
Data Mining and Knowledge Discovery (2020) 34:101–123
https://doi.org/10.1007/s10618-019-00657-9

Grafting for combinatorial binary model using frequent
itemset mining

Taito Lee1 · Shin Matsushima1 · Kenji Yamanishi1

Received: 13 August 2018 / Accepted: 14 October 2019 / Published online: 28 October 2019
© The Author(s) 2019

Abstract
We consider the class of linear predictors over all logical conjunctions of binary
attributes, which we refer to as the class of combinatorial binary models (CBMs) in
this paper. CBMs are of high knowledge interpretability but naïve learning of them
from labeled data requires exponentially high computational cost with respect to the
length of the conjunctions. On the other hand, in the case of large-scale datasets,
long conjunctions are effective for learning predictors. To overcome this computa-
tional difficulty, we propose an algorithm, GRAfting for Binary datasets (GRAB),
which efficiently learns CBMs within the L1-regularized loss minimization frame-
work. The key idea of GRAB is to adopt weighted frequent itemset mining for the
most time-consuming step in the grafting algorithm, which is designed to solve large-
scale L1-RERM problems by an iterative approach. Furthermore, we experimentally
showed that linear predictors of CBMs are effective in terms of prediction accuracy
and knowledge discovery.

Keywords Combinatorial Boolean model · Sparse learning · Knowledge discovery ·
Frequent itemset mining

Responsible editor: Toon Calders.

B Taito Lee
ri.taito@ci.i.u-tokyo.ac.jp

Shin Matsushima
smatsus@graco.c.u-tokyo.ac.jp

Kenji Yamanishi
yamanishi@mist.i.u-tokyo.ac.jp

1 The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10618-019-00657-9&domain=pdf
http://orcid.org/0000-0003-2781-7398

102 T. Lee et al.

1 Introduction

Learning of linear predictors is a widely used method for discovering data attributes
that characterize the given data. Linear predictors are suitable for knowledge discov-
ery in the sense that the attributes whose weights are large can be interpreted as more
important features for classification or regression. The power of knowledge repre-
sentation for linear predictor models is, however, quite limited in the sense that an
important feature is represented by a single attribute only.

Weare rather interested in awider class of linear predictionmodels such that features
may be represented by combinations of attributes. In particular, we are concerned
with learning a linear model from labeled data, the features of which are based on all
conjunctions of binary attributes. Let X = {x1, . . . , xd} be the set of all the binary
attributes. We define the combinatorial feature set Φ(d,k) as a set of conjunctions of
at most k distinct attributes chosen from X . For example, in the case of d = 4 and
k = 2, Φ(d,k) is given as follows:

Φ(4,2) = {�, x1, x2, x3, x4, x1 ∧ x2, x1 ∧ x3, x1 ∧ x4,

x2 ∧ x3, x2 ∧ x4, x3 ∧ x4},

where � returns 1 for any data x ∈ {0, 1}d . Note that |Φ(d,k)| = ∑k
k′=0

(d
k′
)
. Specif-

ically, |Φ(d,d)| = 2d . When d is fixed, we denote Φ(d,k) as Φ(k) in the following
discussion. We define a linear predictor associated with Φ(k) by

f (k)(x) �
∑

φ∈Φ(k)

wφφ(x), (1)

wherew = (wφ)φ∈Φ(k) is a real-valued |Φ(k)|-dimensional parameter vector. We refer
to the class of all functions of the form (1) as the class of combinatorial binary models,
which we abbreviate as CBMs. Further, we refer to φ ∈ Φ(k) as a feature and k as the
degree. The weight wφ in w for φ represents the importance of the feature φ.

It is expected that CBMs can capture effective predictors involving long logical
conjunctions, especially when a large-scale dataset is available. In cases attributes of
given data are interpretable, the function obtained from CBMs is suitable for knowl-
edge discovery in the sense that attributes with large weights can be interpreted as
more important features for classification or regression. For example, let us consider
a task to predict incomes of individuals from various attributes such as native country,
education level and occupation. In this case, combinatorial features can represent, e.g.,
an individual is from the U.S., has a master degree and is a software engineer. It can be
useful knowledge that such combinatorial features contribute to the better prediction,
because it means that possessing a set of attributes all together has a special effect
on prediction. Although non-linear models, such as the kernel method or multi-layer
neural networks, may achieve higher classification accuracy, they do so at the cost
of interpretability. There are several work that aim for recovering the interpretation
of attributes from any black-box predictors (Ribeiro et al. 2016; Lundberg and Lee
2017).

123

Grafting for combinatorial binary model 103

Let us consider the problem of learning CBMs, i.e., estimation of the parameter
vector w, from given labeled examples (x1, y1), . . . , (xm, ym), where yi is the label
corresponding to xi andm is the sample size.We employ the framework of regularized
loss minimization as the learning framework. CBMs can represent highly complex
prediction functions. In fact, CBMs with the degree d can represent any function from
binary vectors to real values. It implies that any optimal predictor can be learned in the
limit of large samples if empirical riskminimizer can be computed and that appropriate
regularization is necessary in practical application to data samples of limited size.

Learning of such a class may entail high computational complexity because the
total number of combinations of attributes is exponential in the dimension d and the
degree k. Therefore, learning such a class of rich knowledge representations at low
computational cost is an important issue. From the standpoint of both interpretation of
learned predictors and computational efficiency, large weights should be assigned to a
relatively small number of features φ ∈ Φ(k) after learning. Toward this end, we focus
on the framework of sparse learning (Rish and Grabarnik 2014) by the L1-regularizer,
which we refer to as L1-regularized empirical risk minimization or L1-RERM. Then,
the objective function to be minimized can be expressed as

G(w) = C
m∑

i=1

�(f (k)(xi), yi) + ‖w‖1

= C
m∑

i=1

�

⎛

⎝
∑

φ∈Φ(k)

wφφ(xi), yi

⎞

⎠ + ‖w‖1, (2)

where � is a loss function andC is a real positive constant and ‖w‖1 �
∑

φ∈Φ(k) |wφ |.
Hence, learning CBMs can be boiled down to a large-scale L1-RERM using feature
maps with a special structure.

It is still computationally difficult to solve the optimization problem (2) using
existing standard techniques for loss minimization owing to the following two factors.
First, in applying such techniques, all the values φ (xi) should be stored for all φ and i
beforehand. This requires an exponentially large memory size with respect to the data
dimension. Second, it is computationally expensive to solve a large-scale optimization
problem associated with loss minimization because the total number of parameters is∑k

k′=0

(d
k′
)
, which is at most 2d .

1.1 Significance and novelty

The purpose of this paper is twofold. The first and main purpose is to propose an
efficient algorithm that learns a class of linear predictors over all possible combination
of binary attributes by solving large-scale L1-regularized problems. The second is to
empirically demonstrate that the proposed algorithm efficiently produces predictors
having higher accuracy as well as better interpretability than competitive methods.
The significance of this paper is summarized as follows:

123

104 T. Lee et al.

(1) Proposal of an efficient algorithm that learns a class of linear predictors over all
conjunctions of attributes We consider the problem of learning CBMs from labeled
examples within the regularized loss minimization framework. Because the size of
CBM is exponential in the data dimension, it is challenging to learn CBMs effi-
ciently. We propose a novel algorithm, namely the GRAfting for Binary datasets
algorithm (GRAB), to learn CBMs efficiently. The key idea of GRAB is to adopt
the technique of frequent itemset mining (FIM) for the most time-consuming step in
the grafting algorithm (Perkins et al. 2003), which is designed for large-scale L1-
regularized loss minimization. We observe that the grafting algorithm includes FIM
as a sub-procedure. We successfully unify the efficient FIM algorithm and the grafting
algorithm to achieve efficient execution of GRAB.

