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Abstract
This paper is concerned with the estimation of a local measure of intrinsic dimen-
sionality (ID) recently proposed by Houle. The local model can be regarded as an
extension of Karger and Ruhl’s expansion dimension to a statistical setting in which
the distribution of distances to a query point is modeled in terms of a continuous ran-
domvariable. This formof intrinsic dimensionality can be particularly useful in search,
classification, outlier detection, and other contexts in machine learning, databases, and
data mining, as it has been shown to be equivalent to a measure of the discrimina-
tive power of similarity functions. Several estimators of local ID are proposed and
analyzed based on extreme value theory, using maximum likelihood estimation, the
method of moments, probability weighted moments, and regularly varying functions.
An experimental evaluation is also provided, using both real and artificial data.

Keywords Intrinsic dimension · Indiscriminability · Manifold learning · Curse of
dimensionality · Maximum likelihood estimation · Extreme value theory

1 Introduction

Both the efficiency and efficacy of fundamental operations in areas such as search
and retrieval, data mining, and machine learning commonly depend on the inter-
play between measures of data similarity and the choice of features by which objects
are represented. In settings where the number of features (the so-called representa-
tional dimension) is high, similarity values tend to concentrate strongly about their
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respective means, a phenomenon widely referred to as ‘the curse of dimensionality’.
Consequently, as the dimensionality increases, the discriminative ability of similar-
ity measures diminishes to a point where methods that depend on them lose their
effectiveness (Weber et al. 1998; Beyer et al. 1999; Pestov 2000).

The representational dimension alone cannot explain the curse of dimensionality.
This can be seen from the fact that the number of degrees of freedomwithin a subspace
or manifold is independent of the dimension of the space in which it is embedded.
This number is often described as the ‘intrinsic dimensionality’ of the manifold or
subspace.

In an attempt to improve the discriminability of similarity measures, and the scal-
ability of methods that depend on them, much attention has been given in the areas
of machine learning, databases, and data mining to the development of dimensional
reduction techniques. Linear techniques for dimensionality reduction include Princi-
pal Component Analysis (PCA) and its variants (Jolliffe 1986; Bouveyron et al. 2011).
Non-linear dimensionality reduction methods—also known as manifold learning
techniques—include IsometricMapping (Tenenbaum et al. 2000), Multi-Dimensional
Scaling (Tenenbaum et al. 2000; Venna and Kaski 2006), Locally Linear Embedding
and its variants (Roweis and Saul 2000), Hessian Eigenmapping Spectral Embed-
ding (Donoho and Grimes 2003), Local Tangent Space Alignment (Zhang and Zha
2004), and Non-Linear Component Analysis (Schölkopf et al. 1998). Most dimen-
sional reduction techniques require that a target dimension be provided by the user,
although some attempt to determine an appropriate dimension automatically. Ideally,
the supplied dimension should depend on the intrinsic dimensionality (ID) of the data.
This has served as a prime motivation for the development of models of ID, as well
as accurate estimators.

Over the past few decades, many practical models of the intrinsic dimensionality
of datasets have been proposed. Examples include the previously mentioned Principal
Component Analysis and its variants (Jolliffe 1986; Bouveyron et al. 2011), as well as
several manifold learning techniques (Schölkopf et al. 1998; Roweis and Saul 2000;
Venna and Kaski 2006; Karhunen and Joutsensalo 1994). Topological approaches to
ID estimate the basis dimension of the tangent space of the data manifold from local
samples (Fukunaga and Olsen 1971; Bruske and Sommer 1998; Pettis et al. 1979;
Verveer and Duin 1995). Fractal measures such as the Correlation Dimension (CD)
estimate ID from the space-filling capacity of the data (Faloutsos and Kamel 1994;
Camastra and Vinciarelli 2002; Gupta et al. 2003). Graph-based methods use the k-
nearest neighbors graph along with density in order to measure ID (Costa and Hero
2004). Parametric modeling and estimation of distribution often allow for estimators
of intrinsic dimension to be derived (Larrañaga and Lozano 2002; Levina and Bickel
2004).

The aforementioned intrinsic dimensionalitymeasures can be described as ‘global’,
in that they consider the dimensionality of a given set as a whole, without any indi-
vidual object being given a special role. In contrast, ‘local’ ID measures are defined
in this paper as those that involve only the k-nearest neighbor distances of a specific
location in the space. Several local intrinsic dimensionality models have been pro-
posed recently, such as the expansion dimension (ED) (Karger and Ruhl 2002), the
generalized expansion dimension (GED) (Houle et al. 2012a), the minimum neighbor
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distance (MiND) (Rozza et al. 2012), and local continuous intrinsic dimension (which
we will refer to here as LID) (Houle 2013). These models quantify ID in terms of
the rate at which the number of encountered objects grows as the considered range of
distances expands from a reference location.

In general, machine learning techniques that rely too strongly on local information
can be accused of overfitting the data. This has motivated the development of global
techniques for manifold learning such as Local Tangent Space Alignment (Zhang and
Zha 2004), which first identifies manifolds restricted to neighborhoods of selected
points, and then optimizes the alignment of these local structures in order to produce
a more complex description of the data. The alignment process often involves an
explicit penalty for overfitting. In general, local learning can compensate for overfitting
by accounting for it in the final optimization process for the alignment of the local
manifolds.

Local approaches can be very useful when data is composed of heterogeneous
manifolds. In addition to applications in manifold learning, measures of local ID
have been used in the context of similarity search, where they are used to assess
the complexity of a search query (Karger and Ruhl 2002), or to control the early
termination of search (Houle et al. 2012b, 2014). They have also found applications
in outlier detection, in the analysis of a projection-based heuristic (Vries et al. 2012),
and in the estimation of local density (von Brünken et al. 2015). The efficiency and
effectiveness of the algorithmic applications of intrinsic dimensional estimation (such
as Houle et al. 2012b, 2014) depends greatly on the quality of of the estimators
employed.

Distances from a query point can be seen as realizations of a continuous pos-
itive random variable. In this case, the smallest distances encountered would be
‘extreme events’ associated with the lower tail of the underlying distance distribution.
In Extreme Value Theory (EVT), a discipline of statistics concerned with the study
of tails of continuous probability distributions, the random variable associated with
nearest neighbor distances can be assumed to follow a power-law distribution, where
the exponent can be viewed as a form of dimension (Coles et al. 2001). Specifically,
continuous lower-bounded random variables are known to asymptotically converge to
the Weibull distribution as the sample size grows, regardless of the original distance
measure and its distribution. In an equivalent formulation of EVT due to Karamata,
the cumulative distribution function of a tail distribution can be represented in terms
of a regularly-varying (RV) function whose dominant factor is a polynomial in the dis-
tance (Coles et al. 2001; Houle 2015); the degree (or ’index’) of this polynomial factor
determines the shape parameter of the associated Weibull distribution, or equivalently
the exponent of the associated power law. The index has been interpreted as a form of
intrinsic dimension (Coles et al. 2001). Maximum likelihood estimation of the index
leads to the well-known Hill estimator for power-law distributions (Hill 1975).

While EVT provides an asymptotic description of tail distributions, in the case
of continuous distance distributions, the distribution can be exactly characterized in
terms of LID (Houle 2015). The LID model introduces a function that assesses the
discriminative power of the distribution at any given distance value (Houle 2013,
2015). A distance measure is described as ‘discriminative’ when an expansion in the
distance results in a relatively small increase in the number of observations. This
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function is shown to fully characterize the cumulative distribution function without
the explicit involvement of the probability density (Houle 2015). The limit of this
function yields the skewness of theWeibull distribution (or equivalently, the Karamata
representation index, or power law exponent) associated with the lower tail. It is the
estimation of this limit that is the main focus of this paper.

In addition to the more traditional applications stated earlier, LID has the poten-
tial for wide application in many machine learning and data mining contexts, as it
makes no assumptions on the nature of the data distribution other than continuity.
Moreover, the interpretation of continuous ID in terms of the indiscriminability of the
distance measure naturally lends itself to the design of outlier detection techniques
(von Brünken et al. 2015), and in the understanding of density-related phenomena
such as the hubness of data (Radovanović et al. 2010a, b; Houle 2015).

The original contributions of this paper can be summarized as:

– A framework for the estimation of local continuous intrinsic dimension (LID)
using well-established techniques: the maximum likelihood estimation (MLE),
the method of moments (MoM), and the method of probability-weighted moments
(PWM). In particular, we verify that applyingMLE to LID leads to the well-known
Hill estimator (Hill 1975).

