in practice, since one does not know which
variables are informative and which observations are outliers. We refer to this method
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732 I. Ortner et al.

Fig. 2 Misclassification rate (mcr) averaged over 100 simulation runs as a function of p, the number of
variables. a Scenario 1: models estimated on clean calibration data; b scenario 2: models estimated on
calibration data with 10% outliers in one group

as oracle; it gives an estimate of the lower bound for the best misclassification rate we
can achieve with linear boundaries.

For rSOS the sparsity parameter λ is selected with five-fold cross validation on the
calibration data (n = 120) from a grid of values between 0.1 and 2 with step size 0.05,
as described in Sect. 4.

To evaluate the models, test data of size n = 120 are generated in the same way as
the calibration data, but without outliers for all scenarios. The predicted class mem-
bership of the test data is compared to the known, true class membership and the
misclassification rate (mcr) is reported. Other criteria of the quality of the model con-
cern the number of correctly selected variables. The false negative rate (FNR) is the
fraction of informative variables not included in the model, the false positive rate
(FPR) refers to the fraction of uninformative variables included in the model.

Simulation results: The results from the first scenario demonstrate the advantage of
sparse modeling when the number of uninformative variables increases. Figure 2a
shows the misclassification rate for test data, averaged over 100 simulation runs. The
benchmark mcr for this simulation design is about 12.5%, as can be seen from the
results of the oracle. Hardly any difference between the performance of cSOS and
rSOS is visible in this setting. The mcr of both methods remains stable with increasing
number of uninformative variables. In very low dimensions, for instance p = 3, LDA
and rLDA slightly outperform cSOS and rSOS, but with increasing p, LDA and rLDA
quickly break down and give bad classification results, even for p still smaller than
n. This shows that excluding uninformative variables is crucial for the quality of the
prediction performance.

Table 1a shows the quality of the variable selection for cSOS and rSOS. The false
negative rate is slightly higher for cSOS whereas the false positive rate is slightly
higher for rSOS. Overall, both rates are low for both methods, which implies that the
variable selection with the L1 penalty achieves good results.

In the second scenario the effect of 10% outliers is investigated, see Fig. 2b. The
benchmark given by the oracle is of course again about 12.5%. For p = 3 the robust
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Table 1 Variable selection: the
false negative rate (FNR) and the
false positive rate (FPR) is
averaged over 100 simulation
runs for classical and for robust
SOS for a scenario 1: models
estimated on clean calibration
data; b scenario 2: models
estimated on calibration data
with 10% outliers in one group

p 3 13 23 53 103 203

(a) Scenario 1

FNR cSOS 0.02 0.02 0.02 0.04 0.01 0.04

FNR rSOS 0.01 0.02 0.02 0.02 0.00 0.02

FPR cSOS 0.02 0.02 0.01 0.01 0.00

FPR rSOS 0.04 0.03 0.02 0.01 0.02

(b) Scenario 2

FNR cSOS 0.32 0.32 0.32 0.33 0.33 0.33

FNR rSOS 0.05 0.03 0.07 0.05 0.06 0.08

FPR cSOS 0.02 0.02 0.00 0.00 0.00

FPR rSOS 0.07 0.05 0.03 0.04 0.02

methods rLDA and rSOS outperform the classical methods LDA and cSOS. Increasing
the number of variables heavily affects LDA, but also rLDA. The best performing
method is rSOS, since it can cope with both increasing dimensions and outliers. Note
that for cSOS the presence of outliers substantially increases themcr but the number of
uninformative variables has no further notable effect; for rSOS the mean mcr slightly
increases when p tends to its highest value.

Table 1b shows that cSOS fails to identify the informative variables in presence of
outliers. The FNR of cSOS is around 33% in this scenario, since the first of the three
informative variables, the contaminated one, is not included anymore in the model.
In this scenario the variables selected by cSOS do not contain any outliers, but since
the information present in the first variable is lost, it still leads to an increased mcr.
With rSOS this information can be recovered: rSOS down-weights the outliers and
is able to reveal that this first variable contributes enough information to be selected.
Comparing the FNR of rSOS in Table 1a and b shows an increase in the setting with
outliers, but considerably smaller compared with cSOS. Finally, note that the FPR for
rSOS is low, but slightly higher than for cSOS. In the second scenario, rSOS selects
on average 4.7 variables, a bit more than the average of 2.2 variables for cSOS.

Scenario three illustrates how the percentage of outliers influences the classification
performance of the different methods. Figure 3 pictures the mcr as a function of the
proportion of outliers in the calibration data, for p = 52. The benchmark given by
the oracle is about 22.2%, and indicates a lower bound for the mcr. When there are no
outliers, cSOS and rSOS are close to the oracle. However, already for only 5% outliers
the cSOS is strongly affected in its prediction performance, whereas rSOS remains
to give reasonable results for larger percentages of outliers. As expected, the mcr of
LDA and rLDA is inflated due to the p − q = 50 uninformative variables resulting in
a high mean mcr, which increases slightly for higher percentages of contamination.

