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Abstract
Due to the scale and complexity of todays’ social networks, it becomes infeasible to
mine them with traditional approaches. A possible solution to reduce such scale and
complexity is to produce a compact (lossy) version of the network that represents its
major properties. This task is known as graph summarization, which is the subject of
this research.Our focus is on time-evolving graphs, amore complex scenariowhere the
dynamics of the network also should be taken into account. We address this problem
using tensor decomposition, which enables us to capture the multi-way structure of
the time-evolving network. This property is unique and is impossible to obtain with
other approaches such as matrix factorization. Experimental evaluation on five real
world networks implies promising results demonstrating that tensor decomposition is
quite useful for summarizing dynamic networks.

Keywords Graph summarization · Time-evolving networks · Tensor decomposition

1 Introduction

With the emerging of more complex and large-scale networks, namely from online
sources (social networks, exchanged emails, …), new challenges arise: for example,
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the visualization of such networks, which, in other cases, would provide insights on
the global behavior of the network, besides being computationally demanding, is no
longer enlightening. Moreover, the storage of such networks is also an issue due to
memory limitations, especially in dynamic scenarios.

In this context, the replacement of the original network by a compact representation
may be a reliable approach to tackle such problems. Such idea encompasses the scope
of graph summarization. In more detail, the problem of graph summarization consists
of finding a succinct/concise representation of the original graph, which captures its
general structure (Liu et al. 2016).

Most of the research on this field has focused on static networks. However, in this
work we address the problem of graph summarization for time-evolving networks. In
particular, we process the networks using a sliding time window of network snapshots,
thus taking into account the temporal occurrence of the network edges. Our work
falls into the category of structural pattern-based summarization, since, for each time
window, the summary result is a (smaller) graph, referred to as supergraph, whose
supernodes represent groups of structurally similar nodes in the original graph and
whose edges reflect the interactions between those groups.

Briefly, the problem addressed in this work is given as follows: given a large time-
evolving network, how can we represent it in a more concise way so that the global
structural properties are captured?Wenote that this type of summarization is different
from traditional community detection algorithms. Although in some cases the result
of both approaches may be similar, in community detection the goal is to group nodes
which are more densely connected, while in this type of summarization the goal is
to group nodes which have similar connection patterns, that is, connect to a similar
subset of nodes at the same instants (Liu et al. 2016).

To address this problem, we introduce tenClutS, a method which explicitly models
the time dimension of dynamic graphs, thus taking advantage of the multi-way struc-
ture of evolving networks driven from a tensor decomposition model. We also propose
a simplification of the kC method (Tsalouchidou et al. 2016), which is meant to work
as a baseline.

Our main contributions are as follows:

– We propose tenClustS, a tensor decomposition-based method for real time struc-
tural pattern summarization of time-evolving networks.According to our empirical
study, tenClustS generates summaries in considerably less time than its competitors
(especially in large networks), without compromising the quality of the summaries.

– We study the impact of the clustering distance metric on the summarization results
and provide evidence that this parameter is critical, having a high (structural)
impact on the summarization results, including the ones obtained using the baseline
methods: the cosine clustering captures the global behavior of the network, while
the euclidean clustering captures local patterns.

The rest of the paper is organized as follows. In Sect. 2we overview the relatedwork
and background theory. We formalize the problem in Sect. 3. The proposed method is
described in Sect. 4 and the experiments results are depicted in Sect. 5. We present the
future work and conclude the paper in Sect. 6. Thorough the paper, the terms graph
and network are used interchangeably.
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2 Background and related work

2.1 Tensors

Tensors may be regarded as multi-dimensional arrays. Given a tensor X ∈
R

N1×N2×···×NM , M is referred to as order (or number of modes) of the tensor and
its size is given by N1 × N2 × · · · × NM . It is noteworthy that vectors and matri-
ces are a particular case of tensors, with one and two dimensions, respectively.
The rate of non-zero entries in a tensor is called density and its Frobenius norm is

computed as follows: ||X || =
√∑N1

i1=1

∑N2
i2=1 . . .

∑NM
iM=1 [X (i1, i2, . . . , iM )]2, with

X (i1, i2, . . . , iM ) being the value of the entry (i1, i2, . . . , iM ) in the tensor.
The formal operation of rearranging the tensor into a matrix is known as unfolding

or matricizing. The mode-d matricization of tensor X is denoted by X(d), has size
Nd × (

∏
i �=d Ni ) and is obtained by fixing each index of mode-d and varying the

other modes indexes.

2.2 CP decomposition

CANDECOMP/PARAFAC (CP) decomposition (Kolda and Bader 2009) is one of the
most popular tensor decomposition methods. For the sake of simplicity, let us consider
a 3-order tensor, X ∈ R

N1×N2×N3 . Then the goal of CP is to find vectors ar ∈ R
N1 ,

br ∈ R
N2 , cr ∈ R

N3 , with 1 ≤ r ≤ R, such that the approximation error, given by
||X − ∑R

r=1 ar ◦ br ◦ cr ||, is minimized. In this context, ◦ denotes the vector outer
product and R ∈ N is called number of components (or factors).

