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Abstract

Predictive process monitoring is concerned with the analysis of events produced during
the execution of a business process in order to predict as early as possible the final
outcome of an ongoing case. Traditionally, predictive process monitoring methods
are optimized with respect to accuracy. However, in environments where users make
decisions and take actions in response to the predictions they receive, it is equally
important to optimize the stability of the successive predictions made for each case.
To this end, this paper defines a notion of temporal stability for binary classification
tasks in predictive process monitoring and evaluates existing methods with respect
to both temporal stability and accuracy. We find that methods based on XGBoost
and LSTM neural networks exhibit the highest temporal stability. We then show that
temporal stability can be enhanced by hyperparameter-optimizing random forests and
XGBoost classifiers with respect to inter-run stability. Finally, we show that time series
smoothing techniques can further enhance temporal stability at the expense of slightly
lower accuracy.
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1 Introduction

Modern organizations generally execute their business processes on top of process-
aware information systems, such as enterprise resource planning (ERP) systems,
customer relationship management (CRM) systems, and business process manage-
ment systems (BPMS), among others (Dumas et al. 2013). These systems record a
range of events that occur during the execution of the processes they support, includ-
ing events signaling the creation and completion of business process instances (herein
called cases) and the start and completion of activities within each case.

Event records produced by process-aware information systems can be extracted and
pre-processed to produce business process event logs (van der Aalst 2016). A business
process event log consists of a set of fraces, each trace consisting of the sequence
of event records produced by one case. Each event record consists of a number of
attributes. Three of these attributes are present in every event record, namely the event
class (a.k.a. activity name) specifying which activity the event refers to, the timestamp
specifying when did the event occur, and the case id indicating which case of the
process generated this event. In other words, every event represents the occurrence of
an activity at a particular point in time and in the context of a given case. An event
record may carry additional attributes. These attributes may be categorical, numerical,
or textual. For example, in a sales process, an event corresponding to activity payment
could record the amount of the payment, the fype of payment (e.g., cash or by credit
card), and an error message containing the type of error in case of a failing credit
card transaction. Some attributes vary from one event to another. These are called
event-specific attributes (or event attributes for short). For example, in a sales process,
the amount of the payment is specific of activity payment. Other attributes, namely
case attributes, belong to the case and are hence shared by all events generated by
the same case. For example in a sales process, the customer identifier is likely to be a
case attribute. If so, this attribute will appear in every event of every case of the sales
process, and it will have the same value for all events generated by the same case.

Predictive process monitoring (Maggi et al. 2014) is a family of techniques that
use event logs to predict how an ongoing case (a case prefix) will unfold up to its
completion. A predictive process monitoring technique may provide predictions on the
remaining execution time of each ongoing case of a process (Rogge-Solti and Weske
2013), the next activity that will be executed in each case (Evermann et al. 2017),
or the final outcome of a case wrt. a set of possible outcomes (Metzger et al. 2015;
Teinemaa et al. 2017). In this work, we concentrate on the latter type of predictions,
namely on outcome-oriented predictive process monitoring (Teinemaa et al. 2017),
where the outcome is assumed to be a binary value (multi-class outcomes are out of
scope of this paper). In this context, the outcome of a case can be defined in different
ways, depending on the business goals and targets of the process. For instance, in a
sales process a desirable outcome is that the customer places a purchase order, while
a negative outcome occurs when the customer terminates the process before placing
an order.

A variety of outcome-oriented predictive process monitoring techniques have been
proposed in the literature (Teinemaa et al. 2017). In existing work, the quality of these
methods is measured in terms of prediction accuracy using, for example, precision,
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recall, and area under the ROC curve (AUC). However, we argue that these accuracy
measures are not sufficient to assess a predictive process monitoring method. Consider,
for instance, a healthcare process where the target is to estimate whether a patient will
need intensive or standard care. An accurate prediction could help the patient to receive
the suitable treatment in a timely manner, as well as help the hospital to better allocate
resources to patients. Suppose that when the patient first arrives at the hospital, the
predictor estimates that she will need intensive care, so she is admitted to the intensive
care program. After executing a procedure, the predictor changes the prediction and
estimates that standard care is sufficient for the patient, so the patient is brought to
standard care. However, after performing another procedure, the classifier changes
the prediction again and recommends transferring the patient back to intensive care.
This example shows how the practical usability of a predictor is limited if it outputs
unstable predictions, i.e., if it tends to often change the value of the predictions after
seeing new data about the same case. In this example, the treatment of the patient could
have been more efficient if the personnel had not trusted the intermediate prediction
of the predictor and had not brought the patient to the standard care. Another example
concerns a debt encashment process, where a prediction engine can be used to decide
whether the debt should be sent to a credit collection agency or not. In this case,
volatile predictions can mislead users of the system to prematurely send the debt to
the collection agency, resulting in smaller revenue as compared to waiting some more
time for the debt to be repaid. Similarly, in case of fraud detection in a financial
institution, unstable predictions may cause the institution to frequently block and
unblock the credit of a user, resulting in inconveniences and loss of revenue related to
potential transactions that the user was not able to complete.

The above examples illustrate the importance of the stability of a classifier when
used to make successive predictions in the context of predictive process monitoring.
The conventional notion of stability in non-deterministic learning algorithms (such as
random forest) indicates how much the predictions made for the same ongoing case
differ across different runs of training the classifier (Elisseeff et al. 2005). In other
words, if we train multiple classifiers with the same parameter setting but different
randomization parameters, would these classifiers agree on the predictions made for
the same sample or not? From hereinafter, we refer to this notion of stability as the
inter-run stability. Conversely, in this paper, we are interested in another type of
question, i.e., on how different are the predictions made by the same classifier (or an
ensemble of classifiers) for different prefixes of the same case. Specifically, we want to
measure whether the classifier often changes its prediction about the same case when
more events in the case are performed. We refer to the latter notion of stability as the
temporal stability.