(2) Empirical demonstration of the validity of GRAB in terms of computational
efficiency, prediction accuracy and knowledge interpretabilityWe employ benchmark
datasets to demonstrate that GRAB is effective in terms of computational efficiency,
prediction accuracy and knowledge interpretability. First, we show that GRAB can
learn CBMs with high degree more efficiently than other algorithms and that CBMs
of higher degrees exhibit higher prediction accuracy in the L1-RERM framework
as the amount of data increases. Then, we empirically show that GRAB achieves
higher or comparable prediction accuracy in comparison to existing methods, such as
random forests (Ho 1995, 1998) and extreme gradient boosting (Chen and Guestrin
2016). We also examine the behavior of the solution of GRAB by changing stopping
condition. Furthermore, we show that GRAB can acquire important knowledge in a
comprehensive form by demonstration on several datasets.

1.2 Related work

Numerous studies have investigated learning of interpretable knowledge represen-
tations from binary datasets, such as decision trees (Breiman et al. 1984), random
forest (Ho 1995, 1998), and extreme gradient boosting (Chen and Guestrin 2016).
Our concern here is that their learning algorithms have little guarantees from the
perspective of optimization due to the nature of combinatorial optimization. There-
fore, statistical analysis under the principle of the empirical loss minimization are not
applied, although their performance largely depend on experimental heuristics such
as early stopping. Our aim in this paper is to develop a learning method that works
under the framework of empirical loss minimization and achieves the global solution,
which immediately provides basic theoretical guarantees on the predictor.

In the case of classification tasks, learning of CBMs is related to learning Boolean
functions, especially disjunctive normal forms (DNFs), which have been investigated
extensively in the area of computational learning theory, e.g., Aizenstein and Pitt
(1995) and Bshouty (1995). However, CBMs differ from DNFs in two aspects: 1.
CBMs take a weighted sum of conjunctions of attributes rather than disjunctive oper-
ations. 2. CBMs include all real-valued functions: {0, 1}d → R. Hence, CBMs can
be regarded as a wider class of functions than DNFs. Learning CBMs is significant in
this sense.

123

Grafting for combinatorial binary model 105

There are several approaches that learn CBMs by selecting combinatorial features
first and then learning models only with those features (Deshpande et al. 2005; Cheng
et al. 2007). Instead, we focus on solving large-scale L1-regularized problems to
learn CBMs directly. In this context, our learning setting is closely related to loss
minimization using polynomial kernels. In the case where x is a binary vector, the
loss minimization for CBMs is analogous with that using polynomial kernels (Shawe-
Taylor and Cristianini 2004):

k(x, x′) = (x�x′ + r)l . (3)

However, the weights for φ ∈ Φ(k)s depend on their degrees or their numbers of
conjunctions. Thus, features for CBMs are uniformly weighted, whereas those for
polynomial kernels are non-uniformly weighted.

Our learning algorithm follows the framework of the grafting algorithm (Perkins
et al. 2003), which is designed for L1-regularized loss minimization when the number
of available features are large. Some variants of boosting algorithms can be seen as
optimization algorithms for L1-regularized loss minimization although it covers only
convex losses (Schapire and Freund 2012). The column generation procedure is a
terminology in general optimization problems with a large number of constraints,
especially when the optimization problem is reduced to mathematical programming
such as linear programming and quadratic programming (Dantzig and Wolfe 1960;
Desaulniers et al. 2006).When the grafting algorithm is reduced to such amathematical
programming, it coincides with a column generation procedure.

FIM has been successfully adopted in several emerging machine learning tasks,
such as clustering and boosting (Saigo et al. 2007; Tsuda and Kudo 2006; Kudo et al.
2004). One of the most closely related studies is Saigo et al. (2007), in which FIMwas
adopted for boosting; a model similar (but not identical) to CBMswas also considered,
and regression tasks were examined in a biological context.

The remainder of this paper is organized as follows. Section 2 introduces the grafting
algorithm for loss minimization. Section 3 introduces the frequent itemset mining
methodology. Section 4 describes GRAB, which combines the grafting algorithm
with frequent itemset mining. Section 5 presents the experimental results. Finally,
Sect. 6 concludes the paper.

2 Grafting algorithm

In this section, we introduce the grafting algorithm (Perkins et al. 2003), which is
designed to solve large-scale L1-RERM problems efficiently. We define the objective
function as G(w) = L(w) + ‖w‖1, where we assume L(w) is differentiable. The key
idea of the grafting algorithm is to construct a set of active features by adding features
incrementally.

In each iteration of the grafting algorithm, a (sub)gradient-based heuristic is
employed to first find the feature that seemingly improves the model most effectively
and then add it to the set of active features. In the t-th iteration, the grafting algorithm
divides the set of all attributes of parameter vector w into two disjoint sets: Ft and

123

106 T. Lee et al.

Zt � ¬Ft . We refer to wt
j ∈ Ft as a free weight. Further, Zt is constructed implicitly

so that it always satisfies wt
j = 0 if wt

j ∈ Zt .
The procedure of the grafting algorithm is as follows: First, it minimizes (2) with

respect to free weights, resulting in

∂wt
j
G � 0 (4)

for ∀ j ∈ Ft , where ∂wt
j
G is the subdifferential of G with respect to wt

j . Then, for

∀ j ∈ Zt ,

∂wt
j
G
� 0 (5)

is a necessary and sufficient condition for the value of the objective function to decrease
by changing wt

j (globally when G is convex and locally in general). Second, the
grafting algorithm selects a parameter from Zt that is seemingly the most effective in
decreasing the objective function and adds it into Ft+1. Then, Zt+1 is also implicitly
updated by removing the selected parameter, and the grafting algorithm iterates the
procedure mentioned above.

The subdifferential of the objective function with respect to wt
j ∈ Zt is calculated

as

∂wt
j
G =

[
∂L

∂wt
j

− 1,
∂L

∂wt
j

+ 1

]

. (6)

Hence, the condition (5) is equivalent to

∣
∣
∣
∣
∣

∂L

∂wt
j

∣
∣
∣
∣
∣
> 1. (7)

This implies that changing the value of wt
j from 0 will not decrease the objective

function if (7) is not satisfied. This is the main reason why L1-regularization gives
a sparse solution. It also leads to a stopping condition of the grafting algorithm as
described below.