– A new family of estimators based on the extreme-value-theoretic notion of reg-
ularly varying functions. Several existing dimensionality models (ED, GED, and
MiND) are shown to be special cases of this family,

– Confidence intervals for the variance and convergence of the estimators we pro-
pose.

– An experimental study using artificial data and synthetic distance distributions, in
which we compare our estimators with state-of-the-art global and local estimators.
We also show that the empirical variance and convergence rates of the MLE (Hill)
and MoM estimators are superior to those of the other local estimators studied.

– Experiments showing that local estimators are more robust than global ones in
the presence of noise in nonlinear manifolds. Our experiments show that our
approaches are very competitive in this regard with other methods, both local
and global.

– An experimental study showing the effectiveness of LID estimation when using
approximate nearest neighbors.

– Profiles of several real-world datasets in terms of LID, illustrating the degree
of variability of complexity from region to region within a dataset. The profiles
demonstrate that a single ‘global’ ID value is in general not sufficient to fully
characterize the complexity of real-world data.

A preliminary version of this work was published in Amsaleg et al. (2015).
The remainder of the paper is structured as follows. The next section provides a

brief introduction of the framework of continuous ID. Subsequently, in Sect. 3, we
explain the relationship between continuous ID and central results from the statisti-
cal discipline of extreme value theory. Using the theory, in Sect. 4 we propose and
analyze several estimators of continuous ID, using maximum likelihood estimation
(MLE, which yields the Hill estimator), the method of moments (MoM), probabil-
ity weighted moments (PWM), and regularly varying functions (RV). In Sect. 5 we
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present our experimental study, and discuss the practical performance of our proposed
estimators. We conclude the paper in Sect. 7 with a discussion of potential future
applications.

2 Continuous intrinsic dimension

In this section, we survey local intrinsic dimensionality (LID), an extension of a
well-studied model of intrinsic dimensionality to continuous distributions of distances
proposed in Houle (2013). LID aims to quantify the local ID of a feature space exclu-
sively in terms of the distribution of inter-point distances. Formally, let (Rm, dist) be
a domain equipped with a non-negative distance function dist. Let us consider the dis-
tribution of distances within the domain with respect to some fixed point of reference.
We model this distribution in terms of a random variable X with support [0,∞). X is
said to have probability density fX, where fX is a non-negative Lebesgue-integrable
function, if and only if

Pr[a ≤ X ≤ b] =
∫ b

a
fX(x) dx,

for any a, b ∈ [0,∞) such that a ≤ b. The corresponding cumulative density function
FX is canonically defined as

FX(x) = Pr[X ≤ x] =
∫ x

0
fX(u) du.

Accordingly, whenever X is absolutely continuous at x , FX is differentiable at x and
its first-order derivative is fX(x). For such settings, the local intrinsic dimension is
defined as follows.

Definition 1 (Houle 2013) Given an absolutely continuous random distance variable
X, for any distance threshold x such that FX(x) > 0, the local continuous intrinsic
dimension of X at distance x is given by

IDX(x) � limε→0+
ln FX ((1 + ε)x) − ln FX(x)

ln(1 + ε)
,

wherever the limit exists.

With respect to the generalized expansion dimension (Houle et al. 2012a), a pre-
cursor of LID, the above definition of IDX(x) is the outcome of a dimensional test of
neighborhoods of radii x and (1 + ε)x in which the neighborhood cardinalities are
replaced by the expected number of neighbors. LID also turns out to be equivalent
to a formulation of the (lack of) discriminative power of a distance measure, as both
formulations have the same closed form:

123



Extreme-value-theoretic estimation of local intrinsic... 1773

Theorem 1 (Houle 2013)LetX be an absolutely continuous randomdistance variable.
If FX is both positive and differentiable at x, then

IDX(x) = x fX(x)

FX(x)
.

Local ID has potential for wide application thanks to its very general treatment of
distances as continuous random variable. Direct estimation of IDX, however, requires
the knowledge of the distribution of X. Extreme value theory, which we survey in the
following section, allows the estimation of the limit of IDX(x) as x tends to 0 without
any explicit assumptions of the data distribution other than continuity.

3 Extreme value theory

Extreme value theory is concerned with the modeling of what can be regarded as the
extreme behavior of stochastic processes. It has seen applications in areas such as
civil engineering (Harris 2001), operations research (Tryon and Cruse 2000; McNulty
et al. 2000; Dahan and Mendelson 2001), risk assessment (Lavenda and Cipollone
2000),material sciences (Grimshaw1993), bioinformatics (Roberts 2000), geophysics
(Lavenda and Cipollone 2000), and multimedia (Furon and Jégou 2013).

We begin the introduction of extreme value theory with the following definition.

Definition 2 Let μ, ξ ∈ R and σ > 0. The family of generalized extreme value
distributions FGEV covers distributions whose cumulative distribution functions have
the form

FGEV =
⎧⎨
⎩
exp

(
− [

1 + ξ
( x−μ

σ

)]− 1
ξ

)
if ξ �= 0

exp
(−exp

(− x−μ
σ

))
if ξ = 0

⎫⎬
⎭ .

A distribution G ∈ FGEV has support supp(G) = [μ − σ
ξ
,∞) whenever ξ > 0 and

supp(G) = (−∞, μ − σ
ξ
] when ξ < 0. If ξ = 0, the support covers the complete real

line.

Its best known theorem, attributed in parts to Fisher and Tippett (1928), and
Gnedenko (1943), states that the maximum of n independent identically-distributed
random variables (after proper renormalization) converges in distribution to a gener-
alized extreme value distribution as n goes to infinity.

Theorem 2 (Fisher–Tippet–Gnedenko) Let (Xi )i∈N be a sequence of independent
identically-distributed random variables and let Mn = max1≤i≤n Xi . If there exist
a sequence of positive constants (ai )i∈N, and a sequence of constants (bi )i∈N, such
that

lim
n→∞ Pr

[
Mn − bn

an
≤ x

]
= F(x),
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for any x ∈ [0, 1], where F is a non-degenerate distribution function, then F ∈ FGEV.

Extreme value theory mainly draws its power from two major results due to Fisher,
Tippett and Gnedenko, as well as Balkema, de Haan and Pickands (Fisher and Tippett
1928; Gnedenko 1943; Balkema and De Haan 1974; Pickands 1975). Consider the
following parametric family of distributions. This theorem is useful when observing
several samples, each containing N occurrences, to estimate the distribution of the
sample maxima. However, in our setting, we have only one sample; we are not inter-
ested in its extremum, but only in the n > 1 extreme values. For this reason, we switch
to two alternative approaches to modeling extremal behavior which are more suitable
to our application: threshold excesses, and regularly-varying functions.

3.1 Threshold excesses

Consider the following two definitions.

Definition 3 Let ξ ∈ R and σ > 0. The family of generalized Pareto distributions
FGPD is defined by its cumulative distribution function

FGPD =
⎧⎨
⎩ 1 −

(
1 + ξ x

σ

)− 1
ξ
if ξ �= 0

1 −e− x
σ if ξ = 0

⎫⎬
⎭ .

Every distribution G ∈ FGPD has support supp(G) = (max{0,−σ
ξ
},∞).

Definition 4 LetX be a random variable whose distribution FX has the upper endpoint
x+ ∈ R ∪ {∞}. Given w < x+, the conditional excess distribution FX,w of X is the
distribution of X − w conditioned on the event X > w:

FX,w(x) = FX(w + x) − FX(w)

1 − FX(w)
.

We are now in a position to introduce a powerful theorem due to Balkema and
De Haan (1974), Pickands (1975), which can be regarded as the counterpart to the
central limit theorem for extremal statistics.

Theorem 3 (Pickands–Balkema–de Haan) Let (Xi )i∈N be a sequence of independent
random variables with identical distribution function FX satisfying the conditions of
the Fisher-Tippett-Gnedenko Theorem. As w → x+, FX,w(x) converges to a distribu-
tion in FGPD.