In this paper, we:

1. introduce a measure of temporal stability for binary classification tasks in predic-
tive process monitoring,

2. perform an evaluation of several existing predictive process monitoring methods
with respect to both prediction accuracy and temporal stability,

3. study the effects on temporal stability of increasing inter-run stability in combina-
tion with prediction accuracy,

@ Springer



Temporal stability in predictive process monitoring 1309

4. study the effect on temporal stability and accuracy of applying smoothing tech-
niques to the time series of predictions made for a given case.

The rest of the paper is structured as follows. Section 2 summarizes the related work
on predictive process monitoring, early sequence classification, and learning algorithm
stability. Section 3 defines the notion of temporal stability and proposes a metric for
measuring it, as well as a post-processing technique to combine predictions made for
prefixes of the same case in order to reduce their volatility. Section 4 describes the
experimental set-up and the results of the evaluation. Section 5 concludes the paper
and discusses avenues for future work.

2 Related work

In this section, we discuss the related work on predictive process monitoring, early
sequence classification, and stability in learning algorithms.

2.1 Predictive process monitoring

A variety of predictive process monitoring methods have been proposed in the existing
literature (Marquez-Chamorro et al. 2017). These approaches can be divided according
to the prediction target into the following categories: remaining time prediction (regres-
sion tasks), next activity prediction (multi-class classification), and outcome-oriented
prediction (binary classification). Outcome-oriented process monitoring techniques
differ in terms of three aspects: sequence encoding, bucketing of prefixes (how many
classifiers are built and which prefixes are given as input to each classifier), and clas-
sification algorithm (Teinemaa et al. 2017).

A sequence encoding can be lossless, meaning that the original trace can be
recovered completely from the encoded trace. An example of such encoding is the
index-based encoding proposed by Leontjeva et al. (2015), which concatenates the
data from all events into a single vector, so that the first position contains the activity
name from the first event, the second position contains the activity name from the
second event and so on. A drawback of this method is that the size of the encoded
vector increases with each event, which means that a separate classifier is needed for
each prefix length. Alternatively, a lossy encoding approach aggregates the event data
for each trace, thus producing feature vectors of the same size independently of the
prefix length. Examples of lossy encodings are last state encoding, which uses only
data from the most recent event performed in each trace and aggregation encoding,
which aggregates the information from all events executed so far using, for instance,
the frequencies of categorical event attributes (e.g., activity names), or aggregation
functions such as minimum, mean, or maximum for numeric event attributes. Using
a lossy encoding, we can feed all the encoded prefixes to a single classifier, as the
length of the feature vector does not depend on the prefix length.

Several existing works have proposed dividing prefixes into buckets and training
separate classifiers for each bucket, resulting in a multiclassifier approach. An example
is Leontjeva et al. (2015), where different classifiers are built for each prefix length.
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Other methods cluster the prefixes based on their similarity in terms of the performed
activities and build one classifier per cluster (Di Francescomarino et al. 2017). Others
train a classifier for every state in a process model or in a transition system (Laksh-
manan et al. 2010).

Existing works have experimented with different classification algorithms. The
most popular choices are tree-based methods, such as decision trees (Di Francesco-
marino et al. 2017; Lakshmanan et al. 2010; de Leoni et al. 2016) and random forests
(Leontjeva et al. 2015; Di Francescomarino et al. 2017). To our knowledge, there is
no existing work on using recurrent neural networks (RNNs) for outcome-oriented
predictive process monitoring. However, RNNs with long short term memory units
(LSTMs) have been used in other predictive process monitoring tasks, such as for
predicting the remaining time and the next activity (Tax et al. 2017; Evermann et al.
2017).

2.2 Early sequence classification

With respect to the broader literature on machine learning, outcome-oriented predictive
process monitoring is related to early sequence classification. Given a set of labeled
sequences, the goal is to build a model that for a sequence prefix predicts the label
this prefix will get when completed. A survey on sequence classification presented in
Santos and Kern (2016) gives an overview of the techniques from this field.

Xing et al. (2008) introduced the notion of seriality in sequence classifiers, refer-
ring to the property that for each sequence, there exists a prefix length starting from
which the classifier outputs (almost) the same prediction. The works on early sequence
classification are generally focused on determining such prefix length that yields a
good prediction, also referred to as the minimal prediction length (MPL) (Xing et al.
2012). The method by Xing et al. (2012) finds the earliest timestamp when the nearest
neighbor relationships in the training data become stable (i.e., remain the same in
the subsequent prefixes). Parrish et al. proposed a method based on the reliability of
predictions, i.e., the probability that the label assigned to a given prefix is the same
as the label assigned to the whole sequence (Parrish et al. 2013). More recently, Mori
et al. (2017) designed an approach to make an early prediction when the ratio of accu-
racy between the prediction made for the prefix and for the full sequence exceeds a
predetermined threshold. Most of the techniques for early classification are designed
for numerical time series or simple (univariate) symbolic sequences. However, the
problem of predictive process monitoring can be seen as an early classification over
complex sequences where each element has a timestamp, a discrete attribute referring
to an activity, and a payload made of a heterogeneous set of other attributes. One of
the few works on early classification on complex sequences is Lin et al. (2015), where
Lin et al. propose constructing serial decision trees and monitor the error rate in leaf
nodes in order to determine the MPL.

The works on developing serial classifiers and finding the MPL are closely related
to the notion of temporal stability studied in this paper. In fact, a serial classifier
has perfect temporal stability. However, instead of determining MPL and making
predictions only after the MPL is reached, we are interested in predicting the outcome
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for every prefix of the sequence. The reason for this is that in a predictive process
monitoring setting, it is necessary to give the best estimate of the case outcome even
when too few data is available to make a final prediction. In this respect, we aim for
temporal stability also on short prefixes, when the prediction might still differ from
the one that would be made for the entire sequence.