We consider the problem of selecting a parameter to be moved from Zt to Ft .
From the above argument, we see that wt

j ∈ Zt satisfying (7) makes the value of the
objective function decrease by changing its value from 0. There may be more than one
candidate satisfying (7). In such a case, the grafting algorithm selects a parameterwt

best
that makes the value of the objective function decrease the most by using the following
gradient-based heuristic:

wt
best = argmax

wt
j∈Zt

∣
∣
∣
∣
∣

∂L

∂wt
j

∣
∣
∣
∣
∣
. (8)

123

Grafting for combinatorial binary model 107

If the condition (7) is not satisfied for wt
best, a local optimum (or the global optimum

in case of convex G) is achieved. The overall procedure is given in Algorithm 1.
Note that the derivatives of the objective functionwith respect to all parametersmust

be calculated to obtain the maximum in (7) in general. However, this naïve method is
computationally intractable when the data dimension and sample size are large as in
our case.

Algorithm 1 Grafting algorithm for L1-regularized problem

Require: w ∈ R
d , G(w) = L(w) + ‖w‖1

1: F ← ∅; Z ← {w j }dj=1

2: while maxw j∈Z
∣
∣
∣ ∂L
∂w j

∣
∣
∣ > 1 do

3: w j ← argmax
w j∈Z

∣
∣
∣ ∂L
∂w j

∣
∣
∣

4: F ← F ∪ {w j }; Z ← Z \ {w j }
5: Optimize G(w) with respect to ∀w j ∈ F
6: end while

3 Frequent itemset mining

It is computationally difficult to find the best parameter according to (8). This is
because it requires computation of the gradient of loss over all the components of the
parameter. To overcome this difficulty, we adopt the frequent itemset mining (FIM)
technique. In this section, we briefly review FIM.

3.1 Terminology

A set of items I = {1, . . . , d} is called the item base. The set T = {t1, . . . , tm}
is called the transaction database, where each ti is a subset of I . Each element
of the transaction database is called a transaction. Given a transaction database, an
occurrence set of p, denoted by T (p), is a set of all transactions that include p, i.e.,

T (p) � {t ∈ T | t ⊇ p}. (9)

We refer to p as an itemset. The cardinality of T (p) is referred to as the frequency,
which is denoted as frq(p;T), i.e., frq(p;T) �

∑
t∈T (p) 1. When T is fixed,

frq(p;T) is written as frq(p) in the following discussion. The simplest example of
the FIM problem is given as follows: For a given transaction databaseT and threshold
θ , find P , which is the set of all itemsets with a larger frequency than θ , i.e.,

P = {p ⊆ I | frq(p) > θ}. (10)

123

108 T. Lee et al.

3.2 Efficient algorithms usingmonotonicity

It is obvious that any subset of an itemset p is included by a transaction t when p is
included by t . In other words, a type of monotonicity holds in the following sense:

p′ ⊂ p ⇒ T (p′) ⊇ T (p), and frq(p′) ≥ frq(p). (11)

By exploiting this property, we can search all frequent itemsets by adding items one by
one from ∅. The apriori algorithm performs this search in the breadth-first manner,
whereas the backtracking algorithm performs this search in the depth-first manner.
The apriori algorithm was originally proposed by Agrawal and Srikant (1994). An
FIM algorithm based on the backtracking algorithm was proposed in, e.g., Zaki et al.
(1997) and Bayardo Jr (1998).

The size of the transaction database, denoted as ‖T ‖, is defined by ‖T ‖ �∑m
i=1 |ti |. The time complexities of the apriori and backtracking algorithms are the

same, i.e., O(d‖T ‖|P|), which is called the output-polynomial time. Note that it is
necessary to incur |P| time to identify P , although |P| can be exponentially large
in the worst case. In other words, the smaller |P| is, the more the computational cost
decreases. Hence, the algorithms are expected to run in practical time as long as |P|
is of reasonable size.

3.3 Extension to weighted FIM

Standard FIMmethods handle transactions as if therewere no difference in importance
among the transactions. However, there often appear cases in which the transactions
may differ from one another in importance depending on the nature of the transactions.
Furthermore, the values of importance may be positive or negative. If each transaction
is allocated to a positive or negative label, then we may be interested in discovering
itemsets that appear frequently in positive transactions but not frequently in negative
ones. Letting (αt)t∈T ∈ R

T represent the importance, we define weighted frequency
as follows:

wfrq(p;T , α) �
∑

t∈T (p)

αt , (12)

which is denoted as wfrq(p;α) when T is fixed in the following discussion. We then
introduce weighted frequent itemset mining (WFIM), which aims to find all itemsets
whose weighted frequency is larger than a given threshold. We call such itemsets
weighted frequent itemsets in the rest of the paper.

In the setting where the values of importance are non-negative, the same mono-
tonicity as that given by (11) still holds for the weighted frequency.We call this special
case of WFIM non-negatively weighted frequent itemset mining (NWFIM), for which
we can employ the backtracking algorithm or the apriori algorithm.

In the setting where both positive and negative importance has to be dealt with,
the monotonicity does not hold any longer. Then, any algorithm of output-polynomial

123

Grafting for combinatorial binary model 109

Fig. 1 Demonstration of frequent itemset mining (FIM) and its variants: Those three diagrams above
show the results of the problems of FIM, NWFIM and WFIM, in which the transaction database T =
{t1, t2, t3, t4} is defined as in the left table and θ = 1. A node in the diagrams represents each itemset
and an arrow represents the inclusion relation. The green-shaded area in each diagram represents P =
{p ⊆ I |wfrq(p; α) > 1} for each α described in the table next to the diagram.We can see themonotonicity
holds in the case of FIM and NWFIM, whereas it does not in the case of WFIM (Color figure online)

time do not exist to the best of our knowledge. Instead, we may employ the following
two-stage strategy: Let the sets of positive and negative transactions in T be T+ and
T−, respectively. In the first stage, by ignoring transactions with negative importance,
we obtain weighted frequent itemsets such that

P+ = {p ⊆ I | wfrq(p;T+, α) > θ}. (13)

In the second stage, for each itemset in P+, we check if the weighted frequency
wfrq(p;T , α) is still larger than θ . The first stage is executed using the aforemen-
tioned algorithms in timeO(d‖T+‖|P+|), while the second stage is executed in time
O(d‖T−‖|P+|) by accessing all negative transactions for each itemset obtained in
the first stage. Then, the total computation time is O(d‖T ‖|P+|).

The three types of FIM, namely FIM, non-negatively weighted FIM (NWFIM), and
weighted FIM (WFIM), are shown in Fig. 1.

A variant of WFIM can be designed by restricting the itemsets such that their sizes
are at most k. Then, it will output P = {p ⊆ I | wfrq(p;T , α), |p| ≤ k}. This is
realized by stopping the breadth-/depth-first search of weighted frequent itemsets at
depth k.

4 Proposed algorithm (GRAB)

In this section, we introduce the proposed algorithm for learning CBMs, which we
refer to as GRAfting for Binary datasets (GRAB). In our case, the grafting algorithm
itself is not efficient because selecting the best parameter expressed in (8) involves
an exponentially large number of candidate features in its maximization. The key to
overcoming this issue is to adopt WFIM techniques to compute this maximization
efficiently. In fact, we see from (7) that the value of the objective function is decreased
by changing the value of wφ if and only if

∣
∣
∣
∣
∣
C

m∑

i=1

∂�

∂ f (k)(xi)
φ(xi)

∣
∣
∣
∣
∣
> 1. (14)

123

110 T. Lee et al.

Thus, the problem of finding the best feature can be solved after finding φ ∈ Φ(k)

satisfying (14). It turns out that this problem is reduced to two WFIM problems. To
explain this, we prove the following statement.

