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Abstract
Machine learning algorithms can be applied to several practical problems, such as
spam, fraud and intrusion detection, and customer preferences, among others. In most
of these problems, data come in streams, whichmean that data distributionmay change
over time, leading to concept drift. The literature is abundant on providing supervised
methods based on error monitoring for explicit drift detection. However, these meth-
ods may become infeasible in some real-world applications—where there is no fully
labeled data available, and may depend on a significant decrease in accuracy to be able
to detect drifts. There are also methods based on blind approaches, where the decision
model is updated constantly. However, this may lead to unnecessary system updates.
In order to overcome these drawbacks, we propose in this paper a semi-supervised
drift detector that uses an ensemble of classifiers based on self-training online learn-
ing and dynamic classifier selection. For each unknown sample, a dynamic selection
strategy is used to choose among the ensemble’s component members, the classifier
most likely to be the correct one for classifying it. The prediction assigned by the
chosen classifier is used to compute an estimate of the error produced by the ensem-
ble members. The proposed method monitors such a pseudo-error in order to detect
drifts and to update the decision model only after drift detection. The achievement of
this method is relevant in that it allows drift detection and reaction and is applicable
in several practical problems. The experiments conducted indicate that the proposed
method attains high performance and detection rates, while reducing the amount of
labeled data used to detect drift.
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1 Introduction

In the literature related to classification systems in data streams, several problems
present the following characteristic: given a set of known concepts, data distribution
drifts from one concept to another. This is the so-called concept drift problem, which
can be defined as Pj (x, ω) �= Pk(x, ω), where x represents a data instance, ω rep-
resents a class, and the change occurs from time t j to time tk , where (t j < tk). As a
consequence, an optimal prediction function for Pj (x, ω) will be no longer optimal
for Pk(x, ω) (Ang et al. 2013).

When a concept drift occurs, the decision model must adapt itself in order to assure
high classification performance. These adaptive methods can be applied to several
practical problems, such as intrusion detection (Spinosa et al. 2008), spam filter-
ing (Kmieciak and Stefanowski 2011), web click stream (Huang 2008), and fraud
detection (Wang et al. 2003). In most of these problems, we do not have previous
knowledge of the incoming data labels. Moreover, due to the massive quantity of
incoming data, labeling the whole data is time-consuming and requires human inter-
vention. In addition, true labels of newly streaming data instances are usually not
immediately available.

Despite these problems, the most common detection methods in the literature are
based on accuracy monitoring, which may lead to decreasing the system performance,
besides requiring fully labeled data. An alternative to explicit detection by accuracy
monitoring-based methods is blind adaptation. In this case, the system is periodically
updated with no verification of changing occurrence. There may be drawbacks to blind
adaptation as well, since this approach may lead to unnecessary system updates and
to a high computational cost. These interesting observations motivated us to propose
a method focused on avoiding error monitoring and periodic updates in order to be
widely used in practical problems.

Gama and Castillo (2004) claim that a significant classification error rate increase
suggests a drift in the class distribution. In order to detect this type of drift, our method
is inspired by drift detectors based on error monitoring such as the Drift Detection
Method (DDM) (Gama and Castillo 2004). These methods detect drifts based on the
prequential error rate motivated by the probably approximately correct (PAC) learning
model (Mitchell 1997). The prequential error (Dawid and Vovk 1999) is the average
error calculated in an online way after the prediction of each incoming example. PAC
relies on the assumption that, if the distribution of the examples is stationary, the
prequential error of the learning algorithm will decrease as the number of examples
increases. Thus, an increase of the prequential error suggests a concept drift, leading
the current model to be outdated.

Since we intend to deal with unlabeled data, we propose a strategy to simulate
the classification error to be monitored. For this, we create an ensemble of classifiers
to make online predictions. The literature concerning data stream problems points
out that classifier ensembles may handle concept drift more efficiently than single
classifiers (Pinage et al. 2016). Tsymbal et al. (2008) investigated three different types
of dynamic integration of classifiers. Their results indicated that dynamic selection
techniques presented the best performance when dealing with concept drifts. In our
method, for each incoming example, we assume the ensemble prediction as its true
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label. In order to allow the ensemble to be most likely correct for classifying each
new sample individually, we employ dynamic classifier selection, which is defined
as a strategy that assumes each ensemble member as an expert in some regions of
competence (De Almeida et al. 2016). In dynamic selection, a region of competence
is defined for each unknown instance individually and the most competent classifier
for that region is selected to assign the label to the unknown instance.

Our method is divided into three modules: (1) ensemble generation; (2) dynamic
classifier selection; and (3) drift detection. The first module is focused on generating
an online ensemble of classifiers. The second module is intended to select the most
competent ensemble member to classify each incoming example. Finally, the third
module is designed to detect drift. Assuming the prediction provided by module 2 as
the true label, a drift detector is applied so as to monitor a pseudo-error. The prediction
provided by module 2 is also used to update every ensemble member incrementally.
Hence, it generates a process of ensemble self-training. Then, when a number n of
members detects a drift, all members are updated.

Experiments are conducted using artificial and real datasets focusing on handling
abrupt and gradual drifts. The ensemble of classifiers is created using online bagging,
while Hoeffding Trees are the base classifiers.Dynamic Classifier Selection with Local
Accuracy (DCS-LA) (Woods et al. 1997), and Dynamic Classifier Selection based on
Multiple Classifier Behavior (DS-MCB) (Giacinto and Roli 2001) are the selection
strategies used at the dynamic selection module. To select the expert member, these
methods need a labeled validation dataset to evaluate the performance of eachmember
on a local region defined by the similarity between the current example and the samples
contained in the validation dataset.

Our experiments show that our method is able to detect concept drift and to update
the system only after detection, while keeping low prequential error rates, even when
small amounts of labeled data are used. In addition, our method is flexible so that it
can be adjusted to different dynamic selection methods and to different drift detectors
based on statistical process control.

The main contribution of this paper is the estimate of prequential pseudo-error that
is used to update ensemble members incrementally and to detect drifts. In this way,
we may handle practical problems with no fully labeled dataset available, even using
supervised detection methods.

This paper is organized as follows. Relatedwork is detailed in Sect. 2. The proposed
method is explained in Sect. 3. Experiments and results are discussed in Sect. 4. Finally,
in Sect. 5, conclusions and future work are provided.