The matrices containing the vectors associated with each mode are called factor
matrices and are defined as follows: A = [a1|a2| . . . |aR] ∈ R

N1×R,B = [b1|b2| . . .
|bR] ∈ R

N2×R and C = [c1|c2| . . . |cR] ∈ R
N3×R .

CP is traditionally computed using the alternating least squares algorithm (CP-ALS)
(Kolda and Bader 2009). The idea exploited in this algorithm consists in considering
the minimization (sub)problems obtained by fixing all but one factor matrix in the
approximation error formula and solving such (sub)problem for each factor matrix
sequentially and repeatedly, until some stopping criteria is met. The initial factor
matrices used in the algorithm may be obtained randomly or based on the tensor.
In this work, we considered the SVD-based initialization, in which the initial factor
matrix associated to mode-d is computed according the singular value decomposition
(SVD) of X(d)XT

(d).

2.3 Graph summarization

Static graph summarization Briefly, the goal of graph summarization is to find a com-
pact representation of the original graph, which preserves some of its key properties.
Depending on both the type of the graph and the application domain, the key features
may differ.
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While graphs may be represented by their canonical forms, which correspond to
their class of isomorphisms (Piperno 2008), this type of representations is lossless
and, therefore, equivalent to the original graph, on the contrary to our approach.

Block modeling (Doreian et al. 2005) and its variants encompass a popular tech-
nique for generating graph compact representations. Briefly, its goal consists of
discovering blocks of equivalent nodes in the network and constructing a super-
graph summary in which the supernodes represent the blocks and the superedges
map the interactions between the nodes of the blocks. The equivalence relation usu-
ally refers to structural equivalence. Within the scope of community detection, those
blocks correspond to dense sub-graphs (Abbe 2017). It is noteworthy that, for most
of real-world networks, the notion of equivalence is too strict and consequently
relaxed/approximated variations should be considered in order to account for devi-
ations. For example, in the traditional approaches a node either belongs to a block or
not, however, in relaxed block modeling approaches, such as in Brandes and Lerner
(2010), different levels of membership are allowed. Similarly, the idea of grouping
identical nodes into supernodes and constructing a summary supegraph describing the
relations between those supernodes is also exploited considering other types of sim-
ilarity measures and grouping strategies. In LeFevre and Terzi (2010) and Riondato
et al. (2017) the nodes are also grouped based on their connection patterns, while in
Gansner et al. (2005) the idea is to group nodes connected by a path of short length
so that the graph global structure is not compromised. Another approach consists of
replacing the frequent patterns by a single structure (Buehrer and Chellapilla 2008).
Additionally, role analysis aims at unveiling the nodes/edges having a similar role in
the network (for example, central or bridge nodes) (Breiger and Pattison 1978; Hen-
derson et al. 2012; Rossi and Ahmed 2015b). In this type of analysis, nodes may be
assigned to the same role even if they are (geodesic) distant.

In Shen et al. (2006) and Spielman and Teng (2011), the authors propose sparsifi-
cation strategies which consist in discarding nodes and/or edges that do not provide
relevant information according to some criteria. For example, in a directed network
one may be interested in mining the diffusion patterns (Mathioudakis et al. 2011).

The compression of the network adjacency matrix using matrix decomposition
techniques may also be regarded as a method for generating network compact rep-
resentations. Traditional algorithms such as SVD have efficiency issues. However,
one can find alternatives such as Adaptive Cross Approximation (ACA) (Bebendorf
and Rjasanow 2003), which approximates the matrix using its rows and columns,
thus allowing for a more efficient processing. In this type of methods, the resulting
representation is not a graph, on the contrary to our approach.

Other related mining tasks include the mining of the most relevant structures in the
network using the minimum description length (MDL) (Navlakha et al. 2008) and the
representation of graphs using feature vectors, referred to as fingerprints, which are
used to compute similarity between graphs (Ralaivola et al. 2005).

Time-evolving graph summarization In the context of time-evolving networks, the
goal is to find a summary that describes the state of the network at a given time
period. Besides the naive approaches, which consist in applying the static summariza-
tion techniques to each timestamp, we already find in literature works exploiting the
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dynamics of this type of networks. Shah et al. (2015) proposed a compression-oriented
approach based on MDL. Moreover, in Tsalouchidou et al. (2016) the authors apply
clustering techniques to the sequential concatenation of the adjacency matrices in the
time period considered and use the clustering result to define the supernodes of the
summary supergraph.

Similarly to the work of Tsalouchidou et al. (2016), our proposed method, ten-
ClustS, also considers a structural pattern-based summarization for time-evolving
networks: nodes are grouped according to their connectivity patterns into a supern-
odes of the summary supergraph. However, the work of Tsalouchidou et al. fails at
preserving the natural multi-way structure of the dynamic networks. The clustering
strategy used in our approach is similar to Kolda and Sun (2008), nonetheless, to
the best of our knowledge, the application of such clustering result to this type of
summarization has not been exploited yet.