In the followingwedemonstrate a direct relationbetween local IDand extremevalue
theory, which arises as an implication of Theorem 3. Note that any choice of distance
thresholdw corresponds to a neighborhood of radiusw based at the reference point, or
equivalently, to the tail of the distribution of distances on [0, w). As discussed in Coles
et al. (2001), Theorem 3 also applies to lower tails: one can reason about minima using
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the transformation Y = −X. The distribution of the excess Y − (−w) (conditioned
on Y > −w) then tends to a distribution in FGPD, as w tends to the lower endpoint of
FX located at zero (Nett 2014). Accordingly, as w tends to zero, the distribution in the
tail [0, w) can be restated as follows Coles et al. (2001).

Lemma 1 Let X be an absolutely continuous random distance variable with support
[0,∞) and cumulative distribution function FX such that FX(x) > 0 if x > 0. Let
c ∈ (0, 1) be an arbitrary constant. Let w > 0 be a distance threshold, and consider
x restricted to the range [cw,w). As w tends to zero, the distribution of X restricted
to the tail [cw,w) satisfies, for some fixed ξ < 0,

(x/w)
− 1

ξ

FX,w(x)
→ 1.

Note that the distribution of excess distance w − X is bounded from above by w

which, according to Coles et al. (2001), enforces that ξ < 0.

Proof Consider the distribution of threshold excessw−XwithX restricted to [cw,w).
According to Theorem 3, w − X asymptotically follows a generalized Pareto distri-
bution:

Pr[w − X ≤ y] → 1 −
(
1 + ξ y

σ

)− 1
ξ

,

with σ > 0 and ξ < 0, so that

Pr[X ≤ w − y] →
(
1 + ξ y

σ

)− 1
ξ

.

Since a distance x corresponds to a threshold excess of w − y,

FX,w(x) = Pr[X ≤ x] →
(
1 + ξ(w − x)

σ

)− 1
ξ

.

We see that FX,w(0) = 0 holds if and only if

(
1 + ξ(w − x)

σ

)− 1
ξ = 0,

implying that σ = −ξw. With this additional constraint, the distribution of distances
in the tail [cw,w) simplifies to

(x/w)
− 1

ξ

FX,w(x)
→ 1.

�	
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To summarize, whenever Theorem3 applies to a distance variableX, the cumulative
distribution of distances within a radius-w neighborhood is asymptotically determined
by a single parameter ξ < 0. We can prove the following statement concerning
LID.

Theorem 4 LetX be an absolutely continuous random distance variable with support
[0,∞), satisfying the conditions of Theorem 3, and w > 0 be a distance threshold.
Then, as w tends to zero,

IDX(w) → −1

ξ
=: IDX.

Proof (Sketch only. For a more detailed and rigorous treatment, see Houle 2015.)
Lemma 1 states that under the conditions of Theorem 4, the cumulative excess distri-
bution FX,w follows

(x/w)
− 1

ξ

FX,w(x)
→ 1

as the threshold w approaches zero. The probability density fX,w in the tail of the
distribution is obtained by taking the derivative with respect to x :

fX,w(x) ≈ ∂

∂x

( x

w

)− 1
ξ = − 1

ξw

( x

w

)− 1
ξ
−1

.

This formulation relies on the smoothness properties of slowly varying functions (c.f.
Sect. 3.2 and Bingham et al. 1989).

Applying Theorem 1 gives

IDX(x) ≈ x · fX,w(x)

FX,w(x)
→ −1

ξ
.

�	
Note that together Lemma 1 and Theorem 4 allow us to restate the asymptotic

cumulative distribution of distances in the tail [cw,w) as

(x/w)IDX

FX,w(x)
→ 1. (1)

3.2 Regularly-varying functions

The Fisher-Tippett-Gnedenko Theorem and the Pickands-Balkema-de Haan Theorem
have been shown to be equivalent to a third characterization of the tail behavior, in
terms of regularly-varying (RV) functions. The asymptotic cumulative distribution of
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X in the tail [0, w) can be expressed as FX(x) = xκ�X(1/x), where �X is differentiable
and slowly varying; that is, for all c > 0, �X satisfies

lim
t→∞

�X(ct)

�X(t)
= 1.

FX restricted to [0, w) is itself said to be regularly varying with index κ . In particular,
a cumulative distribution F ∈ FGEV has ξ < 0 if and only if F is RV and has a finite
endpoint. Note that the slowly-varying component �X(1/x) of FX is not necessarily
constant as x tends to zero. For a detailed account of RV functions, we refer the reader
to Bingham et al. (1989).

The following corollary is a straightforward extension of the examples given in
Sect. 2.

Corollary 1 Let X be a random distance variable restricted to [0, w) with distribution
FX(x) = xκ�X(1/x). As w tends to zero, the index κ converges to IDX.

Proof The probability density function associated with FX is

fX(x) = κxκ−1�X(1/x) − xκ−2�′
X(1/x).

From Theorem 1, we have

IDX(x) = x fX(x)

FX(x)
= κ − 1

x

�′
X(1/x)

�X(1/x)
.

The slowly varying property of �X ensures that

lim
x→0

1

x

�′
X(1/x)

�X(1/x)
= 0.

Therefore, the index κ converges to IDX as w tends to zero. �	
The following section is concerned with deriving estimators of the intrinsic dimen-

sion based on the asymptotic distribution of distances within neighborhoods stated in
Eq. 1.

4 Estimation

This section is concerned with practical methods for the estimation of the local intrin-
sic dimension of a random distance variable X. In particular, we adapt known GPD
parameter estimators such as the maximum-likelihood estimator (in Sect. 4.1) and
moment based estimators (in Sects. 4.2, 4.3 ), and propose a new family of estimators
based on regularly varying functions (in Sect. 4.4).

For the remainder of this discussion, we assume that we are given a distance thresh-
oldw > 0 and a sequence x1, . . . , xk of independent observations of a randomdistance
variable X with support [0, w). Without loss of generality, we assume that the obser-
vations are given in ascending order—that is, x1 ≤ x2 ≤ · · · ≤ xk .
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4.1 Maximum likelihood estimation

Maximization of the likelihood function is one of the most widely used parameter
estimation techniques in statistics. TheMaximumLikelihood Estimator (MLE) has no
optimality guarantees for finite samples, but has the advantage of being asymptotically
consistent, optimal, and efficient (in that it achieves the Cramer-Rao bound).

Definition 5 Given a random variable X with parameter θ , the likelihood of θ as a
function of observations x1, x2, . . . , xk is defined as

L(θ | x1, . . . , xk) =
k∏

i=1

f (xi | θ) .

Note that θ can be multivariate. In the case of our study, we are interested in a single
parameter of the distribution, namely the shape parameter ξ of the distribution of X .

Maximizing the likelihood function is mathematically equivalent to maximizing
its logarithm. It is often more convenient to work with the ‘log-likelihood’ function
defined as follows:

Definition 6 Given a random variable X with parameter θ , the log-likelihood of θ as
a function of observations x1, x2, . . . , xk is defined as

L(θ | x1, . . . , xk) = ln L(θ | x1, . . . , xk).

Definition 7 Given a random variable X with parameter θ , and a set of observations
x1, x2, . . . , xk , the Maximum Likelihood Estimator (MLE) of θ is the value for which
L(θ | x1, . . . , xk) is maximized:

θ̂ = argmax
θ

L(θ | x1, . . . , xk) = argmax
θ

L(θ | x1, . . . , xk).

For convenience, when the sample x1, x2, . . . , xk is understood, we will denote the
likelihood and log-likelihood of θ by L(θ) and L(θ), respectively.

By differentiating the asymptotic expression of the distance distribution given in
Eq. 1, we obtain the associated probability density function fX,w:

fX,w(x) = FX,w(w) IDX

w

( x

w

)IDX−1
.

Then, for a given sample of neighborhood distances x1, x2, . . . , xk , we see that the
log-likelihood of IDX is given by
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L(IDX) = ln

[
k∏

i=1

fX,w(xi )

]

= ln

[
k∏

i=1

FX,w(w) IDX

w

( xi
w

)IDX−1
]

= k ln
FX,w(w)

w
+ k ln IDX + (IDX − 1)

k∑
i=1

ln
xi
w

.

The first- and second-order derivatives of the log-likelihood function are respec-
tively

L′(IDX) = k

IDX
+

∑k

i=1
ln

xi
w

and L′′(IDX) = − k

ID2
X

.

Accordingly, the maximum-likelihood estimate ÎDX is

ÎDX = −
(
1

k

∑k

i=1
ln

xi
w

)−1

,

which follows the form of the well-known Hill estimator for the scaling exponent of
a power-law tail distribution (Hill 1975).