2 Related work

The common characteristic ofmethods proposed to handle concept drift in data streams
available in the literature is online learning. Minku and Yao (2012) present the fol-
lowing definition for online learning algorithms: methods that process each training
example once, without storing it or reprocessing it. The decision model makes a pre-
diction when an example becomes available, allowing the system to learn from the
example and to update the learning model. These online methods may detect drifts
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explicitly or implicitly, also called active or passive approaches, respectively. In this
paper, the active-based methods are assumed to be drift detectors, while the passive-
based methods are called blind methods, which is another possible categorization.

Drift detectors employ statistical tests to monitor whether or not the class distri-
bution is stable over time and to reset the decision model when a concept drift is
detected. DDM (Gama and Castillo 2004), Early Drift Detection Method (EDDM)
(Baena-Garcıa et al. 2006) and Detection Method Using Statistical Testing (STEPD)
(Nishida and Yamauchi 2007) are common drift detectors. They all monitor the pre-
quential error performance in order to detect drifts. The decreasing of performance
measurement is divided into two significant levels: warning and drift levels. These two
levels automatically define two thresholds. Beyond the warning level, a new decision
model is created and updated using the most recent examples. Thus, it is assumed that
a concept drift takes place when the prequential error reaches the drift level. In this
case, a new decision model replaces the current one. It is important to mention that
these drift detectors receive the incoming data in a stream and are based on single
classifiers, which are reset only after concept drift detections. In addition, these three
methods are based on supervised online learning.

In terms of blindmethods, they update their knowledge base by adding, removing or
updating classifiers periodically, evenwhen a drift does not occur.Manyblind solutions
use an ensemble of classifiers, such as Streaming Ensemble Algorithm (SEA) (Street
and Kim 2001), Dynamic Weighted Majority (DWM) (Kolter and Maloof 2007), and
Learn++NSE for NonStationary Environment (Muhlbaier and Polikar 2007). Even
though performance monitoring is not conducted for detecting drift, these methods
need to monitor accuracy to adjust the weights of the classifiers in order to update
them.

For instance, the Learn++NSE method trains a new classifier for every incoming
chunk of data. Thus, a performance monitoring mechanism is conducted using new
and old data. Then, the average error is combined by majority voting to determine a
voting weight to each classifier. In this way, the poorest performing classifier on the
current concept is discarded. Another example is the SEAmethod, which trains a new
classifier for every incoming chunk of data and increases or decreases the quality of its
classifiers based on accuracy. This method removes the oldest member in a fixed-size
ensemble.

Besides blind methods, ensemble of classifiers are also used in active approaches.
An interesting example of this category is called Diversity for Dealing with Drifts
(DDD), proposed by Minku and Yao (2012). DDD updates the system only after drift
detection. This is a drift reaction method which uses ensemble diversity to adapt to
different types of drifts. This method processes each example at a time and main-
tains ensembles with different diversity levels so as to deal with concept drift. DDD
divides the ensemble into two subsets of high/low diversity classifiers. Before drift
detection, the high/low diversity ensembles are generated and DDD uses a drift detec-
tor to monitor the accuracy of the low diversity ensemble. Then, after drift detection,
the low/high diversity ensembles previously generated are assigned as old high/low
diversity ensembles and the method reactivates the before-drift status to create new
low/high diversity ensembles. DDD uses knowledge from the old concept (old high
diversity ensemble) to learn the new concept.
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All these methods are supervised and handle drifts based on accuracy either at
the detection phase or at the reaction phase. It is interesting to observe that accuracy
monitoring and blind update may be the main disadvantage of these methods, since
the accuracy monitoring implies that the drift detector must depend on decreasing the
system performance and on fully labeled data, which is not often suited for practi-
cal problems. In terms of blind approaches, they may lead to unnecessary updates,
increasing the computational cost as a consequence.

In order to deal with unlabeled data, some unsupervised drift detectors were pro-
posed, such as the Drift Novelty Detection method (which we call DND) (Fanizzi
et al. 2008) or Dissimilarity-based Drift Detection Method (DbDDM) (Pinage and
dos Santos 2015). DND and DbDDM are both processed in online mode based on
dissimilarity measures to assign the current example to previous generated clusters.
The difference between DND and DbDDM relies on the detection module: (1) DND
calculates a maximum distance between examples to establish a decision boundary for
each cluster. The union of the boundaries of all clusters is called the global decision
boundary. The new unknown incoming examples that fall outside this global decision
boundary are assumed as drifts or novelties; (2) DbDDM compares a dissimilarity
prediction to a classifier prediction (assumed as true label) to monitor the pseudo
prequential error to detect drifts by statistical tests.

Even though unsupervised drift detectors are assumed to be the solution for dealing
with fully unlabeled data, thesemethodsmust assume some structure to the underlying
distribution of data, must store clusters in a short-term memory and their decisions
depend on similarity/dissimilarity measures. All these aspects may compromise sys-
tem performances in online practical problems. In order to avoid storing examples and
to provide more confident decision models, semi-supervised methods may be an inter-
esting alternative, since they usually allow working with a small amount of labeled
data and a large amount of unlabeled data.

Semi-supervised methods have been proposed in several machine learning research
domains, such as deep learning (Pezeshki et al. 2016). It is, therefore, not surprising
that this idea was already investigated in the literature of concept drift.Wu et al. (2012)
proposedSUN(Semi-supervised classification algorithm for data streamswith concept
drifts and UNlabeled data). Basically, SUN divides the streaming data into two sets:
training and testing datasets. First, at the training phase, the method builds a growing
decision tree incrementally and generates concept clusters in the leaves using labeled
information. The unlabeled data are labeled according to the majority-class of their
nearest cluster. Then, SUN suggests a concept drift based on the deviation measured
in terms of distance, radius, etc, between old and new concept cluster. Secondly, at
the test phase, samples are evaluated using the current decision tree. However, SUN
searches for concept drifts only during the training phase, where samples contained
in the training set are assigned to true labels or to pseudo-labels. During the test
phase, SUN assumes that all concepts described in the data stream are already known.
Moreover, in terms of drift detection, the results attained by SUN are worse than its
baseline, since SUN produces more false detections, missing detections, and larger
delays of drift reactions.