Theorem 1 Define

ti � {k | xik = 1},
pφ �

{
∅ (φ = �(x)),

{i1, . . . , il} (φ = xi1 ∧ . . . ∧ xil).

for each feature vector xi (i = 1, . . . ,m) and φ ∈ Φ(k), respectively. Then, (14) is
equivalent to

wfrq(pφ;α) > 1, or wfrq(pφ;−α) > 1, (15)

where

αti = C
∂�

∂ f (k)(xi)
. (16)

Algorithm 2 GRAB algorithm
input k ≥ 0, {xi , yi }mi=1,C > 0, K ≥ 1

Require: T = {ti }mi=1 , where ti = T (d)(xi)

1: αti ← C ∂�

∂ f (k)(xi)
(i = 1, . . . ,m)

2: P ← {p |wfrq(p; α) > 1 or wfrq(p; −α) > 1, |p| ≤ k}
3: F ← ∅, Z ← {wφ}

φ∈Φ(k)

4: while P
= ∅ do
5: for j = 1, . . . , K do
6: Pick φ such that P(k)(φ) is the j-th most weighted frequent itemset in P
7: F ← F ∪ {

wφ

} ; Z ← Z \ {
wφ

}
.

8: end for
9: Optimize G(w) with respect to ∀wφ ∈ F

10: αti ← C ∂�

∂ f (k)(xi)
(i = 1, . . . ,m)

11: P ← {p |wfrq(p; α) > 1 or wfrq(p; −α) > 1, |p| ≤ k}
12: end while
output {wφ}φ∈F

Proof φ can be expressed as

φ(x) =
{
1 (ti ⊃ pφ),

0 (otherwise.).

123

Grafting for combinatorial binary model 111

Therefore, the left-hand side of (14) is rewritten as

∣
∣
∣
∣
∣
C

m∑

i=1

∂�

∂ f (k)(xi)
φ(xi)

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

∑

{i | φ(xi)=1}
C

∂�

∂ f (k)(xi)

∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣

∑

{i | ti⊇ pφ}
C

∂�

∂ f (k)(xi)

∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣

∑

{i | ti∈T (pφ)}
C

∂�

∂ f (k)(xi)

∣
∣
∣
∣
∣
∣
,

whereT (pφ) is an occurrence set of pφ with respect to the transaction databaseT �
{ti }mi=1. Hence, the proposition is true. ��

We can obtain a set of all pφs that satisfy each inequality in (15) by employing
WFIM. Therefore, findingφ ∈ Φ(k) satisfying (14) is reduced to twoWFIMproblems.

According to the original form of grafting algorithm, only one parameter is newly
added to the set of freeweights by (8) in each iteration.Knowing that (14) is a necessary
and sufficient condition for the objective function to decrease, we may select more
than one parameter, such as the top-K most weighted frequent parameters {wφk }Kk=1,
where φk has the k-th largest value in the left-hand side of (14). This method is more
efficient in the case where the parameter selection procedure of WFIM requires a
longer computation time than the parameter estimation step of the grafting algorithm.
The overall flow of GRAB is given in Algorithm 2.

We describe the implementation techniques for acceleration of GRAB.

Dynamic threshold control for the acceleration of WFIM WFIM terminates faster if
the threshold θ is larger and |P+| is smaller, because the time complexity of WFIM is
O(d‖T ‖|P+|), as noted previously. It is desirable to find the top-K most weighted
frequent itemsets without extracting all the features that satisfy (14). Toward this end,
first, we execute WFIM by setting the threshold θ = 2M with M = 10, and we
decrement M by 1 until we obtain K itemsets or θ = 20 = 1. When WFIM is called
next, we use the same value of M as that used previously.

Incomplete Termination of WFIM When the total number of outputs of WFIM is
too large, we terminate WFIM after extracting 100K weighted frequent itemsets and
select the top-K most weighted frequent itemsets among them. In such cases, selection
of the top-K most weighted frequent itemsets may not be guaranteed. However, as the
selection of a new feature based on (8) is already a heuristic, we do not expect that it
significantly deteriorates the performance of the optimization step.

Lastly, we note that GRAB converges to the optimal solution as long as � is convex,
because it follows the procedure of the framework of the grafting algorithms. Even
with the implementation techniques, the convergence still holds as GRAB with these
techniques finds features that satisfies (14) for each iteration.

123

112 T. Lee et al.

5 Experiments

We implemented GRAB in C/C++.1 To select new features to be added, we used
Linear time Closed itemset Miner (LCM, Uno et al. 2003, 2004, 2005), which is a
backtracking-based FIM algorithm. All the experiments described below were exe-
cuted on Linux (CentOS 6.4) machines with 96 GB memory and Intel(R) Xeon(R)
X5690 CPU (3.47 GHz). We restricted the computation time to within one day, and
experiments with overtime were regarded as time-outs.We employ the following stop-
ping condition: First, we define the suboptimality of a solution as follows:

V t �
∑

φ∈Φ(k)

vtφ =
∑

wt
φ∈Ft

vtφ +
∑

wt
φ∈Zt

vtφ, (17)

where

vtφ =

⎧
⎪⎪⎨

⎪⎪⎩

C

∣
∣
∣
∣

∂L
∂wt

φ

+ sgn
(
wt

φ

)∣
∣
∣
∣ (wt

φ
= 0)

max

(

C

∣
∣
∣
∣

∂L
∂wt

φ

∣
∣
∣
∣ − 1, 0

)

(wt
φ = 0).

We terminate the algorithm when V t < εV 0 is satisfied for a given tolerance
ε > 0. In our experiments, we set ε = 10−2. The first term of V t is computed using
the parameter obtained by the optimization step. The second term is computed by
summing over the features obtained by WFIM. Note that it may not be possible to
compute V 0 exactly when we employ the heuristic for acceleration noted above. In
this case, we underestimate V 0 by computing the summand in the second term of
(17) among the obtained features. This makes the stopping condition stricter and the
proposed algorithm run longer.

We examined the following five aspects. First, we demonstrated the efficiency of
GRAB algorithm in solving the optimization problem (2). Second, we demonstrated
the benefit of high-order CBMs in predictive performance. Third, we demonstrated the
predictive performance compared to that of other state-of-the-art supervised learning
methods. Fourth, we evaluated the effect of tolerance on learned models. Finally, we
demonstrated interpretability of learned models using various kinds of datasets.

5.1 Evaluation of computation time

In this section, we examined the efficiency of GRAB. Toward this end, we adopted
the following two methods as baselines of comparison:

1. Grafting + Naïve feature selection
We employed the grafting algorithm without combining it with WFIM. We calcu-
lated (8) by searching exhaustively over the set of all features φ ∈ Φ(k).

2. Expansion + LIBLINEAR
First, we expanded a dataset so that all possible features in φ ∈ Φ(k) are explicitly

1 Our experimental code is available at https://gitlab.com/taitor/GRAB-experiments.

123

https://gitlab.com/taitor/GRAB-experiments

Grafting for combinatorial binary model 113

Fig. 2 Computation time of each algorithm learning CBM on a1a dataset: Grafting and LIBLINEAR
denote Grafting + Naïve feature selection and Expansion + LIBLINEAR, respectively. Grafting with both
C = 0.1, 1 on k = 4, 5, 6 is not shown because the computation time exceeded the limit of 1 day

developed (expansion). Then, we trained linear models on the expanded dataset
within the L1-RERM framework. We used LIBLINEAR as a solver (Fan et al.
2008).