2.3.1 Structural-pattern summarization

One of the most relevant works in the context of structural-pattern summarization
in static settings was introduced by LeFevre and Terzi (2010), for query efficiency
purposes. In thatwork, given the original static graph, the goal is to generate a summary
graph in which the nodes are grouped into supernodes according to their connectivity
patterns. Such a graph is referred to as supergraph. In this context, nodes sharing
neighbors are more similar and, therefore, are expected to be grouped in the same
supernode. Given the supernodes, the superedges weights are computed as follows:

AG ′(Si , S j ) =

⎧
⎪⎨
⎪⎩

∑
l∈Si ,m∈S j AG (l,m)

|Si ||S j | , if Si �= S j∑
l∈Si ,m∈S j AG (l,m)

|Si |(|S j |−1) if Si = S j

, (1)

where AG and AG ′ are the adjacencymatrices of the original graph and the supergraph,
respectively.

Since distinct node groupings lead to distinct supergraphs then, given the set of
possible supergraphs, the goal is to find the node partition that minimizes the recon-
struction error, which is defined as:

RE =
∑N

i=1
∑N

j=1 |AG(i, j) − ĀG(i, j))|
N 2 (2)

where N is the number of nodes in the original graph, s : V → V ′ is the functionwhich
assigns a node to its supernode and ĀG is the adjacency matrix of the reconstructed
graph, defined so that:

ĀG(i, j) =
{
AG ′(s(i), s( j)), if i �= j

0, if i = j .
(3)
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Fig. 1 Illustrative example: a original network and b its summary

Fig. 2 Adjacency matrices of the
original graph (left) and the
reconstructed graph (right)

AG =

0 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 0 0 0 1 0 0 0
1 0 0 0 1 0 0 0
0 1 1 1 0 1 0 0
0 0 0 0 1 0 1 1
0 0 0 0 0 1 0 1
0 0 0 0 0 1 1 0

ĀG =

0 1 1 1 0 1/6 1/6 1/6
1 0 0 0 1 0 0 0
1 0 0 0 1 0 0 0
1 0 0 0 1 0 0 0
0 1 1 1 0 1/6 1/6 1/6

1/6 0 0 0 1/6 0 1 1
1/6 0 0 0 1/6 1 0 1
1/6 0 0 0 1/6 1 1 0

As an illustrative example of this process, let us consider the static network in
Fig. 1a and let us suppose that we are interested in generating a supergraph summary
with 3 supernodes. Then, a possible node grouping into supernodes, Si , could be:
S1 = {1, 5} (in blue); S2 = {2, 3, 4} (in yellow); S3 = {6, 7, 8} (in green). Note that
nodes 2, 3 and 4 are linked to the same nodes and, therefore, have exactly the same
connection patterns.

Based on such grouping, the resulting supergraph would be the one illustrated in
Fig. 1b. The adjacency matrix of the reconstructed network is shown in Fig. 2. In this
example, the summary has a reconstruction error of ≈ 0.05.

This approach has been extended to a dynamic setting in the work of Tsalouchidou
et al. (2016). The idea exploited in that adaptation was to account for the connection
patterns over time, so that the nodes exhibiting constantly similar patterns over the
time span are grouped into the same supernode. To meet this end, the supernodes are
generated by applying clustering (k-means with cosine distance) on the sequential
concatenation of the adjacency matrices in the given time window.

In more detail, given the time-evolving network, {At
G}L1 , in which At

G is the adja-
cency matrix of graph G at time t ∈ {1, . . . , L}, then, according to their method, the
adjacency matrix of the supergraph summary, AG ′ , is generated as follows:

AG ′(Si , S j ) =

⎧
⎪⎨
⎪⎩

∑L
t=1

∑
l∈Si ,m∈S j A

t
G (l,m)

L|Si ||S j | if Si �= S j

2

∑L
t=1

∑
l∈Si ,m∈S j A

t
G (l,m)

L|Si |(|S j |−1) , if Si = S j

, (4)

which can be seen as the generalization of (1) to more than one timestamp.
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Similarly, (2) was adapted to the dynamic setting:

RE =
∑L

t=1
∑N

i=1
∑N

j=1 |At
G(i, j) − ĀG(i, j)|

LN 2 . (5)

where ĀG is the adjacency matrix of the reconstructed window graph and satisfies
ĀG(i, j) = AG ′(s(i), s( j)).

Despite being a generalization of the work of LeFevre and Terzi, there are some
differences. First, in the static version, it is assumed that the graph is unweighted,
however, in the Tsalouchidou et al. extension, the edges are assumed to have a weight
in the interval [0, 1]. Moreover, the original graph is assumed to be simple in the static
approach; nonetheless, in this dynamic extension such assumption is not imposed: self-
loop edges are allowed and, as a consequence, the second case of (3) is not considered
in the Tsalouchidou et al. dynamic approach.

3 Problem formulation

Formally, the problem addressed in this work may be formulated as follows:
Given an undirected, unweighted simple time-evolving graph, G, characterized

by the sequence of its adjacency matrices over time, {At
G}L1 , find a static weighted

summary supergraph, G ′, characterized by the adjacency matrix, AG ′ , that succinctly
describes the original graph, in such a way that:

– the supernodes of G ′ are homogeneous groups of nodes of the original graph in
the sense that nodes in the same supernode exhibit similar connection patterns;

– the superedges weights reflect the level of interaction in the original graph between
the nodes in the corresponding supernodes.

The resulting supergraph summary may describe a single time stamp of the graph
(L = 1) or cover a time window (L > 1).