Another semi-supervised strategy for dealing with concept drift in the context of
data streamswas proposed byKantardzic et al. (2010). Here, however, instead of using
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single classifiers, the authors employed an ensemble of classifiers. Their onlinemethod
calculates similarity measures to select suspicious examples, which are assumed to
belong to the new concept. Suspicious examples are samples that must be labeled
in order to improve the accuracy of the current classifier. The incoming streaming
examples are clustered in the current distribution and the suspicious examples are
put together to form the new regions. This method does not build a new classifier
for the ensemble periodically and it also does not detect the moment when drifts
occur. The system update works as follows: when the number of examples assigned
to a cluster new region reaches the predefined minimum number of examples, the
ensemble requests a human expert to label them. After such a labeling process, the
ensemble builds a new member classifier and removes the oldest one.

One recent semi-supervised method based on ensemble classifiers is called SAND
(Semi-Supervised Adaptive Novel Class Detection and Classification over Data
Stream) proposed by Haque et al. (2016). SAND maintains a window W to monitor
estimates of classifier confidence on recent data instances. When classifier confidence
decreases significantly, such a behavior suggests a concept drift. Focusing on updating
the ensemble, SAND uses the most recent chunk of data and selects some instances
(by classifier confidence) to be labeled and to be included in a dataset for training a
new model. This new model replaces the oldest one. In this way, SAND deals with
concept drift by continuing to update the ensemble with the most recent concept.

The semi-supervisedmethodsmentioned in this section aim to update the systems so
as to deal with evolving data streams. However, they do not present high performance
on detecting drifts at the right moments when they occur. The literature indicates that
the best strategy for detecting true drifts relies on error monitoring, commonly used
by supervised drift detectors. In addition, both semi-supervised methods based on
ensemble classifiers make their predictions by majority voting fusion function. Clas-
sifier fusion assumes error independence among the ensemble’s component members.
This means that the classifier members are supposed to misclassify different patterns.
In this way, the combination of classifier members’ decisions would improve the final
classification performance. However, when the condition of independence is not ver-
ified, there is no guarantee that the combination of classifiers will outperform single
classifiers (Kuncheva et al. 2002).

In order to avoid the assumption of independence of classifier members, methods
for classifier selection have been used as an alternative to classifier fusion. Classifier
selection is traditionally defined as a strategy that assumes each ensemble member as
an expert in some regions of competence. The selection is called dynamic or static as
to whether the regions of competence are defined during the test or the training phase
respectively. DCS-LA is a popular method for dynamic classifier selection based on
local accuracy estimates. The local regions are defined by k-nearest neighbors (k-NN)
over a validation dataset, which is created in an offline mode. The member classifier
with the highest local accuracy is selected as the expert to classify the current incoming
example.

Dynamic classifier selection strategies have also been used to deal with concept
drift. The framework proposed by De Almeida et al. (2016), called DYNSE (Dynamic
Selection Based Drift Handler), uses dynamic classifier ensemble selection to choose
an expert sub-ensemble to classify an unlabeled incoming instance. DYNSE intends to
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deal with concept drift by building a new classifier using every most recent incoming
batch of data, which is also used to replace the validation dataset in each update. Even
though dynamic classifier selection is used, DYNSE is in the category of blindmethods
and is based on supervised learning, which are drawbacks that we intend to avoid
in our methods. Moreover, DYNSE employs a dynamic ensemble selection strategy
(KNORA-E: K-Nearest Oracles Eliminate) instead of dynamic classifier selection,
such as DCS-LA.

Therefore, in this paper, we propose a method considering four important criteria:
(1) it is intuitive that the best moment to update a system to new concepts is right
after a concept drift; (2) ensemble methods may improve classification performance
(Altınçay 2007; Oza and Russell 2001; Ruta and Gabrys 2007) when compared to
single classifiers; (3) diverse classifier ensembles may be the key for the success of
classifier ensembles’ performance (Minku and Yao 2012); and (4) dynamic classifier
selection may help to detect drift with no information about classifiers’ errors. The
method proposed is based on dynamic classifier selection focused on explicit drift
detection for dealing with unlabeled data and ensemble self-training, as detailed in the
next section.

3 Proposedmethod

Our method may be included in the category of drift detectors and semi-supervised
methods, since it resets the decision model only when a concept drift is detected in
an unsupervised manner and it uses an ensemble of classifiers based on traditional
training, as well as a self-training online learning leading to dealing with both labeled
andunlabeled data.Ourmethod is divided into threemodules: (1) ensemble generation;
(2) dynamic classifier selection; and (3) drift detection, as illustrated in Fig. 1.

The first module is focused on generating an online ensemble of classifiers. Even
though several techniques for online classifier ensemble generation have been pro-
posed in the literature, in this work we use a modified version (Minku et al. 2010)
of online bagging (Oza and Russell 2001), which includes ensemble diversity. In the
original online bagging, each classifier member is trained by n copies of each incom-
ing example, where n tends to Poisson(1) distribution. Themodified version includes
a parameter λ for the Poisson(λ) distribution, where higher/lower λ values lead to
lower/higher diversity in the ensemble.

Since our method is online and, operates in order to detect drifts on unlabeled
data, the second module is intended to select the most competent ensemble member
to classify each incoming example. Thus, for each new (unknown) example xi , one
ensemble member is selected to assign a label (Predi ) to it, such as incoming data in
a stream. If a drift is detected, the dynamic classifier selection module is updated with
a new labeled validation dataset. This is the supervised step of our method.

Finally, the third module is designed to detect drift. Assuming the prediction Predi
provided by the previous module as the true label of xi , a drift detector is then applied
for each ensemble member, so as to monitor individual pseudo-errors, i.e. Predi is
compared to the output provided by each classifier member. Predi is also used to
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Fig. 1 Overview scheme of the proposed method

update every ensemble member incrementally as a self-training process. When one
classifier detects a drift, all members and the validation dataset are updated.

In order to better describe this method, we divided it into three sections: ensemble
creation, selection module, and detection module.

3.1 Ensemble creation

Motivated by the advantages of classifier ensembles highlighted in the literature con-
cerning data stream problems, our method is intended to construct a diverse ensemble.
In addition, the ensemble of classifiers must be designed to allow incremental learning
by self-training. Hence, in the ensemble creation module, we employ a modified ver-
sion of online bagging (Minku et al. 2010), summarized in Algorithm 1, as follows.
The firstm incoming examples aremanually labeled to start the online bagging training
process, i.e. the higher the number of labeled instances, the higher the classification
performance during a stable concept. For each classifier member, each training exam-
ple is presented K times (Algorithm 1, line 5), where K is defined by the Poisson(λ)

distribution (Algorithm 1, line 3). It is important to observe that low λ values lead to
high diversity among ensemble members.