The variance is asymptotically given by the inverse of the Fisher information,
defined as

I = E

[
−∂2L(IDX)

∂ ID2
X

]
= k

ID2
X

,

where E[·] denotes the expectation. Therefore, if the number of samples k is sufficiently
large, we have ÎDX ∼ N(IDX, ID2

X/ k). Accordingly, with probability 1−β, a sample
of k distances in [0, w) provides an estimate ÎDX lying within

IDX ± IDX√
k

Φ−1
(
1 − β

2

)
.

In other words, the 1 − β confidence interval is

[
ÎDX

1 + k−1/2Φ−1(1 − β/2)
,

ÎDX

1 − k−1/2Φ−1(1 − β/2)

]
.

4.2 Method of moments

For any choice of m ∈ N, the m-th order non-central moment μm of the random
distance X is
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μm = E
[
Xm] =

∫ w

x=0
xm fX(x) dx = wm IDX

IDX + m
.

Solving for the intrinsic dimension gives

IDX = −m
μm

μm − wm
= g

(μm

wm

)
,

with g(x) = m x
1−x .When estimating the order-mmoment by its empirical counterpart

μ̂m = 1
k

∑k
i=1 x

m
i , we see that E[μ̂m] = μm and E[μ̂2

m] = (kμ2m + k(k − 1)μ2
m)k−2,

so that

Var[μ̂2
m] = μ2m − μ2

m

k
= w2mIDXm2

k(IDX + 2m)(IDX + m)2
.

Assuming the convergence of the empirical moments, the distribution of μ̂m
wm is there-

fore asymptotically normal, with

μ̂m

wm
∼ N

(
IDX

IDX + m
; IDXm2

k(IDX + 2m)(IDX + m)2

)
.

According to Rao (2009, Th. 6a2.9), if x ∼ N(μ; σ 2k−1) asymptotically, then
g(x) ∼ N(g(μ); σ 2k−1g′(μ)2), where g′ is the first-order derivative of g. There-
fore, asymptotically

ÎDX ∼ N
(
IDX; ID

2
X

k

(
1 + (m/IDX)2

ID2
X(1 + 2m/IDX)

))
.

This variance is monotonically increasing in m/IDX, which indicates that we should
use moments of small order m. When m/IDX tends to zero, the variance converges to
ID2

X/k, the variance of the maximum-likelihood estimator (see Sect. 4.1). Note that an
upper bound on IDX implies that the variance is bounded. In this case we can derive
confidence intervals similar to Sect. 4.1.

4.3 Probability-weightedmoments

General probability-weighted moments are defined as

νm,p,q = E
[
FX(X)m(1 − FX(X))pXq] .

We restrict here our attention to a subfamily: for any choice of m ∈ N, νm is defined
as

νm � E
[
FX(X)mX

] =
∫ w

x=0
FX(x)mx fX(x) dx = IDX w

IDX m + IDX + 1
;
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solving for the intrinsic dimension yields

IDX = νm

w − νm(m + 1)
= h

(νm

w

)
, where h(x) = x

1 − (m + 1)x
.

According to Hosking andWallis (1987) and Landwehr et al. (1979), a commonly-
used estimator of the m-th probability-weighted moment of this form is

ν̂m = 1

k

k∑
i=1

(
i − 0.35

k

)m

xi .

Analogously to the previous section, we can show that this estimator has variance

Var[ν̂m] = IDX w2

(IDX m + IDX + 1)(2 IDX m + IDX + 2)
.

Similarly, we find that asymptotically

ÎDX ∼ N
(
IDX; ID

2
X

k

(
1 + (IDXm + 1)2

IDX(2IDXm + IDX + 2)

))
.

For m = 0, the variance is equivalent to that of the moment-based estimator with
m = 1 (see Sect. 4.2). Since the variance increases monotonically with m for any
fixed IDX, the use of lower-order probability-weighted moments is advisable.

4.4 Estimation using regularly varying functions

In this section we introduce an ad hoc estimator for the intrinsic dimensionality based
on the characterization of distribution tails as regularly varying functions (as discussed
in Sect. 3). Consider the empirical distribution function F̂X, defined as

F̂X(x) = 1

k

∑k

j=1
�x j < x�,

where �ϕ� refers to the Iverson bracket, which evaluates to 1 if ϕ is true, and 0
otherwise. We propose the following estimator for the index κ of FX.

Definition 8 Let X be an absolutely continuous random distance variable restricted to
[0, w). The local intrinsic dimension IDX can be estimated as

ÎDX = κ̂ =
∑J

j=1 α j ln
[
F̂X((1 + τ jδk)xk)/F̂X(xk)

]
∑J

j=1 α j ln(1 + τ jδk)
,

under the assumption that xk, δk → 0 as n → ∞, where (α j )1≤ j≤J and (τ j )1≤ j≤J

are sequences.
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We will refer to this family of estimators as RV, for ‘regularly varying’. Note that
since RV estimators involve only the products τ jδk for 1 ≤ j ≤ J , we may assume
without loss of generality that τ1 + · · · + τJ = 1. The estimators are based on the
observation that, for all 1 ≤ j ≤ J ,

ln
[
FX((1 + τ jδk)xk)/FX(xk)

]
= κ ln(1 + τ jδk) + ln

[
�X((1 + τ jδk)xk)/�X(xk)

]
� κ ln(1 + τ jδk).

The RV family covers several of the known local estimators of intrinsic dimension-
ality. For the parameter choices J = 1 and ε = τδk , the RV estimator reduces to the
GED formulation proposed in Houle et al. (2012a):

ÎDX =
ln

[
F̂X((1 + ε)xk)/F̂X(xk)

]

ln(1 + ε)
.

By setting ε = 1, Karger & Ruhl’s expansion dimension is obtained, while by setting
xk as the distance to the k-nearest neighbor and ε such as (1+ ε)xk as the distance to
the nearest neighbor, we find a special case of the MiND family (MiNDml1) (Rozza
et al. 2012).

Alternatively, by setting J = k, αi = 1 for all i ∈ [1..k], and choosing the vector
τ such that 1 + τiδk = xi

xk
, the RV estimator becomes

ÎDX =
∑k

j=1 ln [ j/k]∑k
j=1 ln

[
x j/xk

] ≈ ln
√
2πk − k∑k

j=1 ln
[
x j/xk

] .

As k → ∞, this converges to the MLE (Hill) estimator presented in Sect. 4.1, with
w = xk .

We now turn our attention to an analysis of the variation of RV estimators. First, we
introduce an auxiliary function which drives the speed of convergence of the estimator
proposed in Definition 8. For x ∈ R let εX(x) be defined as

εX(x) �
x�′

X(x)

�X(x)
.

In Alves et al. (2003b, a), the auxiliary function is assumed to be regularly varying,
and the estimation of the corresponding regular variation index is addressed. Within
this article, so as to prove the following results, we limit ourselves to the assumption
that εX is ultimately non-increasing.

Theorem 5 LetX be a random distance variable over [0, w)with distribution function
FX(x) = xκ�X(1/x), and let τmax � max1≤ j≤J τ j . Furthermore, let δk, xk → 0 so
that k FX(xk)δk → ∞ and

√
kFX(xk)δkεX(1/[(1+τmaxδk)xk]) → 0 as k approaches
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infinity. If the auxiliary function εX is ultimately non-increasing, then
√
kFX(xk)δk ·

[IDX − ÎDX] converges to a centered Gaussian with variance

IDXVα,τ = IDX
α�Sα(
α�τ

)2 ,

where Sa,b = (|τa | ∧ |τb|)�τaτb > 0� for (a, b) ∈ {1, . . . , J }2. (A ∧ B denotes the
minimum of A and B.)

Note that the requirement kFX(xk)δk → ∞ can be interpreted as a necessary and
sufficient condition for the almost sure presence of at least one distance sample in the
interval [xk, (1 + τ jδk)xk)]. In addition, the condition

√
kFX(xk)δkεX(1/[rk(1 + τmaxδk)]) → 0

enforces that the approximation bias εX(1/[(1 + δk)xk]) is negligible compared to
the standard deviation of the estimate, 1/

√
kFX(xk)δk . We continue the analysis by

proposing choices of α that minimize the variance in Theorem 5.