As previously exposed, in this type of summarization, the supernodes are expected
to be homogeneous, that is, nodes in the same supernode are expected to link to a
similar set of nodes at the same time periods. In this context, the more homogeneous
the supernodes, the better the supergraph approximates the original network (because
the superedges weights will more accurately reflect the interactions between the nodes
in the original network).Based on this, the level of howwell the summary approximates
the original network is an indicator of the quality of the summary. On the other hand, a
good summary should also be a compact representation of the original network. Thus,
a quality summary should be compact but approximate reasonably well the original
network (more details on how to measure such indicators can be found in Sect. 5.3).

4 Proposedmethod: tenClustS

In the proposed method, we process the time-evolving network in real-time using a
sliding-window,W , so that at a given timestamp T , we only consider the current state
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of the network and the previous L − 1 states. In other words, we generate a summary
for each sequence of L consecutive adjacency matrices. The details of the method are
depicted as follows.

Idea The idea exploited in this method consists in taking advantage of the 3-way
structure, nodes × nodes × timestamps, of time-evolving graphs: it is expected that
the tensor decomposition result unveils the hidden connection patterns in the network.

Data type andmodelingThe current timewindow,W , of the dynamic graph ismodeled
as a 3-order tensor formed by the sequence of adjacency matrices over that time period
so that:

W(i, j, t) = At
G(i, j),

for i, j ∈ {1, . . . , N } and t ∈ {1, . . . , L}.
Method Given the current time window of the dynamic graph,W , tenClustS consists
in:

1. Generating nodes representation Apply CP-ALS to the current tensor window,
W , using R number of components:

W ≈
R∑

r=1

ar ◦ br ◦ cr ,

where ar and br are associated with node dimensions and cr is associated with
the time dimension. Based on this, set the nodes representation as one of the
factor matrices associated to the nodes, for example, A = [a1|a2| . . . |aR]. Recall
that A ∈ R

N×R , and therefore, node i is described by a R-dimension vector
corresponding to the i th row of matrix A. Note also that, since the networks are
assumed to be undirected (and therefore, the corresponding adjacency matrices
are symmetric), considering either factor matrices A or B should lead to similar
results.

2. Grouping nodes into supernodesGenerate the supernodes assignment by applying
k-means, with euclidean distance, on the rows of A.

3. Building supergraph adjacency matrix Generate supergraph adjacency matrix,
AG ′ , according to

AG ′(Si , S j ) =

⎧
⎪⎨
⎪⎩

∑L
t=1

∑
l∈Si ,m∈S j A

t
G (l,m)

L|Si ||S j | , if Si �= S j∑L
t=1

∑
l∈Si ,m∈S j A

t
G (l,m)

L|Si |(|S j |−1) if Si = S j

. (6)

We note that this assignment differs from (4) only in the self-loop weight compu-
tation (Si = S j ): we do not multiply the sum by two, because since the adjacency
matrix is symmetric, each edge is already accounted twice.

In the nodes grouping stage, we considered only the euclidean distance in k-means
because the smallmagnitude of some entries in the nodes representation, resulting from
the application of the CP-ALS tensor decomposition algorithm, would compromise
the distance computation. We leave this issue to be addressed in future work.
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5 Experiments

The experiments were carried out using MATLAB along with Tensor Toolbox (Bader
et al. 2015; Bader and Kolda 2007) in a machine with 2.7GHz processor and 12GB
RAM. The code is available at https://github.com/ssfernandes/tenClustS.

5.1 Datasets

In these experiments we considered five real world dynamic networks publicly avail-
able, which are summarized in Table 1. The size of each network is represented in
nodes × nodes × timestamps format.

Each dataset consisted of a time-evolving network in which there was a link from
entity i to entity j at time t if entities i and j interacted during such instant. The type
of entity and interaction depended on the dataset. In all networks, but Hepth, enti-
ties represented people, in Hepth they represented papers. Moreover, the interactions
represented (i) emails exchanged in Enron network; (ii) exchanged phone calls in
Friends&Family network; (iii) co-authorship in DBLP; (iv) human contact inter-
action in InfectiousPatterns; and (v) citations in Hepth network.

In a pre-processing stage, the nodes in Enron dataset having no metadata were
discarded. In the Friends&Family, we discarded the missed calls and all the calls
involving individuals not under study at the time the data was collected. Moreover,
all the time-evolving networks were subjected to a pre-processing step in which the
edges weights and the self-loops edges were discarded. Finally, since the number of
links was extremely small in some of the timestamps in the datasets, we discarded
the timestamps having a small number of links. In particular, we truncated Enron
to monthly timestamps 21–40; Friends&Family to monthly timestamps 9–16;
InfectiousPatterns to the first 20 timestamps and, finally, Hepth to times-
tamps 53–72.