After such a supervised online bagging training with the first m incoming exam-
ples, online bagging keeps updating the ensemble incrementally, as it is expected.
Here, however, the incoming examples after m are no longer manually labeled. Since
the incoming data are unlabeled, the next module (Selection Module) provides a
pseudo true label (predicted by the expert member) for every incoming example,
i.e. this prediction is considered “correct” for comparison and incremental updating
of each member classifier. Therefore, online bagging is adapted to work as a self-
training method. It is important to mention that online bagging is initially supervised
in order to generate an accurate ensemble. Then, it is incrementally updated by self-
training.
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Data: incoming example: x ; ensemble: c; ensemble size: T
1 for each x do
2 for j ← 1 to T do
3 K ← Poisson(λ);
4 while K > 0 do
5 c j ← IncrementalUpdate(c j , x);
6 K ← K − 1
7 end
8 end
9 end

Algorithm 1: Online ensemble creation.

The ensemble generated has a small fixed size of T diverse members. The base
classifiers used in this paper are Hoeffding Trees. This choice is especially due to the
fact that bagging is used to improve the performance of unstable algorithms, such as
decision trees (Breiman 1996).

3.2 Selectionmodule

It was mentioned in the introduction that classifier selection is defined as a strategy
that assumes each ensemble member as an expert in some regions of competence.
Thus, rather than combining all T classifiers generated by online bagging using a
fusion function, dynamic selection chooses, in an online way, a winning classifier
(assumed as an oracle) to assign the label to each xi incoming sample. Among sev-
eral different dynamic classifier selection methods reported in the literature, in this
work, twomethods are investigated:DynamicClassifier Selectionwith Local Accuracy
(DCS-LA) (Woods et al. 1997) and Dynamic Classifier Selection based on Multiple
Classifier Behavior (DS-MCB) (Giacinto and Roli 2001). These methods are based
on the assumption that the best-performing classifier over the k-nearest neighbors
(local region) obtained from a validation dataset surrounding xi is the most confident
classifier to label it individually.

Hence, the second module of our method is designed to work with a validation
dataset, which is created with a small number of labeled examples. It is important to
mention that the initial validation dataset is generated in an offline mode and main-
tained until a drift detection. Only after, the current validation dataset is discarded and
replaced by a new one generated in online mode using examples collected during the
warning level by the drift detector in the next module.

DCS-LA is a popular dynamic classifier selection method with two different ver-
sions: Overall Local Accuracy (OLA) and Local Class Accuracy (LCA). The OLA is
computed as the number of neighbors of xi correctly classified by each classifier mem-
ber c j (Algorithm 2, line 2). Then, the member (c∗) with the highest OLA (Algorithm
2, line 6) is selected to classify xi (Eq. 1).

In the LCA version, for each classifier member c j , it is computed the number of
neighbors of xi for which c j has correctly assigned class ω (Algorithm 2, line 2), but
considering only those examples whose label are the same class predicted for xi . In
this way, the best member classifier for the current example (c∗

x ) is the one with the
highest LCA (Eq. 2).
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c∗
x = argmax j (OLA j ) (1)

c∗
x = argmax j (LC A j )|ωt = ωx (2)

DS-MCB is a behavior-based method which uses a similarity function to measure the
degree of similarity (Sim) of the output of all member classifiers. First, it is computed
the vector MCBxi of class labels assigned by all member classifiers to the incoming
example xi . Then, it is also computed the vector MCBk,t of class labels assigned
by all member classifiers to each kt in the current local region (kN N ). The method
computes the similarity between MCBxi and each MCBk,t to find a new local region
(kN N ′) (Algorithm 2, line 2), i.e., the examples in kN N with the MCB most similar
to MCBxi (Eq. 3). Finally, kN N ′ is used to select the most accurate classifier by
overall local accuracy (OLA) (Algorithm 2, line 4), such as DCS-LA, to classify xi .

kN N ′ = kN N ′ ∪ kt |Sim(MCBxi , MCBk,t ) > θ (3)

Finally, in this module, the prediction (Predi ) assigned by the selected classifier is
assumed as the true label of xi and used in the next module (Algorithm 2, line 7),
whatever the dynamic selection strategy used to select the most confident classifier to
label xi . Algorithm 2 summarizes module 2 of our method.

Data: incoming example: x ; ensemble: c; ensemble size: T ; labeled validation dataset: S; member
performance: pmc

1 for each x do
2 kN N ← kNearestNeighbours(S, x);
3 for j ← 1 to T do
4 pmc j ← evaluate(c j , kN N ); %performance of each member
5 end
6 expert ← selectClassifier(c, pmc); %member with the best performance
7 pseudoLabel ← predict(expert, x); %this prediction is assumed as true label
8 end

Algorithm 2: Selection module algorithm

3.3 Detectionmodule

In this third module, we apply a drift detector for each ensemble member. However,
since most of the drift detectors are designed to cope only with labeled data, including
the drift detectors investigated in this paper, these methods must be tailored to support
unlabeled data. In order to accomplish this requirement, in our method we assume that
Predi is the xi ’s true label. Thus, for each individual drift detector j , a pseudo error is
measured (Algorithm 3, line 3) by comparing Predi to the class label assigned by its
classifier c j to xi . As a consequence, our assumption is that any drift detector based
on statistical process control (Gama et al. 2014) available in the literature may be used
to detect drift in the unsupervised detection module of our proposed method.

In this paper,wehave tailored two supervised drift detectors towork as unsupervised
methods: DDM and EDDM, as follows. A pseudo prequential error rate is monitored
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for each classifier member using Predi . For instance, given an ensemble c composed
of 10 classifiers c j , where j = 1 . . . 10, there are 10 pseudo prequential error rates to
be monitored simultaneously and individually, i.e. 10 local drift detection processes
are conducted. Thus, the set of pairs Predi , xi , which rely on the local warning level
(denoted by S j ) is stored to further update its respective alternative classifier member
(Algorithm 3, line 13).