Lemma 2 The weight vector α = (α1, . . . , αJ )
� minimizing Vα,τ is proportional

to α0 = S−1τ = (1, 0, . . . , 0)�, and the associated optimal variance is given by

V0(τ ) = (
τ�S−1τ

)−1
.

Proof The maximum of the Rayleigh functional α�ττ�α
(
α�Sα

)−1
is known to be

attained when α is proportional to the eigenvector associated with the largest eigen-
value of S−1ττ�. Since S−1ττ� is a rank-one matrix, the eigenvector corresponding
to the unique non-zero eigenvalue is S−1τ . Without any loss of generality, we permute
the entries of the vector τ such that τa < τb for all a < b. Asymptotically, we have
0 < τ1 < · · · < τJ . Noting that the first column of the matrix S is (τ1, τ2, . . . , τJ )

�,
we can infer that the vector (1, 0, . . . , 0)� is a solution of the equation S.α0 = τ .
Since S is invertible, the solution α0 must be unique. We therefore conclude that
α0 = (1, 0, . . . , 0)�. �	

For the case J = 1, we see that τ = (1)� and V0(1) = 1. This indicates that the
GED minimizes the variance of estimation. However, different choices can be made
regarding the weight vector τ and regarding the criterion to use in order to optimize
the choice of α. Minimizing variance is one choice explored in this paper, but other
criteria can be used. In general, however, the following confidence interval holds for
RV estimators:

Lemma 3 Let β ∈ (0, 1), and assume that the assumptions of Theorem 5 hold with
α = S−1τ . Let uβ = Φ−1((1+β)/2), whereΦ is the cumulative distribution function
of the standard Gaussian distribution. Then

IDX ± uβ

(
kδkV0(τ )ÎDX F̂X(xk)

)−1/2

are the boundaries of the asymptotic confidence interval of level β for ÎDX.
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Proof Lemma 3 is a direct consequence of the asymptotic distribution established in
Theorem 5 and the convergence of F̂X(xk) to FX(xk) as k → ∞. �	

5 Experimental framework

As part of our evaluation of our estimators of local intrinsic dimension, we investigate
their performance (as well as those of competing estimators) on a series of data distri-
butions, both real and artificially generated.While trials involving real application data
are primarily of practical interest, the study of artificial data allows to systematically
assess the ability of the individual methods to identify data dimensionality.

5.1 Methods

Themethods used in this study includeMLE,MoM,PWM, andRV. For all estimators,
the neighborhood size is set to k = 100. The RV estimators are evaluated for the
choices J = 1 and J = 2, as follows:

ÎDRV =
⎧⎨
⎩

ln k−ln(k/2)
ln xk−ln x�k/2� , if J = 1

ln(k/ j)−(p−1) ln(i/ j)
ln xk/x j+(p−1) ln xi /x j

, if J = 2,

where p = (xi − 2x j + xk)/(xk − x j ), i = �k/2�, and j = �3k/4�. Note that the
estimator RV for J = 1 is a form of generalized expansion dimension (GED) (Houle
et al. 2012a). For every dataset, we report the average of ID estimates across all the
points in the dataset. All estimators in our study can be computed in time linear in the
number of sample points.

Our experimental framework includes several state-of-the-art estimators of intrin-
sic dimensionality, both local and global. The global estimators consist of a projection
method (PCA), fractal methods (CD Camastra and Vinciarelli 2002; Hein and Audib-
ert 2005; Takens 1985), and graph-based methods (kNNG1, kNNG2 Costa and Hero
2004). The local distance-based estimators are MiNDml1 and MiNDmli (Rozza et al.
2012). Table 1 summarizes the parameter choices for every method, except for the
fractal methods, which do not involve any parameter.

The MiND variants makes more restrictive assumptions than our methods: they
assume the data to be uniformly distributed on a hypersphere, with a locally isometric
smooth map between the hypersphere and the representational space. MiND uses only
the two extreme samples (smallest and largest), and requires knowledge of the dimen-
sion of the space (D). In contrast, our approach assumes only that the nearest neighbor
distances are in the lower tail of the distance distribution, where EVT estimation can
be performed.

5.2 Artificial distance distributions

In the followingwepropose a set of experiments concerning artificial data, anddescribe
the method employed for the generation of test data.

123



Extreme-value-theoretic estimation of local intrinsic... 1785

Table 1 Parameter choices used
in the experiments

Method Parameters

CD None

Hein None

kNNG1 k = 100, γ = 1, M = 1, N = 10

kNNG2 k = 100, γ = 1, M = 10, N = 1

MiNDml1 None

MiNDmli k = 100

PCA Threshold = 0.025

Takens None

GED k = 100, J = 1

MLE k = 100

MoM k = 100

PWM k = 100

RV k = 100, J = 2

First, consider a point P drawn uniformly at random fromwithin the d-dimensional
unit sphere, for some choice of d ∈ N. According to the method of normal variates,
we define P = Z1/dY‖Y‖−1, where Z is uniformly distributed on [0, 1], and Y is a
random vector in R

d whose coefficients follow the standard normal distribution. The
distance of P, with respect to our choice of reference point at location 0 ∈ R

d , is
distributed as follows:

X = ‖Z1/dY‖
‖Y‖ = Z1/d .

Note that, bymeasuringLIDpurely based on distance valueswith respect to a reference
point, themodel does not require that the data have anunderlying spatial representation.
As such, non-integer values of d ∈ R can be selected for the generation of distances,
if desired.

For choices ofd ∈ {1, 2, 4, 8, 16, 32, 64, 128}, we draw100 independent sequences
of sample distance values from the distribution described above, and record the esti-
mates produced by each of our methods for sample sizes n between 10 and 104.

5.3 Artificial data

The datasets used in our experiments have been proposed in Rozza et al. (2012).
They consist of 15 manifolds of various stuctures and intrinsic dimensionalities (d)
represented in spaces of different dimensions (D). They are summarized in Table 2.

These datasets were generated in different sizes (103, 104, and 105 points) in order
to evaluate the effect of the number of points on the quality of the different estimators.
For each dataset and for each of the three sizes, we average the estimates over 20
instances.
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Table 2 Artificial datasets used in the experiments

Manifold d D Description

1 10 11 Uniformly sampled sphere

2 3 5 Affine space

3 4 6 Concentrated figure confusable with a 3d one

4 4 8 Non-linear manifold

5 2 3 2-d Helix

6 6 36 Non-linear manifold

7 2 3 Swiss-Roll

8 12 72 Non-linear manifold

9 20 20 Affine space

10a 10 11 Uniformly sampled hypercube

10b 17 18 Uniformly sampled hypercube

10c 24 25 Uniformly sampled hypercube

11 2 3 Möbius band 10-times twisted

12 20 20 Isotropic multivariate Gaussian

13 1 13 Curve

In order to evaluate the robustness of the estimators, we also prepared versions of
these datasets with noise added. For each attribute f , we added normally-distributed
noise with mean equal to zero and standard deviation σn = p · σ f where σ f is
the standard deviation of the attribute itself, and p ∈ {0.01, 0.04, 0.16, 0.64}. For
attributes with σ f = 0, the noise was generated with standard deviation σn = p · σ ∗

f
where σ ∗

f is the minimum of the nonzero standard deviations over all attributes.

5.4 Real data

Not only can a reliable estimation of ID greatly benefit the practical performance
of many applications (Karger and Ruhl 2002; Beygelzimer et al. 2006; Houle et al.
2012b), it also serves as a characterization of high-dimensional datasets and the poten-
tial problems associated with their use in practice. To this end, we investigate the
distribution of LID estimates on the following datasets, each taken from a real-world
application scenario.

– The ALOI (Amsterdam Library of Object Images) data set contains a total
of 110,250 color photos of 1000 different objects taken from varying view-
points under various illumination conditions. Each image is described by a
641-dimensional vector of color and texture features (Boujemaa et al. 2001).

– The ANN_SIFT1B dataset consists of one billion 128-dimensional SIFT descrip-
tors randomly selected from the dataset ANN_SIFT, consisting of 2.8×1010 SIFT
descriptors extracted from 3 × 107 images. These sets have been created for the
evaluation of nearest-neighbor search strategies at very large scales (Jégou et al.
2011).
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Algorithm 1: NN-Descent
input : dataset D, distance function dist, neighborhood size k
output: k-NN graph G

1 foreach data point q ∈ D do
2 Initialize G by randomly generating a tentative k-NN list for q with an assigned distance of +∞;
3 Compute the RNN (reverse nearest neighbor) lists for q.
4 end
5 repeat
6 foreach data point q ∈ D do
7 Check different pairs of q’s neighbors (u, v) in q’s k-NN and RNN lists, and compute

dist(u, v);
8 Use 〈u, dist(u, v)〉 to update v’s k-NN list, and use 〈v, dist(u, v)〉 to update u’s k-NN list;
9 end

10 until G converges;
11 Return G.