Table 1 Datasets summary

Network Acronym Content Size Density

Enron Priebe
et al. (2005)

ERN Email exchange 130 × 130 × 21 1.44E−2

Friends&Family
(Aharony et al.
2011)

F&F Phone calls 129 × 129 × 8 1.78E−2

DBLP (Desmier
et al. 2012)

DBLP Co-authorship 2723 × 2723 × 9 1.64E−3

Infectious
patterns
(Isella et al.
2011)

INFPTRN Contacts 10,970 × 10,972 × 20 7.73E−6

Hepth (Leskovec
et al. 2005;
Rossi and
Ahmed 2015a)

HPH Citations 22,906 × 22,906 × 20 1.05E−5
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5.2 Design of experiments

The networks were processed using a sliding-window, W , of length L so that when
a new adjacency matrix was available, at time T + 1, we slid the previous window
to include the new arriving matrix and discarded the oldest matrix from the previous
window (that is, consecutive time windows had an overlap of L − 1 instants). By
considering a slidingwindow,wenot only discarded outdated data, but also reduced the
amount of data to process and store.Moreover,we considered themaximal overlap, L−
1, between consecutive windows, to guarantee more stability between two consecutive
windows. For each time window, a summary was generated and evaluated according
to the evaluation metrics described in Sect. 5.3.

5.3 Evaluationmetrics

Reconstruction error (RE) To assess the quality of the summaries we considered the
summary reconstruction error (RE) (Tsalouchidou et al. 2016), givenby expression (5).
The lower the reconstruction error, the better the summary approximates the original
graph.

Compression cost (CC) Each summary is associated with a compression level which
depends on both the number of nodes and edges of the supergraph. In order to
measure the “complexity” of the generated summaries, we measure the number of
bits needed to store their topology. Based on this, given the summary, we compute
its compression cost as the number of bits needed to store it (Mitchell 1997). In
particular, given the number of supernodes of the summary, |Vsummary |, and corre-
sponding number of edges, |Esummary |, the compression cost is computed as follows:
CC = 2×	log2(|Vsummary |)
× |Esummary |. Low compression values are preferable,
specially in scenarios with few storage resources.

Running time Additionally, we also considered the average running time (in seconds)
of the methods over the several time windows.

We set a soft running time limit of 10min per time window for generating the
supernodes assignment (after reaching 10min, the search for the best assignment is
stopped and the best assignment found so far is the one considered for the summary
of the current time window).

5.4 Baselinemethods for comparison

Proposed baselines kMeuc and kMcos These methods may be described as simplifi-
cations of the kC method (Tsalouchidou et al. 2016) (described in Sect. 2.3.1). The
idea is to use the sum of the adjacency matrices over the time window. Thus, the
current time window, W , of the dynamic graph is modeled by a single (adjacency)
matrix, Ā, which results from summing the adjacency matrices of the network in the
L timestamps:
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Ā(i, j) =
L∑

t=1

At
G(i, j), (7)

by recalling that At
G denotes the adjacency matrix of graph G at time t and L is the

number of timestamps in the time window. The grouping of nodes into supernodes is
carried out by applying k-means to the rows of Ā. Finally, the supergraph adjacency
matrix is constructed according to (6).

The difference between the two variants of thismethod is the distancemetric used in
k-means. As the name suggests, kMeuc and kMcos employ, respectively, the euclidean
and cosine distances.

kC Since our approach may be classified as a structural-pattern oriented approach,
we considered a structural-pattern oriented approach as baseline. In particular, we
considered the clustering-based method (kC) proposed by Tsalouchidou et al. (2016)
(described in Sect. 2.3.1).

WSBM We also considered a stochastic block modeling approach which groups nodes
with similar connection-patterns. In particular, we considered the stochastic block
model for weighted networks proposed by Aicher et al. (2014).

Since thismethodwas designed for static networks, in order to apply it to our setting,
we collapsed each network window using (7). The blocks detected corresponded to
the supernodes and the superedges were computed according to (6).

5.5 Parameter setting

Window length (WL) In order to have a more complete understanding of the behavior
of the models, we considered window lengths of 3, 6, 9 and 12 timestamps. The
maximum window length considered in each dataset depended on the number of
timestamps available.

Number of tensor decomposition components selection criteria We carried out the
estimation of the best number of components in CP using AUTOTEN (Papalexakis
2016), a scalable implementation of CORCONDIA (Bro and Kiers 2003).

In particular, the number of components was chosen so that the data was correctly
modeled in the majority of the windows: the estimated number of components (see
Table 2)was the average of the values obtained byAUTOTEN for the several windows.
Number of supernodes selection criteria Since for kC, kMeuc, kMcos and tenClustS,
the nodes grouping into summary supernodes may be interpreted as a clustering prob-
lem, we applied the Elbow method (Kodinariya and Makwana 2013) as criteria to
select the number of supernodes.

Given the maximum number of clusters allowed, Kmax , the Elbow method con-
sists in applying k-means sequentially by varying the number of clusters from 2 to
Kmax and computing, for each clustering generated, the overall within-cluster sum
of point-to-centroid distances. According to this method, the best number of clusters
is associated with the “elbow” of the curve of such values.

Since the data representation differs in each approach, we applied the elbowmethod
for each of such representations. The results are depicted in Table 3. The number of
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1408 S. Fernandes et al.