As mentioned before, both DDM and EDDM are divided into warning and drift
levels. In terms of DDM, for each member classifier, warning and drift levels are
reached if conditions (4) or (5) are satisfied, respectively. The p value represents the
pseudo error rate of each classifier member c j , while s denotes its standard deviation.
The registers pmin and smin are set during the training phase, and are updated if, after
each incoming example (i), the current register pi + si is lower than pmin + smin .

pi + si < pmin + 2smin . (4)

pi + si < pmin + 3smin . (5)

On the other hand, when using EDDM’s statistical process control, our method
calculates the distance (p′) between two consecutive pseudo errors (Algorithm 3, line
3) and their standard deviation (s′), and stores the maximum values of p′ and s′ to
register the point where the distance between two errors ismaximum (p′

max+2∗s′
max ).

According to Baena-Garcıa et al. (2006), the warning level is reached when the Eq. (6)
is lower than α (here set to 0.95), and the drift level is reached when the same Eq. (6)
is lower than β (here set to 0.9).

(
p′
i + 2s′

i

)
/
(
p′
max + 2s′

max

)
. (6)

In this detection module, when a number of n member classifiers reach their drift
level, the whole system is updated (Algortithm 3, line 8) and all parameters (such
as prequential error and standard deviation) are reset (Algorithm 3, line 6), i.e., each
member classifier is updated using its own subset S j (Algorithm3, line 14).However, it
is important tomention that only the subset S j of the classifiermemberwhich triggered
the drift detection is labeled (Algorithm 3, line 5) and used as a new validation dataset
in order to reduce the labeling processing time. For the remaining classifiers c j , the
label of each xi contained in its S j is assumed to be its respective Predi .

In addition, all members are also updated incrementally based on Predi (Algorithm
3, line 18) due to online bagging self-training, as discussed in the beginning of this
section. We can observe all the steps executed by the detection module in Algorithm
3.

3.4 Algorithm complexity analysis

Our proposedmethod presents two configurablemodules, since it is possible to change
the dynamic selector (selection module) and the statistical test for process control
(detection module). In this way, in order to analyze the whole algorithm complexity,
we assume the simplest Big-O notation for each module. Taking into account that our
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Data: incoming example: x ; current ensemble: c; alternative ensemble: R; ensemble size: T ;
validation dataset: S

1 for each x do
2 for j ← 1 to T do
3 p j ← evaluate(c j , x);
4 if p j reaches DriftLevel then
5 labeling(S j ); %new validation dataset for selection module
6 p j ← 1;
7 for j ← 1 to T do
8 replace(c j , R j );
9 end

10 break; %go to the next example
11 end
12 else if p j reaches WarningLevel then
13 S j ← add(x);
14 IncrementalUpdate(R j , x)
15 end
16 else
17 reset(S j );
18 IncrementalUpdate(c j , x);
19 end
20 end
21 end

Algorithm 3: Detection module algorithm

method is online, each incoming example is processed only once, which provides a
notation O(n), where n is the size of the stream (total number of incoming examples).

However, the method is based on ensemble classifiers and each incoming example
has to be processed by each member. It means that each algorithm module provides
a notation O(T ), where T is the size of the ensemble (number of classifiers). Finally,
the three algorithm modules are independent of each other and they run only once for
each incoming example. Therefore, we may conclude for the whole algorithm a final
notation O(nT ).

4 Experiments

The objective of the experiments conducted in this paper is tomeasure the performance
of our semi-supervised drift detectionmethod, aswell as to compare it to two baselines:
SAND (semi-supervised) and DDM (supervised). In order to use the best version of
our method to be compared to the baselines, we investigate different versions by trying
different combinations of dynamic selection methods and drift detectors.

Asmentioned before, we have used online bagging as an ensemble creation strategy
andHoeffdingTrees as base learning algorithms. The drift detectorswere implemented
inMatlab 7.10 overWindows 7 in amachine based on Intel Core i7 3520M@2,90GHz
processor using WEKA implementations of the learning algorithms. First, however,
we will present details related to the databases investigated in our experiments.
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4.1 Databases

The main aspect taken into account to choose the databases for the experiments is the
type of concept drifts we intend to deal with. Accordingly, we observed that most of
the methods available in the literature handle abrupt and gradual drifts, while some
methods handle recurrent concepts. In our experiments, we also intend to handle these
types of drifts. In this way, we have used some artificial datasets investigated by Gama
and Castillo (2004), Baena-Garcıa et al. (2006), Nishida and Yamauchi (2007), and
Minku and Yao (2012). The artificial databases are described below:

SINE1 (Abrupt concept drift, noise-free examples): Classification is positive if a
point lies below the curve given by y = sin(x), otherwise it is negative. After concept
drift, the classification is reversed.

LINE (Abrupt concept drift, noise-free examples): This dataset presents two rele-
vant attributes, both assuming values uniformly distributed in [0,1]. The classification
function is given by y = −a0 + a1x1, where a0 can assume different values to define
different concepts. In this dataset, there are two concepts with high severity.

CIRCLE (Gradual concept drift, noise-free examples): This dataset also presents
two relevant attributes, which have values uniformly distributed in [0,1]. Examples
are labeled according to a circular function, i.e. an example is labeled positive if it
is inside the circle, otherwise its label is negative. The gradual drift occurs due to
displacing the center of the circle and growing its radius. This dataset presents four
contexts defined by four circles:

– center: [0.2,0.5], [0.4,0.5], [0.6,0.5], [0.8,0.5]
– radius: 0.15, 0.2, 0.25, 0.3

SINE1G (Very slow gradual concept drift, noise-free examples): This dataset
presents the same classification function as SINE1, but there is a transition time
between old and new concepts. The old concept disappears gradually and the probabil-
ity of selecting an example from the new concept becomes higher after the transition
time.

With the exception of SINE1, which presents changes only in terms of P(x, ω), the
remaining artificial datasets present changes in both P(x, ω) and P(x). Moreover, all
these artificial datasets have two classes, are balanced and each batch of 1000 examples
represents a concept, except for SINE1G, which is composed of 2000 examples for
each concept and 1000 examples between the transition from one concept to another.

Besides these artificial datasets, we have used real datasets in our experiments. It is
important to mention that, in the context of real data, we do not know when the drifts
occur and which type of drifts occur. The real datasets are described below:

ELEC2According to Gama and Castillo (2004), this dataset is composed of 45312
instances dated from 7 May 1996 to 5 December 1998. Each example of the database
refers to a period of 30 minutes and has 5 fields: day of week, time stamp, NSW (New
South Wales) electricity demand, Vic electricity demand, the scheduled electricity
transfer between states and the class label. The latter identifies the change of the price
related to a moving average of the last 24h.