Figure 3b presents the results from scenario four and shows the best area of appli-
cation as well as the limitations of the proposed algorithm. The number of variables is
of moderate size and increasing the number of observations improves the performance
of both non-sparse classifiers LDA and rLDA. Outliers in the simulation setting lead
to heavy distortion of the classical methods LDA and cSOS. For small sample size
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Proportion of outliers

m
cr

(a)

0.0 0.1 0.2 0.3 0.4 100 200 500 1000 2000 5000

0.
2

0.
4

0.
6

0.
8

0.
1

0.
2

0.
3

0.
4

0.
5

n

m
cr

rSOS
cSOS
rLDA
LDA
oracle

(b)

Fig. 3 Misclassification rate (mcr) averaged over 100 simulation runs, a scenario 3: as a function of increas-
ing outlier proportion; p = 52, n = 120, b scenario 4: as a function of n, the number of observations (on
log-scale); p = 53, outlier proportion 10%

Fig. 4 Fruit data: a visualization of 219 test observations in the projected subspace, bMahalanobis distance
of each projected test observation to its group center. Observations with weight smaller than one are colored
in gray

(n = 120, n = 600) rSOS clearly outperforms all competitors whereas with suf-
ficiently large sample size the robust covariance structure in rLDA can be properly
estimated and slightly outperforms rSOS.

Computations are performed in R (R Core Team 2016). For classical sparse optimal
scoring, R code is available in the package sparseLDA (Clemmensen and Kuhn
2012). The code for robust sparse optimal scoring is included in the packagerrcovHD
(Todorov 2016) in the function SosDiscRobust. The number of iteration steps for
this algorithm depends on p with an average of 8.7 iterations for p = 3 and 11.7
for p = 203 in the simulation studies with n = 120. Increasing n leads to fewer
iterations.
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Table 2 Fruit data: average
(w)mcr is the (weighted) mcr
averaged over the five test data
sets

cSOS rSOS

Average mcr 0.028 (0.0062) 0.041 (0.0068)

Average wmcr 0.016 (0.0116) 0.009 (0.0029)

6 Examples

Fruit data: This data set consist of n = 1095measurementswith p = 256wavelengths
from K = 3 different cultivars of the cantaloupemelon, namedD,M andHA.We have
490 measurements from group D, 106 from group M and 499 from group HA. It is
a well known benchmark data set to demonstrate the stability of robust classification
methods (Hubert et al. 2008; Hubert and Van Driessen 2004; Vanden Branden and
Hubert 2005). From former analyses it is known that the change of illumination led
to outliers.

The data are 5 times split into calibration and test data (80% versus 20%), such
that all observations are included in the test data once and the observations from each
class are evenly spread across the test sets. For each calibration data set the optimal
sparsity parameter λ∗ is selected as described in Sect. 4 from a fine grid starting with
10−4 up to 10−1 with step size 0.002, covering model sizes from nearly full to empty.

The procedure is repeated for all calibration and test sets and results are summarized
in Table 2. The weighted misclassification rate wmcr is calculated from the test data
as in Eq. (5). The weights from the rSOS model are also used to calculate the wmcr
for cSOS. Thereby observations which are detected as outliers by the rSOS model
receive small influence on the wmcr of cSOS. Table 2 shows that the mcr of the cSOS
is smaller than the mcr of the rSOS. On the other hand, the wmcr has a lower value
for rSOS than for cSOS. The classical method tries to model the outliers and since
outliers are present in the test data it achieves better results as well. The robust method,
on the other hand, mainly models the non-outliers. So the weighted misclassification
rate, which excludes the outliers, is lower for rSOS than for cSOS.

For visualization of the results we randomly select one of the five data splits and
apply rSOS to the calibration data. Figure 4a shows the test observations projected into

the subspace. The ellipses defined by the sets {z ∈ R
2|MD (z;mk, S) =

√
χ2
2 (0.975)},

for k = 1, 2, 3 enclose those observations which are considered non-outliers and
which did receive weight one in the wmcr. The observations outside of the ellipses
are colored in gray. Most outliers are from group HA which is in line with previous
analyses (Vanden Branden and Hubert 2005). In Fig. 4b the Mahalanobis distances of
each test observation to its group center are shown. The horizontal line represents the

cut-off value
√

χ2
2 (0.975). Again we see that many observations of HA have a large

Mahalanobis distance in the projected space. Figure 4b pinpoints other anomalous
observations in all three groups.