Table 2 Average of the
estimated CP number of
components over the windows
using AUTOTEN

Dataset WL Ncomps

Enron 3 4.11 ± 2.56

6 3.40 ± 0.95

9 4.67 ± 0.78

12 4.67 ± 1.00

Friends&Family 3 2.00 ± 0.00

6 2.67 ± 0.47

DBLP 3 8.29 ± 4.23

6 7.00 ± 5.87

Hepth 3 13.83 ± 0.37

6 10.08 ± 8.75

9 11.58 ± 8.58

12 8.11 ± 5.40

InfectiousPatterns 3 13.59 ± 1.78

6 9.31 ± 1.20

9 10.92 ± 4.66

12 9.22 ± 1.30

clusters was estimated considering only the first data window, such number was used
for the remaining windows.

In the case of the WSBM method, we estimated the number of supernodes for this
method as the rounded mean of the values estimated in the other approaches. The goal
of considering this strategy is to guarantee that the summaries generated by all the
methods have similar complexity (the values are shown in Table 3).

5.6 Illustrative examples of summaries

With the goal of understanding the differences between the summaries generated by
the various methods, we illustrate some of the summarization results.

For brevity and simplicity purposes, we only consider the first window of the
(small) Enron network, however, the behavior here illustrated was also observed
in the generality of the other time windows and datasets as well. In order to facilitate
the visualization of the network window, we collapsed the network window into a
single static network, which we refer to as view. The view was obtained as follows:

– the nodes in the view encompass all the nodes that had at least a link in the time
window;

– two nodes are linked by an edge in the view if they were linked in at least one
timestamp of the window.

In Fig. 3, we present 5 views of the first window of Enron dataset. Each view
illustrates the supernodes assignment obtained by one of the five methods under study.
The number of supernodes was set according to Table 3. The colors of nodes represent
the supernodes so that if two nodes have the same color in the view, then they were
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Table 3 Number of supernodes estimated

Dataset WL WSBM kC kMeuc kMcos tenClustS

Enron 3 15 17 17 16 9

6 13 15 16 13 7

9 12 13 15 12 9

12 12 13 12 13 10

Friends&Family 3 10 12 9 10 8

6 9 10 9 10 8

DBLP 3 15 14 16 17 11

6 15 15 17 17 11

Hepth 3 17 19 14 17 16

6 15 17 14 19 11

9 13 16 11 11 15

12 14 16 12 15 11

InfectiousPatterns 3 14 13 15 13 16

6 15 17 14 17 12

9 17 20 16 21 12

12 17 16 19 21 11

grouped in the same supernodeby the correspondingmethod. For the sakeof simplicity,
we did not include in the view two other connected components having less than four
nodes each.

We observed that the kC result captured some community structure of the network,
as it was visible, for example, in the supernodes associated with colors orange (nodes
46, 49, 84, 104, 105 and 119) and dark green (nodes 47, 88, 94 and 100). This result
was, in some way, expected since, within communities, the nodes are more likely to
share neighbors, and therefore, to have similar connectivity patterns. A similar result
was observed when considering kMcos.

The results of methods kMeuc and tenClustS were quite different from the previous
two. In these two approaches, we verified that the supernodes reflected also the activity
level of the node. For example, the nodes of the supernode associated with the grey
color were usually nodes of small degree. On the other hand, the most active nodes,
21 and 64, which were associated with superior roles in the company, were defined as
singleton supernodes.

When comparing the results of these four approaches, we also verified that the
supernodes size in kC and kMcos summaries, was balanced, on the contrary, to the
other two approaches. In particular, in kMeuc and tenClustS, we obtained a large
supernode containing the less active nodes, while the remaining supernodes size was
small.

Regarding WSBM, its behavior was similar to kC and kMcos, in the sense that
in these three approaches the size of the supernodes was balanced. However, the
community-like grouping observed in kC and kMcos was not modeled by WSBM.
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Fig. 3 Enron first window views with nodes colored according to their supernode grouping using: a kC, b
kMeuc, c kMcos, d tenClustS and eWSBM

123



Dynamic graph summarization 1411

Fig. 3 continued

In order to have a deeper understanding of the result of the several methods, we
analyzed the adjacencymatrices of the summaries generated (the corresponding super-
graphs are illustrated in Fig. 4). In this context, Fig. 5 shows the distribution of the
non-zero values in the adjacency matrices of the summaries generated by the four
methods. Once more we observe a pattern: clustering-based methods using the same
distance metric exhibited similar properties. In particular, we verified that the non-
zero weights associated to the kC and kMcos summaries ranged in ]0; 0, 6[, while,
in kMeuc and tenClustS, the values ranged in ]0, 1]. This may be explained by the
grouping obtained in eachmethod. Note that, in kMeuc and tenClustS, the size of most
supernodes was smaller than in the other two approaches, thus, allowing to capture
locally stronger connection patterns. For example, since nodes 46 and 84 were linked
to node 21 in the original graph, then, the supernodes S3 and S8 in the kMeuc sum-
mary, corresponding to {21} and {46, 84}, were connected by a superedge of weight
1. Finally, in the WSBM summary, we observed that the interval of values assumed
by the superedges weights was the most compact (with all the values being less than
0.2).