LUXEMBOURG It was constructed using European Social Survey 2002–2007.
The task focuses on classifying a subject with respect to the internet usage, whether
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it is high or low. Each data sample is represented as a 20-dimensional feature vector.
These features were selected as general demographic representation. The dataset is
balanced 977+924 samples for each class. More details about the dataset creation
and data source are found in Zliobaite (2011).

KDDCUP99 This is the dataset used for The Third International Knowledge Dis-
covery and Data Mining Tools Competition, which was held in conjunction with
KDD-99 The Fifth International Conference on Knowledge Discovery and Data Min-
ing. This dataset contains simulated intrusions in a military network traffic based on
tcpdump data collected during 7 weeks. KDDCUP99 has approximately 4,900,000
examples which contain 41 features and are labeled as “bad”(intrusions or attacks) or
“good”(normal) connections.

In the next section,we present experimental results obtainedwhen setting up param-
eters such as: dynamic classifier selection strategy and drift detector.

4.2 Comparison of different versions of the proposedmethod

It is important to emphasize that the performance of the learning algorithm is not the
aim of these experiments, but rather its capability in detecting and reacting to drifts
quickly. Even so, the error rates presented for all experiments described in this section
are real prequential errors, i.e., the final classification performance.

The objective of this comparison is to select the best version of our method, in
terms of performance, to be compared to the baselines SAND and DDM. In addition,
experiments were conducted for fine-tuning parameters such as kNN (set to 5), number
of initial labeled examples m (set to 30), and λ (set to 0.2). All these parameters were
chosen empirically after experiments by taking into account the best performance
(accuracy and computational cost) attained in all datasets.

4.2.1 Experiments with artificial datasets

First, we analyze the results obtained on experiments using artificial datasets, which
allow getting true, false and missing detections, as well as average detection delays,
since it is well known the right moment when the drifts occur.

In Fig. 2, we can observe the prequential error attained when using the combi-
nations DCS-LA+DDM (solid lines) and DCS-LA+EDDM (dotted lines). These
plots illustrate datasets presenting abrupt drifts, such as SINE1 and LINE, and gradual
drifts, such as CIRCLE and SINE1G.

Both versions using DCS-LA as dynamic selection strategy present results quite
similar on abrupt drift datasets SINE1 and LINE in terms of detecting drifts at the right
moment and keeping low prequential error. For the gradual drift datasets CIRCLE and
SINE1G, it is more difficult to identify a pattern of behavior due to the fact that
there are drift detections at the right moment, but detections with long delays and
detections before drift are also verified. Even so, both versions keep low prequential
error rates when new concepts appear. In all experiments, delays in the drift detections
are verified, but we may point out that DCS-LA+EDDM detects drifts earlier than
DCS-LA+DDM.
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Fig. 2 Prequential error of versions DCS-LA+DDM (solid lines) and DCS-LA+EDDM (dotted lines) on
artificial datasets. Top Left: SINE1; Top Right: LINE; Bottom Left: CIRCLE; Bottom Right: SINE1G

Figure 3 shows plots of the prequential error in artificial datasets obtained when
using the dynamic selection method DS-MCB combined with DDM (solid lines)
and EDDM (dotted lines). For the abrupt drift datasets (SINE1 and LINE), both
versions with DS-MCB detected drift at the right moment and decreased the prequen-
tial error rate. However, DS-MCB+EDDM outperformed DS-MCB+DDM since it
presents a smaller number of false detections on SINE1 and earlier reaction on LINE
datasets. For CIRCLE, both versions missed detections. Finally, for SINE1G dataset,
DS-MCB+EDDM did not detect the last drifts.

If we compare the two versions with DS-MCB to the versions with DCS-LA, some
observations can be made from these results: (1) the proposed method using DCS-LA
combined with both drift detectors was able to decrease the prequential error rate
while learning the new concept before it ended, even with no access to the whole data
labels; (2) the two versions using DS-MCB detect all the abrupt drifts but fail to detect
some gradual drifts. Table 1 summarizes the comparison among all four versions of the
proposedmethod in terms of accuracy, total number of true detections, false detections,
and missing detections for each dataset. The items presented in Table 1 are defined as
follows:

– accuracy: the percentage of examples correctly classified in the whole dataset;
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Fig. 3 Prequential error of versions DS-MCB+DDM (solid lines) and DS-MCB+EDDM (dotted lines)
on artificial datasets. Top Left: SINE1; Top Right: LINE; Bottom Left: CIRCLE; Bottom Right: SINE1G

– average detection delay: the average number of examples between drift occurrence
and true drift detection for all concept drifts. For SINE1G, detections during all
transition periods are not considered delayed;

– true detections: drift detections at the right moment. For abrupt drifts, we consider
only the first detection after drift occurrence; for gradual drifts, we consider all
the detections occurring in the transition period from one concept to another;

– false detections: for abrupt drifts, we consider all detections indicated after a
true detection in the same concept; for gradual drifts, we consider all detections
performed after the transition period, for no transition periods, we employ the
same rule used for abrupt drifts;

– missing detections: concept drifts not detected by the method (false negatives).

In Table 1, the best results for each dataset are indicated in bold. From this table, it is
possible to observe that only versions including DS-MCB present missing detections
on datasets with gradual drifts. This result may be due to the similarity function,
which provides wrong new local regions in the transition period. On the other hand,
the two versions involving DCS-LA are able to detect all drifts in all datasets. In the
next section, we present experimental results to verify whether or not these results are
observed considering real datasets.
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Table 1 Classification accuracy (acc), average detection delay (delay), total number of true detections (TD),
false detections (FD) and missing detections (MD) of different versions of our method in each artificial
dataset

Method Dataset acc(%) Delay TD FD MD

DCS-LA+DDM SINE1 87.91 27 9 2 0

LINE 94.80 130 1 0 0

CIRCLE 90.33 280 3 1 0

SINE1G 81.13 0 35 2 0

DCS-LA+EDDM SINE1 85.23 25 9 1 0

LINE 96.40 65 1 0 0

CIRCLE 91.10 287 3 1 0

SINE1G 77.70 0 49 22 0

DS-MCB+DDM SINE1 74,64 70 9 11 0

LINE 92.60 246 1 0 0

CIRCLE 84.42 32 1 1 2

SINE1G 75.26 0 33 12 0

DS-MCB+EDDM SINE1 80,14 65 9 4 0

LINE 94.30 161 1 0 0

CIRCLE 75.35 248 1 0 2

SINE1G 63.43 0 36 10 2

4.2.2 Experiments with real datasets

In these datasets, we do not know where the changes occur and which type of changes
exist. Therefore, we are not able tomeasure true detections, false detections, ormissing
detections. Thus, we only highlight the behavior of the prequential error and the total
number of detections on each dataset. The parameter settings are the same as used in
experiments on artificial datasets.