Note that GRAB and the compared methods share the objective function (2).
In our experiment, we used the logistic loss function �(x, y) = log (1 + exp (−xy))

as a loss function for learning CBM. Further, we used a1a (Platt 1999; Lichman
2013) as a benchmark dataset. It has 32,561 datapoints and 123 binary attributes. We
conducted training of CBM with C = 0.1, 1, and 1 ≤ k ≤ 6. The computation time
results are summarized in Fig. 2.

First, we observed that the computation time for GRAB is significantly shorter than
that for Grafting + Naïve feature selection. This implies that WFIM is sufficiently effi-
cient to select the features even when exhaustive search is impractical. Next, we focus
on the comparison between GRAB and Expansion + LIBLINEAR. GRAB selects
only promising features to decrease the objective function, whereas Expansion + LIB-
LINEAR considers all possible features. This difference was clearly reflected in the
results. When the degree of CBM is small (k = 1, 2), which means that the feature
space is not large, Expansion + LIBLINEAR can be executed faster than GRAB. How-
ever, as k increases, the number of unnecessary features increases considerably and
GRAB becomes more efficient. Therefore, we conclude that GRAB is efficient not
only because it employs WFIM but also because it can extract features selectively as
a characteristic of grafting algorithms.

5.2 Evaluation of combinatorial models

CBMs of high degree have an extraordinary high-dimensional feature space consisting
of complex combinatorial features. In this section, we demonstrate how such com-

123

114 T. Lee et al.

plex combinatorial features contribute to prediction accuracy. In the experiment, we
employed the logistic loss function � (x, y) = log (1 + exp (−xy)) as a loss function
for learning CBMs. As benchmark datasets, we employed the covtype.binary dataset
and the SUSY dataset, both of which have quantitative attributes. As GRAB can be
applied only to binary datasets, we transformed each quantitative attribute into a binary
one as follows:We divided the interval from theminimumvalue to themaximumvalue
into 50 cells of equal length. We expressed each attribute in a binary form by indicat-
ing which section its value fell into. Thus, we obtained the binarized covtype.binary
dataset and the binarized SUSY dataset. We used 500,000 data for training and 81,012
for testing on covtype.binary, while 1,000,000 data points are used for training and
100,000 are used for testing on SUSY.

We examined the prediction accuracy ofCBMs of degree k = 1, 2, 3, 4with various
sizes of the training data for each dataset. For each k, we selected the best hyperpa-
rameterC fromC = 10−3, . . . , 103 by 5-fold cross-validation.We created the subsets
of the training dataset of sizes m = 300, 1 × 10l , 3 × 10l(3 ≤ l ≤ 5) and 5 × 105

for covtype.binary and m = 1 × 10l , 3 × 10l(3 ≤ l ≤ 5) and 1 × 106 for SUSY,
respectively. Figure 3 shows the prediction accuracy of each CBM trained with each
subset of each dataset.

From the Fig. 3a, we can see that the model with k = 1 performed the best when
the number of training data was small, e.g., m = 1 × 103, 3 × 103, but it showed
the worst performance when the number of training data was large, as in the case of
m = 3×105, 5×105, which is potentially due to the poor representation ability of the
model known as underfitting. By contrast, the model with k = 4 achieved the highest
prediction accuracy when the number of training data was large, as in the case of
m = 3× 105, 5× 105. These observations imply that complex combinatorial features
are more useful for improving the prediction accuracy as the size of available datasets
increases on covtype.binary dataset. On the other hand, from the Fig. 3b, we can see
that the prediction accuracy of the models with the various k is not much different
from each other on SUSY. The CBMwith k = 2 achieved the best prediction accuracy
when the number of training data was large, e.g.,m = 3×105, 1×106, which implies
that the learning SUSY does not require complex learning models.

5.3 Evaluation of prediction accuracy

To evaluate the prediction performance of GRAB, we compared it with that of state-
of-the-art methods using 10 benchmark datasets.2 In addtion, we employed a FIM-
based method in order to compare our method with FIM. We performed the same
preprocessing as that described in the previous section for each dataset. We employed
the following classification methods for comparison:

1. Support vector classification (SVC, Bishop 2006)
We used a polynomial kernel function for its kernel. The polynomial kernel is

defined as k(x, x′) = (
γ x�x′ + (1 − γ)

)d
, where d ∈ N and γ ∈ (0, 1] are

2 All datasets are available on theLIBSVMDatawebsite at https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
datasets/binary.html.

123

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

Grafting for combinatorial binary model 115

Fig. 3 Relationship between the number of training data points and prediction accuracy (%) of CBMs with
various degrees k on the binarized covtype.bianry dataset (a) and the binarizied SUSY dataset (b)

hyperparameters. We selected the hyperparameters from the grid of d = 1, 3,
γ = 0.1, 0.4, 0.7, 1.0, and C = 10−3, 10−2, . . . , 103.

2. Decision tree (DT, Breiman et al. 1984; Quinlan 1993)
One of its hyperparameters is max depth d, which controls the growth complexity
of the decision tree. We chose max depths from d = 23, 24, . . . , 29.

3. Random forest (RF, Ho 1995, 1998)
It has the max depth d and the number of trees n in its hyperparameters. We chose
them from the grid of d = 23, 24, . . . , 29 and n = 24, 25, . . . , 28.

4. Extreme gradient boosting (XGB, Chen and Guestrin 2016)
Although it has numerous hyperparameters, we only tuned max depth d and the
hyperparameter λ for the L2 regularizer. We searched for the best hyperparameter

123

116 T. Lee et al.

combination within the grid of d = 23, 24, . . . , 29 and λ = 10−3

m , 10−2

m , . . . , 103
m ,

where m is the number of training datapoints.
5. L1-regularized logistic regression on the preprocessed datasets with frequent item-

set mining (LRFIM)
First, we extracted the frequent itemsets from the training datawith (non-weighted)
frequent itemset mining by setting minimum frequency θ to 1% of the number
of training datapoints and maximum itemset length k to 5. Then, we trained
L1-regularized logistic regression based on the features corresponding to the
extracted frequent itemsets. We selected the hyperparameter in L1-regularized
logistic regression from C = 10−3, 10−2, . . . , 103.

For each of the algorithms, we selected the hyperparameters using 5-fold cross-
validation from all the possible combination of hyperparameters. We limited the
computation time for each combination within 100 hours and excluded all the com-
binations of time-out from the cross-validation candidates. After the hyperparameter
selection, we retrained the model using all the training data and calculated prediction
accuracy on the test data. We used scikit-learn (Pedregosa et al. 2011) for SVC, DT,
and RF, the XGBoost package (Chen and Guestrin 2016) for XGB and LCM (Uno
et al. 2003, 2004, 2005) and scikit-learn for LRFIM.We note that from the perspective
of hyperparameter selection, GRAB is preferable to the other methods because it has
fewer hyperparameters.