2.3 Stability of learning algorithms

Stability of learning algorithms has been a topic of interest for many years. Conven-
tionally, a learning algorithm is considered unstable if small changes (perturbations)
in the training set can cause significant changes in the predictor (Breiman 1996).
Such instability of single predictors motivated Breiman et al. to introduce bagging
predictors, showing that the stability and accuracy of a predictor can be increased by
aggregating the estimations from multiple versions of the predictor (Breiman 1996). In
this context, increasing stability relates to decreasing the variance between prediction
estimates. Bousquet et al. studied the relationship between stability and generaliza-
tion (Bousquet and Elisseeff 2002) . In particular, their study is based on sensitivity
analysis, i.e., how much replacing or deleting a training sample affects the prediction
loss. They propose three definitions of stability, which are all based on changes in the
training set. The reason for this is that they focus on deterministic algorithms, so that
all the randomness comes from the sampling on the datasets. Elisseeff et al. extended
these notions of stability to non-deterministic algorithms (Elisseeff et al. 2005) where
randomness is present even when the training set remains unchanged. Their stabil-
ity definitions are supplemented with a randomness parameter. More recently, Liu
et al. proposed a metric for measuring stability across several runs of random forest
and incorporated it into a framework for selecting the hyperparameters based on a
goodness measure combining AUC, stability, and cost (Liu et al. 2017).

While existing notions of stability are related to changes made in the training phase
(either by changing the training set or by changing the randomness parameter), in this
paper we study the case where both the training dataset and the randomness are fixed,
but the input vector changes over time. In particular, we study the temporal stability
of predictions in the setting where predictions are made successively for different
prefixes of the same sequence. In other words, we examine how much increasing the
length of the prefix changes the predictions.

3 Temporal prediction stability

In this section, we start with introducing the notion of prediction scores in outcome-
oriented predictive process monitoring. We proceed with defining temporal stability
and provide a metric to measure this property. Lastly, we describe our approach for
combining prediction scores obtained for prefixes of the same case in order to reduce
their volatility.
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Fig. 1 Examples of prediction scores over time: original (left) and smoothed (right) (Color figure online)

3.1 Prediction scores over time

In an outcome-oriented predictive process monitoring task, the target for classification
is a binary value, referring to either a positive or a negative outcome. Despite the fact
that the classifier is trained to recognize a binary target, it can usually output a real-
valued prediction score indicating the likelihood towards the positive outcome.

In predictive process monitoring, the classifier is asked to give an estimation about
the case outcome after each performed event. Therefore, the prediction scores esti-
mated after each event of the same case form a time series. As an example, consider
the pink time series (Case B) plotted in Fig. 1 (left). During the first 5 events, the
classifier is unsure about what will be the outcome of this case (the prediction scores
for these events are equal to 0.5). Then, the 6th event provides some relevant signal,
so that the classifier becomes confident that the case will be positive (the prediction
scores for the following events are 0.9). This series is rather stable over time, as the
successive prediction scores change only once. An example of a completely stable
series of predictions is Case A (the black line), where the prediction scores remain
the same for all prefixes. Now consider Cases C and D (green and blue). We can see
that the classifier changes the prediction score after almost every event, producing
a volatile time series for these cases. Such unstable predictions have little practical
value, causing users to be cautious about acting upon the prediction and decreasing
the overall credibility of the classifier.

3.2 Temporal stability

Based on the above rationale, we say that a classifier is femporally stable if it (generally)
outputs similar predictions to successive prefixes from the same sequence.

Given a threshold on the prediction scores that determines whether the predicted
outcome is positive or negative, it would be natural to define temporal instability
as the number of times the classifier “flips” its prediction, and to define temporal
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stability as one minus a normalized measure of instability. The drawback of this
approach is that it is dependent on the chosen threshold. Instead, we aim for a more
general, threshold-independent measure that would capture the stability of the classifier
under any threshold. Accordingly, we propose to measure stability as a function of the
magnitude of the changes between successive prediction scores. This latter definition
is related to the former: if the difference between successive scores is high, there exist
many thresholds that would lead to flips in the predicted outcome. Conversely, if the
difference is low, only a low number of thresholds would flip the prediction.

The simplest way to consider the magnitude of the changes would be to measure
the (average) absolute difference between successive prediction scores. Note that this
metric does not consider the direction of the changes, i.e., a change towards the correct
direction (the actual class) affects the measure in the same way as a change towards
the wrong direction. As a result, a classifier that consistently improves its prediction
is assigned a similar stability score as one that fluctuates around the same score. An
alternative would be to consider only the changes that are made to the wrong direc-
tion, calculating the (average) absolute difference only over these changes. However,
this metric would reflect the consistency of the classifier rather than its stability. For
instance, consider a sequence with the actual outcome being positive, and two classi-
fiers. One of the classifiers outputs a score of 1 at the first event, i.e., it is (correctly)
certain that the outcome will be positive, but throughout the case becomes only slightly
less certain of it, outputting 0.99 on some events. The other classifier makes a com-
pletely wrong estimation at the beginning of the sequence, outputting a score of 0,
while throughout the rest of the case, it only improves its estimate (sometimes by
large magnitudes), producing scores like 0.1, 0.5, and even 0.95. According to the
latter metric, the second classifier, which makes changes in large magnitudes, would
be considered more stable than the first classifier, although the first one only changes
its prediction by a small amount. In a sense, a measure that considers the direction of
the change penalizes classifiers that make the right prediction from the onset, since the
only way to maintain their stability throughout the sequence would be to always output
exactly the same score. Based on these considerations, we proceed with measuring
the average difference between the successive prediction scores without taking into
account the direction of the change.

Accordingly, we measure the temporal stability (TS) of a classifier as one minus
the average absolute difference between any two successive prediction scores:

T;

e 1 S
S=1—- — —_— yi—3 ., 1
T’l;Tl—l Vi Yi—1 ()

=2

where 7 is the number of cases used for the evaluation, 7; is the total number of events
in the ith case, and )7,’ is the prediction score of the rth event of the ith case. This
metric first evaluates the average absolute difference between successive prediction
scores within each case in order to eliminate the bias towards long sequences, and
then averages over the cases.
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3.3 Combining prediction scores via smoothing

We can adjust the prediction scores during a post-processing phase to reduce volatility
without affecting the pre-trained classifier. Specifically, instead of using explicitly the
score that the classifier outputs for a case after observing ¢ events, we combine it with
prediction scores made for shorter prefixes of the same case.