We also carried out this analysis in other windows and datasets and the behavior
here observed was also verified in such settings, in particular:

– the size of supernodes generated by WSBM, kC and kMcos was balanced, while
in kMeuc and tenClustS, we obtained a large supernode and the remaining were
small;

– the non-zero superedges weights assumed a wider range of values in kMeuc and
tenClustS.
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Fig. 4 Enron first window summaries generated using: a kC, b kMeuc, c kMcos, d tenClustS and eWSBM.
The size of the supernodes was set according to the number of nodes composing it so that a large size was
assigned to supernodes composed by a large number of nodes

kC

1
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Fig. 5 Boxplot of the non-zero weights in the summaries adjacencymatrices obtained by the methods under
study

This analysis suggests that the distance metric considered in k-means has a strong
impact on the structure of the summary: on the one hand, the summaries generated
using cosine distance (kC and kMcos) captured the global connection patterns; while
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on the other hand, the summaries generated using euclidean distance (kMcos and
tenClustS) allowed to capture local patterns.

In other words, the summaries generated using the cosine distance approximated
all the network “evenly”. When considering the euclidean distance, we observed that
there were small sub-regions which were considerably more well approximated than
the remaining, which were neglected. In this sense the summarization results obtained
by each metric may be seen as complementary.

5.7 Results

A quality method should generate good summaries in few time. Based on this, we
proceeded with our experiments with the goal of understanding how good was the
performance of the proposed procedures regarding the three evaluation metrics. In
order to facilitate the understanding of the results, we analyze the performance of the
methods regarding each metric separately.

Reconstruction error The reconstruction values of the summaries generated by the five
methods are shown in Table 4. As it can be seen, kMeuc was the method exhibiting the
lowest error in almost all settings, followed by tenClustS. Among the clustering-based
approaches kMcos exhibited the highest errors.

These results may be justified by the behavior observed in Sect. 5.6: when consid-
ering the euclidean metric, strong patterns were well approximated in the summary
thus reducing the reconstruction error, however, little information was kept regarding
nodes having less activity. Not preserving the information of less active nodes has
less impact on the approximation quality than not preserving the strong connectivity
patterns. Because of this, the summarization results when considering cosine distance,
usually lead to a higher error: both weak and strong connection patterns were approx-
imated in the same manner.

It is important to observe that in the InfectiousPatterns dataset, the sum-
maries generated by kC and kMcos were equal when considering window lengths of
3 and 6.

Compression cost With respect to the compression cost (Table 5), we verified that,
globally, tenClustS exhibited the lowest values. However, it is important to note that
the summaries generated by such method usually had a smaller number of supernodes
(recall Table 3).

In more detail, by analyzing Tables 3 and 5, we verified that the lowest compression
cost was always associated with the summary with fewer supernodes, as it would be
expected.
Time Regarding the approaches running time (Table 6), we verified that the tenClustS
was the fastest method in almost all settings. It is noteworthy that, in the large datasets,
tenClustS running time was considerably smaller than WSBM and kMeuc.

Moreover, we also observed that, despite generating the same summaries in
InfectiousPatterns dataset with window lengths of 3 and 6, the time required
by kMcos was considerable smaller than the one required by kC. Such time reduction
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Table 5 Average compression cost (CC) results (with best performance marked in bold)

Dataset WL WSBM kC kMeuc kMcos tenClustS

ERN 3 1384 ± 157 1016 ± 162 1331 ± 197 754 ± 102 510 ± 60

6 1202 ± 82 883 ± 95 1190 ± 129 728 ± 68 278 ± 9

9 903 ± 227 843 ± 96 1180 ± 122 713 ± 51 595 ± 45

12 789 ± 159 940 ± 58 827 ± 62 876 ± 69 713 ± 51

F&F 3 407 ± 26 599 ± 55 453 ± 31 452 ± 50 284 ± 16

6 355 ± 26 552 ± 29 456 ± 0 520 ± 24 324 ± 21

DBLP 3 1437 ± 301 1545 ± 34 1597 ± 170 2761 ± 173 895 ± 54

6 1632 ± 111 1796 ± 8 2323 ± 60 2870 ± 16 960 ± 9

HPH 3 1702 ± 476 1483 ± 333 1057±163 1139 ± 263 1408 ± 218

6 1443 ± 168 1877 ± 228 1329 ± 141 1850 ± 329 895 ± 49

9 1221 ± 67 1745 ± 152 943 ± 24 720 ± 127 1729 ± 47

12 1460 ± 64 1758 ± 175 1111 ± 53 1185 ± 186 952 ± 21

INFPTRN 3 470 ± 64 356 ± 51 600 ± 87 356±51 700 ± 122

6 575 ± 43 567 ± 45 453 ± 38 567 ± 45 419 ± 45

9 729 ± 67 683 ± 50 489 ± 38 740 ± 76 347 ± 16

12 1152 ± 61 521 ± 56 732 ± 34 746 ± 73 305 ± 30

is justified by the usage of a smaller dimension data representation when considering
kMcos.

Finally, we also observed thatWSBM exhibited the highest running times, reaching
the maximum running time allowed in some of the largest datasets.

Global observations Based on the previous experiments, we observed that, under
this experimental setting: (i) kMeuc exhibited the lowest reconstruction values, but
required considerable more time than kMcos and tenClustS in the larger datasets; (ii)
tenClustS exhibited the lowest running times and compression costs without substan-
tially compromising the quality of the summary in terms of reconstruction error.