Figure 4 presents the prequential error attained by the two versions of our method
composed by DCS-LA combined with DDM (solid lines) and EDDM (dotted lines)
on real datasets. For ELEC2, both versions detected a high number of drifts, but they
kept low prequential error rates. In LUXEMBOURG, each version identified drifts in
different moments and both decreased the prequential error rates. In KDDCUP99, we
plot the prequential error rate for the 100,000 first examples (10% of whole dataset) in
order to provide a better visualization of the result; however, both versions with DCS-
LA were able to keep low prequential error rates for the whole dataset presenting a
high number of drift detections (Tables 2 and 4).

In Fig. 5, the prequential error rates reached by the two versions of our proposed
method generated by combining DS-MCB to DDM (solid lines) and EDDM (dotted
lines) on real datasets are shown. In ELEC2, the results are quite similar to the results
obtained by the DCS-LA-based versions: several detections followed by low pre-
quential error rates. In LUXEMBOURG, DS-MCB+DDM was able to decrease the
prequential error rate after first detection, while DS-MCB+EDDM kept the prequen-
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Fig. 4 Prequential error of versions DCS-LA+DDM (solid lines) and DCS-LA+EDDM (dotted lines) on
real datasets. Top Left: ELEC2; Top Right: LUXEMBOURG; Bottom: KDDCUP99

Table 2 Classification accuracy (acc) and total number of detections of different versions of our method in
each real dataset

Method Dataset acc (%) Detections

DCS-LA+DDM ELEC2 84.16 18

LUXEMBOURG 97.53 2

KDDCUP99 95.66 11,610

DCS-LA+EDDM ELEC2 83.03 20

LUXEMBOURG 87.01 1

KDDCUP99 94.18 11,790

DS-MCB+DDM ELEC2 81.12 17

LUXEMBOURG 83.75 2

KDDCUP99 94.31 11,706

DS-MCB+EDDM ELEC2 81.45 21

LUXEMBOURG 76.12 2

KDDCUP99 90.29 9277
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Fig. 5 Prequential error of versions DS-MCB+DDM (solid lines) and DS-MCB+EDDM (dotted lines)
on real datasets. Top Left: ELEC2; Top Right: LUXEMBOURG; Bottom: KDDCUP99

tial error stable after detection. In KDDCUP99, both versions kept low prequential
error rates, but it is possible to observe that DS-MCB+EDDM provided fewer detec-
tions than DS-MCB+DDM, and consequently lower accuracy rate.

Table 2 shows a comparison among the four versions of our method in terms of
classification accuracy rates and total number of detections on all real datasets. The
same behavior pointed out for the artificial datasets was observed for the real databases
investigated: versions using DCS-LA outperformed the DS-MCB-based versions. In
terms of accuracy rates, for ELEC2 dataset, DCS-LA+DDM was slightly superior
to DCS-LA+EDDM, while the difference between DCS-LA+DDM and DS-MCB-
based versions was higher. However, the performances attained by all four versions
are quite similar, since they present accuracy rates ranging from 81.12 to 84.16%.

In contrast, these differences are more likely to be significant in experiments with
LUXEMBOURG and KDDCUP99. Here, our results indicate that DCS-LA+DDM
was able to cope with drifts presented in LUXEMBOURG and KDDCUP99 datasets,
since it classified correctly more than 90% of examples. Especially noteworthy is
the fact that this high accuracy rate was obtained in a semi-supervised context, with
labels partially available. On the other hand, DS-MCB+EDDM produced the lowest
accuracy rates in LUXEMBOURG (76.12%) and KDDCUP99 (90.29%). This result
may be due to concepts with a small number of examples or to a sensitivity to outliers.
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In Table 2, we indicate in bold the best accuracy for each dataset. We do not
indicate the best result in terms of number of detections since we do not know when
these detections are true or false.

In response to the question posed in the beginning of this section as to which is the
best version of our proposed method, DCS-LA+DDMmay be deemed to be the best
strategy. First, based on the classification accuracy results, this version attained the
highest rate in 5 datasets (2 artificial and the 3 real datasets) out of a total of 7 datasets
investigated. In addition, DCS-LA+DDM does not present missing detections in any
of the artificial datasets. In this way, we choose the version DCS-LA+DDM to be
compared to the baselines, due to its best performances in high accuracy rates and true
detections.

4.3 Comparison of the proposedmethod to baselines

In this series of experiments, we intend to compare the best version of our proposed
method DCS-LA+DDM to two different baselines. The first baseline is the semi-
supervised method SAND and the second baseline is the supervised method DDM,
since we also intend to verify whether or not our method is able to deal with concept
drifts evenwhen there are no fully labeled datasets available.We chooseDDMbecause
it is part of the selected version of our method.

It is important to mention that there is no comparison in terms of prequential error
due to the fact that SAND does not provide results in prequential error. Thus, the
comparison summarized in Tables 3 and 4 is performed by taking into account other
measures such as accuracy, delay, true and false detections, average runtime, etc.