– BCI5 (Millán 2004) is a brain-computer interface dataset in which the classes
correspond to brainwave readings taken while the subject contemplated one of
three different actions (movement of the right hand, movement of the left hand,
and the subvocalization of words beginning with the same letter).

– Gisette (Guyon et al. 2004) is a subset of the MNIST handwritten digit image
dataset (LeCun et al. 1998), consisting of 50-by-50-pixel images of the highly
confusable digits ’4’ and ’9’. 2500 random features were artificially generated
and added to the original 2500 features, so as to embed the data into a higher-
dimensional feature space. As the dataset was created for the NIPS 2003 feature
selection challenge, the precise generation mechanism of the random features was
not made public.

– Isolet (Cole and Fanty 1990) is a set of 7797 human voice recordings in which
150 subjects recite each of the 26 letters of the alphabet twice. Each entry consists
of 617 features representing selected utterances of the recording.

– The MNIST database (LeCun et al. 1998) contains of 70,000 recordings of hand-
written digits. The images have been normalized and discretized to a 28×28-pixel
grid. The gray-scale values of the resulting 784 pixels are used to form the feature
vectors.

5.5 Approximate nearest neighbors

For many datasets, various approximate nearest neighbor (ANN) methods can gen-
erate neighborhood sets much faster than would be possible using an exact indexing
method. As a rule, with ANN indexing methods it is possible to influence the trade-
off between accuracy and time complexity by means of parameter choices at query
time, design choices at construction time, or both. However, the use of approximate
neighborhood information can lead to a degradation in the quality of data statistics
that rely on it. In particular, the question arises as to how the quality of LID estimators
are affected when applied to distance samples generated from approximate neighbor-
hoods of diminishing accuracy. In this part of the experimental study, we investigate
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the relationship between the accuracy of neighborhood sets and the accuracy of LID
estimates. Here, accuracy is measured as the proportion of distance samples in the
exact neighborhood that also appear in the approximate neighborhood under con-
sideration. Under the assumption that the exact and approximate neighborhoods all
have the same size k, this notion of accuracy coincides with those of both recall and
precision.

For any given dataset, we can generate approximate k-NN sets with carefully con-
trolled levels of accuracy, through the sparsification of exact neighbor sets of size
greater than k. The sparsification is done in two steps. In the first step, we randomly
select a proportion of the exact k nearest neighbors at the desired level of accuracy. In
the second step, we complete the new approximate list with nearest neighbors drawn
from outside the exact k-NN list, in a way that the selection rate matches the accuracy.
More precisely, let r be the target level of accuracy, expressed as a proportion between
0 and 1. Initially, the approximate neighborhood distance sample is constructed by
randomly selecting �rk� elements of the approximate neighborhood (without replace-
ment) from among the first k elements in the exact k-NN set. Next, an additional
k−�rk� elements are randomly selected from among those ranked between k+1 and
K = �k/r� in the exact K -NN set, and add their distances to the sample. With this
choice of K , the accuracy of the approximate k-NN query result is almost identical to
that of the K -NN query result:

– for neighbors ranked between 1 and �rk�, the accuracy is �rk�/k, where

r ·
(
1 − 1

k

)
<

�rk�
k

≤ r ,

– for neighbors ranked between 1 and �k/r�, the accuracy is k/�k/r�, where

r ·
(
1 − 1

k + 1

)
<

k

�k/r� ≤ r .

As k increases, these upper and lower bounds converge to r .
In our experiments, to observe the effect of using ANN on LID values, we use

MLE estimation with k = 100. The accuracy r is chosen from the range 0.5 to 1.0,
since for these values, the maximum size of the exact neighborhoods required for the
experimentation is a manageable 2k = 200.

5.6 Nearest neighbor descent

The computational and storage costs associated with the construction of an exact k-
nearest neighbor graph (similarity graph) is a limitation in many machine learning
algorithms. Particularly in high-dimensional settings, the cost of generating all exact
k-nearest neighbor lists can be quadratic in the number of data objects, which for
large datasets can be prohibitively high. Many approximation methods exist for the
construction of nearest neighbor (ANN) with computation costs much less than those
of exact methods, though at the expense of accuracy.
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We conducted an experiment to show that the process of obtaining the neigh-
borhoods necessary for LID estimation can be considerably accelerated using a
state-of-the-art ANN method, with little or no effect on LID estimates. From among
the many ANN algorithms available, we chose the state-of-the-art Nearest Neighbor
Descent (NN-Descent) (Dong et al. 2011) algorithm for our experimentation. The
NN-Descent algorithm is based on the assumption of transitivity of the similarity
measure—in other words, that two neighbors of a given data object are also likely to
be neighbors of one another. As shown in the pseudo-code description of Algorithm 1,
all points are initially associated with randomly built ‘k-NN lists’ which are then iter-
atively updated. At every iteration, a pivot element q is selected, and each possible
pair (u, v) of q’s neighbors is considered for mutual updates. If the distance dist(u, v)

is smaller than the distance to the last element in u’s k-NN list, then the list is updated
by inserting v in the appropriate location. The same test is applied to the k-NN list
of v. In addition, similar tests are applied to the reverse (inverted) k-NN list of q.
The algorithm converges when a pivot selection round completes without updates are
made to the k-NN lists. As recommended in the original paper 1, we modified the
convergence condition so as to terminate after a maximum of 7 rounds of the loop in
lines 5–10.

6 Experimental results

6.1 Artificial distance distributions

We begin our experimental study with an assessment—in terms of bias, variance, and
convergence—of the ability of each estimator to identify the ID of a sample of distance
values generated according to different choices of target ID. Note that for these trials,
the distributional model asserted in Lemma 1 holds everywhere on the range [0, w)

by construction (with w = 1).
Figure 1 shows the behavior of MLE, MoM, and RV (for choices of J = 1 and

J = 2, as stated in Sect. 5.1). The convergence to the target ID value observed in
every case empirically confirms the consistency of these estimators. Likewise, PWM
is consistent however, one should beware of PWM’s susceptibility to the effects of
numerical instability.

We also note that the RV estimator with J = 1 (GED)—which asymptotically
minimizes variance according to Lemma 2—is not the choice that minimizes variance
when the number of samples is limited. Faster initial convergence favors the choice
of MLE and MoM for applications where the number of available query-to-neighbor
distances is limited, or where time complexity is an issue.

6.2 Artificial data

In Tables 3 and 4, for each of the estimators considered in this study, we present ID
estimates for the artifical datasets, averaged over 20 runs each. It should be noted that
as PCA and MiNDmli estimates are restricted to integer values, their bias is lower
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Fig. 1 Comparison of the mean and standard deviation of LID estimates provided by MLE, MoM and
RV (for J = 1 and J = 2) on increasingly large samples drawn from artificially-generated distance
distributions. The results cover target dimensionality values between 1 and 128. The values are marked in
the corresponding plots. a ID = 1. b ID = 2. c ID = 4. d ID = 8. e ID = 16. f ID = 32. g ID = 64. h
ID = 128

for examples having integer ground-truth intrinsic dimension, especially when this
dimensionality is small. Also, unlike the other estimators tested,MiND estimators also
require that an upper bound on the ID be 4supplied (set to D in these experiments).
PCA requires a threshold parameter to be supplied, the value of which can greatly
influence the estimation.

The experimental results indicate that local estimators tend to over-estimate dimen-
sionality in the case of non-linear manifolds (sets m3, m4, m5, m6, m7, m8, m11 and
m13) and to under-estimate it in the case of linear manifolds (sets m1, m2, m9, m10a,
m10b, m10c and m12). The experimental results with higher sampling rates confirm
the reduction in bias that would be expectedwith smaller k-nearest-neighbor distances,
as the local manifold structure more closely approximates the tangent space.