Olive oil data: The data set olitos (Armanino et al. 1989) available in the R package
rrcovHD (Todorov 2016) contains n = 120 measurements on olive oil samples with
p = 25 variables from fatty acids, sterols and triterpenic alcohols. The olive oils
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Table 3 Olive oil data: average (w)mcr is the (weighted) mcr averaged over the five test data sets

LDA rLDA cSOS rSOS

Average mcr 0.178 (0.0645) 0.358 (0.1460) 0.175 (0.0308) 0.153 (0.0312)

Average wmcr 0.183 (0.0604) 0.353 (0.1201) 0.175 (0.0431) 0.133 (0.0282)

SE are reported in parentheses

Fig. 5 Olive oil data:
Mahalanobis distances from
rSOS of each projected
observation to its group center.
Observations with weight
smaller than one are colored in
gray
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originate from Tuscany in Italy and are grouped into K = 4 classes representing
different regions of production with group size 50, 25, 34 and 11. In this example,
the number of variables is quite low, but rSOS can still be an appropriate method. We
will compare its results to cSOS as well as to LDA and rLDA. To estimate the models
and to evaluate them, the same approach is taken as described previously for the fruit
data. The optimal sparsity parameter is searched on a grid from 0.01 to 1 with step
size 0.05, which covers various model sizes from the full model to the empty model.

Table 3 summarizes the quality of the resultingmodels. Our proposedmethod rSOS
performs better on this data set than the other methods with an average wmcr of 13.3%.
Interestingly, also the mcr is lowest for rSOS with 15.3%. This may happen if there is
no pattern in the outlier configuration.

The classical sparse method cSOS outperforms LDA slightly, and robust LDA has a
much lower prediction quality than all other methods. Figure 5 shows theMahalanobis
distances from the rSOS estimator of the projected test data. Especially region 3 and 4
have some observations with large distance to its group centers in the projected space.
In Fig. 6 the projection of all observations into the subspace is visualized.

Audio data: This database consists of more than 4000 audio samples with 679 features.
The audio samples come from 12 different groups such as recordings from classical
and electronic music, cats and whale sounds, the noise of crowds, speech recordings
from men and women and others (Brodinova et al. 2015).

We construct 10 experimental data sets to demonstrate the performance under vary-
ing data structure. For each data set we randomly choose K = 4 of the audio groups
and randomly select 80, 70, 60 and 50 audio samples from the each of the groups,
respectively. Further we add 23 observations from the remaining groups to the data set
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Fig. 6 Olive oil data: pairwise scatter plots of data projected into the 3-dimensional subspace derived from
rSOS. Observations with weight smaller than one are colored in gray

Table 4 Audio data: average (w)mcr is the (weighted) mcr averaged over the 10 experimental settings

cSOS rSOS Clean data

Average mcr 0.053 (0.0100) 0.057 (0.0128) 0.029 (0.0109)

Average wmcr 0.047 (0.0161) 0.020 (0.0089) –

SE are reported in parentheses. Here clean data refers to results when the classical method is applied to the
data set without artificial outliers

and assign them randomly to any of the four classes, thus generating outliers. Hence,
each data set contains n = 283 observations, of which approximately 8% are artificial
outliers, and p = 679 features.

The constructed data sets are randomly spit into calibration (80%) and test data
(20%) such that the class proportions are preserved and the models are evaluated on
the test data. Similar as in the simulation study the sparsity parameter is chosen from
a grid of values between 0.1 and 2 with step size 0.05.

The average mcr and wmcr computed from the 10 different data sets are reported in
Table 4.We also report the results when the artificial outliers are removed from the data
sets and cSOS is applied. First, note that the averagemcr is not much different between
cSOS and rSOS. To reduce the influence of outliers on the evaluation criterion, the
wmcr should be used. Here rSOS clearly outperforms cSOS. Note that the average
mcr calculated with cSOS from the data set without artificial outliers is 0.029 and
close to the average wmcr calculated with rSOS. This shows, that the wmcr gives an
approximation of the mcr without outliers.

7 Conclusion

This paper introduced a robust and sparse optimal scoring method for multigroup clas-
sification. It yields a new supervised classification method, applicable if the number of
variables is large with respect to the sample size andwith possible presence of outliers
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in the data.Using an iterative algorithm, it searches for an optimal projection into a sub-
space using only a subset of the original variables; themost informative ones. Potential
outliers are down-weighted, reducing their influence in the search for this optimal pro-
jection. The final classification is then carried out in this (K−1)-dimensional subspace.
As shown in the examples in Sect. 6, the resulting low-dimensional representation of
the data is also useful for visualization and interpretation.

The algorithm we developed, see Sect. 3, is implemented and publicly available
in the R-package rrcovHD (Todorov 2016). This package contains outlier detection
methods and robust statistical procedures for high dimensions. A call to the function
SosDiscrRobust, with the data matrix and the class memberships as input, returns
the estimated model.