Table 3 Classification accuracy (acc), average detection delay (delay), total number of true detections
(TD), false detections (FD), missing detections (MD), the percentage of labeled examples (lbl) and average
runtime (time) in each artificial dataset

Method Dataset acc (%) Delay TD FD MD lbl (%) Time (s)

DCS-LA+DDM SINE1 87.91 27 9 2 0 1.6 219.08

LINE 94.80 130 1 0 0 0.6 37.55

CIRCLE 90.33 280 3 1 0 1.05 90.39

SINE1G 83.00 0 35 2 0 0.5 570.04

SAND SINE1 84.25 95 1 0 8 0.03 402.38

LINE 94.90 83 1 0 0 0.1 39.01

CIRCLE 91.40 15 3 3 0 0.1 168.59

SINE1G 83.12 0 3 0 7 0.02 1207.88

DDM SINE1 96.28 11 9 0 0 100 53.68

LINE 97.55 25 1 0 0 100 5.84

CIRCLE 96.80 32 3 0 0 100 20.72

SINE1G 79.67 0 13 0 0 100 165.94
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Table 4 Classification accuracy (acc), total number of detections, the percentage of labeled examples (lbl)
and the average runtime (time) in each real dataset

Method Dataset acc (%) Detections lbl (%) Time (s)

DCS-LA+DDM ELEC2 84.16 18 0.4 452

LUXEMBOURG 97.53 2 6.0 36

KDDCUP99 95.97 11,679 25.06 50,292

SAND ELEC2 94.62 44 0.1 998

LUXEMBOURG 85.11 1 1.0 57

KDDCUP99 74.23 8555 1.5 88, 919

DDM ELEC2 83.06 128 100 125

LUXEMBOURG 79.80 0 100 6

KDDCUP99 97.89 2386 100 10,754

4.3.1 Experiments with artificial datasets

For these experiments, we have included the number of labeled examples and the aver-
age runtime as evaluation metrics. In addition, Table 3 also presents the classification
accuracy, average detection delay, total number of true detections, false detections
and missing detections of DCS-LA+DDM, SAND and DDM for each dataset. The
best results for each dataset are indicated in bold. Some observations can be made
from these results. First, it is possible to observe that DCS-LA+DDM was able to
detect all drifts in all datasets, as DDM. In the SINE1G dataset, our method presents
a large quantity of true detections in all experiments, but it is important to say that
the detections were suggested in the transition period of 1000 examples. Even so,
DCS-LA+DDM reached high accuracy rates, as well as both baselines.

The results achieved using DDMwere expected, since it is a supervised drift detec-
tor. DDM presented the best performance on attaining the highest accuracy rates, with
no false detections nor missing detections. However, in terms of accuracy rates, the
rates reached by both semi-supervisedmethodswere on average 6% lower thanDDM’s
accuracy rates for SINE1, LINE and CIRCLE datasets, while both semi-supervised
methods outperformed DDM in SINE1G dataset. Especially noteworthy is the fact
that the semi-supervised methods dealt with only 5% of labeled data, on average, in
order to attain these high accuracy rates.

In terms of number of labeled examples, our method selects those examples which
rely on warning level, as indicated by statistical tests, while SAND selects those
examples based on whether classifier confidence is lower than a threshold. In this
way, SAND presents a more robust method to select a reduced number of examples
among the most recent examples to be labeled. However, in datasets such as SINE1
and SINE1G, SAND presents more missing detections than true detections. Such
a weak result may be due to the classification function of these datasets. Since the
classification is reversed after concept drifts, in this case, the classifier confidence
will remain high but the predictor will classify data incorrectly. In addition, SAND
is strongly dependent on fine-tuning the threshold parameter. In our experiments, we
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employed −log(0.05) as threshold value, as suggested by the authors (Haque et al.
2016). SAND missed 8 true detections in the SINE1 dataset and 7 true detections
in the SINE1G dataset, while in LINE and CIRCLE datasets, SAND achieved lower
detection delays.

4.3.2 Experiments with real datasets

As mentioned before, in these datasets we can only evaluate classification accuracy,
total number of detections, the percentage of labeled examples used to classify the
whole dataset and the average runtime. In order to compare our method to SAND and
DDM, we choose again the version DCS-LA+DDM.

In Table 4, we can observe that DCS-LA+DDM presents the highest accuracy rate
in the LUXEMBOURG dataset and probably 2 true detections. SAND takes advan-
tage in accuracy on ELEC2, while our method reaches accuracy rates quite similar to
DDM. However, in ELEC2, DCS-LA-DDM presents the smallest number of detec-
tions, which implies lower computational costs. The same scenario highlighted for
the artificial datasets was observed on real datasets, i.e., our method and SAND reach
high accuracy rates even using a limited number of labeled examples. In KDDCUP99,
our method reaches an accuracy rate quite similar to DDM but using only 25.06%
of labeled examples. In addition, for this last dataset, SAND reaches lower accuracy
rates related to the other investigated methods. It is also important to mention that
both semi-supervised methods outperformed DDM on real datasets, which was not
an expected result, since DDM is supervised. The best results of accuracy, average
runtime, and percentage of labeled examples for each dataset are indicated in bold.

In terms of runtime, as expected, DDM presents lowest average runtime in all
datasets because this method does not take into account the labeling process since it
is assumed that labeled data is available. SAND presents the highest average runtime.
Despite a very small number of examples that pass by the labeling process, the window
monitoring may increase the computational cost. Finally, our method also includes a
labeling process for a few examples but using online learning, which may provide an
average runtime significantly lower than SAND’s.

5 Conclusion

This paper proposes a new semi-supervised method for dealing with concept drift
focusing on practical problems that receive data in stream. As a consequence, they
do not present fully labeled data. Besides, labeling massive quantities of data is time
consuming. Regarding these important observations, our method intends to detect
drifts avoiding strategies based on accuracy monitoring and on updating the system
constantly.

The proposed method uses an ensemble of classifiers’ predictions defined by
dynamic classifier selection to assign labels to every incoming example. Based on
these assigned labels, we apply a drift detector to every ensemble member in order
to detect drifts. All the incremental updates are based on ensemble predictions in an
ensemble self-training strategy. The labeled examples employed are only those used
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to compose a validation dataset, which is useful for the selection module, after drift
detection.

Our semi-supervised method presents competitive results when compared to
another semi-supervised method (SAND). However, it is important to mention that
SANDprovides drift detections bymonitoringwindows composed of the recent exam-
ples, and drift reactions by batch learning, while our method is online. In addition,
when compared to a supervised method (DDM), our method attained performances
quite similar or even better, such as the classification accuracy reached on all investi-
gated real datasets. These results were not expected since DDM is a supervised drift
detector.

Given that the proposed method is employed using unlabeled data and avoiding
blind updates, the classification error rates and the system reaction delays attained by
our methodmay be assumed to be very promising. However, as future work, we intend
to study strategies aiming to decrease the prequential error and to react faster to drifts.
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