We employed logistic loss and L2-hinge loss as loss functions for learning CBMs.
The L2-hinge loss function is defined as

�(x, y) =
{

(1 − xy)2 if 1 − xy > 0,

0 otherwise.

Note that theWFIM procedure in GRAB can be accelerated using L2-hinge loss. This
is because ∂�(f (xi), yi)/∂ f (k)(xi), i.e., the i-th transaction weight of WFIM, is 0
for all i satisfying 1 − yi f (xi) ≤ 0, and we can remove the corresponding data from
the transaction database. We trained each GRAB model with k = 1, 2, 3, 4, 5,∞ and
C = 10−3, 10−2, . . . , 103.

Table 1 lists the accuracy of each algorithm on various benchmark datasets. In
our experiments, GRAB with the logistic loss function achieved the best predictive
performance on diabetes (Lichman 2013), whereas GRAB with the L2-hinge loss
function achieved the best predictive performance on madelon (Guyon et al. 2005),
phishing (Lichman 2013), a1a (Lichman 2013) and SUSY (Baldi et al. 2014; Lichman
2013).

SVC achieved the best accuracy on fourclass (Ho and Kleinberg 1996), ijcnn1
(Prokhorov 2001) and cod-rna (Andrewet al. 2006); RF, on german.numer (Lichman
2013); and XGB, on covtype.binary (Collobert et al. 2002; Lichman 2013).

Next, let us compare the results of GRAB (logistic) and LRFIM. GRAB (logistic)
achieved the higher prediction performance on 7 out of 10 datasets. Among them, our
method performed significantly better on ijcnn1, cod-rna and covtype.binary. Our
method extracts features based on whether they contribute to decreasing the objective
function, while LRFIM does based on their frequency. It is considered that this differ-

123

Grafting for combinatorial binary model 117

Table 1 Comparison of accuracy (%) on benchmark datasets: the columns m and d represent the number
of training data and attributes for each dataset, respectively. GRAB (logistic) and GRAB (L2-hinge) are
the proposed methods using respective loss function. SVC, DT, RF and XGB are the compared methods,
which stand for support vector classification, decision tree, random forest and extreme gradient boosting,
respectively. LRFIM shows the results of L1-regularized logistic regression on the preprocessed datasets
with frequent itemset mining. The best prediction accuracy in each dataset is displayed in bold

m d SVC DT RF XGB LRFIM GRAB
(logistic)

GRAB
(L2-hinge)

Diabetes 700 400 72.1 70.6 70.6 73.5 73.5 75.0 72.1

Fourclass 800 100 98.4 91.9 93.5 95.2 95.2 95.2 95.2

German.numer 900 759 73.0 76.0 81.0 75.0 74.0 72.0 75.0

Madelon 2400 25, 000 55.5 54.0 51.0 55.0 54.5 52.5 58.0

Phishing 10,000 68 97.1 96.9 97.3 97.4 97.0 97.5 97.8

a1a 30,000 123 85.1 83.3 84.8 85.4 84.9 85.3 85.5

ijcnn1 130,000 610 97.0 94.6 94.0 96.7 92.7 96.5 96.6

cod-rna 300,000 400 97.7 96.3 97.0 97.3 90.8 97.5 97.7

covtype.binary 500,000 544 92.8 92.2 94.2 95.3 78.9 94.3 94.5

SUSY 1,000,000 900 78.4 78.2 79.1 79.3 79.5 79.6 79.7

ence leads to the better performance on these datasets. This implies that our method
makes use of features that are less frequent but effective for prediction.

We note that ourmethod achieves better performance than decision tree and random
forest nearly consistently. In addition, the overall results are very competitive com-
pared to SVC and XGBoost. Specifically, GRAB with L2-hinge performs the best on
4 out of 10 datasets among all the competitors. Therefore, we conclude that GRAB
generally achieves state-of-the-art prediction accuracy, which means that the regular-
ized empirical risk minimization framework works well for high-degree CBMs, even
though the formal number of features is significantly large.

5.4 Evaluation of the effect of tolerance on learnedmodels

In general, there can be completely different sets of features that achieve similarly
high predictive performance. We evaluate how much the learned models differ from
each other when the tolerance ε is set differently in our algorithm. In this section, we
conducted the experiment in order to evaluate the effect of tolerance.

In this experiment, we trained CBMs by GRAB algorithm with various tolerance
values ε = 10−7, 10−6, . . . , 10−2 on the benchmark datasets ijcnn1 and phishing.We
regarded the model trained with ε = 10−7 as the global solution. We used the hyper-
parameters of CBMs (C, k) = (1, 4) and (1, 5) for ijcnn1 and phishing, respectively,
both of which were chosen as the best for predictive performance in the experiment
in 5.3. We note that the numbers of the combinatorial features that appeared at least
once in the dataset are 15,203,016 and 8,222,207 in case of in ijcnn1 with k = 4 and
phishing with k = 5, respectively.

We define a learned model by setting the tolerance to ε as wε and a representative
feature set Φ̂ε of the learned model as Φ̂ε � {φ||wε

φ | ≥ maxφ′ |wε
φ′ |/10}. By setting

123

118 T. Lee et al.

Table 2 Evaluation of CBMs with various tolerance values ε on ijcnn1 a and phishing b

Tolerance ε 10−7 10−6 10−5 10−4 10−3 10−2

(a) ijcnn1

|Φ̂ε | 688 688 687 587 890 817

|Φ̂ \ Φ̂ε | 0 3 5 106 50 176

|Φ̂ε \ Φ̂| 0 3 4 5 252 305

Prediction accuracy (%) 96.7 96.7 96.7 96.7 96.7 96.5

(b) Phishing

|Φ̂ε | 65 78 84 90 115 145

|Φ̂ \ Φ̂ε | 0 13 41 46 55 56

|Φ̂ε \ Φ̂| 0 26 60 71 105 136

Prediction accuracy (%) 97.7 97.7 97.8 97.7 97.3 97.5

Φ̂ = Φ̂10−7 , we evaluated the difference as sets between Φ̂ and Φ̂ε. We show the
results of the experiment in Table 2. This table shows the values of |Φ̂ε|, |Φ̂ \ Φ̂ε|
and |Φ̂ε \ Φ̂| for each ε on ijcnn1 2a and phishing 2b. It also shows the prediction
accuracy on the test data for each tolerance and dataset.

First, we explain the result on ijcnn1. The representative feature set of size 688 is
obtained in ε = 10−7 and we can observe that the differences from it are very small
in ε = 10−6 and ε = 10−5. As ε increases, the difference increases eventually. In the
case of ε = 10−2, the learned model contains about 75% of representative features in
the global solution and around 40% of representative features in the learned model are
not contained in Φ̂. These sets of representative features are very close to each other,
considering that the total number of possibly useful features is 15,203,016.

Next, we discuss the result on phishing. The global solution consists of as small as
74 representative features. In this case, The difference between sets of representative
features by different values of ε are large. One possible reason is that there are com-
pletely different combinatorial features that result in similar features in this dataset
and such a kind of multicollinearity makes the solution of (2) unstable. We note that
the predictive performance of all models are similarly good and sometimes better than
the global solution. From the perspective of knowledge discovery, there is no such a
concept of a unique ground truth of representative features and a set of features can be
useful for knowledge discovery whenever the predictive performance is sufficiently
high. Therefore, this experiment concludes that various sets of representative features
can be obtained with various values of the tolerance while the predictive performance
is quite stable.