To combine predictions, we can use various time series smoothing methods, which
average out the noise and fluctuations. The simplest way to smooth a time series is via
a moving average. The smoothed estimate at each event is computed as the average
of the last k observations. A different approach, called single exponential smoothing,
assigns weights that decrease exponentially over time. The smoothed estimate at time
t is the combination of the observed value at time ¢ and the smoothed estimate at time
t — 1, using a smoothing parameter &, 0 < @ < l:s, = (1 — @) - ¥y + @ - 5,_1.
Parameter « controls to what extent the previous observations are taken into account.
The larger the «, the stronger the smoothing effect. While other smoothing techniques
are available, we use the single exponential smoothing because of its simplicity and
because it allows us to directly control the level of smoothing. Also, only techniques
that enable sequential smoothing (as opposed to smoothing over the entire sequence)
are applicable in our case, as in the predictive process monitoring setting, only the
prediction scores made up to a certain point in the sequence are known.

For example, consider the time series plotted in Fig. 1 (right). These time series have
been derived from the examples in Fig. 1 (left) by applying exponential smoothing
with @ = 0.8. We can notice that the fluctuations in Cases C and D have been reduced
considerably. However, smoothing can also have a negative effect on the predictions,
illustrated by Case B. Namely, changes in the scores do not have an immediate strong
effect, as the adjusted score puts some weight on the previous estimates. Therefore,
when an event carrying a relevant signal about the case outcome arrives, the smoothed
estimate is cautious about trusting it, resulting in a lower accuracy.

4 Evaluation

We conducted an empirical evaluation to address the following questions:

RQ1 Whatis the relative performance of different predictive process monitoring meth-
ods in terms of temporal stability (in addition to accuracy)?

RQ2 How does maximizing the inter-run stability in combination with prediction
accuracy affect the temporal stability?

RQ3 How does decreasing prediction volatility via exponential smoothing affect the
accuracy and the temporal stability?

Below, we describe the approaches and datasets employed, we explain the experi-
mental setup, and discuss the results. The code used for this evaluation is available at
https://github.com/irhete/stability-predictive-monitoring.
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Table 1 Approaches

Approach Multi/single cls Encoding Classifier
RF_agg Single Aggregation RF
RF_idx_pad Single Index RF
RF_idx_mul Multi Index RF
XGB_idx_pad Single Index XGBoost
XGB_idx_mul Multi Index XGBoost
XGB_agg Single Aggregation XGBoost
LSTM Single Index LSTM

4.1 Approaches

To address RQ1, we choose 7 predictive process monitoring approaches (see Table
1) as basis for the experiments. We employ 2 existing sequence encoding techniques,
the index-based and the aggregation encoding. As explained in Sect. 2.1, index-based
encoding constructs a lossless representation of a prefix by concatenating the data
from each executed event. In the aggregation encoding, a prefix of arbitrary length
is transformed into a fixed length feature vector by applying different aggregation
functions. In particular, for categorical features, we use frequencies, i.e., how many
times each possible value (e.g., each activity name) has occurred in the given prefix,
while the numerical features are aggregated using the average, maximum, minimum,
sum, and standard deviation of the values observed so far. Both encodings are combined
with two classification methods, random forest (Breiman 2001) (RF) and XGBoost
(Chen and Guestrin 2016). We choose these classifiers because they have shown to
outperform other methods in various applications (Fernandez-Delgado et al. 2014;
Olson et al. 2018). Additionally, we adapt a predictive process monitoring method
based on LSTM neural networks (Tax et al. 2017) to predict the outcome of a case.

In all of the approaches, each prefix constitutes a separate training instance. For
index-based encoding, the fact that different prefixes consist of different numbers of
events raises an issue when trying to encode all prefixes with fixed-length vectors.
There are two possible solutions to this issue. Firstly, it is possible to fix the maximum
prefix length and, for shorter prefixes, pad the data for missing events with zeros.
An alternative solution is to build multiple classifiers, one for each prefix length;
given a prefix of length / in the testing set, the prediction for this prefix is derived
from the classifier constructed based on prefixes (in the training set) of length /. In
our experiments, we apply both solutions to the RF and XGBoost based approaches,
marked as RF_idx_pad/XGB_idx_pad and RF _idx_mul/XGB_idx_mul, respectively.
Since the second, multiclassifier solution is not commonly used with LSTMs, in the
LSTM-based approach we only apply the padding solution.

Prediction scores returned by classifiers are often poorly calibrated, meaning that
the scores do not reflect well the actual probabilities of belonging to one class or to the
other (Guo et al. 2017). For instance, one classifier may output scores that are always
concentrated around 0.5, while another may return scores that are well distributed
within the range between 0 and 1. This causes bias when comparing different classifiers
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in terms of temporal stability. Indeed, the differences between any two prediction
scores in the case of the former classifier are very small, making it seem a very stable
classifier, while the relative differences within each case might be larger than in the
latter classifier. To address this issue, we apply a well-known calibration method,
Platt scaling (Platt 1999), to each of the classifiers before comparison. We choose
this technique because it outperforms other methods when data is scarce (e.g., less
than 1000 data points available for calibration) (Niculescu-Mizil and Caruana 2005),
which is the case in most of our datasets. Note that calibration does not change the
order of the prediction scores assigned by the same classifier, so that the AUC of each
classifier is not affected by it.

To test RQ2, we adapt the approach proposed in Liu et al. (2017) to RF and XGBoost
hyperparameter optimization. Namely, instead of choosing the optimal parameter set-
ting based on AUC on a single run of classifier training, we perform 5 runs with each
setting and choose the one that achieves (1) the best average AUC over all runs, and (2)
the best combined AUC and inter-run stability! over all runs. For the latter scenario,
we give more weight to the inter-run stability, assigning weights 1 and 5 to AUC and
stability, respectively.