6 Conclusions

In this work we propose tenClustS, which is, to the best of our knowledge, the first ten-
sor decomposition-based method for the structural-pattern summarization of dynamic
graphs. The idea exploited in this work consists of resorting to tensor decomposi-
tion to simultaneously capture the dynamics of such networks, while reducing the
dimensionality of the networks representation.

The experimental evaluation results show that the proposedmethod exhibits a trade-
off performance between reconstruction error and running time, with tenClustS being
the fastest method considered in this study, without compromising dramatically the
quality of the summaries in terms of reconstruction error.
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Our analysis of the summarization results suggests that the distance metric used in
the clustering phase is a critical parameter, regardless of the network representation
considered. In particular, we observed that the summaries generated using each metric
captured complementary patterns: while the cosine clustering captured the global
behavior of the network, the euclidean clustering captured local patterns.

Future research directions include the extension of these methods to an online/
incremental fashion and an adaptation of tenClustS for cosine distance metric.
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7 Appendix

The results of the signed Wilcoxon rank tests are shown in Table 7. We did not apply
the tests onFriends&Family and DBLP datasets, when using awindow length of 6,
because the number of available windows was extremely small (3 and 4, respectively).

Table 7 p Values of the signed Wilcoxon rank tests involving tenClustS, with respect to: reconstruction
error (top table), compression cost (middle table) and running time (bottom table)

Dataset WL SBM versus tCS kMe versus tCS kC versus tCS kMc versus tCS

Enron 3 1.96E−04 1.96E−04 1.96E−04 1.96E−04

6 6.10E−05 3.05E−04 6.10E−05 6.10E−05

9 4.88E−04 4.88E−04 4.88E−04 4.88E−04

12 3.91E−03 3.91E−03 3.91E−03 3.91E−03

Friends&Family 3 3.13E−02 3.13E−02 3.13E−02 3.13E−02

DBLP 3 1.56E−02 1.56E−02 1.56E−02 1.56E−02

Hepth 3 1.96E−04 1.96E−04 1.96E−04 1.96E−04

6 6.10E−05 6.10E−05 6.10E−05 6.10E−05

9 4.88E−04 4.88E−04 4.88E−04 4.88E−04

12 3.91E−03 3.91E−03 7.81E−03 3.91E−03

InfectPatterns 3 1.96E−04 1.96E−04 1.96E−04 1.96E−04

6 6.10E−05 6.10E−05 6.10E−05 6.10E−05

9 4.88E−04 4.88E−04 4.88E−04 4.88E−04

12 3.91E−03 3.91E−03 3.91E−03 3.91E−03
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Table 7 continued

Dataset WL SBM versus tCS kMe versus tCS kC versus tCS kMc versus tCS

Enron 3 1.96E−04 1.96E−04 1.96E−04 1.95E−04

6 6.10E−05 6.10E−05 6.10E−05 6.10E−05

9 2.93E−03 4.88E−04 4.88E−04 4.88E−04

12 2.97E−01 3.91E−03 2.34E−02 7.81E−03

Friends&Family 3 3.13E−02 3.13E−02 3.13E−02 3.13E−02

DBLP 3 1.56E−02 1.56E−02 1.56E−02 1.56E−02

Hepth 3 1.48E−02 2.76E−01 1.95E−04 4.93E−04

6 6.10E−05 6.10E−05 6.10E−05 6.10E−05

9 4.88E−04 3.88E−01 4.88E−04 4.88E−04

12 3.91E−03 3.91E−03 3.91E−03 1.17E−02

InfectPatterns 3 1.95E−04 1.95E−04 1.95E−04 1.95E−04

6 6.10E−05 6.10E−05 6.10E−05 6.10E−05

9 4.88E−04 4.88E−04 4.88E−04 4.88E−04

12 3.91E−03 3.91E−03 3.91E−03 3.91E−03

Enron 3 1.96E−04 2.33E−04 1.96E−04 4.97E−03

6 6.10E−05 1.22E−04 6.10E−05 8.36E−03

9 4.88E−04 4.88E−04 4.88E−04 4.88E−04

12 3.91E−03 3.91E−02 3.91E−03 3.91E−03

Friends&Family 3 3.13E−02 3.13E−02 3.13E−02 3.13E−02

DBLP 3 1.56E−02 1.56E−02 1.56E−02 1.56E−02

Hepth 3 1.96E−04 3.27E−01 1.96E−04 1.96E−04

6 6.10E−05 6.10E−05 6.10E−05 8.36E−03

9 4.88E−04 4.88E−04 4.88E−04 2.33E−01

12 3.91E−03 3.91E−03 3.91E−03 3.91E−03

InfectPatterns 3 1.96E−04 3.27E−04 3.27E−04 7.77E−01

6 6.10E−05 6.10E−05 6.10E−05 6.10E−05

9 4.88E−04 4.88E−04 4.88E−04 4.88E−04

12 3.91E−03 3.91E−03 3.91E−03 3.91E−03

Statistically significant values in bold (at a significance level of 0.05) when tenClustS was the winning
strategy. For brievity, WSBM, kMeuc, kMcos and tenClustS are denoted as SBM, kMe, kMc and tCS,
respectively
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