5.5 Evaluation of interpretability

We can conduct knowledge acquisition by observing the predictor learned by GRAB
and then interpreting such features that corresponding weights have large absolute
values as important ones. This is because such features greatly affect the prediction
results. Hence, by simply extracting large-valued features, we can acquire knowledge

123

Grafting for combinatorial binary model 119

about what features are important for prediction. Specifically, features used in GRAB
are easy to comprehend since they are represented as conjunctions of attributes. This
implies that GRAB is of high interpretability of the acquired knowledge.

Belowwe show the results on knowledge discovery for a1a dataset (Lichman 2013;
Platt 1999). This datasetwas obtained by binarizing theAdult dataset (Lichman 2013),
which was extracted from the census bureau database. The a1a dataset has been used
as a benchmark for classification of people with more than $50,000 annual income or
the others, on the basis of their attributes.

We trained GRABwith L2-hinge loss on a1a dataset with the hyperparameters k =
2 and C = 0.1, which achieved the highest prediction performance in 5.3. Note that
the numbers of the possible attribute combinations are 5,439 in a1a with k = 2 and
we obtained the trained CBM with 682 non-zero coefficients of the combinations.
Table 3a shows weights with large absolute values listed in a descending order. For
each row, we have two columnsWeight andCombination of Attributes, which describe
a learned weight for each combinatorial feature and the interpretation of the feature,
respectively. Each single feature is described in a form of A = B, where A is a type of
the feature in the original dataset and B is its value, respectively. For each discretized
feature, we assigned a fractionm/n, where nmeans the original featurewas discretized
into n segments and m describes which segment the feature fell into. The bigger m is
assigned to the segment with the greater value in the original dataset. This list itself is
of high interpretability and represents knowledge acquired from the dataset.

The feature with the largest absolute value of weight is (marital-status = Married-
AF-spouse) & (native-country = United-States), which has a positive gain for
classification. We also observe two results related to education-num, which corre-
sponds to the time period of education: 1. (education-num = 1/5) has a negative
weight and 2. (education-num = 5/5) & (marital-status = Married-civ-spouse) has a
positive weight, both of which are consistent with our prior knowledge.

Next, we show the knowledge discovery results from covtype.binary dataset (Col-
lobert et al. 2002; Lichman 2013), which was gained by convertingCovertype dataset
from multi-labeled data into binary-labeled data. Each record in the dataset describes
a region of 30 meter square in Roosevelt National Forest. The original Covertype
dataset has geographical attributes such as elevation and soil type as feature values
and forest cover type classified into seven types as a label value. Covtype.binary
dataset is gained by converting the second forest type to the positive label and the
other types to the negative label.

We trained GRABwith L2-hinge loss on covertype.binary dataset with the hyper-
parameters k = ∞ and C = 0.1, which achieved the highest prediction performance
in 5.3. Note that the numbers of the possible attribute combinations are 1,384,529,117
in covtype.binary with k = ∞ and we obtained the trained CBM with 91,110 non-
zero coefficients of the combinations. Table 3b shows weights with large absolute
values listed in a descending order. We can easily find that the weights related to ele-
vation feature have relatively large absolute values. Figure 4 describes the relationship
between elevation and weight of features, which has positive values from 2450 to
3050 and negative values from 3300 to 3600. As we explained above, we binarized
all the quantitative features into 50 cells of equal length, which means GRAB never
tells binarized elevation features are obtained from the same quantitative feature at

123

120 T. Lee et al.

Table 3 Weightswith top-10 large absolute values obtained from a1a dataset a and covtype.binary dataset b

Weight Combination of attributes

(a) a1a

0.530 (marital-status = Married-AF-spouse) & (native-country = United-States)

0.396 (workclass = Local-gov) & (occupation = Protective-serv)

−0.380 (capital-gain = 1/2) & (capital-loss = 1/2)

−0.334 (education-num = 1/5)

0.318 (fnlwgt = 1/5) & (native-country = Japan)

0.251 (education-num = 5/5) & (marital-status = Married-civ-spouse)

−0.248 (native-country = Columbia)

0.248 (education = Bachelors) & (native-country = Philippines)

0.246 (race = Asian-Pac-Islander) & (native-country = Japan)

−0.243 (marital-status = Married-civ-spouse) & (occupation = Farming-fishing)

(b) covtype.binary

2.544 (Elevation = 19/50)

2.060 (Elevation = 18/50)

1.918 (Elevation = 17/50)

1.769 (Elevation = 24/50)

1.736 (Horizontal_Distance_To_Fire_Points = 22/50) &

(Wilderness_Area = Neota Wilderness Area) &

(Soil_Type = Leighcan family, till substratum - Typic Cryaquolls complex.)

1.734 (Elevation = 20/50)

−1.669 (Horizontal_Distance_To_Roadways = 18/50) &

(Hillshade_Noon = 50/50) &

(Soil_Type = Cryorthents - Rock land complex, extremely stony.)

1.659 (Elevation = 22/50)

1.657 (Elevation = 25/50)

1.655 (Elevation = 21/50)

the time of training; nevertheless two neighbor elevation features have the weights
close to each other as shown in the Fig. 4. Therefore, it can be considered that GRAB
selected important features for prediction properly on covtype.binary dataset from
this result.

6 Conclusion

In this paper, we proposed GRAB for learning combinatorial binary models. The key
idea of GRAB is to combine frequent itemset mining with the grafting algorithm in
the L1-RERM framework. We experimentally showed that GRAB can learn CBMs
much more efficiently than naïve algorithms and that CBMs of the high degree con-
tribute to good predictive performance. We also conducted additional experiments,
in which we empirically proved that the prediction accuracy achieved by GRAB is

123

Grafting for combinatorial binary model 121

Fig. 4 Relationship between elevation and feature weight trained by GRAB with L2-hinge loss and the
hyperparameters k = ∞ and C = 0.1 on covtype.binary

generally comparable to that achieved by state-of-the-art classification methods. We
also demonstrated that GRAB enabled us to discover knowledge in a form of conjunc-
tions of attributes of given data. This knowledge representation turned out to be very
comprehensive.

The main reason for the efficiency of GRAB is that the monotonicity of itemsets,
or binary inputs, makes it easy to search over all possible features. Therefore, any
other data structures having monotonicity, e.g., sequences and graphs, can also be
incorporated with our methodology.

In this paper, we considered only convex loss functions in order to prevent the
algorithm from being trapped in local minima of the objective function. However,
it is also possible for GRAB to work in the case of non-convex loss functions. It is
noteworthy that GRAB works whenever the loss function is differentiable. Hence, a
challenging direction for future work is to adopt our GRABmethodology for efficient
computation ofmulti-layer neural networks or other types of highly predictivemachine
learning models.