Only few proposals exist so far for robust classification in high dimensions. Our
proposal has the important feature of being sparse, simultaneously performing variable
selection and model estimation, by using a (robust) Lasso-type approach. The simu-
lation study has shown the importance to consider both sparse modeling and robust
estimation. If either of them is missing, the prediction performance may decrease
drastically.

Acknowledgements This work is supported by the Austrian Science Fund (FWF), Project P 26871-N20.
We would like to thank the referees for useful comments.

Appendix

Derivation of expression (4) for the score vector estimates

Letω1, . . . , ωn be case weights for each observation.Ω is a diagonal matrix with these
case weights in the diagonal. Then the weighted data matrices are Ỹ = Ω1/2Y and

X̃ = Ω1/2X . The diagonal matrix with weighted class proportions is D̃ = 1∑
ωi
Ỹ
T
Ỹ .

The optimization problem (2) in step h for a given β̂ can be rewritten as

min
θ

‖X̃β̂ − Ỹθ‖2 s.t. θT D̃θ = 1 and Cθ = 0 ∈ R
h (6)

with C = [θ̂1, . . . , θ̂h−1]T D̃, and we drop the depending on the index h for ease of
notation.

We use the method of Lagrange multipliers. The Lagrangian associated to Eq. (6)
is given by

L = (X̃β̂ − Ỹθ)T (X̃β̂ − Ỹθ) − η(θT D̃θ − 1) − 2γ TCθ .

The partial derivative set to zero gives

∂L

∂θ
= −2Ỹ

T
(X̃β̂ − Ỹθ) − 2η D̃θ − 2CT γ = 0.
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Hence,

θ = (Ỹ
T
Ỹ − η D̃)−1(Ỹ

T
X̃β̂ + CT γ ).

To solve for the Lagrange multipliers η and γ , the side constraints are used.

0 = Cθ = C(Ỹ
T
Ỹ − η D̃)−1Ỹ

T
X̃β̂ + C(Ỹ

T
Ỹ − η D̃)−1CT γ

So

γ = −
(
C(Ỹ

T
Ỹ − η D̃)−1CT

)−1
C(Ỹ

T
Ỹ − η D̃)−1Ỹ

T
X̃β̂.

We conclude

θ = (Ỹ
T
Ỹ − η D̃)−1

{
I − CT (C(Ỹ

T
Ỹ − η D̃)−1CT )−1C(Ỹ

T
Ỹ − η D̃)−1

}
(Ỹ

T
X̃β̂). (7)

Since Ỹ
T
Ỹ is proportional to D̃, there exists a scalar c such that

(Ỹ
T
Ỹ − η D̃)−1 = c D̃

−1
.

Formula (7) can be simplified to

θ = c
{
I − D̃

−1
CT (C D̃

−1
CT )−1C

}
D̃

−1
Ỹ
T
X̃β̂.

Due to the symmetry of D̃ and with the definition of C = QT D̃ we obtain

θ = c
{
I − Q(QT D̃ Q)−1QT D̃

}
D̃

−1
Ỹ
T
X̃β̂.

The scalar c can then be scaled so that the side constraint θT D̃θ = 1 is fulfilled.

Algorithm for the computation of the initial estimates forˇh and�h

Input: h, Qh, X,Y , λ

(i) Compute D = 1
nY

TY .
(ii) Generate θ∗, a random vector from N (0, 1) of length K .

(iii) Compute θ̂h = c
{
I − Qh(Q

T
h DQh)

−1QT
h D

}
θ∗, with c so that θ̂

T
h Dθ̂h = 1.

Apply twice the following steps:

1. For fixed θ̂h apply sparse least trimmed squares (sparse LTS) regression (Alfons
et al. 2013) to the response Y θ̂h and predictors X .
Let a = 0.5n and ‖r‖21:a = ∑a

i=1 r
2
(i) denote the sum of the a smallest squared

elements of the vector r . The sparse LTS estimator is a robust version of the Lasso
and defined as

min
β

1

a
‖Yθh − Xβ‖2(1):(a) + λ‖β‖1.
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As in Alfons et al. (2013), a re-weighting step is carried out afterwards yielding
β̂h .

2. For fixed β̂h apply least absolute deviation (LAD) regression with response Xβ̂h
and predictor matrix Y :

θ∗ = argmin
θ

‖Yθ − Xβ̂h‖1.

The LDA estimator is robust to outliers in the dependent variable, but not to
leverage points (i.e. outliers in the covariate space). Since the covariates are dummy
variables here, leverage points cannot occur. Then we apply the transformation for
satisfying the side constraints:

θ̂h = c
{
I − Qh(Q

T
h DQh)

−1QT
h D

}
θ∗.

Output: Initial estimators β̂h and θ̂h .
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