To decrease prediction volatility (RQ3), we experiment with exponential smooth-
ing, varying the smoothing parameter o € {0.1, 0.25, 0.5, 0.75, 0.9}.

4.2 Datasets

We use real-life datasets publicly available at the 4TU Centre for Research Data.> From
the 4TU Centre datasets, we left out those that are not business process event logs,
but instead related to software development or web services. Moreover, we excluded
event logs where a natural labeling for the case outcome was not easily derivable.
Also, we discarded the datasets where the order of events is not clearly defined due to
time granularity issues. For each selected log, it is possible to come up with multiple
definitions of case outcome (labelings), so that each definition constitutes a sepa-
rate predictive process monitoring problem. In the following, we briefly describe the
domain of each of the datasets and the labelings that were constructed for carrying
out the experiments. Then, we describe the feature extraction and preprocessing prin-
ciples applied to the datasets and conclude with a comparison of general statistics of
the datasets.

4.2.1 BPIC2012

This dataset, originally published in relation to the business process intelligence chal-
lenge (BPIC) in 2012, contains the execution history of a loan application process in

! Inter-run stability refers to the MSPD metric introduced in Liu et al. (2017): MSPD(f) =
2Ex; [Var(f(x;)) — Cov(fj(x;), fx(x;))], where Ey; is the expectation over all validation data, f is
a mapping from a sample x; to a label y; on a given run, Var(f(x;)) is the variance of the predictions of a
single data point over the model runs, and Cov(f; (x;), fx (x;)) is the covariance of predictions of a single
data point over two model runs.

2 Production log: https://data.4tu.nl/repository/uuid:68726926-5ac5-4fab-b873-ee76ea412399, other
logs: https://data.4tu.nl/repository/collection:event_logs_real.
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a Dutch financial institute. Each case in this log records the events related to a par-
ticular loan application. For classification purposes, we defined some labelings based
on the final outcome of a case, i.e., whether the application is accepted, rejected, or
cancelled. Intuitively, this could be thought of as a multi-class classification problem.
However, to remain consistent with previous work on outcome-oriented predictive
process monitoring, we approach it as three separate binary classification tasks. In the
experiments, these tasks are referred to as bpic2012_accepted, bpic2012_declined,
and bpic2012_cancelled.

4.2.2 BPIC2017

This event log originates from the same financial institution as the BPIC2012 one.
However, the data collection has been improved, resulting in a richer and cleaner
dataset. As in the previous case, the event log records execution traces of a loan appli-
cation process. Similarly to BPIC2012, we define three separate labelings based on
the outcome of the application, referred to as bpic2017_accepted, bpic2017_refused,
and bpic2017_cancelled.

4.2.3 Sepsis cases

This log records trajectories of patients with symptoms of the life-threatening sepsis
condition in a Dutch hospital. Each case logs events since the patient’s registration in
the emergency room until her discharge from the hospital. Among others, laboratory
tests together with their results are recorded as events. Moreover, the reason of the
discharge is available in the data in an obfuscated format.

We created three different labelings for this log:

— sepsis_cases_I the patient returns to the emergency room within 28 days from the
discharge,

— sepsis_cases_2 the patient is (eventually) admitted to intensive care,

— sepsis_cases_3 the patient is discharged from the hospital on the basis of something
other than Release A, which is the most common release type.

4.2.4 Hospital billing

This dataset comes from an ERP system of a hospital. Each case is an execution of
a billing procedure for medical services. We created a labeling based on whether the
case is reopened or not.

4.2.5 Road traffic fines

This log comes from an Italian local police force. The dataset contains events about
notifications sent about a fine, as well as (partial) repayments. Additional information
related to the case and to the individual events include, for instance, the reason, the
total amount, and the amount of repayments for each fine. We created the labeling
(traffic_fines) based on whether the fine is repaid in full or is sent for credit collection.
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4.2.6 Production log

This log contains data from a manufacturing process. Each trace records information
about the activities, workers and/or machines involved in producing an item. The
labeling (production) is based on whether or not the number of rejected work orders
is larger than zero.

4.2.7 Preprocessing

Before encoding the traces for classification, we apply some preprocessing on the raw
datasets.? In general, we use all the available case and event attributes without doing
any feature extraction before encoding. Still, a few extra features are added to each
event based on the timestamps, namely, hour, weekday, month, time since case start,
and time since last event. Additionally, we include the event number, i.e., how many
events have been performed in the case up to the current event. While all these features
are calculated intra-case, i.e., considering only data from the given case, features could
also be extracted inter-case, i.e., based on all cases that were active at the time the event
was performed. Accordingly, we extract the number of open cases (how many cases
were open during the execution of the event) as another feature. Different strategies
for extracting inter-case features are discussed in Senderovich et al. (2017).

Each categorical attribute has a fixed number of possible values, called levels. For
some attributes, the number of distinct levels can be very large, with some of the levels
appearing only in a few cases. In order to avoid the dimensionality explosion of the
input dataset, we set the category levels that appear in 10 or less samples to a common
level other.

Due to the fact that event logs consist of data that are recorded automatically by
information systems during the execution of tasks of a process, there is none or very
little missing data in the traditional sense. However, it is common that different events
carry different data payloads, resulting in a situation where some attribute values for
a given event can be “missing” due to the fact that they are not applicable for that
particular event. This can be caused by mainly two reasons. Firstly, in most event
logs, an event records only the values of data attributes that were changed during
that particular event. Therefore, in order to determine the value of an attribute at the
point where an event occurred, we need to search for the latest event in the trace (or
trace prefix) where the value of the attribute in question changed (or the first event
if no change point is found). For instance, the name of the resource involved in the
execution of an activity in a case is often logged only if the resource has changed since
the previous event. In such cases, we search for the closest preceding event in the same
case where the resource name was present and use the same value in the feature vector
produced for the current event. Secondly, different activities can produce different
types of data. For instance, in a loan application process, information about the offer
made to the customer becomes available only when an offer is made (before that,
no offer nor information about it exists). Similarly, in a fine collection process, the
amount of payment is only available for payment events. These examples constitute a