For highly non-linear manifolds, such as the Swiss Roll (m7) or the Möbius band
(m11), global estimators have difficulty in identifying the intrinsic dimension. As
one might expect, the local estimators ID and MiND are more accurate for such cases.
Although high local curvature is reflected in the distance distribution, and consequently
the local dimensional estimates as well, the effect is much smaller than for global
estimators. With a higher sampling rate, k-nearest neighbor distances are diminished,
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and the curvature becomes locally less significant. The local manifold structure tends
to that of its tangent space, reducing the bias of local estimation. We also note that the
bias is proportional to the intrinsic dimensionality of the manifold. As dimensionality
increases, a higher sampling rate is required in order to reduce the bias.

To show the effects of noise on the estimators, we display in Tables 5, 6 and 7
for each method the deviation of every estimate in the presence of noise as a propor-
tion of the estimate obtained in the absence of noise. On the one hand, we note that
global methods, k-NNG in particular, are significantly affected by noise: their esti-
mates diverge very quickly as noise is being introduced. On the other hand, the local
estimators display more resistance to noise in the case of non-linear manifolds; among
the local estimators, our EVT estimators tend to outperform the MiND variants.

We note that the additive noise considered in this experiment does not drastically
impact the intrinsic dimensionality in the case of hypercubes. (sets m10a, m10b and
m10c). That explains why PCA appears resistant to noise for the sets m10a, m10b
and m10c. However, noise in these manifolds may drive points far from their original
positions, which may explain the relatively high estimates obtained by local intrinsic
dimensionality estimators on these sets.

The robustness of local estimation is of great importance formany applications such
as search and outlier detection. The resistance to noise seems to be generally higher
in the case of manifolds of higher intrinsic dimensionality. It is important that our
estimates can be trusted on these complex manifolds where the concentration effect
is more important. In datasets of smaller intrinsic dimensionality, our noise model
raises the dimensionality agressively which does not happen very often in real world
situations.

6.3 Real data

Based on our experiments on synthetic data, we expect the performance of our pro-
posed estimators to be largely in agreement with one another. Accordingly, for clarity
of presentation, for the experimentation on real data, we show results only for the
MLE estimator.

For each of the datasets considered in this study, Fig. 2 illustrates the distribu-
tion of LID estimates based at reference points drawn from the data. Due to its
large size, for the ANN_SIFT1B dataset, the reference set was generated by select-
ing 104 items uniformly at random. For the other datasets, the entire dataset was used
as the reference set. We observe clear differences in the distribution of LID values
among the datasets; for example, the center and spread of the LID estimates for ALOI
are considerably lower than those obtained for the other datasets, whereas the LID
estimates for Gisette are clearly higher. More precisely, we observe mean values of
μALOI = 4.4, μANN_SIFT1B = 12.3, and μGisette = 49.4. with the corresponding
standard deviations of σALOI = 3.5, σANN_SIFT1B = 3.0, and σGisette = 12.4. It
should be noted that the measured ID within the neighborhoods that were tested is
far smaller than the dimension of the full feature spaces. By plotting the same data as
histograms in Fig. 3, we can furthermore see that the individual distributions of LID
values differ in kurtosis and skewness as well.
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Fig. 2 Plots of the distribution of LID values across each dataset. The LID values were obtained using the
MLE estimator on the size-100 neighborhoods of the individual reference points
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Fig. 3 Histograms of LID values across each dataset, obtained using the MLE estimator on the size-100
neighborhoods of the individual reference points

Figure 3 shows that the LID estimates for theGisette dataset are very high compared
to those of the other 5 sets. In particular, they are much higher than the LID values for
MNIST, the original data set from which Gisette was constructed. It is clear from the
LIDhistograms that the additionof artificial noise features inGisettedrastically inflates
the LID values in the dataset, revealing that the generation mechanism underlying
these noise features is very different from that of real-world datasets. Although this
generation mechanism was not revealed by the creators of Gisette, local intrinsic
dimension—as a measure of the subspace-filling capacity of the data—is capable of
differentiating between artificial noise and natural noise.

For the ANN_SIFT1B dataset, from among the points of interest highlighted in
the scatter plot in Fig. 2, A, B and C correspond to the objects for which the three
lowest LID values have been estimated (IDA ≈ 2.8, IDB ≈ 3.1, and IDC ≈ 2.4).
Likewise, the objects corresponding to D, E and F achieved the three greatest ID
values at IDD ≈ 31.5, IDE ≈ 30.1, and IDF ≈ 25.7. The object G has been chosen
as its associated dimensionality estimate (IDG ≈ 12.3) is closest to the mean. We
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Fig. 4 Distribution of IDMLE estimates and distance values across neighborhoods around the points of
interest. a Illustration of the distribution of k-nearest neighbor distances for k ∈ [1, 1000] with respect to 7
points of interest. b Distribution of LID estimates based on k-nearest neighbor sets for k ∈ [10, 1000] with
respect to 7 points of interest

subsequently investigated the distribution of distances in the neighborhoods of these
points so as to gain a better understanding of why the corresponding dimensionality
estimates take such low, high, or average values.

The most striking difference between the individual points of interest are the dis-
tances to their respective k-nearest neighbors. Figure 4a displays for each point of
interest the specific distribution of neighbor-distances for all values of k between 1
and 1000. Interestingly, the ID measured at the points of interest appears to be asso-
ciated with other properties of the respective objects. For example, distribution of
neighbor-distances for objects with high corresponding dimensionality (D, E and F)
indicate that these points are in some sense outliers. On the other hand, despite their
distance distributions being quite dissimilar, the LID values measured at A, B, and C
are nearly identical.

6.4 Approximate nearest neighbors

This set of experiments shows that using approximate neighbors reduces the overall
computation time of LID at the cost of an increase in bias. In an approximate k-
NN query result, only a certain proportion of the observed distance values (equal to
the accuracy of the result) correspond to distance values associated with members
of an exact k-NN result. The distances associated with the approximate result can
be regarded as having been generated by first sampling the dataset, and taking the
distance values associated with the exact k-NN set with respect to the sample. The
bias of the LID estimates for the approximate neighborhood can therefore be regarded
as the result of a sparsification of the available distance information.

The results presented in Tables 8 and 9 show that using distances drawn from
approximate neighborhoods does not lead to significant changes in estimated LID
values, provided that the accuracy of the neighborhoods is reasonably high. In fact,
for the datasets studied, the change in estimated LID values did not exceed 18% of the
ground truth intrinsic dimension in the worst case, even with a neighborhood accuracy
of 50%.
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Table 8 Average ID (MLE) estimates and their standard deviation for 1000-point manifolds using 100
approximate nearest neighbors with controlled recall

Dataset d D r = .5 r = .6 r = .7 r = .8 r = .9

m1 10 11 7.54 ± 0.62 7.73 ± 0.67 7.86 ± 0.72 7.93 ± 0.75 8.01 ± 0.77

m2 3 5 2.55 ± 0.31 2.60 ± 0.33 2.63 ± 0.34 2.64 ± 0.34 2.66 ± 0.35

m3 4 6 3.35 ± 0.68 3.43 ± 0.70 3.48 ± 0.71 3.50 ± 0.71 3.54 ± 0.72

m4 4 8 4.85 ± 1.10 4.87 ± 1.12 4.87 ± 1.12 4.82 ± 1.11 4.79 ± 1.10

m5 2 3 2.09 ± 0.30 2.04 ± 0.27 2.02 ± 0.25 2.00 ± 0.25 1.99 ± 0.24

m6 6 36 6.82 ± 1.18 6.94 ± 1.23 7.03 ± 1.28 7.03 ± 1.29 7.07 ± 1.30

m7 2 3 2.60 ± 0.54 2.58 ± 0.55 2.58 ± 0.55 2.54 ± 0.53 2.52 ± 0.51

m8 12 72 11.27 ± 1.44 11.62 ± 1.52 11.89 ± 1.59 12.00 ± 1.63 12.18 ± 1.67

m9 20 20 11.25 ± 0.91 11.64 ± 1.01 11.94 ± 1.09 12.08 ± 1.13 12.25 ± 1.17

m10a 10 11 6.95 ± 0.59 7.10 ± 0.64 7.22 ± 0.68 7.27 ± 0.71 7.34 ± 0.73

m10b 17 18 10.12 ± 0.83 10.44 ± 0.91 10.69 ± 0.98 10.80 ± 1.02 10.95 ± 1.05

m10c 24 25 12.70 ± 1.02 13.14 ± 1.13 13.48 ± 1.22 13.67 ± 1.27 13.88 ± 1.31

m11 2 3 2.14 ± 0.35 2.33 ± 0.42 2.45 ± 0.50 2.49 ± 0.54 2.51 ± 0.57

m12 20 20 11.08 ± 1.05 11.54 ± 1.15 11.88 ± 1.23 12.08 ± 1.27 12.32 ± 1.33

m13 1 13 1.91 ± 1.13 1.74 ± 1.02 1.63 ± 0.96 1.51 ± 0.89 1.42 ± 0.83

Table 9 Average ID (MLE) estimates and their standard deviation for 10,000-point manifolds using 100
approximate nearest neighbors with controlled recall