Acknowledgements This work was partially supported by JST KAKENHI 19H01114 and JST-AIP
JPMJCR19U4.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Agrawal R, Srikant R (1994) Fast algorithms for mining association rules. In: Proceedings of the 20th
international conference on very large databases, pp 487–499

123

http://creativecommons.org/licenses/by/4.0/

122 T. Lee et al.

Aizenstein H, Pitt L (1995) On the learnability of disjunctive normal form formulas.Mach Learn 19(3):183–
208

Andrew V, Uzilov JMK, Mathews DH (2006) Detection of non-coding RNAs on the basis of predicted
secondary structure formation free energy change. BMC Bioinform 7(1):173

Baldi P, Sadowski P, Whiteson D (2014) Searching for exotic particles in high-energy physics with deep
learning. Nat Commun 5:4308

Bayardo RJ Jr (1998) Efficiently mining long patterns from databases. In: Proceedings of the 1998 ACM
SIGMOD international conference on management of data, pp 85–93

Bishop CM (2006) Pattern recognition and machine learning (information science and statistics). Springer-
Verlag New York Inc., Secaucus

Breiman L, Friedman J, Stone CJ, Olshen RA (1984) Classification and regression trees. CRC Press, Boca
Raton

Bshouty NH (1995) Exact learning boolean functions via the monotone theory. Inf Comput 123(1):146–153
Chen T, Guestrin C (2016) XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM

SIGKDD international conference on knowledge discovery and data mining, ACM, New York, NY,
USA, KDD ’16, pp 785–794. https://doi.org/10.1145/2939672.2939785

ChengH, YanX, Han J, Hsu CW (2007) Discriminative frequent pattern analysis for effective classification.
In: Proceedings of 2007 IEEE 23rd international conference on data engineering. IEEE, pp 716–725

Collobert R, Bengio S, Bengio Y (2002) A parallel mixture of SVMs for very large scale problems. Neural
Comput 14(5):1105–1114

Dantzig GB, Wolfe P (1960) Decomposition principle for linear programs. Oper Res 8(1):101–111
Desaulniers G, Desrosiers J, Solomon MM (2006) Column generation, vol 5. Springer, Berlin
Deshpande M, Kuramochi M, Wale N, Karypis G (2005) Frequent substructure-based approaches for

classifying chemical compounds. IEEE Trans Knowl Data Eng 17(8):1036–1050
FanRE,ChangKW,HsiehCJ,WangXR,LinCJ (2008) LIBLINEAR: a library for large linear classification.

J Mach Learn Res 9(Aug):1871–1874
Guyon I, Gunn S, Ben-Hur A, Dror G (2005) Result analysis of the NIPS 2003 feature selection challenge.

Adv Neural Inf Process Syst 17:545–552
Ho TK (1995) Random decision forests. In: Proceedings of the third international conference on document

analysis and recognition, vol 1. IEEE, pp 278–282
Ho TK (1998) The random subspace method for constructing decision forests. IEEE Trans Pattern Anal

Mach Intell 20(8):832–844
Ho TK, Kleinberg EM (1996) Building projectable classifiers of arbitrary complexity. In: Proceedings of

the 13th international conference on pattern recognition, vol 2. IEEE, pp 880–885
Kudo T, Maeda E, Matsumoto Y (2004) An application of boosting to graph classification. Adv Neural Inf

Process Syst 17:729–736
Lichman M (2013) UCI machine learning repository. http://archive.ics.uci.edu/ml. Accessed 30 Aug 2019
Lundberg SM, Lee SI (2017) A unified approach to interpreting model predictions. Adv Neural Inf Process

Syst 30:4765–4774
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss

R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011)
Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830

Perkins S, Lacker K, Theiler J (2003) Grafting: fast, incremental feature selection by gradient descent in
function space. J Mach Learn Res 3:1333–1356

Platt JC (1999) Advances in kernel methods. MIT Press, Cambridge, MA, USA. Chapter fast training of
support vector machines using sequential minimal optimization, pp 185–208

Prokhorov D (2001) IJCNN 2001 neural network competition. In: Slide presentation in international joint
conference on neural networks 2001. http://www.geocities.ws/ijcnn/nnc_ijcnn01.pdf. Accessed 30
Aug 2019

Quinlan JR (1993) C4.5: programs for machine learning. Morgan Kaufmann Publishers, Burlington
RibeiroMT, Singh S, Guestrin C (2016)Why should I trust you? Explaining the predictions of any classifier.

In: Proceedings of the 22ndACMSIGKDD international conference on knowledge discovery and data
mining, pp 1135–1144

Rish I, Grabarnik G (2014) Sparse modeling: theory, algorithms, and applications, 1st edn. CRC Press Inc.,
Boca Raton

Saigo H, Uno T, Tsuda K (2007) Mining complex genotypic features for predicting HIV-1 drug resistance.
Bioinformatics 23(18):2455–2462

123

https://doi.org/10.1145/2939672.2939785
http://archive.ics.uci.edu/ml
http://www.geocities.ws/ijcnn/nnc_ijcnn01.pdf

Grafting for combinatorial binary model 123

Schapire RE, Freund Y (2012) Boosting: foundations and algorithms. The MIT Press, Cambridge
Shawe-Taylor J, Cristianini N (2004) Kernel methods for pattern analysis. Cambridge University Press,

New York
Tsuda K, Kudo T (2006) Clustering graphs by weighted substructure mining. In: Proceedings of the 23rd

international conference on Machine learning, pp 953–960
Uno T, Asai T, Uchida Y, Arimura H (2003) LCM: an efficient algorithm for enumerating frequent closed

item sets. In: Proceedings of the third IEEE international conference on data mining workshop on
frequent itemset mining implementations, available as CEUR workshop proceedings, vol 90. http://
ceur-ws.org/Vol-90/. Accessed 30 Aug 2019

Uno T, Kiyomi M, Arimura H (2004) LCM ver. 2: efficient mining algorithms for frequent/closed/maximal
itemsets. In: Proceedings of the fourth IEEE international conference on data mining workshop on
frequent itemset mining implementations, available as CEUR workshop proceedings, vol 126. http://
ceur-ws.org/Vol-126/. Accessed 30 Aug 2019

Uno T, KiyomiM, Arimura H (2005) LCM ver. 3: collaboration of array, bitmap and prefix tree for frequent
itemsetmining. In: Proceedings of thefirst internationalworkshoponopen source datamining: frequent
pattern mining implementations, pp 77–86

Zaki MJ, Parthasarathy S, Ogihara M, Li W (1997) New algorithms for fast discovery of association rules.
In: Proceedings of the third international conference on knowledge discovery and data mining, pp
283–286

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://ceur-ws.org/Vol-90/
http://ceur-ws.org/Vol-90/
http://ceur-ws.org/Vol-126/
http://ceur-ws.org/Vol-126/

	Grafting for combinatorial binary model using frequent itemset mining
	Abstract
	1 Introduction
	1.1 Significance and novelty
	1.2 Related work

	2 Grafting algorithm
	3 Frequent itemset mining
	3.1 Terminology
	3.2 Efficient algorithms using monotonicity
	3.3 Extension to weighted FIM

	4 Proposed algorithm (GRAB)
	5 Experiments
	5.1 Evaluation of computation time
	5.2 Evaluation of combinatorial models
	5.3 Evaluation of prediction accuracy
	5.4 Evaluation of the effect of tolerance on learned models
	5.5 Evaluation of interpretability

	6 Conclusion
	Acknowledgements
	References