3 Preprocessed data: https://github.com/irhete/stability-predictive-monitoring.
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Table 2 Dataset statistics

Dataset name #Traces Pos class Med Max Trunc. #FEvents
ratio length length length
bpic2012_accepted 4685 0.48 35 175 40 155,783
bpic2012_declined 4685 0.17 35 175 40 155,783
bpic2012_cancelled 4685 0.35 35 175 40 155,783
bpic2017_accepted 31,413 0.41 35 180 20 624,352
bpic2017_refused 31,413 0.12 35 180 20 624,352
bpic2017_cancelled 31,413 0.47 35 180 20 624,352
sepsis_cases_1 782 0.14 14 185 29 12,189
sepsis_cases_2 782 0.14 13 60 13 9178
sepsis_cases_3 782 0.14 13 185 22 11,056
hospital_billing 77,525 0.05 6 217 8 404,721
traffic_fines 129,615 0.46 4 20 10 460,462
production 220 0.53 9 78 23 2275

form of legitimately missing data (Osborne 2013) or missing data that is out of scope
(Schafer and Graham 2002). In our experiments, we decided to address such cases by
adding an additional feature (for each data attribute) to the dataset, indicating whether
the given value is present for a given event or not. The value of the attribute itself was
set to O if not present.

In event logs where information is available about case completion, we filter out
incomplete cases in order to not mislead the classifier. Also, we cut each trace before
the event that was used to define the label. For instance, in the production log, the
traces are cut immediately before the number of rejected work orders becomes larger
than zero.

The datasets (after preprocessing) exhibit different characteristics presented in
Table 2. Firstly, the number of cases varies from 220 in the productionlog to 129615 in
the traffic_fines log. Class imbalance is the most severe in the hospital_billing dataset,
where only about 5% of cases are of the positive class. On the other hand, the classes
are almost perfectly balanced in the production, traffic_fines, bpic2017_cancelled, and
bpic2012_accepted datasets. The median trace length is the smallest in traffic_fines,
where half of the cases consist of 4 or less events, while BPIC2012 and BPIC2017
variants have the longest traces (median length 35). Trace lengths can be very het-
erogenous. For instance, while the median trace length in hospital_billing is 6, the
maximum trace length is 217. Our experiments have shown that using the original
length for very long traces causes the performance of the classifier to decrease, as well
as hinders the readability of the plots (see Figs. 9, 10 in the ”Appendix”). Therefore,
we have decided to use truncated versions of long sequences. We determined the trun-
cated length independently for each dataset based on the following criteria. Firstly, the
sequence was truncated from the length where 90% of the minority class sequences
have already completed (and not available anymore for training and evaluation), as
both training and evaluation of the classifier would be unreliable when having very
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few sequences from one of the classes. Secondly, as in the BPIC2012 and BPIC2017
variants the signal starts to converge around 40 and 20 events, respectively, we further
truncated the sequences to these lengths for computational reasons. For histograms of
case lengths in both classes, see Fig. 7 in ”Appendix”.

4.3 Experimental setup

We apply a temporal split for dividing cases into training and test sets. Namely, the
cases are ordered according to the start time and the first 80% is used for training and
validating the models, while the remaining 20% is used to evaluate the performance.
Note that, using this approach, some events in the training cases might still overlap
with the test period. As we are using an inter-case feature (the number of open cases),
which considers data from all cases active at a given time, this could introduce a bias
into our evaluation. In order to avoid that, we cut the training cases so that events that
overlap with the test period are discarded.

To achieve the best performance with each method, the hyperparameters of the
classifiers need to be optimized separately for each method and dataset. To this end,
we further split the training cases randomly into 80% training and 20% validation data.
We train the models with different parameter settings on the training set and select the
model that performed best on the validation set. In the case of RF and XGBoost, the
best models are selected based on the AUC on the validation data. During training,
LSTMs optimize binary crossentropy, which is why we selected the best parameters
according to this metric.

While RF tends to perform well even with little optimization, XGBoost and LSTM
are much more sensitive to hyperparameter selection. Also, the number of hyperpa-
rameters is larger on the last two methods, making grid search infeasible. In order to
keep the methods comparable, we decided to use the same optimization procedure for
all of them, i.e., random search (Bergstra and Bengio 2012) with 16 iterations. As a
basis for random search, we specified for each hyperparameter a distribution to sample
values, as well as the bounds for the values (see Table 5 in Appendix). The selected
values for each hyperparameter are presented in Tables 6, 7, 8, 9 and 10 in Appendix.
The activation function for LSTM is always fixed to sigmoid in our experiments and
the number of epochs to 50.

4.4 Results

The experiments were performed using Python libraries Scikit-Learn* (RF and
XGBoost) and Keras® with Theano® backend (LSTM).

4 http://scikit-learn.org/.
5 https://github.com/fchollet/keras/.

6 http://www.deeplearning.net/software/theano/.
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Fig.2 Prediction accuracy (measured in terms of AUC)

4.4.1 General comparison

Figure 2 shows the prediction accuracy (AUC) across different prefix lengths. For
instance, prefix length 10 means that the predictions were made based on the first
10 events in a case. One observation is that the multiclassifiers (RF_idx_mul and
XGB_idx_mul) can yield a high accuracy on some prefixes (especially on the shorter
ones), but at the same time the results are very volatile, causing the AUC to drop
unexpectedly. For instance, see XGB_idx_mul with prefix = 24 in sepsis_cases_1I
or RF_idx_mul with prefix = 15 in sepsis_cases_3. On long prefixes, the index-
based encoding approaches (both multiclassifiers and single classifiers with padding)
tend to perform worse than the other methods. Exceptions are some smaller datasets,
namely, production and sepsis_cases_3, where XGB_idx_pad performs well over all
prefix lengths.