Dataset d D r = .5 r = .6 r = .7 r = .8 r = .9

m1 10 11 8.81 ± 0.75 8.90 ± 0.81 8.97 ± 0.85 8.97 ± 0.87 9.02 ± 0.89

m2 3 5 2.82 ± 0.31 2.85 ± 0.32 2.87 ± 0.33 2.86 ± 0.34 2.87 ± 0.34

m3 4 6 3.79 ± 0.70 3.83 ± 0.71 3.85 ± 0.71 3.84 ± 0.71 3.86 ± 0.71

m4 4 8 4.19 ± 0.68 4.16 ± 0.65 4.14 ± 0.63 4.09 ± 0.60 4.08 ± 0.58

m5 2 3 1.97 ± 0.20 1.98 ± 0.21 1.98 ± 0.21 1.98 ± 0.22 1.98 ± 0.22

m6 6 36 6.85 ± 1.21 6.82 ± 1.21 6.78 ± 1.21 6.71 ± 1.20 6.68 ± 1.19

m7 2 3 1.95 ± 0.22 1.96 ± 0.23 1.96 ± 0.23 1.96 ± 0.23 1.96 ± 0.23

m8 12 72 13.48 ± 1.80 13.60 ± 1.86 13.69 ± 1.92 13.66 ± 1.94 13.71 ± 1.96

m9 20 20 13.97 ± 1.19 14.16 ± 1.29 14.30 ± 1.36 14.32 ± 1.39 14.41 ± 1.42

m10a 10 11 8.00 ± 0.75 8.08 ± 0.80 8.15 ± 0.84 8.14 ± 0.86 8.19 ± 0.88

m10b 17 18 12.32 ± 1.06 12.47 ± 1.14 12.59 ± 1.20 12.60 ± 1.24 12.67 ± 1.26

m10c 24 25 16.02 ± 1.36 16.26 ± 1.47 16.44 ± 1.55 16.47 ± 1.59 16.59 ± 1.63

m11 2 3 2.02 ± 0.20 2.01 ± 0.21 2.01 ± 0.21 2.00 ± 0.21 2.00 ± 0.22

m12 20 20 14.72 ± 1.46 14.98 ± 1.55 15.18 ± 1.62 15.24 ± 1.66 15.37 ± 1.70

m13 1 13 1.03 ± 0.12 1.02 ± 0.11 1.02 ± 0.10 1.01 ± 0.10 1.01 ± 0.10

We observe that for each of the datasets, the observed bias is inversely proportional
to the neighborhood accuracy: a higher accuracy always corresponds to a lower bias,
although the relationship is not linear.We also observe that the sign of the bias depends
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on the curvature of the underlying manifolds within which the datasets are distributed.
This trend is clear even when only 1000 points were generated within the manifolds
(see Table 8). The bias is positive for the non-convex sets (m4, m5, m7, and m13). For
these sets of high curvature, distance sparsification has a proportionally greater effect
on the smaller distances, as compared to when the manifolds are linear. When the loss
of instances of smaller distance values is higher than for larger distance values, the
estimates of LID would be expected to rise.

It is important to note that estimation over neighborhoods of size 100 within a
dataset of size 1000 is not in line with the asymptotic assumptions of EVT, since the
neighborhood here can hardly be viewed as being derived from an extreme lower tail
of the underlying distribution. However, estimation over neighborhoods of size 100
within a dataset of size 10,000 would be expected to lead to more stable results, due
to the much smaller ratio of the neighborhood set size to the full dataset size. This is
borne out by the experimental results shown in Table 8, where it can be seen that the
approximation of neighborhood distance values has very little effect on the quality of
ID estimation.

For the artificial datasets, as a representative ANN method, NN-Descent achieves
extremely high accuracies while achieving useful speedups over sequential search
(especially for the larger datasets). As seen in Figs. 5 and 6, average accuracies range
between 99.9982 and 100%, while average execution costs range between 3 and 8
times faster than exact k-NN computation time for sets of 10,000 points, and between
15 and 41 times faster than exact k-NN computation time for sets of 100,000 points.
Under these conditions, the LID estimates for all artificial datasets included in this
experiment remain unchanged. For the datasets of size 1000 or less, the execution

Fig. 5 Execution time and accuracy of NN-Descent compared with exact nearest neighbors’ computation
for 20 runs on the 10,000-point datasets

Fig. 6 Execution time and accuracy of NN-Descent compared with exact nearest neighbors’ computation
for 20 runs on the 100,000-point datasets
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Table 10 Effect of using NN-descent

Dataset Exact NN NN-descent

Time (s) Time (s) Time prop. Accuracy

ALOI 85, 168 2558 0.030 0.999968

ANN_SIFT1B 2,020,520 13,305 0.007 0.945113

BCI5 1466 209 0.143 0.999995

Isolet 2523 590 0.234 1.000000

Gisette 230 111 0.486 0.999999

MNIST 50,211 2943 0.059 0.999960

cost of NN-Descent is dominated by the overheads associated with the underlying
data structures. However, as shown in Fig. 6 for datasets of 100,000 points, the benefit
of estimating LID with approximate neighborhoods quickly becomes apparent as the
dataset size rises.

For the real-world datasets, NN-Descent achieves very high accuracies as well,
while achieving important speedups over exact nearest neighbor computation.Average
accuracies in all cases were at least 94.5%, as can be seen from Table 10. On the small
datasets, NN-Descent accelerates the computation of nearest neighbors by no more
than a factor of 2. For these small datasets, the time gain is limited by the overheads in
maintaining the data structures required for NN-Descent. On the large datasets of this
study, approximate nearest neighbors are obtained in up to 151 times faster than exact
nearest neighbors. Due to the high accuracy of neighborhoods, LID estimates remain
essentially unchanged for all datasets except for ANN_SIFT1B, where they deviate by
only− 1.82% from their original values. For most machine learning applications, such
small changes in LID values would likely have little or no impact on the usefulness of
the estimates.

Through these experiments, we can conclude that the use of approximate nearest
neighbor computation allows LID estimation to be effectively applied at large scales.
LID estimation can therefore be a viable option even for those machine learning and
data mining applications where scalability is an important issue.

7 Conclusion

Our experimental results on synthetic data show that for all of the estimators of LID that
we propose, the estimation stabilizes for sample sizes on the order of 100. However,
for Theorem 3 to be applicable, onemust set a sufficiently small threshold on the lower
tail of the distribution, which may severely limit the number of samples falling within
the tail. Although there is a conflict between the accuracy of the estimator and the
validity of the model, this conflict is resolved as the size of the dataset scales upward;
it is in precisely such situations where the applications of ID have the most impact.

For situations where exact neighborhood information is impractical to compute, our
experimental results show that LID estimation is effective evenwhen only approximate
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neighborhood information is available. Consequently, learning machines that exploit
LID values need not suffer from the high computational cost associated with the
computation of exact neighborhoods.

Estimates of local ID constitute a measure of the complexity of data. Along with
other indicators such as contrast (Shaft and Ramakrishnan 2006), LID could give
researchers and practitioners more insight into the nature of their data, and therefore
help them improve the efficiency and efficacy of their applications. As a tool for
guiding learning processes, the proposed estimators could serve in many ways. Data
collected during the retrieval processes could be automatically filtered out as noise,
whenever they are associated with an unusually high ID value. In this way, the quality
of query results may be enhanced as well.

The performance of content-based retrieval systems is usually assessed in terms
of the precision and recall of queries on a ground truth dataset. However, in high-
dimensional settings it is often the case that some points are much less likely to appear
in a query result than others. Unlike LID, conventional measures of complexity or
performance do not account for this difficulty. LID has therefore the potential to aid
in the design of fair benchmarks that truly reflect the power of retrieval systems,
according to a sound, mathematically-grounded procedure.
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