Different patterns can be seen for LSTM. Firstly, in the case of bpic2012 variants,
the accuracy is lower for shorter prefixes, but after the relevant signal comes in (around
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prefix length between 12 and 20), the model is able to make use of it better than the
other methods, reaching the highest AUC on long prefixes. Secondly, while LSTM
often does not achieve the highest AUC, it is always reasonably stable, in the sense
that no sudden drops in AUC occur in any prefix length.

The single classifiers with aggregation encoding (RF_agg and XGB_agg) perform
well on both short and long prefixes. Although in some prefix lengths they are out-
performed by the index-based encoding methods, they are overall more stable. In
particular, these methods are somewhat more volatile than LSTM, but they usually
do not undergo strong falls in AUC as the multiclassifiers. For example, see sep-
sis_cases_1 and sepsis_cases_3 where RF_agg and XGB_agg retain high accuracy on
long prefixes, while RF_idx_mul and XGB_idx_mul become more volatile.

We can also observe, in Fig. 2, that, in some cases, the AUC starts to decline as the
prefix length increases, which is counter-intuitive since the longer the prefix, the more
information the classifier has to make a decision. For instance, this happens in the
bpic2012 variants, sepsis_cases_2, sepsis_cases_3, and traffic_fines. To investigate
this phenomenon, we filtered out the short cases, leaving only those that reach the
maximum considered prefix length, and calculated the AUC only for those long cases.
We observed (Fig. 8 in Appendix) that the AUC does not undergo a decrease when
considering only the long cases, but instead keeps increasing (or stays at the same
level). These results suggest that the decrease in AUC is not due to the classifiers
starting to perform worse on long prefixes. Rather, this decrease is due to the fact
that for shorter cases, it is easier to make predictions since they are initially closer to
completion. Therefore, after these cases have completed and they are excluded from
the calculation of the AUC, the performance of the classifier seems to decay.

The temporal stability is plotted in Fig. 3. In 11 out of 12 datasets, the highest
stability is achieved by XGB_idx_pad, usually followed by XGB_agg and then either
LSTM or RF_idx_pad.In general, RF achieves slightly lower stability than its XGBoost
counterparts. The multiclassifier approaches always have lower temporal stability than
single classifiers, which is not surprising. Namely, as the RF and XGBoost classifiers
do not consider the temporal relations between the input features and, instead, assume
them to be i.i.d., the variance between classifiers built for prefixes of length / and / + 1
can be very high and, thus, the predictions made for two successive prefixes can be
completely uncorrelated. This discussion answers RQI.

4.4.2 Increasing the inter-run stability during validation

Tables 3 and 4 present the overall AUC (weighted average over all prefix lengths) and
the temporal stability for the single classifier with aggregation encoding with RF and
XGBoost using three hyperparameter optimization approaches: (1) validation based
on AUC over a single run with each parameter setting (RF, XGB), (2) validation based
on average AUC over 5 runs with each parameter setting (RF_5, XGB_5), and (3)
validation based on a combined measure of mean AUC and inter-run stability over 5
runs with each parameter setting (RF_5_S, XGB_5_S).

The results show that selecting the best parameters according to AUC over 5 runs
usually (in 7 out of 12 cases) increases the AUC on the test set as compared to selecting
them based on a single run, while the temporal stability is increased almost always
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(the only exceptions are traffic_fines and sepsis_cases_3). Optimizing the combined
metric over 5 runs further improves the temporal stability, but achieves slightly less
consistent improvement in AUC. The validation over 5 runs increases the temporal
stability also for XGBoost. In fact, the highest temporal stability is achieved by either
XGB_5 or XGB_5_S in the majority of the datasets as can be seen in Table 4. The
AUC in the case of XGBoost remains at the same level or even decreases as compared
to validating over a single run. The best AUC is often achieved by RF_5 or RF_5_S
(Table 3).

To answer RQ2, we found that validating over 5 runs instead of a single run,
in general, results in improvement of AUC and/or temporal stability. However, the
improvements are rather small in value and come at the expense of running 5 times
more experiments during the hyperparameter optimization phase.
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Table 3 Effects of maximizing inter-run stability and accuracy on AUC

Dataset RF RF_5 RF_5_S XGB XGB_5 XGB_5_S
bpic2012_accepted 0.690 0.690 0.674 0.680 0.677 0.677
bpic2012_cancelled 0.700 0.691 0.688 0.697 0.690 0.695
bpic2012_declined 0.610 0.609 0.609 0.605 0.599 0.603
bpic2017_accepted 0.834 0.843 0.839 0.834 0.841 0.831
bpic2017_cancelled 0.803 0.813 0.812 0.810 0.811 0.812
bpic2017_refused 0.805 0.816 0.820 0.802 0.810 0.801
hospital_billing 0.671 0.662 0.665 0.731 0.727 0.724
production 0.707 0.540 0.540 0.565 0.563 0.563
sepsis_cases_1 0.611 0.638 0.638 0.512 0.490 0.490
sepsis_cases_2 0.750 0.781 0.763 0.761 0.742 0.683
sepsis_cases_3 0.693 0.747 0.747 0.738 0.712 0.712
traffic_fines 0.667 0.681 0.681 0.661 0.661 0.660
Best results for each dataset are highlighted in bold

Table 4 Effects of maximizing inter-run stability and accuracy on temporal stability

Dataset RF RF_5 RF_5_S XGB XGB_5 XGB_5_S
bpic2012_accepted 0.971 0.970 0.974 0.978 0.988 0.994
bpic2012_cancelled 0.972 0.970 0.977 0.982 0.991 0.996
bpic2012_declined 0.989 0.988 0.988 0.993 0.993 0.996
bpic2017_accepted 0.959 0.974 0.975 0.976 0.988 0.977
bpic2017_cancelled 0.960 0.973 0.974 0.975 0.989 0.976
bpic2017_refused 0.984 0.991 0.992 0.993 0.998 0.992
hospital_billing 0.978 0.976 0.977 0.987 0.980 0.981
production 0.952 0.939 0.939 0.930 0.999 0.999
sepsis_cases_1 0.988 0.993 0.993 0.999 1.000 1.000
sepsis_cases_2 0.992 0.990 0.993 0.995 0.994 1.000
sepsis_cases_3 0.984 0.982 0.982 0.992 0.987 0.987
traffic_fines 0.773 0.769 0.769 0.715 0.697 0.702

Best results for each dataset are highlighted in bold

4.4.3 Decreasing the intra-case prediction volatility during prediction

Figure 4 shows that decreasing the prediction volatility via exponential smoothing
consistently improves the temporal stability. The larger the smoothing parameter «,
the larger the increase in temporal stability. The methods that benefit the most from
smoothing are multiclassifiers (RF_idx_mul and XGB_idx_mul). Being initially less
stable, smoothing helps these methods to achieve a similar level of temporal stability as
the other methods. In some cases, the multiclassifiers even overtake the other methods
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Fig.4 Temporal stability across different levels of smoothing

on large « (see bpic2012 variants). Also, RF_agg gains relatively more from smooth-
ing than its XGBoost counterpart and LSTM. For instance, see bpic2012 variants or
production, where RF_agg bypasses either LSTM or XGB_agg.

In Fig. 5, the overall AUC is plotted against the o parameter. We observe that in
most cases smoothing decreases the AUC. The reason for this is that as the smoothed
estimate is cautious about the most recent prediction, the true signal in the data occurs
after a lag. However, the AUC does not always decrease with smoothing. For smaller
logs (production and sepsis_cases variants), the AUC remains almost unchanged by
smoothing or even increases. Also in the larger logs, a small amount of smoothing can
help to increase the AUC (e.g., see XGB_idx_mul in bpic2017_refused). The methods
that benefit the most from smoothing are again the multiclassifiers. While not the most
accurate methods before postprocessing, they often overtake the other methods with
high levels of smoothing.
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Fig.5 Overall prediction accuracy across different levels of smoothing

To further understand the relationship between AUC and temporal stability, let
us look at Fig. 6, where these two metrics are plotted against each other (each dot
corresponds to AUC and temporal stability obtained via smoothing with a particular
value of o). We see that RF_idx_mul and XGB_idx_mul change considerably in the
direction from left to right, indicating that they are initially unstable but improve
substantially with smoothing. At the same time, their change in the up—down direction
is small, meaning that the AUC is not affected much. The least affected by smoothing
is the XGB_idx_pad method. For instance, in bpic2012_declined and sepsis_cases_2
both the accuracy and the temporal stability remain almost constant. We also observe
that, although the LSTM method in the smaller logs is initially stable and does not
gain in stability when smoothing, it does benefit in terms of AUC in the cases of
production, sepsis_cases_2, and sepsis_cases_3. The XGB_agg method often appears
in the top right corner, dominating the other techniques in terms of both accuracy and
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Fig.6 Temporal stability versus prediction accuracy

stability (see, for instance, bpic2012_cancelled, bpic2017_cancelled, hospital_billing,
and sepsis_cases_3).

To answer RQ3, exponential smoothing helps to increase the temporal stabil-
ity, but usually at the expense of lower accuracy. Exceptions are RF_idx_mul and
XGB_idx_mul, where smoothing often increases both temporal stability and AUC.

5 Conclusion and future work

We introduced the notion of temporal stability for predictive process monitoring.
Temporal stability characterizes how much successive prediction scores obtained for
the same case (sequence of events) differ from each other. For a temporally stable
classifier, such successive prediction scores are similar to each other, resulting in a
smooth time series, while in case of an unstable classifier, the resulting time series is
volatile. We evaluated the temporal stability of 7 existing predictive process monitor-

@ Springer



1328 |. Teinemaa et al.

ing methods, including single and multiclassifiers using RF, XGBoost, and LSTM. The
experiments were done on 12 prediction tasks formulated on 6 real-life publicly avail-
able datasets. We found that the highest temporal stability was achieved by a single
classifier approach with XGBoost (using either aggregation or index-based encoding),
followed by LSTM.

We investigated the effects of hyperparameter optimization on temporal stability.
We compared the final classifiers constructed after selecting the best parameters based
on (1) AUC over a single run for each parameter setting, (2) AUC over 5 runs for each
setting, (3) combined AUC and inter-run stability over 5 runs for each setting. The
results show that choosing the parameters based on 5 runs can increase both AUC and
temporal stability. However, the improvement is small and is subject to the trade-off
of 5 times more computations during validation.

Finally, we explored how exponential smoothing affects the AUC and temporal
stability. We concluded that smoothing can be a reasonable approach for adjusting
the predictions in applications where temporal stability is important at the expense of
achieving slightly smaller AUC. Moreover, we observed that the multiclassifiers bene-
fit the most from smoothing, in some cases even increasing both the temporal stability
and the AUC at the same time. Therefore, when high temporal stability is required, it
may be reasonable to use a multiclassifier approach with smoothing, achieving stable
results with little or no loss in accuracy.

As future work, we plan to develop more robust notions of temporal stability that
would still require most of the successive differences in predictions to be small, but not
penalize the classifier for changing the prediction when an event with a relevant signal
arrives. We will examine if the works on early sequence classification could be helpful
in developing an adaptive smoothing method that decreases volatility on subsequences
without suppressing the relevant signal. Furthermore, the notion of temporal stabil-
ity could be extended to other prediction tasks, such as multi-class predictions and
regression. For instance, temporal stability could also be investigated in the context of
predicting the remaining time of an ongoing case. While several methods have been
developed with the goal of providing accurate remaining time estimations, using, e.g.,
non-parametric regression (van Dongen et al. 2008), support vector regression (Polato
et al. 2014), or LSTM neural networks (Tax et al. 2017), none of these works has
considered the stability of the predictions. Another avenue for future work is to incor-
porate the notion of stability into the training phase of the classifiers. For instance, in
case of neural networks this could be achieved by adjusting the loss function to take
into account both the accuracy and the stability of the predictions.
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Appendix

See Tables 5, 6,7, 8,9, 10 and Figs. 7, 8, 9, 10.
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